JP2010024216A - Method for producing 4-fluoro-4-methyl-1,3-dioxolan-2-one by electrolytic fluorination - Google Patents

Method for producing 4-fluoro-4-methyl-1,3-dioxolan-2-one by electrolytic fluorination Download PDF

Info

Publication number
JP2010024216A
JP2010024216A JP2008191351A JP2008191351A JP2010024216A JP 2010024216 A JP2010024216 A JP 2010024216A JP 2008191351 A JP2008191351 A JP 2008191351A JP 2008191351 A JP2008191351 A JP 2008191351A JP 2010024216 A JP2010024216 A JP 2010024216A
Authority
JP
Japan
Prior art keywords
dioxolan
methyl
fluoro
patent document
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008191351A
Other languages
Japanese (ja)
Other versions
JP5351456B2 (en
Inventor
Masafumi Kobayashi
政史 小林
Kazuki Muraishi
一樹 村石
Yasuyuki Fujiwara
泰行 藤原
Gen Ko
原 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP2008191351A priority Critical patent/JP5351456B2/en
Publication of JP2010024216A publication Critical patent/JP2010024216A/en
Application granted granted Critical
Publication of JP5351456B2 publication Critical patent/JP5351456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing 4-fluoro-4-methyl-1,3-dioxolan-2-one being expected to be used for an electrolyte solvent and additive for a lithium ion secondary battery, an intermediate for a functional material, an intermediate for a medicine, an organic solvent and the like. <P>SOLUTION: The method for producing the 4-fluoro-4-methyl-1,3-dioxolan-2-one includes subjecting 4-methyl-1,3-dioxolan-2-one represented by formula 1 to the electrolytic fluorination to afford the 4-fluoro-4-methyl-1,3-dioxolan-2-one represented by formula 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン二次電池の電解液溶媒及び添加剤や、機能性材料中間体、医薬品用中間体及び有機溶剤等に使用が期待される4-フルオロ-4-メチル-1,3-ジオキソラン-2-オンの製造方法に関する。   The present invention relates to an electrolyte solvent and additive for a lithium ion secondary battery, a functional material intermediate, a pharmaceutical intermediate, an organic solvent, and the like that are expected to be used as 4-fluoro-4-methyl-1,3- The present invention relates to a method for producing dioxolan-2-one.

リチウムイオン二次電池の電解液は、一般には電解質と有機溶媒から構成されており、有機溶媒としては、エチレンカーボネート、プロピレンカーボネートに代表される環状炭酸エステル、ジメチルカーボネート、ジエチルカーボネートに代表される鎖状炭酸エステル、または、γ−ブチロラクトン等や、これらの混合物から構成される場合が多い。しかしながら、こうした有機溶媒は、その使用温度範囲、粘度、電気化学的な安定性等に問題がある。そこで、このような問題を解決する手段として、上述の有機化合物にフッ素を導入してそれらの問題の改善を試みる検討が行われており、環状炭酸エステルとしては、4-フルオロ-1,3-ジオキソラン-2-オン、4-クロロ-5-フルオロ-1,3-ジオキソラン-2-オン(特許文献1、2)、4-フルオロ‐5‐メチル‐1,3-ジオキソラン-2-オン、4-フルオロ‐4‐メチル‐1,3-ジオキソラン-2-オン、4,5-ジフルオロ‐4‐メチル‐1,3-ジオキソラン-2-オン、4-クロロ‐5-フルオロ‐5‐メチル‐1,3-ジオキソラン-2-オン(特許文献3)、4-(フルオロメチル)-1,3-ジオキソラン-2-オン、4-(ジフルオロメチル)-1,3-ジオキソラン-2-オン、4-(ジフルオロメチル)-5-(トリフルオロメチル)-1,3-ジオキソラン-2-オン、4-(フルオロメチル)-4-メチル-1,3-ジオキソラン-2-オン、4-(フルオロメチル)-5,5-ジメチル-1,3-ジオキソラン-2-オン、4-(1-フルオロエチル))-1,3-ジオキソラン-2-オン、4-(1-フルオロプロピル)-1,3-ジオキソラン-2-オン、4-(1-フルオロブチル)-1,3-ジオキソラン-2-オン(特許文献4)、4-(トリフルオロメチル)-1,3-ジオキソラン-2-オン(特許文献5〜8)、4-フルオロ-1,3-ジオキサン-2-オン(特許文献9)が、鎖状炭酸エステルとしては、フルオロメチル−メチルカーボネート(特許文献10)、ビス(フルオロメチル)カーボネート(特許文献10,11)、1-フルオロエチル−エチルカーボネート(特許文献11)、γ−フルオロ−γ−ブチロラクトン(特許文献12)などがこれまでに報告されている。   The electrolyte solution of a lithium ion secondary battery is generally composed of an electrolyte and an organic solvent. Examples of the organic solvent include cyclic carbonates represented by ethylene carbonate and propylene carbonate, chains represented by dimethyl carbonate and diethyl carbonate. In many cases, it is composed of a carbonate ester, γ-butyrolactone, or a mixture thereof. However, these organic solvents have problems in the use temperature range, viscosity, electrochemical stability, and the like. Therefore, as a means for solving such a problem, studies have been made to introduce fluorine into the above-mentioned organic compounds and attempt to improve those problems. As cyclic carbonates, 4-fluoro-1,3- Dioxolan-2-one, 4-chloro-5-fluoro-1,3-dioxolan-2-one (Patent Documents 1 and 2), 4-fluoro-5-methyl-1,3-dioxolan-2-one, 4 -Fluoro-4-methyl-1,3-dioxolan-2-one, 4,5-difluoro-4-methyl-1,3-dioxolan-2-one, 4-chloro-5-fluoro-5-methyl-1 , 3-dioxolan-2-one (Patent Document 3), 4- (fluoromethyl) -1,3-dioxolan-2-one, 4- (difluoromethyl) -1,3-dioxolan-2-one, 4- (Difluoromethyl) -5- (trifluoromethyl) -1,3-dioxolan-2-one, 4- (fluoromethyl) -4-methyl-1,3-dioxolan-2-one, 4- (fluoromethyl) ) -5,5-dimethyl-1,3-dioxolan-2-one, 4- (1-fluoroethyl))-1,3-dioxolan-2-one, 4- (1-fluoropropyl) -1,3 -Dioxolan-2-one, 4- (1-fluorobutyl) -1,3-dioxolan-2-one (Patent Document 4), 4- (Trifluoromethyl) -1,3-dioxolan-2-one (Patent) Documents 5 to 8), 4-fluoro-1,3-dioxan-2-one (Patent Document 9), as chain carbonic acid ester, fluoromethyl-methyl carbonate (Patent Document 10), bis (fluoromethyl) carbonate (Patent Documents 10 and 11), 1-fluoroethyl-ethyl carbonate (Patent Document 11), γ-fluoro-γ-butyrolactone (Patent Document 12) and the like have been reported so far.

一方、化合物にフッ素原子を導入する方法としては、上記のようにハロゲン交換反応、フッ素ガスを用いた直接フッ素化反応、及び電解フッ素化反応等による方法が知られている。   On the other hand, as a method for introducing a fluorine atom into a compound, a method using a halogen exchange reaction, a direct fluorination reaction using a fluorine gas, an electrolytic fluorination reaction, or the like as described above is known.

第一のハロゲン交換反応では、たとえば4-フルオロ−1,3-ジオキソラン-2-オンを得るにあたって、相当する塩素化体をフッ化カリウムでフッ素化する方法(特許文献2)が報告されているが、一般に高い反応温度や、長い反応時間を要する場合が多い。   In the first halogen exchange reaction, for example, when obtaining 4-fluoro-1,3-dioxolan-2-one, a method of fluorinating a corresponding chlorinated product with potassium fluoride has been reported (Patent Document 2). However, generally a high reaction temperature and a long reaction time are often required.

第二のフッ素ガスを用いた直接フッ素化反応の場合では、一般的に、部分的にフッ素化された化合物を選択性よく得ることは困難であり、ある種の環状炭酸エステル、例えば、4-フルオロ−1,3-ジオキソラン-2-オン(特許文献13、14)、トランス-4,5-ジフルオロ−1,3−ジオキソラン-2-オン(特許文献15)などが、フッ素ガスとエチレンカーボネート(または、1,3-ジオキサン-2-オンという)との反応により得られたことが報告されているのみである。一方、γ−ブチロラクトンをフッ素ガスによりフッ素化した場合、目的生成物の選択性は非常に低く、γ−フルオロ−γ−ブチロラクトン以外に数種類のモノフッ素化体が得られ、それら混合物からの精製は非常に困難であるという問題がある(非特許文献1、特許文献16)。また、ジメチルカーボネートをフッ素ガスでフッ素化した場合、フルオロメチル−メチルカーボネートの他に、ビス(フルオロメチル)カーボネート、フルオロメチル−ジフルオロメチルカーボネート等が副生してくるために、精製が困難である(特許文献17)。   In the case of the direct fluorination reaction using the second fluorine gas, it is generally difficult to obtain a partially fluorinated compound with good selectivity, and certain cyclic carbonates such as 4- Fluoro-1,3-dioxolan-2-one (Patent Documents 13 and 14), trans-4,5-difluoro-1,3-dioxolan-2-one (Patent Document 15), Or it is only reported to have been obtained by reaction with 1,3-dioxan-2-one). On the other hand, when γ-butyrolactone is fluorinated with fluorine gas, the selectivity of the target product is very low, and several types of monofluorinated products are obtained in addition to γ-fluoro-γ-butyrolactone. There is a problem that it is very difficult (Non-Patent Document 1, Patent Document 16). Further, when dimethyl carbonate is fluorinated with fluorine gas, bis (fluoromethyl) carbonate, fluoromethyl-difluoromethyl carbonate, etc. are by-produced in addition to fluoromethyl-methyl carbonate, so that purification is difficult. (Patent Document 17).

そして、第三の電解フッ素化法は、有機化合物にフッ素を導入するための有効な手段の一つと考えられ、使用されている。
電解フッ素化法は、代表的な例として、(1)電解液として無水フッ化水素を用い、陽極にニッケルを用い、有機化合物を電解することによりフッ素化する方法(一般的にシモンズ法と呼ばれている)、(2)電解液として三級アミンのフッ化水素塩、またはフッ化四級アンモニウムのフッ化水素塩を電解液に用い、陽極に白金を使用して、有機化合物をフッ素化する方法が知られている。
The third electrolytic fluorination method is considered to be one of effective means for introducing fluorine into an organic compound and is used.
Representative examples of the electrolytic fluorination method include: (1) a method in which anhydrous hydrogen fluoride is used as an electrolytic solution, nickel is used as an anode, and an organic compound is electrolyzed (generally called Simmons method). (2) Tertiary amine hydrofluoride or quaternary ammonium hydrofluoride as the electrolyte, and platinum as the anode to fluorinate organic compounds How to do is known.

しかしながら、前者(1)の方法は、主にペルフルオロ化合物が得られ、モノフルオロ化体を得ることは、一般に困難であり、この方法を用いてモノフルオロ化合物を得たという報告は見当たらない。また、無水フッ化水素を電解液として、比較的高価なニッケルを陽極に使用しなければならず、電解条件や設備が制限されるという問題がある。さらに、電解温度が室温以上と高く、一般に電解温度が0℃以上であるとカチオンの分解やポリマー化を含む副反応が進行しやすくなるという問題もある。後者(2)の方法は、部分フッ素化が可能であることが特徴であり、環状炭酸エステルやラクトン(非特許文献2)や、鎖状炭酸エステル(特許文献18)、環状エーテル(特許文献19、非特許文献2)のモノフルオロ化が報告されている。しかしながら、これらの方法では、非常に高価な白金電極を使用しており、電解の際、電解が進むにつれ白金が溶出するため設備などのランニングコストが甚大である。   However, in the former method (1), a perfluoro compound is mainly obtained, and it is generally difficult to obtain a monofluorinated product, and there is no report that a monofluoro compound is obtained using this method. In addition, relatively expensive nickel must be used for the anode with anhydrous hydrogen fluoride as the electrolyte, and there is a problem that electrolysis conditions and equipment are limited. Furthermore, when the electrolysis temperature is as high as room temperature or higher, and when the electrolysis temperature is generally 0 ° C. or higher, there is a problem that side reactions including decomposition of cation and polymerization tend to proceed. The method of the latter (2) is characterized in that partial fluorination is possible, and cyclic carbonates and lactones (Non-patent Document 2), chain carbonates (Patent Document 18), and cyclic ethers (Patent Document 19). Non-patent document 2) has been reported for monofluorination. However, in these methods, a very expensive platinum electrode is used, and during electrolysis, platinum is eluted as the electrolysis proceeds, so that the running cost of equipment and the like is great.

一方、近年ではシリコン基板等にホウ素ドープしたダイヤモンド薄膜を蒸着させた「ダイヤモンド電極」を用いて、芳香族化合物を電解フッ素化(特許文献20)した報告例がある。しかしながら、ダイヤモンド電極は耐食、耐久性の面では優れているものの、まだ基礎研究の域を脱しておらず、安価な製造技術が確立されていないために、汎用性が高くないという問題がある。
特許文献1 特開昭62-290072
特許文献2 WO 98/15024
特許文献3 特開昭62-290071
特許文献4 特開平9-251861
特許文献5 特開平7-165750
特許文献6 特開平7-291959
特許文献7 特開平8-287950
特許文献8 特開平10-199567
特許文献9 特開2002-175948
特許文献10 特開平10-144346
特許文献11 特開2004−14134
特許文献12 特開平11−54150
特許文献13 特開2000-309583
特許文献14 US2006-0167279A1
特許文献15 特開2000-344763
特許文献16 特開2001-226367
特許文献17 特開2004-10491
特許文献18 特開2006-1843
特許文献19 特開2003-73873
特許文献20 特開2000-204492
非特許文献1 J. Fluorine Chem., 108, p107, (2001).
非特許文献2 Tetrahedron Lett., 43, p1502, (2002).
On the other hand, in recent years, there is a report example in which an aromatic compound is electrolytically fluorinated (Patent Document 20) using a “diamond electrode” obtained by depositing a boron-doped diamond thin film on a silicon substrate or the like. However, although the diamond electrode is excellent in terms of corrosion resistance and durability, there is a problem that versatility is not high because the basic research has not yet been completed and an inexpensive manufacturing technique has not been established.
Patent Document 1 JP 62-290072
Patent Document 2 WO 98/15024
Patent Document 3 Japanese Patent Laid-Open No. 62-290071
Patent Document 4 Japanese Patent Laid-Open No. 9-251861
Patent Document 5 JP 7-165750 A
Patent Document 6 JP 7-291959 A
Patent Document 7 JP-A-8-287950
Patent Document 8 JP-A-10-199567
Patent Document 9 JP2002-175948
Patent Document 10 JP 10-144346 A
Patent Document 11 JP 2004-14134
Patent Document 12 JP-A-11-54150
Patent Document 13 JP2000-309583
Patent Document 14 US2006-0167279A1
Patent Document 15 JP 2000-344763
Patent Document 16 JP 2001-226367 A
Patent Document 17 JP2004-10491
Patent Document 18 JP2006-1843
Patent Document 19 JP 2003-73873 A
Patent Document 20 JP 2000-204492 A
Non-Patent Document 1 J. Fluorine Chem., 108, p107, (2001).
Non-Patent Document 2 Tetrahedron Lett., 43, p1502, (2002).

本発明の課題は、リチウムイオン二次電池の電解液溶媒及び添加剤や、機能性材料中間体、医薬品用中間体及び有機溶剤等に使用が期待される4-フルオロ-4-メチル-1,3-ジオキソラン-2-オンの製造方法を提供することにある。   The problem of the present invention is that 4-fluoro-4-methyl-1, which is expected to be used as an electrolyte solution solvent and additive for lithium ion secondary batteries, functional material intermediates, pharmaceutical intermediates, organic solvents, etc. The object is to provide a method for producing 3-dioxolan-2-one.

本発明者らは鋭意検討した結果、本発明を完成するに至った。すなわち、本発明は以下のものを提供する。
[1]
下記[化1]に示す4-メチル-1,3-ジオキソラン-2-オン
As a result of intensive studies, the present inventors have completed the present invention. That is, the present invention provides the following.
[1]
4-Methyl-1,3-dioxolan-2-one shown in the following [Chemical Formula 1]

Figure 2010024216
Figure 2010024216

を電解フッ素化し、下記[化2]に示す4-フルオロ-4-メチル-1,3-ジオキソラン-2-オンを得ること特徴とする4-フルオロ-4-メチル-1,3-ジオキソラン-2-オンの製造方法。 4-fluoro-4-methyl-1,3-dioxolane-2-one represented by the following [Chemical Formula 2] to give 4-fluoro-4-methyl-1,3-dioxolane-2 -On manufacturing method.

Figure 2010024216
Figure 2010024216

[2]
KF-nHF(nは8〜20)を電解液とし、温度-40〜0℃で[化1]の4-メチル-1,3-ジオキソラン-2-オンを電解フッ素化することを特徴とする[1]に記載の製造方法。
[3]
KF-nHF(nは8〜20)を電解液とし、陽極に炭素電極を用い、-40〜0℃で[化1]の4-メチル-1,3-ジオキソラン-2-オンを電解フッ素化することを特徴とする[1]に記載の製造方法。
[4]
KF-nHF(nは8〜20)を電解液とし、陽極にグラッシーカーボン電極を用い、-40〜0℃で[化1]の4-メチル-1,3-ジオキソラン-2-オンを電解フッ素化することを特徴とする[1]に記載の製造方法。
[2]
It is characterized by electrolytic fluorination of 4-methyl-1,3-dioxolan-2-one of [Chemical Formula 1] at a temperature of -40 to 0 ° C using KF-nHF (n is 8 to 20) as an electrolyte. The production method according to [1].
[3]
Electrolytic fluorination of 4-methyl-1,3-dioxolan-2-one of [Chemical Formula 1] at -40 to 0 ° C using KF-nHF (n is 8 to 20) as the electrolyte and a carbon electrode as the anode The manufacturing method according to [1], wherein:
[4]
Using KF-nHF (where n is 8 to 20) as the electrolyte, a glassy carbon electrode as the anode, and electrolysis of 4-methyl-1,3-dioxolan-2-one of [Chemical Formula 1] at -40 to 0 ° C The production method according to [1], wherein

本発明により、4-フルオロ-4-メチル-1,3-ジオキソラン-2-オンを効率よく得ることができる。また、-40℃〜0℃の範囲内で電解を行うことで、カチオンの分解やポリマー化を含む副反応を抑えることができる。さらに、炭素電極を用いることで陽極の溶出を抑えられる。   According to the present invention, 4-fluoro-4-methyl-1,3-dioxolan-2-one can be obtained efficiently. Further, by performing electrolysis within the range of -40 ° C to 0 ° C, side reactions including cation decomposition and polymerization can be suppressed. Furthermore, elution of the anode can be suppressed by using the carbon electrode.

本発明の上記製造方法において、好適な電解液の例は次の一般式:MF・nHF(M:アルカリ金属)で表されるアルカリ金属フッ化物塩であり、アルカリ金属としてはカリウムやセシウムが好ましく、特にカリウムが好ましい。また、nの範囲は8〜20が好ましい。   In the above production method of the present invention, an example of a suitable electrolytic solution is an alkali metal fluoride salt represented by the following general formula: MF · nHF (M: alkali metal), and potassium and cesium are preferable as the alkali metal. In particular, potassium is preferred. The range of n is preferably 8-20.

アルカリ金属フッ化物塩の当量は、反応基質となる4-メチル-1,3-ジオキソラン-2-オンに対して1〜100当量で、特に好ましくは2〜30当量である。
電極としては、陽極に炭素を含み構成される材料を使用し、特にグラッシーカーボンが好ましい。グラッシーカーボンの表面は通常の炭素構造(黒鉛のシート状やダイヤモンド構造)とは異なり炭素層面が長くつながっていてリボン状になっている構造で、このユニットが複雑に絡み合い全体としては等方性になっている。また、構造的に弱い層構造の末端が少なく、強固な構造となってる。
The equivalent amount of the alkali metal fluoride salt is 1 to 100 equivalents, particularly preferably 2 to 30 equivalents, relative to 4-methyl-1,3-dioxolan-2-one as a reaction substrate.
As the electrode, a material including carbon in the anode is used, and glassy carbon is particularly preferable. The surface of glassy carbon is different from the normal carbon structure (graphite sheet or diamond structure) in that the carbon layer surface is long and connected in a ribbon shape. This unit is intricately entangled and isotropic as a whole. It has become. In addition, the structurally weak layer structure has few ends and has a strong structure.

一方、陰極は、電解により水素発生を伴う材質であれば特に制限されることはないが、具体的には、白金、ニッケル、及び鉄などの各種金属、並びにこれら金属を含み構成される合金(ニッケル鋼、鉄鋼等を含む)や、陽極と同様の炭素を含み構成される材料を使用することができる。すなわち、白金、ニッケル、または鉄を含み構成される電極(白金電極、ニッケル電極、または鉄電極、あるいはこれら金属を含む合金電極)、及び炭素材料電極が使用できる。   On the other hand, the cathode is not particularly limited as long as it is a material that generates hydrogen by electrolysis, and specifically, various metals such as platinum, nickel, and iron, and alloys including these metals ( (Including nickel steel, steel and the like), and materials containing carbon similar to the anode can be used. That is, an electrode including platinum, nickel, or iron (platinum electrode, nickel electrode, iron electrode, or alloy electrode including these metals) and a carbon material electrode can be used.

電解温度は-40〜0℃が好ましい。0℃を超えるとカチオンの分解やポリマー化を含む副反応が進行する。また-40℃未満であると基質が結晶として系外へ析出してしまう。
電流密度は、0.001〜1 A/cm2、特に0.005〜1 A/cm2の範囲で行うことができるが、電流密度が小さい(0.001A/cm2未満)場合、電極の面積や使用する電極の数が増大し、装置が複雑になると同時に、撹拌が困難になるために、電解フッ素化の効率が低下する場合がある。一方、電流密度が大きい(1A/cm2を超える)場合、望ましくない副反応が進行し、目的生成物の選択性が低下する恐れがある。電流密度は、0.01〜0.5 A/cm2の範囲内で行うことがさらに好ましい。
The electrolysis temperature is preferably -40 to 0 ° C. If it exceeds 0 ° C., side reactions including cation decomposition and polymerization will proceed. If the temperature is lower than -40 ° C, the substrate is precipitated out of the system as crystals.
Current density, 0.001~1 A / cm 2, can be carried out in particularly from 0.005~1 A / cm 2, when the current density is small (less than 0.001A / cm 2), the area of the electrode or use electrodes In this case, the efficiency of electrolytic fluorination may be reduced because the number of the above increases and the apparatus becomes complicated and at the same time stirring becomes difficult. On the other hand, when the current density is large (exceeding 1 A / cm 2 ), an undesirable side reaction proceeds and the selectivity of the target product may be reduced. More preferably, the current density is within a range of 0.01 to 0.5 A / cm 2 .

通電量は、0.1〜10F/molの範囲で行うことができるが、通電量が少ない(0.1F/mol未満)の場合、原料転化率が低く、目的物の収量が低いという問題が生じる。一方、通電量が多い(10F/molを超える)場合、目的物のさらなる電解フッ素化がおこり、ポリフッ素化された化合物が副生し、目的物の選択性、及び収量が低下するという問題が生じる。そのために、通電量は、1.0〜4.0F/molの範囲内であることが好ましい。   The energization amount can be in the range of 0.1 to 10 F / mol. However, when the energization amount is small (less than 0.1 F / mol), there is a problem that the raw material conversion rate is low and the yield of the target product is low. On the other hand, when the energization amount is large (exceeding 10 F / mol), there is a problem that further electrolytic fluorination of the target product occurs, polyfluorinated compounds are by-produced, and the selectivity and yield of the target product decrease. Arise. Therefore, the energization amount is preferably in the range of 1.0 to 4.0 F / mol.

電解方式は定電流電解、及び定電位電解、または両者を組み合わせて行うことが可能である。
反応終了後は、有機化合物と電解液が混ざり合わない(二相系)の場合、電解液上相の有機化合物相をデカンテーションにより電解液から分離する。次に、電解液を減圧下加熱することで得られた揮発性の有機化合物と有機化合物相とを合わせることで、粗生成物を得る。一方、有機物と電解液が混ざり合っている(均一系)場合、電解液を直接蒸留することで、揮発性の有機物を得るか、電解液混合物を水洗し、有機溶媒(ジエチルエーテル、ジクロロメタン、クロロホルム、酢酸エチル等)により抽出を行った後、溶媒留去して、粗生成物を得る。このような工程を経て得られた粗生成物は、蒸留、再結晶、シリカゲルカラムクロマトグラフィーなどにより精製することで、高純度の4-フルオロ-4-メチル-1,3-ジオキソラン-2-オンを得ることができる。
The electrolysis method can be performed by constant current electrolysis, constant potential electrolysis, or a combination of both.
After completion of the reaction, when the organic compound and the electrolytic solution are not mixed (two-phase system), the upper organic compound phase of the electrolytic solution is separated from the electrolytic solution by decantation. Next, a crude product is obtained by combining the volatile organic compound obtained by heating the electrolyte under reduced pressure and the organic compound phase. On the other hand, when the organic substance and the electrolyte are mixed (homogeneous), the electrolyte is directly distilled to obtain a volatile organic substance, or the electrolyte mixture is washed with water, and an organic solvent (diethyl ether, dichloromethane, chloroform) is obtained. , Ethyl acetate, etc.) and then the solvent is distilled off to obtain a crude product. The crude product obtained through these steps is purified by distillation, recrystallization, silica gel column chromatography, etc., to obtain high-purity 4-fluoro-4-methyl-1,3-dioxolan-2-one. Can be obtained.

(実施例)
4-フルオロ-4-メチル-1,3-ジオキソラン-2-オンの製造
3000mL SUS製容器(内側はテフロン(登録商標)コーティング)に、4-メチル-1,3-ジオキソラン-2-オン(9.1 mol, 930g)、フッ化カリウム・20フッ化水素(KF・20HF、4.5 mol, 2050g、4-メチル-1,3-ジオキソラン-2-オンに対するHFの当量数10)を仕込み、-40〜-20℃の恒温槽中で、陽極にグラッシーカーボン、陰極にニッケル電極を用い、電流密度69〜124mA/cm(電流 10A)で、定電流電解を行った。2.3F/molを56時間かけて通電し、電解フッ素化反応を行った後、反応容器を真空ポンプで減圧し、低沸分を液体窒素のトラップで捕集した。残った液体をろ過し、粗生成物を945g得た。ガスクロマトグラフィー分析を行ったところ、原料転化率78%、生成物選択率76%であった。これにK2CO3を加え、酸分を除去し、モレキュラーシーブにて水分を除いたあと、単蒸留にて固体成分を取り除いた。SUS製蒸留塔にて、分離精製を試み4-フルオロ-4-メチル-1,3-ジオキソラン-2-オン(99%以上)を437g(単離収率 40%)で得た。また、電解終了時に陽極の重量変化は認められなかった。

(生成物の分析結果)
1H-NMR(300MHz, 溶媒:CDCl3, 標準物質: テトラメチルシラン)
4.58ppm (d-d, J=17.1, 10.5 Hz, 1H)、4.36ppm (d, J=30.9, 10.5 Hz, 1H)、1.85ppm (d, J=17.4 Hz, 3H)
19F-NMR(282MHz, 溶媒:CDCl3, 標準物質: CF3Cl)
-92.45ppm(m, 1F)
13C-NMR(75MHz、溶媒:CDCl3、標準物質:CDCl3)
152.34ppm (d, J=1.13 Hz, 1C), 114.46ppm (d, J=231.98 Hz, 1C), 73.80ppm (d, J=31.65Hz, 1C), 21.22ppm (d, J=29.85 Hz, 1C)

(比較例)
100mL テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)製容器に、4-メチル-1,3-ジオキソラン-2-オン(56 mmol, 5.8g)、フッ化カリウム・2フッ化水素(KF・2HF、710 mmol, 70g、4-メチル-1,3-ジオキソラン-2-オンに対するHFの当量数25)を仕込み、70℃の恒温槽中で、陽極にグラッシーカーホ゛ン、陰極にニッケル電極を用い、電流密度200mA/cm2(電流 0.5A)で、定電流電解を行った。2.0F/molを6時間かけて通電し、電解フッ素化反応を行ったあと、溶液をジクロロメタンに溶解し、水で3回洗浄した。硫酸マグネシウムにて乾燥した後、これをろ別し、溶液をロータリーエバポレーターにて濃縮し、4.9gを得た。GCにて分析した結果、転化率57%、選択率52%であった。
(Example)
Preparation of 4-fluoro-4-methyl-1,3-dioxolan-2-one
3000 mL SUS container (Teflon (registered trademark) coating on the inside), 4-methyl-1,3-dioxolan-2-one (9.1 mol, 930 g), potassium fluoride / 20 hydrogen fluoride (KF / 20HF, 4.5 Mol, 2050g, equivalence number of HF with respect to 4-methyl-1,3-dioxolan-2-one 10), using glassy carbon as anode and nickel electrode as cathode in constant temperature bath at -40 ~ -20 ℃ Constant current electrolysis was performed at a current density of 69 to 124 mA / cm 2 (current 10 A). After conducting an electrolytic fluorination reaction by energizing 2.3 F / mol over 56 hours, the reaction vessel was depressurized with a vacuum pump, and the low boiling point was collected with a liquid nitrogen trap. The remaining liquid was filtered to obtain 945 g of a crude product. As a result of gas chromatography analysis, the raw material conversion was 78% and the product selectivity was 76%. To this was added K 2 CO 3 to remove the acid content, the water was removed with molecular sieves, and then the solid components were removed by simple distillation. Separation and purification were attempted in a SUS distillation column to obtain 437 g (isolation yield: 40%) of 4-fluoro-4-methyl-1,3-dioxolan-2-one (99% or more). Also, no change in the weight of the anode was observed at the end of electrolysis.

(Product analysis results)
1 H-NMR (300 MHz, solvent: CDCl3, standard: tetramethylsilane)
4.58ppm (dd, J = 17.1, 10.5 Hz, 1H), 4.36ppm (d, J = 30.9, 10.5 Hz, 1H), 1.85ppm (d, J = 17.4 Hz, 3H)
19 F-NMR (282 MHz, solvent: CDCl3, standard substance: CF3Cl)
-92.45ppm (m, 1F)
13 C-NMR (75 MHz, solvent: CDCl3, standard substance: CDCl3)
152.34ppm (d, J = 1.13 Hz, 1C), 114.46ppm (d, J = 231.98 Hz, 1C), 73.80ppm (d, J = 31.65Hz, 1C), 21.22ppm (d, J = 29.85 Hz, 1C )

(Comparative example)
In a 100 mL tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) container, 4-methyl-1,3-dioxolan-2-one (56 mmol, 5.8 g), potassium fluoride / hydrogen fluoride (KF)・ 2HF, 710 mmol, 70g, HF equivalent number for 4-methyl-1,3-dioxolan-2-one 25), and using a glassy carbon as the anode and a nickel electrode as the cathode in a constant temperature bath at 70 ° C Constant current electrolysis was performed at a current density of 200 mA / cm 2 (current 0.5 A). After conducting an electrofluorination reaction by supplying 2.0 F / mol over 6 hours, the solution was dissolved in dichloromethane and washed with water three times. After drying over magnesium sulfate, this was filtered off and the solution was concentrated on a rotary evaporator to give 4.9 g. As a result of GC analysis, the conversion was 57% and the selectivity was 52%.

Claims (4)

下記[化1]に示す4-メチル-1,3-ジオキソラン-2-オン
Figure 2010024216
を電解フッ素化し、下記[化2]に示す4-フルオロ-4-メチル-1,3-ジオキソラン-2-オンを得ること特徴とする4-フルオロ-4-メチル-1,3-ジオキソラン-2-オンの製造方法。
Figure 2010024216
4-Methyl-1,3-dioxolan-2-one shown in the following [Chemical Formula 1]
Figure 2010024216
4-fluoro-4-methyl-1,3-dioxolane-2-one represented by the following [Chemical Formula 2] to give 4-fluoro-4-methyl-1,3-dioxolane-2 -On manufacturing method.
Figure 2010024216
KF-nHF(nは8〜20)を電解液とし、温度-40〜0℃で[化1]の4-メチル-1,3-ジオキソラン-2-オンを電解フッ素化することを特徴とする請求項1に記載の製造方法。   It is characterized by electrolytic fluorination of 4-methyl-1,3-dioxolan-2-one of [Chemical Formula 1] at a temperature of -40 to 0 ° C using KF-nHF (n is 8 to 20) as an electrolyte. The manufacturing method according to claim 1. KF-nHF(nは8〜20)を電解液とし、陽極に炭素電極を用い、-40〜0℃で[化1]の4-メチル-1,3-ジオキソラン-2-オンを電解フッ素化することを特徴とする請求項1に記載の製造方法。   Electrolytic fluorination of 4-methyl-1,3-dioxolan-2-one of [Chemical Formula 1] at -40 to 0 ° C using KF-nHF (n is 8 to 20) as the electrolyte and a carbon electrode as the anode The manufacturing method according to claim 1, wherein: KF-nHF(nは8〜20)を電解液とし、陽極にグラッシーカーボン電極を用い、-40〜0℃で[化1]の4-メチル-1,3-ジオキソラン-2-オンを電解フッ素化することを特徴とする請求項1に記載の製造方法。   Using KF-nHF (where n is 8 to 20) as the electrolyte, a glassy carbon electrode as the anode, and electrolysis of 4-methyl-1,3-dioxolan-2-one of [Chemical Formula 1] at -40 to 0 ° C The manufacturing method according to claim 1, wherein:
JP2008191351A 2008-07-24 2008-07-24 Process for producing 4-fluoro-4-methyl-1,3-dioxolan-2-one by electrolytic fluorination Active JP5351456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008191351A JP5351456B2 (en) 2008-07-24 2008-07-24 Process for producing 4-fluoro-4-methyl-1,3-dioxolan-2-one by electrolytic fluorination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008191351A JP5351456B2 (en) 2008-07-24 2008-07-24 Process for producing 4-fluoro-4-methyl-1,3-dioxolan-2-one by electrolytic fluorination

Publications (2)

Publication Number Publication Date
JP2010024216A true JP2010024216A (en) 2010-02-04
JP5351456B2 JP5351456B2 (en) 2013-11-27

Family

ID=41730360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008191351A Active JP5351456B2 (en) 2008-07-24 2008-07-24 Process for producing 4-fluoro-4-methyl-1,3-dioxolan-2-one by electrolytic fluorination

Country Status (1)

Country Link
JP (1) JP5351456B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105002A1 (en) * 2010-02-25 2011-09-01 パナソニック株式会社 Lithium-ion secondary battery
US11888122B2 (en) * 2017-03-31 2024-01-30 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium ion secondary battery and module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204492A (en) * 1999-01-11 2000-07-25 Japan Science & Technology Corp Electrode for electrolytic fluorination reaction and organic electrolytic fluorination
JP2006001843A (en) * 2004-06-15 2006-01-05 Central Glass Co Ltd Fluorinated carbonates and their production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204492A (en) * 1999-01-11 2000-07-25 Japan Science & Technology Corp Electrode for electrolytic fluorination reaction and organic electrolytic fluorination
JP2006001843A (en) * 2004-06-15 2006-01-05 Central Glass Co Ltd Fluorinated carbonates and their production method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013027853; フッ素化学討論会講演要旨集 Vol.29, 2005, p.288-289 *
JPN6013027856; 日本化学会講演予稿集 Vol.79 No.2, 2001, p.744 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105002A1 (en) * 2010-02-25 2011-09-01 パナソニック株式会社 Lithium-ion secondary battery
JP5436657B2 (en) * 2010-02-25 2014-03-05 パナソニック株式会社 Lithium ion secondary battery
US11888122B2 (en) * 2017-03-31 2024-01-30 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium ion secondary battery and module

Also Published As

Publication number Publication date
JP5351456B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5082520B2 (en) Method for producing fluorine-containing diol compound
WO2017018412A1 (en) Method for producing 1-chloro-2,3,3-trifluoropropene
JP2013508330A (en) Method for producing fluorinated ethylene carbonate
JP5313579B2 (en) Process for producing novel fluorinated 1,2-oxathiolane 2,2-dioxide
JP2008195691A (en) Manufacturing method of 4-fluoro-1,3-dioxolan-2-one
JP5351456B2 (en) Process for producing 4-fluoro-4-methyl-1,3-dioxolan-2-one by electrolytic fluorination
JP4431212B2 (en) Method for producing fluorine-containing cyclic carbonate
JP5540508B2 (en) Process for producing 1,2-dialkyl-1,2-difluoroethylene carbonate
EP2308862B1 (en) Manufacturing method for fluoropropylene carbonate
US7863486B2 (en) Electrochemical preparation of sterically hindered amines
JP4440006B2 (en) Fluorinated carbonates and process for producing the same
JP2006219419A (en) Method for producing perfluorovinyl ether monomer
JP2006348382A (en) Electrolytic fluorination method
JP2006348381A (en) Method for producing organic compound by electrolytic fluoridation
US10975053B2 (en) Production methods for 1,3-dioxolane compound and perfluoro(2,2-dimethyl-1,3-dioxole)
JP4587329B2 (en) Method for producing primary amines having a primary amino group and a cyclopropyl unit bonded to an aliphatic or alicyclic C-atom
JP3846778B2 (en) Method for electrolytic fluorination of organic ether compounds
JP2006232704A (en) New fluorosulfonyl group-containing compound
JP5266648B2 (en) Process for producing perfluoro (exomethylenecycloalkene) compound
JP2003313181A (en) Method for producing fluorinated phthalide
JP2008174552A (en) Method for producing 4-perfluoroisopropylanilines
JP5132238B2 (en) Method for producing fluorinated adamantane compound
JP4830249B2 (en) Preparation of trifluoroacetaldehyde trifluoroethyl hemiacetal
JPS6133828B2 (en)
JP2004196724A (en) Method for producing difluorohaloacetyl fluoride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Ref document number: 5351456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250