JP2010024474A - Method for producing indium target - Google Patents

Method for producing indium target Download PDF

Info

Publication number
JP2010024474A
JP2010024474A JP2008184351A JP2008184351A JP2010024474A JP 2010024474 A JP2010024474 A JP 2010024474A JP 2008184351 A JP2008184351 A JP 2008184351A JP 2008184351 A JP2008184351 A JP 2008184351A JP 2010024474 A JP2010024474 A JP 2010024474A
Authority
JP
Japan
Prior art keywords
indium
ingot
target
film
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008184351A
Other languages
Japanese (ja)
Other versions
JP4992843B2 (en
Inventor
Katsushi Ono
勝史 小野
Toshio Morimoto
敏夫 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008184351A priority Critical patent/JP4992843B2/en
Publication of JP2010024474A publication Critical patent/JP2010024474A/en
Application granted granted Critical
Publication of JP4992843B2 publication Critical patent/JP4992843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive method for producing an indium target, which makes less indium oxide enter into an inner layer of a hot metal, and is suitable particularly for use in forming an indium film which is a light absorption layer formed of a stacked Cu-Ga/In precursor for a thin-film solar cell. <P>SOLUTION: In a process of producing the indium target by charging a raw indium material having a predetermined purity of 99.99% or more and an oxygen content of 0.001 wt.% or less into a mold which is mounted on a heating device and has been heated, so as to melt the charged indium material, removing floating indium oxide on the surface, cooling the material to form an ingot, and grinding the surface of the obtained ingot, this production method includes: charging a predetermined amount of the raw indium material into the mold through several divided times instead of charging the material at a time; removing formed indium oxide on the surface of the hot metal, each time; and then grinding the surface of the ingot which has been obtained by cooling the hot metal. The form of the raw material to be used may be any of an ingot, a ribbon shape and a powder. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、薄膜太陽電池用光吸収層として使用されるインジウムスパッタリングターゲットの製造方法に関し、特に効率よく良好なターゲットを製造するための方法に関する。   The present invention relates to a method for producing an indium sputtering target used as a light absorbing layer for a thin film solar cell, and particularly to a method for producing a good target efficiently.

インジウムの薄膜化技術としては、CVD法、蒸着法、スパッタリング法などがあるが、薄膜太陽電池用としては主にスパッタリング法が用いられている。インジウム薄膜は薄膜太陽電池のCu−Ga/Inの積層プリカーサー光吸収層として使用され、スパッタリング法により成膜されている。このスパッタリングにはインジウムターゲットが用いられるが、インジウムは軟質材料であり融点が155℃と低融点金属であるためにスパッタリングターゲットは溶解・鋳造法、圧延により製造されることが多い。   Indium thinning techniques include CVD, vapor deposition, and sputtering, but sputtering is mainly used for thin film solar cells. The indium thin film is used as a Cu—Ga / In laminated precursor light absorption layer of a thin film solar cell, and is formed by sputtering. An indium target is used for this sputtering, but since indium is a soft material and has a melting point of 155 ° C. and a low melting point metal, the sputtering target is often manufactured by melting / casting or rolling.

ところで、一般的に、スパッタリングターゲット中の酸素含有量が多かったり、または局所的にターゲット中に酸化物や酸素量が多く存在したりすると、スパッタリング時に異常放電が起きやすい。また、得られる膜に関しても、膜の組織や膜厚が不均一となる等の問題を引き起こす。  By the way, in general, when the oxygen content in the sputtering target is large, or when the oxide or oxygen amount is locally present in the target locally, abnormal discharge tends to occur during sputtering. In addition, the resulting film also causes problems such as non-uniform film structure and film thickness.

前記したように、インジウムは融点が155℃と低融点金属のため原料を大気中で溶解することができるが、この際に大気中の酸素と反応して酸化インジウムが発生し、溶湯内部に取り込まれるという事態が起きやすい。その結果、インジウムターゲットの酸素含有量が全体的に高くなったり、局所的に多い部分ができたりしてしまう。  As described above, since indium has a melting point of 155 ° C. and is a low melting point metal, the raw material can be dissolved in the atmosphere. At this time, indium oxide is generated by reacting with oxygen in the atmosphere and taken into the molten metal. It is easy to happen. As a result, the oxygen content of the indium target increases as a whole, or a locally large portion is formed.

このようなインジウムターゲットを用いてスパッタリング法により成膜すると、前記したような異常放電等が起き、膜厚や膜組成の不均一なものが形成されるばかりか、Cu−Ga膜との積層膜による光吸収層の光透過率やCu−Ga膜との接合が低下するという問題が生じる。   When such an indium target is used to form a film by a sputtering method, abnormal discharge or the like as described above occurs, and not only a film having a nonuniform film thickness and film composition is formed, but also a laminated film with a Cu-Ga film. There arises a problem that the light transmittance of the light absorption layer due to the above and the bonding with the Cu—Ga film are lowered.

こうした問題を解決すべく溶解時に還元性のある元素からなる脱酸素剤を添加し、脱酸素剤によって酸素量を低減させる方法や水素還元またはCO還元する方法が採られているが十分とはいえない。   In order to solve these problems, a method of reducing the amount of oxygen using a deoxidizer and a method of hydrogen reduction or CO reduction by adding an oxygen scavenger consisting of a reducing element at the time of dissolution has been adopted. Absent.

また、特許文献1 に記載されたように、純度99.99%の金属インジウムを原料るつぼに入れ、減圧蒸留して得られた純度6Nの高純度インジウムを用いることも考えられるが、得られるインジウムターゲットが極めて高価になり、現実的でないこと、また酸素とインジウムの反応性よりどの程度、酸化インジウムの発生と巻き込みを防止できるか不明であり、実質的な検討が行われるに至っていない。
特開2006−283192号公報
Further, as described in Patent Document 1, it is conceivable to use high-purity indium having a purity of 6N obtained by placing 99.99% purity metal indium in a raw material crucible and performing distillation under reduced pressure. It is unclear that the target becomes extremely expensive and impractical, and how much the generation and entrainment of indium oxide can be prevented due to the reactivity of oxygen and indium, and no substantial investigation has been conducted.
JP 2006-283192 A

本発明は、こうした視点よりなされたものであり、その目的は溶湯内層への酸化インジウムの取り込みが少なく、取り分け薄膜太陽電池のCu−Ga/Inの積層プリカーサー光吸収層であるインジウム膜成膜用として適したインジウムターゲットの安価な製造方法の提供である。   The present invention has been made from such a point of view, and its purpose is to reduce indium oxide incorporation into the inner layer of the molten metal, and particularly to form an indium film which is a Cu-Ga / In laminated precursor light absorption layer of a thin film solar cell. And providing an inexpensive method for manufacturing an indium target.

前記課題を解決すべく本第一の発明は、加熱装置の上に裁置され、加熱された鋳型に所定量のインジウム原料を投入して溶解し、表面に浮遊する酸化インジウムを除去し、冷却してインゴットを得、得たインゴット表面を研削してインジウムターゲットを得るに際し、所定量のインジウム原料を一度に鋳型に投入せずに複数回に分けて投入し、都度生成した溶湯表面の酸化インジウムを除去し、その後、冷却して得られたインゴットを表面研削して得ることを特徴とするものである。   In order to solve the above-mentioned problem, the first invention is placed on a heating device, injects a predetermined amount of indium raw material into a heated mold and dissolves, removes indium oxide floating on the surface, and cools. Ingots were obtained, and the surface of the obtained ingot was ground to obtain an indium target. A predetermined amount of indium raw material was not poured into the mold at once, but was poured in several times, and the indium oxide on the surface of the molten metal generated each time Is obtained by surface grinding of the ingot obtained by cooling and then cooling.

そして、本第二の発明は、前記発明に加えて、用いる原料を純度99.99%以上、酸素含有量が0.001wt%以下のインジウム原料を用いるものである。   And in addition to the said invention, this 2nd invention uses the indium raw material whose purity is 99.99% or more and whose oxygen content is 0.001 wt% or less.

そして、本第三の発明は、前記発明に加えて、原料形態がインゴット、リボン状、粉末の少なくともいずれか一つであるものである。   And in addition to the said invention, this 3rd invention is a raw material form which is at least any one of an ingot, ribbon shape, and powder.

本発明の方法に従って得られたインジウムターゲットは、酸化インジウムの巻き込み量も少なく、酸素含有量が0.001wt%以下と低酸素量となる。このため、このインジウムターゲットを用いて得られるインジウム膜の結晶粒は微細になり、薄膜太陽電池用積層プリカーサー吸収層の光透過率低下防止及びCu−Ga膜との密着性の向上が期待できる。   The indium target obtained according to the method of the present invention has a small amount of indium oxide and an oxygen content of 0.001 wt% or less and a low oxygen content. For this reason, the crystal grain of the indium film | membrane obtained using this indium target becomes fine, and can anticipate the improvement in the adhesiveness with the Cu-Ga film | membrane prevention of the light transmittance fall of the lamination | stacking precursor absorption layer for thin film solar cells.

本発明の方法は、基本的に、原料の溶解を複数回に分けるのみであるので、従来の装置をそのまま使用でき、新たにコスト増となる設備は何ら必要としないので、経済性は損なわれない。   Since the method of the present invention basically only separates the melting of the raw material into a plurality of times, the conventional apparatus can be used as it is, and no new equipment that increases the cost is required, so the economic efficiency is impaired. Absent.

本発明では、加熱装置の上に裁置され、加熱された鋳型に所定量のインジウム原料を投入して溶解し、表面に浮遊する酸化インジウムを除去し、冷却してインゴットを得、得たインゴット表面を研削してインジウムターゲットを得るに際し、所定量のインジウム原料を一度に鋳型に投入せずに複数回に分けて投入し、都度生成した溶体表面の酸化インジウムを除去し、その後、冷却して得られたインゴットを表面研削してインジウムターゲットを得る。   In the present invention, a predetermined amount of indium raw material is placed in a heated mold and dissolved in a heated mold to remove indium oxide floating on the surface, and cooled to obtain an ingot. When the surface is ground to obtain an indium target, a predetermined amount of indium raw material is not poured into the mold at once, but divided into a plurality of times to remove indium oxide on the surface of the generated solution, and then cooled. The obtained ingot is surface ground to obtain an indium target.

このように所定量のインジウム原料を複数回に分けて鋳型内で溶解すると、所定量を一度に溶解して得たものより、得られるインゴット中の酸素、即ち酸化インジウムが減少するのかということについては正確な解析はできていない。本発明者らは、生成した酸化インジウムとインジウム溶体との分離性に原因があるのではと推定している。
なお、太陽電池用のインジウムターゲットを得るには、原料として純度99.99%以上、酸素含有量が0.001wt%以下のインジウムインゴットやインジウム粉末、インジウムスクラップを使用することが好ましい。
In this way, if a predetermined amount of indium raw material is melted in a mold in several times, oxygen in the ingot obtained, that is, indium oxide, is reduced from what is obtained by dissolving a predetermined amount at once. Has not been analyzed correctly. The present inventors presume that there is a cause in the separability between the produced indium oxide and the indium solution.
In order to obtain an indium target for a solar cell, it is preferable to use an indium ingot, indium powder, or indium scrap having a purity of 99.99% or more and an oxygen content of 0.001 wt% or less as a raw material.

インジウム原料の大気溶解によって、インジウム原料は2In+3/2O2=In23といった反応や大気成分の吸着が起こり、インジウム中の酸素含有量は増加するが、インジウム溶湯表面の酸化皮膜を除去することで得られるインジウムインゴット中の酸素含有量は減少できる。 When the indium raw material is dissolved in the air, the reaction of 2In + 3 / 2O 2 = In 2 O 3 occurs in the indium raw material and the adsorption of atmospheric components increases. The oxygen content in the indium increases, but the oxide film on the surface of the molten indium is removed. Can reduce the oxygen content in the indium ingot obtained.

また、原料を黒鉛るつぼに入れ、誘導加熱炉を用いて、減圧下で溶解して得られたインゴットを成形加工しても、本発明の方法で得られるものと同程度のインジウムターゲットが得られるが、本発明の方法よりコスト高になり、かつ装置も大がかりになるため好ましくはない。   Moreover, even if the raw material is put into a graphite crucible and an ingot obtained by melting under reduced pressure using an induction heating furnace is molded, an indium target similar to that obtained by the method of the present invention can be obtained. However, this is not preferable because the cost is higher than the method of the present invention and the apparatus becomes large.

以下、実施例を用いて本発明をさらに説明する。   The present invention will be further described below using examples.

(実施例1)
Cu製バッキングプレートをホットプレートの上に裁置してバッキングプレートの外周部に堰を設けて鋳型を形成した後、鋳型が180〜200℃となるように加熱し、この中に酸素含有量が0.001wt%以下のインジウムインゴット1kgを投入し、溶解した。次いで、表面に浮遊している酸化インジウム被膜を除去した。次いで、前記と同量のインジウムインゴットをバッキングプレートに追加投入し、インジウムインゴットが完全に溶解したのを確認し、表面に浮遊している酸化インジウム被膜を除去した。
その後、溶湯をバッキングプレートごと放冷し、溶湯を固化させてバッキングプレート付きのインゴットを得た。得られたインゴットの表面を研削してφ6インチ厚み5mmのスパッタリングターゲットを得た。得られたスパッタリングターゲットの超音波探傷検査では、ターゲット内部に酸化物の介在はなく、不活性ガス溶融赤外線吸収法によるガス分析での含有酸素含有量は、0.001wt%以下であった。このインジウムスパッタリングターゲットを用いて、ガラス基板上に成膜した。得られた膜のEPMAによる表面分析を行った結果、酸素量は0.2wt%、膜の結晶粒は1μm程度で、良好な膜が得られ、薄膜太陽電池用の光吸収層の光学特性に問題はなかった。
Example 1
After the Cu backing plate is placed on the hot plate and a weir is formed on the outer periphery of the backing plate to form a mold, the mold is heated to 180 to 200 ° C., and the oxygen content therein 1 kg of indium ingot of 0.001 wt% or less was charged and dissolved. Next, the indium oxide film floating on the surface was removed. Next, the same amount of indium ingot as above was added to the backing plate, and it was confirmed that the indium ingot was completely dissolved, and the indium oxide film floating on the surface was removed.
Thereafter, the molten metal was allowed to cool together with the backing plate, and the molten metal was solidified to obtain an ingot with a backing plate. The surface of the obtained ingot was ground to obtain a sputtering target having a diameter of 6 inches and a thickness of 5 mm. In the ultrasonic inspection of the obtained sputtering target, no oxide was present inside the target, and the oxygen content in gas analysis by an inert gas fusion infrared absorption method was 0.001 wt% or less. Using this indium sputtering target, a film was formed on a glass substrate. As a result of surface analysis of the obtained film by EPMA, a good film was obtained with an oxygen amount of 0.2 wt% and a film crystal grain of about 1 μm. The optical characteristics of the light absorption layer for a thin film solar cell were obtained. There was no problem.

(実施例2)
Cu製バッキングプレートをホットプレートの上に裁置してバッキングプレートの外周部に堰を設けて鋳型を形成した後、鋳型が180〜200℃となるように加熱し、この中に酸素含有量が0.001wt%以下のインジウムインゴット0.7kgを投入し、溶解した。次いで、表面に浮遊している酸化インジウム被膜を除去した。次いで、前記と同量のインジウムインゴットをバッキングプレートに追加投入し、インジウムインゴットが完全に溶解したのを確認し、表面に浮遊している酸化インジウム被膜を除去した。その後、更に前記と同量のインジウムインゴットをバッキングプレートに追加投入し、インジウムインゴットが完全に溶解したのを確認し、表面に浮遊している酸化インジウム被膜を除去した。
その後、溶湯をバッキングプレートごと放冷し、溶湯を固化させてバッキングプレート付きのインゴットを得た。得られたインゴットの表面を研削してφ6インチ厚み5mmのスパッタリングターゲットを得た。得られたスパッタリングターゲットの超音波探傷検査では、ターゲット内部に酸化物の介在はなく、不活性ガス溶融赤外線吸収法によるガス分析での含有酸素含有量は、0.001wt%以下であった。このインジウムスパッタリングターゲットを用いて、ガラス基板上に成膜した。得られた膜のEPMAによる表面分析を行った結果、酸素量は0.2wt%、膜の結晶粒は1μm程度で、良好な膜が得られ、薄膜太陽電池用の光吸収層の光学特性に問題はなかった。
(Example 2)
After the Cu backing plate is placed on the hot plate and a weir is formed on the outer periphery of the backing plate to form a mold, the mold is heated to 180 to 200 ° C., and the oxygen content in the mold is increased. 0.001 wt% or less of indium ingot 0.7 kg was charged and dissolved. Next, the indium oxide film floating on the surface was removed. Next, the same amount of indium ingot as above was added to the backing plate, and it was confirmed that the indium ingot was completely dissolved, and the indium oxide film floating on the surface was removed. Thereafter, the same amount of indium ingot as above was further added to the backing plate to confirm that the indium ingot was completely dissolved, and the indium oxide film floating on the surface was removed.
Thereafter, the molten metal was allowed to cool together with the backing plate, and the molten metal was solidified to obtain an ingot with a backing plate. The surface of the obtained ingot was ground to obtain a sputtering target having a diameter of 6 inches and a thickness of 5 mm. In the ultrasonic inspection of the obtained sputtering target, no oxide was present inside the target, and the oxygen content in gas analysis by an inert gas fusion infrared absorption method was 0.001 wt% or less. Using this indium sputtering target, a film was formed on a glass substrate. As a result of surface analysis of the obtained film by EPMA, a good film was obtained with an oxygen amount of 0.2 wt% and a film crystal grain of about 1 μm. The optical characteristics of the light absorption layer for a thin film solar cell were obtained. There was no problem.

(実施例3)
本例は従来例になる。
2kgのインジウム原料を一度にバッキングプレートに投入した以外は実施例1と同様にしてインジウムターゲットを得た。得られたインジウムターゲット表面には異物が確認された。その異物のEPMAの表面分析によりこの異物の酸素量は2.1wt%、その周囲の異物のない領域でも0.3wt%となり、酸素品位の高いものとなっていた。超音波探傷検査によってもスパッタリングターゲット内部に酸化物が存在することがわかった。このスパッタリングターゲットを用いて、ガラス基板上にインジウム膜を成膜した。インジウム成膜面には、ターゲット表面に存在する異物の位置と対向する膜表面部に、周囲とは異なり、膜厚の厚い部分が発生した。その部分の酸素含有量は、EPMAによる表面分析結果、0.4wt%と酸素含有量は多く、その周囲とは異なり、結晶粒が2μm以上と粗大な結晶粒を確認した。
(Example 3)
This example is a conventional example.
An indium target was obtained in the same manner as in Example 1 except that 2 kg of indium raw material was charged into the backing plate at once. Foreign matter was confirmed on the surface of the obtained indium target. According to the EPMA surface analysis of the foreign matter, the oxygen content of the foreign matter was 2.1 wt%, and even in the surrounding area without foreign matter, 0.3 wt%, and the oxygen quality was high. It was also found by the ultrasonic flaw detection that oxides exist inside the sputtering target. Using this sputtering target, an indium film was formed on a glass substrate. On the surface of the indium film, a thick portion was generated on the surface of the film opposite to the position of the foreign matter existing on the target surface, unlike the surroundings. As a result of surface analysis by EPMA, the oxygen content in the portion was 0.4 wt% and the oxygen content was large. Unlike the surroundings, coarse crystal grains having a crystal grain size of 2 μm or more were confirmed.

Claims (4)

加熱装置の上に裁置され、加熱された鋳型に所定量のインジウム原料を投入して溶解し、表面に浮遊する酸化インジウムを除去し、冷却してインゴットを得、得たインゴット表面を研削してインジウムターゲットを得るに際し、所定量のインジウム原料を一度に鋳型に投入せずに複数回に分けて投入し、都度生成した溶湯表面の酸化インジウムを除去し、その後、冷却して得られたインゴットを表面研削して得ることを特徴とする太陽電池用インジウムターゲットの製造方法。 A predetermined amount of indium raw material is placed in a heated mold and dissolved in a heated mold, and the indium oxide floating on the surface is removed, cooled to obtain an ingot, and the obtained ingot surface is ground. Indium target obtained by injecting a predetermined amount of indium raw material into a mold several times instead of once, removing indium oxide on the surface of the molten metal generated each time, and then cooling A method for producing an indium target for solar cells, which is obtained by surface grinding. 鋳型の加熱温度を180〜200℃とする請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the heating temperature of the mold is 180 to 200 ° C. 純度99.99%以上、酸素含有量が0.001wt%以下のインジウム原料を用いる請求項1または2記載の製造方法。 The production method according to claim 1 or 2, wherein an indium raw material having a purity of 99.99% or more and an oxygen content of 0.001wt% or less is used. 原料形態がインゴット、リボン状、粉末の少なくともいずれか一つである請求項1〜3記載のいずれかの製造方法。 The manufacturing method according to claim 1, wherein the raw material form is at least one of ingot, ribbon, and powder.
JP2008184351A 2008-07-16 2008-07-16 Manufacturing method of indium target Active JP4992843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008184351A JP4992843B2 (en) 2008-07-16 2008-07-16 Manufacturing method of indium target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008184351A JP4992843B2 (en) 2008-07-16 2008-07-16 Manufacturing method of indium target

Publications (2)

Publication Number Publication Date
JP2010024474A true JP2010024474A (en) 2010-02-04
JP4992843B2 JP4992843B2 (en) 2012-08-08

Family

ID=41730569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008184351A Active JP4992843B2 (en) 2008-07-16 2008-07-16 Manufacturing method of indium target

Country Status (1)

Country Link
JP (1) JP4992843B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884561B1 (en) * 2011-04-19 2012-02-29 Jx日鉱日石金属株式会社 Indium target and manufacturing method thereof
WO2012029355A1 (en) * 2010-08-31 2012-03-08 Jx日鉱日石金属株式会社 Indium target and method for producing same
WO2012029363A1 (en) 2010-09-01 2012-03-08 Jx日鉱日石金属株式会社 Indium target and method for manufacturing same
WO2012029364A1 (en) * 2010-09-01 2012-03-08 Jx日鉱日石金属株式会社 Indium target and production method for same
WO2012029356A1 (en) * 2010-08-31 2012-03-08 Jx日鉱日石金属株式会社 Laminated structure and method for producing same
JP2012052190A (en) * 2010-09-01 2012-03-15 Jx Nippon Mining & Metals Corp Indium target and method for production thereof
JP2012052176A (en) * 2010-08-31 2012-03-15 Jx Nippon Mining & Metals Corp Method for production of indium target, and indium target
WO2012108074A1 (en) * 2011-02-09 2012-08-16 Jx日鉱日石金属株式会社 Indium target and method for producing same
WO2012117579A1 (en) * 2011-03-01 2012-09-07 Jx日鉱日石金属株式会社 Indium target and method for manufacturing same
WO2013042451A1 (en) * 2011-09-21 2013-03-28 Jx日鉱日石金属株式会社 Laminated structure body and fabrication method for same
JP2013064197A (en) * 2012-10-05 2013-04-11 Jx Nippon Mining & Metals Corp Indium metal target and method for producing the same
WO2013088785A1 (en) * 2011-12-12 2013-06-20 Jx日鉱日石金属株式会社 Indium sputtering target member and method for producing same
WO2013103029A1 (en) 2012-01-05 2013-07-11 Jx日鉱日石金属株式会社 Indium sputtering target, and method for producing same
JP5281186B1 (en) * 2012-10-25 2013-09-04 Jx日鉱日石金属株式会社 Indium target and manufacturing method thereof
JP2014173117A (en) * 2013-03-07 2014-09-22 Jx Nippon Mining & Metals Corp Cylindrical target member made of indium, and production method of cylindrical target member
JP2015212422A (en) * 2015-07-06 2015-11-26 三菱マテリアル株式会社 In OR In ALLOY SPUTTERING TARGET AND METHOD OF PRODUCING THE SAME
CN105593398A (en) * 2013-12-09 2016-05-18 三菱综合材料株式会社 In or In alloy sputtering target, and method for producing same
US9761421B2 (en) 2012-08-22 2017-09-12 Jx Nippon Mining & Metals Corporation Indium cylindrical sputtering target and manufacturing method thereof
US9922807B2 (en) 2013-07-08 2018-03-20 Jx Nippon Mining & Metals Corporation Sputtering target and method for production thereof
CN108165936A (en) * 2017-12-21 2018-06-15 清远先导材料有限公司 The method for preparing indium target

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824994A (en) * 1994-07-07 1996-01-30 Alithium:Kk Vertical type continuous casting method for metal
JPH11236664A (en) * 1998-02-24 1999-08-31 Mitsui Chem Inc Backing plate of target for sputtering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824994A (en) * 1994-07-07 1996-01-30 Alithium:Kk Vertical type continuous casting method for metal
JPH11236664A (en) * 1998-02-24 1999-08-31 Mitsui Chem Inc Backing plate of target for sputtering

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052173A (en) * 2010-08-31 2012-03-15 Jx Nippon Mining & Metals Corp Indium target and method for production thereof
WO2012029355A1 (en) * 2010-08-31 2012-03-08 Jx日鉱日石金属株式会社 Indium target and method for producing same
KR101274385B1 (en) * 2010-08-31 2013-06-17 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Indium target and method for producing same
CN104480435A (en) * 2010-08-31 2015-04-01 Jx日矿日石金属株式会社 Indium target and method for producing the same
WO2012029356A1 (en) * 2010-08-31 2012-03-08 Jx日鉱日石金属株式会社 Laminated structure and method for producing same
JP2012052174A (en) * 2010-08-31 2012-03-15 Jx Nippon Mining & Metals Corp Laminated structure and method for production thereof
US20120270065A1 (en) * 2010-08-31 2012-10-25 Takamasa Maekawa Multi-layered structure and manufacturing method thereof
CN102652185A (en) * 2010-08-31 2012-08-29 Jx日矿日石金属株式会社 Indium target and method for producing same
JP2012052176A (en) * 2010-08-31 2012-03-15 Jx Nippon Mining & Metals Corp Method for production of indium target, and indium target
CN102656291A (en) * 2010-09-01 2012-09-05 Jx日矿日石金属株式会社 Indium target and method for manufacturing same
KR101202232B1 (en) 2010-09-01 2012-11-16 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Indium target and method for manufacturing same
WO2012029363A1 (en) 2010-09-01 2012-03-08 Jx日鉱日石金属株式会社 Indium target and method for manufacturing same
JP2012052194A (en) * 2010-09-01 2012-03-15 Jx Nippon Mining & Metals Corp Indium target and method for production thereof
WO2012029364A1 (en) * 2010-09-01 2012-03-08 Jx日鉱日石金属株式会社 Indium target and production method for same
KR101205264B1 (en) 2010-09-01 2012-11-27 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Indium target and production method for same
JP2012052193A (en) * 2010-09-01 2012-03-15 Jx Nippon Mining & Metals Corp Indium target and method for manufacturing the same
JP2012052190A (en) * 2010-09-01 2012-03-15 Jx Nippon Mining & Metals Corp Indium target and method for production thereof
US9490108B2 (en) 2010-09-01 2016-11-08 Jx Nippon Mining & Metals Corporation Indium target and method for manufacturing same
CN102782181B (en) * 2011-02-09 2015-11-25 Jx日矿日石金属株式会社 Indium target and manufacture method thereof
CN102782181A (en) * 2011-02-09 2012-11-14 Jx日矿日石金属株式会社 Indium target and method for producing same
TWI398409B (en) * 2011-02-09 2013-06-11 Jx Nippon Mining & Metals Corp Indium target and its manufacturing method
JP2012162792A (en) * 2011-02-09 2012-08-30 Jx Nippon Mining & Metals Corp Indium target and method for producing same
WO2012108074A1 (en) * 2011-02-09 2012-08-16 Jx日鉱日石金属株式会社 Indium target and method for producing same
KR101261202B1 (en) 2011-02-09 2013-05-10 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Indium target and manufacturing method thereof
JP2012180555A (en) * 2011-03-01 2012-09-20 Jx Nippon Mining & Metals Corp Indium target and method for producing the same
CN102782180A (en) * 2011-03-01 2012-11-14 Jx日矿日石金属株式会社 Indium target and method for manufacturing same
WO2012117579A1 (en) * 2011-03-01 2012-09-07 Jx日鉱日石金属株式会社 Indium target and method for manufacturing same
US9139900B2 (en) 2011-03-01 2015-09-22 JX Nippon Mining Metals Corporation Indium target and manufacturing method thereof
US20130037408A1 (en) * 2011-03-01 2013-02-14 Jx Nippon Mining & Metals Corporation Indium Target And Manufacturing Method Thereof
CN102933740A (en) * 2011-04-19 2013-02-13 Jx日矿日石金属株式会社 Indium target and process for producing same
KR101184961B1 (en) * 2011-04-19 2012-10-02 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Indium target and method for producing the same
CN102933740B (en) * 2011-04-19 2016-05-11 Jx日矿日石金属株式会社 Indium target and manufacture method thereof
WO2012144089A1 (en) * 2011-04-19 2012-10-26 Jx日鉱日石金属株式会社 Indium target and process for producing same
JP4884561B1 (en) * 2011-04-19 2012-02-29 Jx日鉱日石金属株式会社 Indium target and manufacturing method thereof
WO2013042451A1 (en) * 2011-09-21 2013-03-28 Jx日鉱日石金属株式会社 Laminated structure body and fabrication method for same
US9023487B2 (en) 2011-09-21 2015-05-05 Jx Nippon Mining & Metals Corporation Laminated structure and method for producing the same
WO2013088785A1 (en) * 2011-12-12 2013-06-20 Jx日鉱日石金属株式会社 Indium sputtering target member and method for producing same
US9758860B2 (en) 2012-01-05 2017-09-12 Jx Nippon Mining & Metals Corporation Indium sputtering target and method for manufacturing same
WO2013103029A1 (en) 2012-01-05 2013-07-11 Jx日鉱日石金属株式会社 Indium sputtering target, and method for producing same
US9761421B2 (en) 2012-08-22 2017-09-12 Jx Nippon Mining & Metals Corporation Indium cylindrical sputtering target and manufacturing method thereof
JP2013064197A (en) * 2012-10-05 2013-04-11 Jx Nippon Mining & Metals Corp Indium metal target and method for producing the same
JP5281186B1 (en) * 2012-10-25 2013-09-04 Jx日鉱日石金属株式会社 Indium target and manufacturing method thereof
JP2014173117A (en) * 2013-03-07 2014-09-22 Jx Nippon Mining & Metals Corp Cylindrical target member made of indium, and production method of cylindrical target member
US9922807B2 (en) 2013-07-08 2018-03-20 Jx Nippon Mining & Metals Corporation Sputtering target and method for production thereof
CN105593398A (en) * 2013-12-09 2016-05-18 三菱综合材料株式会社 In or In alloy sputtering target, and method for producing same
CN105593398B (en) * 2013-12-09 2017-07-25 三菱综合材料株式会社 In or In alloy sputtering targets and its manufacture method
JP2015212422A (en) * 2015-07-06 2015-11-26 三菱マテリアル株式会社 In OR In ALLOY SPUTTERING TARGET AND METHOD OF PRODUCING THE SAME
CN108165936A (en) * 2017-12-21 2018-06-15 清远先导材料有限公司 The method for preparing indium target

Also Published As

Publication number Publication date
JP4992843B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4992843B2 (en) Manufacturing method of indium target
US20140202653A1 (en) Method for purifying high-purity aluminium by directional solidification and smelting furnace therefor
CN102656291B (en) Indium target and method for manufacturing same
US20140001039A1 (en) Cu-Ga Alloy Sputtering Target and Method for Producing Same
JP2010280944A (en) Cu-Ga ALLOY, SPUTTERING TARGET, METHOD FOR PRODUCING THE Cu-Ga ALLOY, AND METHOD FOR PRODUCING THE SPUTTERING TARGET
US8252422B2 (en) Hybrid silicon wafer and method of producing the same
US20130105311A1 (en) Indium Target And Method For Producing The Same
JP2013076129A (en) Sputtering target and method for production thereof
EP2172424A1 (en) Method of solidifying metallic silicon
JP2004002082A (en) Quartz glass crucible and method of manufacturing the same
CN106449873B (en) A kind of method of ingot casting polysilicon chip aluminium gettering
CN104480329A (en) Method for preparing metal alloy cast block
JP2008101277A (en) Target for sputtering and its production method
JP2010280567A (en) Method for producing silica glass crucible
JP6401051B2 (en) Method for producing polycrystalline silicon ingot
WO2011081082A1 (en) Method for manufacturing a polycrystalline silicon block material, method for manufacturing a polycrystalline silicon wafer, and polycrystalline silicon block material
CN204251676U (en) A kind of device preparing high pure metal alloy ingot
CN105838907A (en) Titanium purification device and use method
JP2007091532A (en) Silica glass crucible
JP2011012300A (en) Copper alloy and method for producing copper alloy
WO2018163861A1 (en) Cu-Ni ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR
JP4675550B2 (en) Unidirectionally solidified silicon ingot, method for producing the same, silicon plate and substrate for solar cell
JP2009018958A (en) Method for melting silicon and method for purifying silicon
JP2013079411A (en) Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCTION THEREOF
JP4817761B2 (en) Method for manufacturing semiconductor ingot and solar cell element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4992843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150