JP2010019965A - Plate-like heater, heating device and image forming apparatus - Google Patents

Plate-like heater, heating device and image forming apparatus Download PDF

Info

Publication number
JP2010019965A
JP2010019965A JP2008178843A JP2008178843A JP2010019965A JP 2010019965 A JP2010019965 A JP 2010019965A JP 2008178843 A JP2008178843 A JP 2008178843A JP 2008178843 A JP2008178843 A JP 2008178843A JP 2010019965 A JP2010019965 A JP 2010019965A
Authority
JP
Japan
Prior art keywords
heating
ntc
ceramic substrate
resistor
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008178843A
Other languages
Japanese (ja)
Inventor
Keijiro Tasaka
圭次郎 田坂
Kentaro Kimura
健太郎 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2008178843A priority Critical patent/JP2010019965A/en
Publication of JP2010019965A publication Critical patent/JP2010019965A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a high-speed temperature rise in a plate-like heater, and to restrain the elevation of a temperature in a non-paper passing part. <P>SOLUTION: The resistor paste of an Ag/Pd alloy or the like is baked at a high temperature to form a strip heating resistor 12 formed of a thick film having a predetermined resistor value in the longitudinal direction on a long flat ceramic substrate 11. Electrodes 15, 16 are formed at both ends on the ceramic substrate 11. The electrode 15 has conductor patterns 15a, 15b and the electrode 16 has conductor patterns 16a, 16b which are integrally formed in non-contact states with the heating resistor 12 from a position in the transverse direction of the ceramic substrate 11 of the electrodes 15, 16. PTC (Positive Temperature Coefficient) heating units 171, 172 are formed between the conductor patterns 15a, 16a and the heating resistor 12, and NTC (Negative Temperature Coefficient) heating units 181, 182 are formed between the conductor patterns 15b, 16b and the heating resistor 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、情報機器、家電製品や製造設備などの小型機器類に用いられる薄型の板状ヒータおよびこの板状ヒータが実装されたプリンタ、複写機、ファクシミリやリライタブルカードリーダライタなどの加熱装置ならびにこの加熱装置を用いた画像形成装置に関する。   The present invention relates to a thin plate heater used for small devices such as information equipment, home appliances and manufacturing equipment, a heating device such as a printer, a copying machine, a facsimile, a rewritable card reader / writer, and the like, on which the plate heater is mounted, and The present invention relates to an image forming apparatus using the heating device.

従来の板状ヒータは、非通紙部昇温が起こるヒータ箇所にNTC特性を持つ発熱体を用い、通紙部の発熱体と直列接続させた構成であり、非通紙部の温度が高くなった場合に非通紙部における昇温を抑制させている。(例えば、特許文献1)
特開2007−232819公報
The conventional plate heater uses a heating element having NTC characteristics at the heater location where the temperature rise in the non-sheet passing portion is connected in series with the heating element in the sheet passing portion, and the temperature of the non-sheet passing portion is high. In this case, the temperature rise in the non-sheet passing portion is suppressed. (For example, Patent Document 1)
JP 2007-232819 A

上記した特許文献1の技術は、小サイズ紙を連続通紙した場合に、非通紙部が通紙部よりも温度が高くなり非通紙部昇温の問題が生じることから、通紙速度を落として通紙を行わなければならない。そのために、ヒータ端部にNTC特性の抵抗体を直列に形成することで、非通紙部の昇温を抑制することができるが、ヒータ面全体が均一に発熱するまでの温度立ち上がりが遅いという、問題がある。   In the technique disclosed in Patent Document 1 described above, when small-size paper is continuously passed, the temperature of the non-sheet passing portion becomes higher than that of the sheet passing portion, causing a problem of temperature rise of the non-sheet passing portion. You must drop and pass through the paper. Therefore, by forming the NTC characteristic resistors in series at the heater end, the temperature rise of the non-sheet passing portion can be suppressed, but the temperature rise until the entire heater surface generates heat uniformly is said to be slow. ,There's a problem.

この発明の目的は、温度立ち上がりの高速化を実現できるとともに、非通紙部での昇温を抑制することのできる板状ヒータ、この板状ヒータが実装された加熱装置、この加熱装置が搭載された画像形成装置を提供することにある。   An object of the present invention is to realize a plate heater capable of realizing high-speed rise in temperature and suppressing temperature rise in a non-sheet passing portion, a heating device mounted with the plate heater, and the heating device mounted An image forming apparatus is provided.

上記した課題を解決するために、この発明の板状ヒータは、耐熱・絶縁性材料で形成された長尺平板状のセラミック基板と、前記セラミック基板上の長手方向に厚膜形成された発熱抵抗体と、前記発熱抵抗体の両端に電力を供給する第1および第2の電極と、前記第1および第2の電極の前記セラミック基板の長手方向の両側の沿って前記発熱抵抗体に非接触状態でそれぞれ延出した第1および第2の導体パターンと、前記第1の導体パターンと前記発熱抵抗体を接続したPTC発熱体と、前記第2の導体パターンと前記発熱抵抗体を接続したNTC発熱体と、少なくとも前記電極を残して前記セラミック基板上に施したオーバーコート層と、を具備したことを特徴とする。   In order to solve the above-described problems, a plate heater according to the present invention includes a long flat ceramic substrate formed of a heat-resistant / insulating material, and a heating resistor formed thick in the longitudinal direction on the ceramic substrate. A body, first and second electrodes for supplying power to both ends of the heating resistor, and non-contact with the heating resistor along both longitudinal sides of the ceramic substrate of the first and second electrodes First and second conductor patterns extending in a state, a PTC heating element connecting the first conductor pattern and the heating resistor, and an NTC connecting the second conductor pattern and the heating resistor. A heating element and an overcoat layer applied on the ceramic substrate leaving at least the electrodes are provided.

この発明の加熱装置は、加熱ローラと、前記加熱ローラに対向配置された発熱抵抗体が圧接された請求項1〜8のいずれかに記載の板状ヒータと、前記板状ヒータと前記加圧ローラとの間を移動可能に設けられた定着フィルムとを具備したことを特徴とする。   The heating device of this invention is a plate heater according to any one of claims 1 to 8, wherein the heating roller and a heating resistor disposed opposite to the heating roller are pressed against each other, the plate heater, and the pressurization. And a fixing film movably provided between the rollers.

さらに、この発明の画像形成装置は、媒体に形成された静電潜像にトナーを付着し、該トナーを用紙に転写させて所定の画像を形成する形成手段と、画像が形成された用紙を加圧ローラにより定着フィルムを介して前記板状ヒータに圧接しながら通過させ、前記トナーを定着するようにした請求項9記載の加熱装置とを具備したことを特徴とする。   Furthermore, an image forming apparatus according to the present invention includes a forming unit that attaches toner to an electrostatic latent image formed on a medium and transfers the toner to a sheet to form a predetermined image; and a sheet on which the image is formed. The heating device according to claim 9, wherein the toner is fixed by passing through the fixing film with a pressure roller while being pressed against the plate heater.

この発明によれば、非通紙部分の発熱体としてPTC発熱体とNTC発熱体を用いた並列パターンを配置したことで、温度立ち上がりの高速化が実現できるとともに、非通紙部昇温の抑制を図ることができる。   According to the present invention, by arranging the parallel pattern using the PTC heating element and the NTC heating element as the heating element of the non-sheet passing portion, the temperature rise can be speeded up and the temperature rise of the non-sheet passing portion is suppressed. Can be achieved.

以下、この発明を実施するための最良の形態について、図面を参照しながら詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1、図2は、この発明の板状ヒータに関する第1の実施形態について説明するための、図1(a)は正面図、図1(b)は図1(a)の背面図、図2は図1のI−I’断面図である。   FIG. 1 and FIG. 2 are front views, FIG. 1 (b) is a rear view of FIG. 1 (a), and FIG. 2 is a cross-sectional view taken along the line II ′ of FIG.

図1、図2において、11は、耐熱、電気絶縁性材料例えば酸化アルミニウム、窒化アルミニウム、窒化珪素などの電気絶縁性を有する高剛性の基材で高い熱伝導性の短冊状のセラミック基板である。セラミック基板11は、例えば厚みが1mm、幅10mm、長さ280mm程度の寸法である。   In FIG. 1 and FIG. 2, reference numeral 11 denotes a highly heat-resistant strip-shaped ceramic substrate which is a high-rigidity base material having electrical insulation properties such as a heat-resistant and electrically insulating material such as aluminum oxide, aluminum nitride, and silicon nitride. . The ceramic substrate 11 has dimensions of, for example, a thickness of 1 mm, a width of 10 mm, and a length of 280 mm.

12は、セラミック基板11の表面側の長手方向に固着して形成された銀(Ag)・パラジウム(Pd)を主成分としPdの比率を高くした抵抗温度係数が0ppm/℃の材料の抵抗体ペーストを高温で焼成し、所定の抵抗値を有する厚膜からなる帯状の発熱抵抗体である。発熱抵抗体12は、例えば厚みが10μm、幅が2.5mm、長さが226mm程度の寸法である。   12 is a resistor made of silver (Ag) / palladium (Pd), which is formed by being fixed in the longitudinal direction on the surface side of the ceramic substrate 11, and having a resistance temperature coefficient of 0 ppm / ° C. with a high Pd ratio. It is a strip-shaped heating resistor made of a thick film having a predetermined resistance value by baking paste at a high temperature. The heating resistor 12 has dimensions of, for example, a thickness of 10 μm, a width of 2.5 mm, and a length of about 226 mm.

発熱抵抗体12の両端には、少なくとも発熱抵抗体12の幅の長さを有するの導体層13,14を積層して形成する。   Conductive layers 13 and 14 having at least the width of the heating resistor 12 are laminated on both ends of the heating resistor 12.

15,16は、セラミック基板11の長手方向の両端面に形成した給電用の電極である。電極15には、一体的に発熱抵抗体12と平行に非接触状態で延在させて形成した導体パターン15a,15bがそれぞれ形成される。電極16には、一体的に発熱抵抗体12と平行に非接触状態で延在させて形成した導体パターン16a,16bがそれぞれ形成される。なお、導体パターン15a,15bは第1の導体パターンに相当し、導体パターン16a,16bは第2の導体パターンに相当する。   Reference numerals 15 and 16 denote power supply electrodes formed on both end faces of the ceramic substrate 11 in the longitudinal direction. Conductor patterns 15 a and 15 b are formed on the electrode 15 so as to extend integrally in a non-contact state in parallel with the heating resistor 12. Conductor patterns 16 a and 16 b are formed on the electrode 16 so as to be integrally extended in parallel with the heating resistor 12 in a non-contact state. The conductor patterns 15a and 15b correspond to the first conductor pattern, and the conductor patterns 16a and 16b correspond to the second conductor pattern.

導体パターン15aと導体層13とは、Ag/Pdを主成分あるいは酸化ルテニウムといった材料で、例えば抵抗温度係数が500ppm/℃の正の温度係数を有するPTC(Positive Temperature Coefficient)発熱体171のベタパターンを形成して電気的に接続する。同様に導体パターン16aと導体層14にはAg/Pdを主成分あるいは酸化ルテニウムといった材料で、例えば抵抗温度係数が500ppm/℃の正の温度係数を有するPTC発熱体172のベタパターンを形成して電気的に接続する。   The conductor pattern 15a and the conductor layer 13 are made of a material such as Ag / Pd as a main component or ruthenium oxide. For example, a solid pattern of a PTC (Positive Temperature Coefficient) heating element 171 having a positive temperature coefficient with a resistance temperature coefficient of 500 ppm / ° C. To form an electrical connection. Similarly, a solid pattern of a PTC heating element 172 having a positive temperature coefficient with a temperature coefficient of resistance of 500 ppm / ° C. is formed on the conductor pattern 16a and the conductor layer 14 with a material such as Ag / Pd as a main component or ruthenium oxide. Connect electrically.

導体パターン15aと導体層13にはPTC発熱体171の一部分が、導体パターン15bと導体層14にはPTC発熱体172の一部分がそれぞれ重畳された状態で接合させる。   A part of the PTC heating element 171 is joined to the conductor pattern 15 a and the conductor layer 13, and a part of the PTC heating element 172 is joined to the conductor pattern 15 b and the conductor layer 14.

また、導体パターン15bと導体層13とは、半導体セラミックスやグラファイトを主成分とする、例えば抵抗温度係数−5000ppm/℃の負の温度係数を有するNTC(Negative Temperature Coefficient)発熱体181のベタパターンを形成して電気的に接続する。導体パターン16bと導体層14とは、半導体セラミックスやグラファイトを主成分とする材料で、例えば抵抗温度係数−5000ppm/℃の負の温度係数を有するNTC発熱体182のベタパターンを形成して電気的に接続する。   The conductor pattern 15b and the conductor layer 13 are solid patterns of NTC (Negative Temperature Coefficient) heating elements 181 having a negative temperature coefficient of, for example, a resistance temperature coefficient of −5000 ppm / ° C., which is mainly composed of semiconductor ceramics or graphite. Form and electrically connect. The conductor pattern 16b and the conductor layer 14 are materials mainly composed of semiconductor ceramics or graphite. For example, the conductor pattern 16b and the conductor layer 14 are electrically formed by forming a solid pattern of an NTC heating element 182 having a negative temperature coefficient of resistance temperature coefficient of −5000 ppm / ° C. Connect to.

導体パターン15bと導体層13にはNTC発熱体181の一部分が、導体パターン16bと導体層14にはNTC発熱体182の一部分がそれぞれ重畳された状態で接合させる。   A part of the NTC heating element 181 is joined to the conductor pattern 15b and the conductor layer 13, and a part of the NTC heating element 182 is joined to the conductor pattern 16b and the conductor layer 14, respectively.

19は、電極15,16を残した発熱抵抗体12、導体パターン15a,15b,16a,16b、PTC発熱体171,172、NTC発熱体181,182上に、例えば厚膜印刷でガラス層あるいはポリイミド層で形成され、電気的、機械的、化学的な保護を行うオーバーコート層である。   19 is a glass layer or polyimide, for example, by thick film printing on the heating resistor 12 with the electrodes 15 and 16 left, the conductor patterns 15a, 15b, 16a and 16b, the PTC heating elements 171 and 172, and the NTC heating elements 181 and 182. It is an overcoat layer that is formed of layers and provides electrical, mechanical, and chemical protection.

オーバーコート層19は、被加熱体である用紙を加熱させながら摺動させる機能を有している。オーバーコート層19のPTC発熱体181,182が形成された側は、被加熱体が流れる上流側とし、NTC発熱体181,182が形成された側は、加熱体が流れる下流側とする。   The overcoat layer 19 has a function of sliding while heating the paper that is the object to be heated. The side of the overcoat layer 19 where the PTC heating elements 181 and 182 are formed is the upstream side where the heated body flows, and the side where the NTC heating elements 181 and 182 are formed is the downstream side where the heating body flows.

なお、オーバーコート層19上の発熱抵抗体12が形成されたX領域は、通紙部とし、PTC発熱体171,172、NTC発熱体181,182が形成されたYの領域は、非通紙部とする。   The X region where the heating resistor 12 is formed on the overcoat layer 19 is a sheet passing portion, and the Y region where the PTC heating elements 171 and 172 and the NTC heating elements 181 and 182 are formed is non-sheet passing. Part.

次に、図3〜図5を参照し、図1の動作について説明する。図3は図1に電源を追加した板状ヒータの等価回路図、図4は図1の温度変化に伴い変化する通紙部と非通紙部の抵抗値について説明するための説明図、図5は板状ヒータの長手方向の発熱量分布について説明するための説明図である。   Next, the operation of FIG. 1 will be described with reference to FIGS. 3 is an equivalent circuit diagram of a plate heater in which a power source is added to FIG. 1, and FIG. 4 is an explanatory diagram for explaining resistance values of a sheet passing portion and a non-sheet passing portion that change with a temperature change in FIG. 5 is an explanatory view for explaining the heat generation amount distribution in the longitudinal direction of the plate heater.

図3において、31は交流電源である。R12は発熱抵抗体12の抵抗を示し、R171はPTC発熱体171の抵抗を、R172はPTC発熱体172の抵抗をそれぞれ示している。また、R181はNTC発熱体181の抵抗を示し、R182はNTC発熱体182の抵抗をそれぞれ示している。   In FIG. 3, 31 is an AC power source. R12 indicates the resistance of the heating resistor 12, R171 indicates the resistance of the PTC heating element 171, and R172 indicates the resistance of the PTC heating element 172. R181 indicates the resistance of the NTC heating element 181 and R182 indicates the resistance of the NTC heating element 182.

ここで、非通紙部YであるPTC発熱体171とNTC発熱体181の合成抵抗それに発熱体172とNTC発熱体182の合成抵抗をRsとした場合について考える。   Here, let us consider a case where the combined resistance of the PTC heating element 171 and the NTC heating element 181 which is the non-sheet passing portion Y and the combined resistance of the heating element 172 and the NTC heating element 182 are Rs.

まず、電源31から電極15,16に電力が供給された直後の通紙部Xと非通紙部Yの抵抗値について考える。通電された直後のPTC発熱体171,172の抵抗値Rp(R171,R172)は小さく、NTC発熱体181,182の抵抗値Rn(R181,R182)は大きい。これらを合成した場合の抵抗値Rsは、発熱抵抗体12の抵抗値R12よりやや大きい程度となる。これにより、板状ヒータ長手方向全体の温度分布は、図5のAに示す特性となる。   First, let us consider the resistance values of the sheet passing portion X and the non-sheet passing portion Y immediately after power is supplied from the power source 31 to the electrodes 15 and 16. Immediately after energization, the resistance values Rp (R171, R172) of the PTC heating elements 171 and 172 are small, and the resistance values Rn (R181, R182) of the NTC heating elements 181 and 182 are large. When these are combined, the resistance value Rs is slightly larger than the resistance value R12 of the heating resistor 12. Thereby, the temperature distribution of the whole plate-shaped heater longitudinal direction becomes a characteristic shown to A of FIG.

次に、通紙の定常時においては、PTC発熱体171,172の抵抗値Rp、NTC発熱体181,182の抵抗値Rnそれに発熱抵抗体12の抵抗値R12がほぼ同じような値となる。これにより、板状ヒータの長手方向全体の温度分布は、図5のBに示す特性となる。   Next, when the paper is passed, the resistance value Rp of the PTC heating elements 171 and 172, the resistance value Rn of the NTC heating elements 181 and 182 and the resistance value R12 of the heating resistor 12 are substantially the same value. Thereby, the temperature distribution in the entire longitudinal direction of the plate heater has the characteristics shown in FIG.

非通紙部Xの領域の昇温時においては、PTC発熱体171,172の抵抗値Rpは大きく、NTC発熱体181,182の抵抗値Rnは小さい。これらを合成した場合の抵抗値Rsは、発熱抵抗体12の抵抗値R12よりやや小さい程度となる。これにより、板状ヒータ長手方向全体の温度分布は、図5のAに示す特性となる。これにより、板状ヒータ長手方向全体の温度分布は、図5のCに示す特性となる。   When the temperature of the non-sheet passing portion X is raised, the resistance value Rp of the PTC heating elements 171 and 172 is large, and the resistance value Rn of the NTC heating elements 181 and 182 is small. When these are combined, the resistance value Rs is slightly smaller than the resistance value R12 of the heating resistor 12. Thereby, the temperature distribution of the whole plate-shaped heater longitudinal direction becomes a characteristic shown to A of FIG. Thereby, the temperature distribution of the whole plate-shaped heater longitudinal direction becomes a characteristic shown to C of FIG.

このように、非通紙部Yの昇温時は、通紙部Xよりも非通紙部Yの抵抗値が小さくなり、非通紙部Yでの発熱量は抑えることができることから、非通紙部Yの昇温抑制を図ることができる。   Thus, when the temperature of the non-sheet passing portion Y is increased, the resistance value of the non-sheet passing portion Y is smaller than that of the sheet passing portion X, and the amount of heat generated in the non-sheet passing portion Y can be suppressed. The temperature rise of the sheet passing portion Y can be suppressed.

この実施形態では、非通紙部分の発熱体としてPTC発熱体とNTC発熱体を用いた並列パターンを配置したことで、温度立ち上がりの高速化を実現できるとともに、非通紙部昇温の抑制を図ることができる。   In this embodiment, by arranging a parallel pattern using a PTC heating element and an NTC heating element as the heating element of the non-sheet passing portion, it is possible to realize a high temperature rise and to suppress the temperature rise of the non-sheet passing portion. Can be planned.

図6は、この発明の板状ヒータに関する第2の実施形態について説明するための構成図である。図6は、図1のPTC発熱体171とNTC発熱体181側のみを拡大した状態で示した拡大構成図である。なお、図1と同一構成部分には同符号を付しここでの説明は省略する。   FIG. 6 is a block diagram for explaining a second embodiment relating to the plate heater of the present invention. FIG. 6 is an enlarged configuration diagram showing only the PTC heating element 171 and the NTC heating element 181 side in FIG. 1 in an enlarged state. The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted here.

この実施形態は、PTC発熱体171(712)の幅をWp、長さをLpとした場合のアスペクト比(Wp/Lp)に対してNTC発熱体181(182)の幅をWn、長さLnとした場合のアスペクト比(Wn/Ln)の関係を、(Wp/Lp)=(Wn/Ln)としたものである。換言すれば、PTC発熱体171の抵抗温度係数PTCとNTC発熱体181の抵抗温度係数NTCの絶対値を、NTC<PTCの関係としたものである。   In this embodiment, the width of the NTC heating element 181 (182) is Wn and the length Ln with respect to the aspect ratio (Wp / Lp) when the width of the PTC heating element 171 (712) is Wp and the length is Lp. In this case, the aspect ratio (Wn / Ln) relationship is (Wp / Lp) = (Wn / Ln). In other words, the absolute value of the resistance temperature coefficient PTC of the PTC heating element 171 and the resistance temperature coefficient NTC of the NTC heating element 181 has a relationship of NTC <PTC.

このように、非通紙部でのNTC発熱体とPTC発熱体のアスペクト比を等しくすることで、温度調整時に非通紙部昇温時に端部の過剰な熱を下流側に逃がすことができるため、非通紙部の昇温抑制効果を高めることが可能である。   Thus, by making the aspect ratios of the NTC heating element and the PTC heating element equal in the non-sheet passing portion, excessive heat at the end can be released to the downstream side when the non-sheet passing portion is heated during temperature adjustment. Therefore, it is possible to increase the temperature rise suppression effect of the non-sheet passing portion.

図7〜図9は、この発明の板状ヒータに関する第3の実施形態について説明するための、図7(a)は正面図、図7(b)は図7(a)の背面図、図8は図7のII−II’断面図、図9はこの実施形態の動作について説明するための説明図である。上記した実施形態と同一の構成部分には同符号を符号を付して説明する。   FIGS. 7 to 9 are views for explaining a third embodiment of the plate heater of the present invention, FIG. 7 (a) is a front view, FIG. 7 (b) is a rear view of FIG. 8 is a sectional view taken along the line II-II ′ of FIG. 7, and FIG. 9 is an explanatory diagram for explaining the operation of this embodiment. The same components as those in the above-described embodiment will be described with the same reference numerals.

図7において、セラミック基板11の表面には発熱抵抗体12が形成され、発熱抵抗体12の両端は、それぞれ電極15,16が形成される。発熱抵抗体12の両端の短手方向には、それぞれ同じ負の温度係数を有するNTC発熱体71,72のベタパターンが形成される。NTC発熱体71,72の一部は、発熱抵抗体12に重ね合わせた状態で形成される。   In FIG. 7, a heating resistor 12 is formed on the surface of the ceramic substrate 11, and electrodes 15 and 16 are formed on both ends of the heating resistor 12, respectively. Solid patterns of NTC heating elements 71 and 72 having the same negative temperature coefficient are formed in the short direction at both ends of the heating resistor 12. Part of the NTC heating elements 71 and 72 is formed in a state of being superimposed on the heating resistor 12.

発熱抵抗体12、NTC発熱体71,72は、厚膜印刷方法を用いてガラスペーストを印刷で覆い、これを焼成してオーバーコート層19が形成される。   The heating resistor 12 and the NTC heating elements 71 and 72 cover the glass paste by printing using a thick film printing method, and baked to form the overcoat layer 19.

ここで、発熱抵抗体12を100mΩ/□、TCR(Temperature Coefficient of Resistance)=0ppm/℃とし、NTC発熱体71,72をそれぞれ1000mΩ/□、TCR=3000ppm/℃とし、発熱抵抗体12とNTC発熱体71,72の長手方向の幅を同じとして考える。   Here, the heating resistor 12 is set to 100 mΩ / □ and TCR (Temperature Coefficient of Resistance) = 0 ppm / ° C., the NTC heating elements 71 and 72 are set to 1000 mΩ / □ and TCR = 3000 ppm / ° C., respectively. The heating elements 71 and 72 are assumed to have the same longitudinal width.

このとき、図7(a)における領域Eに発熱抵抗体12の抵抗R12とNTC発熱体71の抵抗R71は図9の等価回路に示すような並列接続となる。これにより、室温での構成抵抗値は、91mΩ/□となる。これは、抵抗R12とNTC発熱体72の抵抗R72の関係について同じである。   At this time, in the region E in FIG. 7A, the resistor R12 of the heating resistor 12 and the resistor R71 of the NTC heating element 71 are connected in parallel as shown in the equivalent circuit of FIG. As a result, the component resistance value at room temperature is 91 mΩ / □. This is the same for the relationship between the resistor R12 and the resistor R72 of the NTC heating element 72.

図7に示すヒータ長Dの定着物を通紙した場合、発熱抵抗体12の端部の温度は、200℃程度まで高くなるとする。このときの端部の合成抵抗値は、62mΩ/□となり、約30%程度まで発熱量が低下する。このように、端部の発熱量を抑えることが可能となる。   It is assumed that when the fixed matter having the heater length D shown in FIG. The combined resistance value at the end at this time is 62 mΩ / □, and the calorific value is reduced to about 30%. Thus, it becomes possible to suppress the calorific value at the end.

この実施形態では、発熱抵抗体12の端部にNTC発熱体71,72を形成しただけの簡単な構成により、非通紙部における温度上昇を抑えることが可能となる。   In this embodiment, the temperature rise at the non-sheet passing portion can be suppressed by a simple configuration in which the NTC heating elements 71 and 72 are simply formed at the end of the heating resistor 12.

図10、図11は、この発明の板状ヒータに関する第4の実施形態について説明するための、図10(a)は正面図、図10(b)は図10(a)の背面図、図11は図10のIII−III’断面図である。   FIG. 10 and FIG. 11 are front views, FIG. 10 (b) is a rear view of FIG. 10 (a), and FIG. 11 is a cross-sectional view taken along the line III-III ′ of FIG.

図10において、セラミック基板11には、長手方向に沿って、銀(Ag)・パラジウム(Pd)の合金をはじめとする銀系材料や、ルテニウム系、炭素系などの抵抗体ペーストを高温で焼成し、所定の抵抗値を有する厚膜からなる帯状の発熱抵抗体121,122を平行に形成している。   In FIG. 10, on the ceramic substrate 11, a silver-based material such as an alloy of silver (Ag) / palladium (Pd) or a resistor paste such as ruthenium-based or carbon-based is fired at a high temperature along the longitudinal direction. The strip-shaped heating resistors 121 and 122 made of a thick film having a predetermined resistance value are formed in parallel.

発熱抵抗体121の一端は、セラミック基板11上に銀系の導体ペーストを焼成して形成された良導電体膜の給電用の電極151と接続し、発熱抵抗体122の一端は、セラミック基板11上に銀系の導体ペーストを焼成した良導電体膜の給電用の電極161と接続する。発熱抵抗体121,122のそれぞれ他端は、セラミック基板11上に銀系の導体ペーストを焼成して形成した接続導体156により共通接続する。   One end of the heating resistor 121 is connected to a power supply electrode 151 of a good conductor film formed by firing a silver-based conductor paste on the ceramic substrate 11, and one end of the heating resistor 122 is connected to the ceramic substrate 11. It connects with the electrode 161 for the electric power feeding of the good conductor film which baked the silver-type conductor paste on it. The other ends of the heating resistors 121 and 122 are commonly connected by a connection conductor 156 formed by firing a silver-based conductor paste on the ceramic substrate 11.

発熱抵抗体121の両端の短手方向には、それぞれ同じ負の温度係数を有するNTC発熱体711、712のベタパターンが、発熱抵抗体122の両端の短手方向には、それぞれ同じ負の温度係数を有するNTC発熱体721、722のベタパターンがそれぞれ形成される。NTC発熱体711,712,721,722の一部は、発熱抵抗体12に重ね合わせた状態で形成される。   Solid patterns of NTC heating elements 711 and 712 having the same negative temperature coefficient in the short direction at both ends of the heating resistor 121, respectively, and the same negative temperature in the short direction at both ends of the heating resistor 122, respectively. Solid patterns of NTC heating elements 721 and 722 having coefficients are formed, respectively. Part of the NTC heating elements 711, 712, 721, 722 is formed in a state of being superimposed on the heating resistor 12.

発熱抵抗体12、NTC発熱体711,712,721,722上には、厚膜印刷方法を用いてガラスペーストを印刷で覆い、これを焼成したオーバーコート層19が形成される。   On the heating resistor 12 and the NTC heating elements 711, 712, 721, 722, an overcoat layer 19 is formed by covering the glass paste with printing using a thick film printing method and firing the glass paste.

ここで、発熱抵抗体121,122を100mΩ/□、TCR=0ppm/℃とし、NTC発熱体711,712,721,722をそれぞれ1000mΩ/□、TCR=3000ppm/℃とし、発熱抵抗体121,122とNTC発熱体711,712,721,722の長手方向の幅を同じとして考える。   Here, the heating resistors 121 and 122 are set to 100 mΩ / □ and TCR = 0 ppm / ° C., the NTC heating elements 711, 712, 721, and 722 are set to 1000 mΩ / □ and TCR = 3000 ppm / ° C., respectively, and the heating resistors 121 and 122 are set. And the NTC heating elements 711, 712, 721, 722 are considered to have the same width in the longitudinal direction.

このとき、図10(a)の領域Eにおける発熱抵抗体121,122の抵抗R12とNTC発熱体711の抵抗値は、図9の等価回路と同じような並列接続となる。これにより、室温での構成抵抗値は、91mΩ/□となる。   At this time, the resistance value of the resistor R12 of the heating resistors 121 and 122 and the resistance value of the NTC heating element 711 in the region E of FIG. 10A are connected in parallel as in the equivalent circuit of FIG. As a result, the component resistance value at room temperature is 91 mΩ / □.

このことは、抵抗R12とNTC発熱体712の抵抗値、抵抗R12とNTC発熱体721の抵抗値それに抵抗R12とNTC発熱体722の抵抗値の関係についても同じである。   This also applies to the relationship between the resistance value of the resistor R12 and the NTC heating element 712, the resistance value of the resistor R12 and the NTC heating element 721, and the resistance value of the resistor R12 and the NTC heating element 722.

従って、この場合は、発熱抵抗体121,122による上流から下流にかけての幅の広い発熱部を有しながら、電力供給時の非通紙部に当たる抵抗R12とNTC発熱体711の抵抗値の合成抵抗値、抵抗R12とNTC発熱体712の抵抗値の合成抵抗値は下がり温度上昇を抑えことができる。また、抵抗R12とNTC発熱体721の抵抗値の合成抵抗値、抵抗R12とNTC発熱体722の抵抗値の合成抵抗値は下がり温度上昇を抑えことができる。   Therefore, in this case, the combined resistance of the resistance value of the resistor R12 and the resistance value of the NTC heating element 711 corresponding to the non-sheet passing portion at the time of power supply, while having a wide heating part from the upstream to the downstream by the heating resistors 121 and 122. The combined resistance value of the value, resistance R12 and the resistance value of the NTC heating element 712 can be lowered and temperature rise can be suppressed. Further, the combined resistance value of the resistance values of the resistor R12 and the NTC heating element 721 and the combined resistance value of the resistance values of the resistor R12 and the NTC heating element 722 can be lowered and temperature rise can be suppressed.

上記したこの発明の板状ヒータの第3および第4の実施形態のNTC発熱体は、発熱抵抗体の一部と重ね合わせた状態でセラミック基板上に形成したが、発熱抵抗体上に形成しても構わない。この場合は、セラミック基板の短手方向の幅が狭いものでも形成が可能となる。   The NTC heating elements of the third and fourth embodiments of the plate heater of the present invention described above are formed on the ceramic substrate in a state of being overlapped with a part of the heating resistor, but are formed on the heating resistor. It doesn't matter. In this case, it is possible to form a ceramic substrate having a narrow width in the short direction.

図12、図13は、この発明の加熱装置に関する一実施形態について説明するための、図12は、上記した板状ヒータ100をヒータ支持体101に取り付けたヒータユニットを加熱装置200に実装した場合の模式図、図13は図12の断面図である。図中100については、図1、図2で説明した板状ヒータであり、同一部分には同一の符号を付してその説明は省略する。   FIGS. 12 and 13 are diagrams for explaining an embodiment relating to the heating device of the present invention. FIG. 12 shows a case where a heater unit in which the plate heater 100 described above is attached to the heater support 101 is mounted on the heating device 200. FIG. 13 is a cross-sectional view of FIG. Reference numeral 100 in the figure denotes the plate heater described with reference to FIGS. 1 and 2, and the same portions are denoted by the same reference numerals and the description thereof is omitted.

図5において、201は、ポリイミド樹脂等の耐熱性のフィルムをロール状にして循環自在に巻装された円筒状の定着フィルムである。この定着フィルム201は、支持体202の底部に板状ヒータ100を固着させ、板状ヒータ100にコネクタ203,204をリード線205,206介して電力を供給させ、加熱した板状ヒータ100に形成されたオーバーコート層19に圧接加熱しながら移動させる。   In FIG. 5, reference numeral 201 denotes a cylindrical fixing film in which a heat-resistant film such as polyimide resin is rolled and wound in a circulating manner. The fixing film 201 is formed on the heated plate heater 100 by fixing the plate heater 100 to the bottom of the support 202 and supplying power to the plate heater 100 via connectors 203 and 204 via lead wires 205 and 206. The overcoat layer 19 is moved while being pressed and heated.

207は、その表面に耐熱性弾性材料である、たとえばシリコーンゴム層208が嵌合してある加圧ローラであり、加圧ローラ207の回転軸209と対向して板状ヒータ100が、定着フィルム201と並置して図示しない基台内に取り付けられている。加圧ローラ207は、定着フィルム201と相互に圧接させることで、発熱抵抗体12と加圧ローラ207とで形成される図6に示すようなニップ部Nを形成するとともに、作動時にはそれぞれを矢印d1,d2の方向に回転させる。   Reference numeral 207 denotes a pressure roller which is a heat-resistant elastic material, for example, a silicone rubber layer 208 fitted on the surface thereof, and the plate heater 100 is opposed to the rotating shaft 209 of the pressure roller 207 to fix the fixing film. In parallel with 201, it is mounted in a base (not shown). The pressure roller 207 is brought into pressure contact with the fixing film 201 to form a nip portion N formed by the heating resistor 12 and the pressure roller 207 as shown in FIG. Rotate in the direction of d1 and d2.

このとき、オーバーコート層19上に配置された定着フィルム201面とシリコーンゴム層208との間で、トナー像To1がまず定着フィルム201を介して板状ヒータ100により加熱溶融され、少なくともその表面部は融点を大きく上回り完全に軟化して溶融する。この後、加圧ローラ207の用紙排出側では複写用紙Pが板状ヒータ100から離れ、トナー像To2は自然放熱して再び冷却固化し、定着フィルム201も複写用紙Pから離反される。   At this time, between the surface of the fixing film 201 disposed on the overcoat layer 19 and the silicone rubber layer 208, the toner image To1 is first heated and melted by the plate heater 100 through the fixing film 201, and at least the surface portion thereof. Greatly exceeds the melting point and completely softens and melts. Thereafter, on the paper discharge side of the pressure roller 207, the copy sheet P is separated from the plate heater 100, the toner image To2 is naturally radiated and cooled and solidified again, and the fixing film 201 is also separated from the copy sheet P.

この実施形態では、非通紙部分のPTC発熱体とNTC発熱体を用いた並列パターンが配置された板状ヒータを用いたことで、温度立ち上がりの高速化をさせることができるとともに、非通紙部昇温の抑制に寄与することができる。   In this embodiment, by using a plate heater in which a parallel pattern using a PTC heating element and an NTC heating element in a non-sheet passing portion is used, the temperature rise can be speeded up, and the non-sheet passing is not performed. This can contribute to the suppression of the temperature rise.

次に、図14を参照して、この発明の加熱装置200が搭載された複写機を例に挙げた場合のこの発明の画像形成装置について説明する。図中、加熱装置200の部分は、図13、図14で説明したもの同じであり、同一部分には同一の符号を付し、その説明は省略する。   Next, with reference to FIG. 14, an image forming apparatus of the present invention will be described in the case where a copying machine equipped with the heating device 200 of the present invention is taken as an example. In the figure, the part of the heating device 200 is the same as that described with reference to FIGS. 13 and 14, and the same reference numerals are given to the same parts, and the description thereof is omitted.

図14において、301は複写機300の筐体、302は筐体301の上面に設けられたガラス等の透明部材からなる原稿載置台で、矢印Z方向に往復動作させて原稿P1を走査する。   In FIG. 14, reference numeral 301 denotes a casing of the copying machine 300, and 302 an original placement table made of a transparent member such as glass provided on the upper surface of the casing 301, which scans the original P <b> 1 by reciprocating in the arrow Z direction.

筐体301内の上方向には光照射用のランプと反射鏡とからなる照明装置302が設けられており、この照明装置302により照射された原稿P1からの反射光源が短焦点小径結像素子アレイ303によって感光ドラム304上スリット露光される。なお、この感光ドラム304は矢印方向に回転する。   An illuminating device 302 including a light irradiation lamp and a reflecting mirror is provided in the upper direction in the housing 301, and a reflected light source from the document P1 irradiated by the illuminating device 302 is a short focus small diameter imaging element. A slit exposure is performed on the photosensitive drum 304 by the array 303. The photosensitive drum 304 rotates in the direction of the arrow.

また、305は帯電器で、例えば酸化亜鉛感光層あるいは有機半導体感光層が被覆された感光ドラム304上に一様に帯電を行う。この帯電器305により帯電された感光ドラム304には、結像素子アレイ303によって画像露光が行われた静電画像が形成される。この静電画像は、現像器306による加熱で軟化溶融する樹脂等からなるトナーを用いて顕像化される。   Reference numeral 305 denotes a charger that uniformly charges, for example, a photosensitive drum 304 coated with a zinc oxide photosensitive layer or an organic semiconductor photosensitive layer. An electrostatic image subjected to image exposure by the imaging element array 303 is formed on the photosensitive drum 304 charged by the charger 305. This electrostatic image is visualized using toner made of a resin that softens and melts when heated by the developing device 306.

カセット307内に収納されている複写用紙Pは、給送ローラ308と感光ドラム304上の画像と同期するタイミングをとって上下方向で圧接して回転される対の搬送ローラ309によって、感光ドラム304上に送り込まれる。そして、転写放電器310によって感光ドラム304上に形成されているトナー像は複写用紙P上に転写される。   The copy paper P stored in the cassette 307 is rotated by a pair of conveying rollers 309 that are rotated in pressure contact with each other in synchronization with the feeding roller 308 and the image on the photosensitive drum 304. Sent to the top. The toner image formed on the photosensitive drum 304 is transferred onto the copy paper P by the transfer discharger 310.

その後、感光ドラム304上から離れた用紙Pは、搬送ガイド311によって加熱装置200に導かれて加熱定着処理された後に、トレイ312内に排出される。なお、トナー像が転写された後、感光ドラム304上の残留トナーはクリーナ313を用いて除去される。   Thereafter, the paper P that is separated from the photosensitive drum 304 is guided to the heating device 200 by the conveyance guide 311 and subjected to a heat fixing process, and then is discharged into the tray 312. After the toner image is transferred, residual toner on the photosensitive drum 304 is removed using a cleaner 313.

加熱装置200は、複写用紙Pの移動方向と直交する方向に、この複写機300が複写できる最大判用紙の幅(長さ)に合わせた有効長、すなわち最大判用紙の幅(長さ)より長い発熱抵抗体を備えた板状ヒータ100が、加圧ローラ207の外周に取り付けられたシリコーンゴム層208に加圧された状態で設けられている。   The heating device 200 has an effective length according to the width (length) of the maximum size paper that can be copied by the copying machine 300 in the direction orthogonal to the moving direction of the copy paper P, that is, the width (length) of the maximum size paper. A plate heater 100 having a long heating resistor is provided in a state where it is pressed against a silicone rubber layer 208 attached to the outer periphery of the pressure roller 207.

そして、板状ヒータ100と加圧ローラ207との間を送られる用紙P上の未定着トナー像T1は、発熱抵抗体12の熱を受け溶融して複写用紙P面上に文字、英数字、記号、図面等の複写像を現出させる。   The unfixed toner image T1 on the paper P sent between the plate heater 100 and the pressure roller 207 is melted by receiving heat from the heating resistor 12, and is printed with letters, alphanumeric characters, Copy images such as symbols and drawings are displayed.

この実施形態では、温度立ち上がりの高速化を実現できるとともに、非通紙部での昇温を抑制する板状ヒータを備えた加熱装置を用いたことより、立ち上がりが早く十分な熱対策を図ることが可能となる。   In this embodiment, it is possible to increase the speed of temperature rise and to use a heating device equipped with a plate heater that suppresses the temperature rise in the non-sheet passing portion, so that sufficient heat countermeasures can be taken for quick rise. Is possible.

板状ヒータの用途としては、複写機等の画像形成装置の定着用に用いたが、これに限らず、家庭用の電気製品、業務用や実験用の精密機器や化学反応用の機器等に装着して加熱や保温の熱源としても使用できる。   The plate heater is used for fixing image forming apparatuses such as copying machines, but is not limited to this. For household appliances, precision equipment for business use and experiments, equipment for chemical reaction, etc. It can be used as a heat source for heating and heat retention.

この発明の板状ヒータに関する第1の実施形態について説明するための、(a)は正面図、(b)は(a)の背面図。BRIEF DESCRIPTION OF THE DRAWINGS (a) is a front view for demonstrating 1st Embodiment regarding the plate-shaped heater of this invention, (b) is a rear view of (a). 図1のI−I’断面図。I-I 'sectional drawing of FIG. 図1に電源を追加した状態の板状ヒータの等価回路図。FIG. 2 is an equivalent circuit diagram of the plate heater in a state where a power source is added to FIG. 1. 図1の温度変化に伴い変化する通紙部と非通紙部の抵抗値について説明するための説明図。FIG. 3 is an explanatory diagram for explaining resistance values of a paper passing portion and a non-paper passing portion that change with a temperature change in FIG. 1. 板状ヒータの長手方向の発熱量分布について説明するための説明図。Explanatory drawing for demonstrating the emitted-heat amount distribution of the longitudinal direction of a plate-shaped heater. この発明の板状ヒータに関する第2の実施形態について説明するための一部を切欠して示す構成図。The block diagram which cuts and shows a part for describing 2nd Embodiment regarding the plate-shaped heater of this invention. この発明の板状ヒータに関する第3の実施形態について説明するための、(a)は正面図、(b)は(a)の背面図。(A) is a front view for demonstrating 3rd Embodiment regarding the plate-shaped heater of this invention, (b) is a rear view of (a). 図7のII−II’断面図。II-II 'sectional drawing of FIG. 図7の動作について説明するための説明図。Explanatory drawing for demonstrating the operation | movement of FIG. この発明の板状ヒータに関する第4の実施形態について説明するための、(a)は正面図、(b)は(a)の背面図。(A) is a front view for demonstrating 4th Embodiment regarding the plate-shaped heater of this invention, (b) is a rear view of (a). 図10のIII−III’断面図。III-III 'sectional drawing of FIG. この発明の加熱装置に関する一実施形態について説明するための斜視図。The perspective view for demonstrating one Embodiment regarding the heating apparatus of this invention. 図11の断面図。Sectional drawing of FIG. この発明の画像形成装置に関する一実施形態について説明するための説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram for explaining an embodiment of an image forming apparatus according to the present invention;

符号の説明Explanation of symbols

11 セラミック基板
12,121,122 発熱抵抗体
13,14 導体層
15,16,151,161 電極
15a,15b,16a,16b 導体パターン
156 接続導体
171,172 PTC発熱体
181,182,71,72,711,712,721,722 NTC発熱体
19 オーバーコート層
X 通紙部
Y 非通紙部
201 定着フィルム
202 支持体
207 加圧ローラ
208 シリコーンゴム層
209 回転軸
100 板状ヒータ
200 加熱装置
300 複写機
11 Ceramic substrate 12, 121, 122 Heating resistor 13, 14 Conductor layer 15, 16, 151, 161 Electrode 15a, 15b, 16a, 16b Conductor pattern 156 Connection conductor 171, 172 PTC heating element 181, 182, 71, 72 711, 712, 721, 722 NTC heating element 19 Overcoat layer X Paper passing part Y Non-paper passing part 201 Fixing film 202 Supporting body 207 Pressure roller 208 Silicone rubber layer 209 Rotating shaft 100 Plate heater 200 Heating device 300 Copying machine

Claims (10)

耐熱・絶縁性材料で形成された長尺平板状のセラミック基板と、
前記セラミック基板上の長手方向に厚膜形成された発熱抵抗体と、
前記発熱抵抗体の両端に電力を供給する第1および第2の電極と、
前記第1および第2の電極の前記セラミック基板の長手方向の両側の沿って前記発熱抵抗体に非接触状態でそれぞれ延出した第1および第2の導体パターンと、
前記第1の導体パターンと前記発熱抵抗体を接続したPTC発熱体と、
前記第2の導体パターンと前記発熱抵抗体を接続したNTC発熱体と、
少なくとも前記電極を残して前記セラミック基板上に施したオーバーコート層と、を具備したことを特徴とする板状ヒータ。
A long flat ceramic substrate made of heat-resistant and insulating material;
A heating resistor formed thick in the longitudinal direction on the ceramic substrate;
First and second electrodes for supplying power to both ends of the heating resistor;
First and second conductor patterns extending in non-contact with the heating resistor along both longitudinal sides of the ceramic substrate of the first and second electrodes;
A PTC heating element connecting the first conductor pattern and the heating resistor;
An NTC heating element connecting the second conductor pattern and the heating resistor;
An overcoat layer provided on the ceramic substrate leaving at least the electrodes, and a plate heater.
前記PTC発熱体の抵抗温度係数PTCと前記NTC発熱体の抵抗温度係数NTCの絶対値を、PTC<NTCの関係としたことを特徴とする請求項1記載の板状ヒータ。   2. The plate heater according to claim 1, wherein the absolute value of the temperature coefficient of resistance PTC of the PTC heating element and the temperature coefficient of resistance NTC of the NTC heating element has a relationship of PTC <NTC. 前記PTC<NTCの関係とし、前記NTC発熱体のアスペクト比を、前記PTC発熱体と等しくしたことを特徴とする請求項2記載の板状ヒータ。   3. The plate heater according to claim 2, wherein the relationship of PTC <NTC is satisfied, and the aspect ratio of the NTC heating element is equal to that of the PTC heating element. 前記発熱抵抗体と前記PTC発熱体および前記NTC発熱体は、前記発熱抵抗体に積層される導電層を介して接続したことを特徴とする請求項1〜3記載の板状ヒータ。   4. The plate heater according to claim 1, wherein the heating resistor, the PTC heating element, and the NTC heating element are connected via a conductive layer laminated on the heating resistor. 耐熱・絶縁性材料で形成された長尺平板状のセラミック基板と、
前記セラミック基板上の長手方向に厚膜形成された発熱抵抗体と、
前記発熱抵抗体の両端に電力を供給する第1および第2の電極と、
前記発熱抵抗体の両端部の幅方向にそれぞれ接続したNTC発熱体と、
少なくとも前記電極を残して前記セラミック基板上に施したオーバーコート層と、を具備したことを特徴とする板状ヒータ。
A long flat ceramic substrate made of heat-resistant and insulating material;
A heating resistor formed thick in the longitudinal direction on the ceramic substrate;
First and second electrodes for supplying power to both ends of the heating resistor;
NTC heating elements respectively connected in the width direction of both ends of the heating resistor;
An overcoat layer provided on the ceramic substrate leaving at least the electrodes, and a plate heater.
前記NTC発熱体は、前記発熱抵抗体両端部に重畳させた状態で形成したことを特徴とする請求項5記載の板状ヒータ。   6. The plate heater according to claim 5, wherein the NTC heating element is formed in a state of being superimposed on both ends of the heating resistor. 耐熱・絶縁性材料で形成された長尺平板状のセラミック基板と、
前記セラミック基板上の長手方向に非接触状態で平行に厚膜形成された第1および第2の発熱抵抗体と、
前記第1および第2の発熱抵抗体の一端に接続された電力を供給する第1および第2の電極と、
前記第1および第2の発熱抵抗体の他端を共通接続し、該第1および第2の発熱抵抗体を直列接続する接続導体と、
前記第1および第2の発熱抵抗体の両端部の幅方向にそれぞれ接続したNTC発熱体と、
少なくとも前記電極を残して前記セラミック基板上に施したオーバーコート層と、を具備したことを特徴とする板状ヒータ。
A long flat ceramic substrate made of heat-resistant and insulating material;
First and second heating resistors formed in a non-contact state and in a thick film in parallel in the longitudinal direction on the ceramic substrate;
First and second electrodes for supplying power connected to one ends of the first and second heating resistors;
A connecting conductor for commonly connecting the other ends of the first and second heating resistors, and connecting the first and second heating resistors in series;
NTC heating elements respectively connected in the width direction of both end portions of the first and second heating resistors;
An overcoat layer provided on the ceramic substrate leaving at least the electrodes, and a plate heater.
前記NTC発熱体は、前記発熱抵抗体両端部に重畳させた状態で形成したことを特徴とする請求7記載の板状ヒータ。   8. The plate heater according to claim 7, wherein the NTC heating element is formed in a state of being superimposed on both ends of the heating resistor. 加熱ローラと、
前記加熱ローラに対向配置された発熱抵抗体が圧接された請求項1〜8のいずれかに記載の板状ヒータと、
前記板状ヒータと前記加圧ローラとの間を移動可能に設けられた定着フィルムとを具備したことを特徴とする加熱装置。
A heating roller;
The plate-shaped heater according to any one of claims 1 to 8, wherein a heating resistor disposed to face the heating roller is pressed against the heating roller,
A heating apparatus comprising: a fixing film movably provided between the plate heater and the pressure roller.
媒体に形成された静電潜像にトナーを付着し、該トナーを用紙に転写させて所定の画像を形成する形成手段と、
画像が形成された用紙を加圧ローラにより定着フィルムを介して前記板状ヒータに圧接しながら通過させ、前記トナーを定着するようにした請求項9記載の加熱装置とを具備したことを特徴とする画像形成装置。
Forming means for attaching a toner to an electrostatic latent image formed on a medium and transferring the toner to a sheet to form a predetermined image;
10. A heating apparatus according to claim 9, wherein the toner is fixed by passing a sheet on which an image is formed while being pressed against the plate heater through a fixing film by a pressure roller. Image forming apparatus.
JP2008178843A 2008-07-09 2008-07-09 Plate-like heater, heating device and image forming apparatus Pending JP2010019965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008178843A JP2010019965A (en) 2008-07-09 2008-07-09 Plate-like heater, heating device and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008178843A JP2010019965A (en) 2008-07-09 2008-07-09 Plate-like heater, heating device and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2010019965A true JP2010019965A (en) 2010-01-28

Family

ID=41704954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008178843A Pending JP2010019965A (en) 2008-07-09 2008-07-09 Plate-like heater, heating device and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2010019965A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101820099B1 (en) * 2013-01-18 2018-01-18 에스프린팅솔루션 주식회사 resistive heat generating material, heating member and fusing device adopting the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283254A (en) * 1993-03-26 1994-10-07 Canon Inc Heating apparatus
JP2007232819A (en) * 2006-02-28 2007-09-13 Harison Toshiba Lighting Corp Fixing heater, heating device and image forming apparatus
JP2008107761A (en) * 2006-09-25 2008-05-08 Harison Toshiba Lighting Corp Heater, heating apparatus and image forming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283254A (en) * 1993-03-26 1994-10-07 Canon Inc Heating apparatus
JP2007232819A (en) * 2006-02-28 2007-09-13 Harison Toshiba Lighting Corp Fixing heater, heating device and image forming apparatus
JP2008107761A (en) * 2006-09-25 2008-05-08 Harison Toshiba Lighting Corp Heater, heating apparatus and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101820099B1 (en) * 2013-01-18 2018-01-18 에스프린팅솔루션 주식회사 resistive heat generating material, heating member and fusing device adopting the same

Similar Documents

Publication Publication Date Title
JP2007232819A (en) Fixing heater, heating device and image forming apparatus
JP5447933B2 (en) Ceramic heater, heating device, image forming device
JP2008166096A (en) Flat plate heater, fixing device, and image processing device
JP5042525B2 (en) Heater, heating device, image forming apparatus
JP6167880B2 (en) Heater and image forming apparatus
JP6398487B2 (en) Heater and image forming apparatus
JP2006252897A (en) Heater, heating device, and image-forming device
JP2007121955A (en) Fixing heater, heating device, and image forming apparatus
JP2011091006A (en) Ceramic heater, heating device, and image forming device
JP2005339840A (en) Heater, heating device and image forming device
JP2009224209A (en) Plate heater, heater unit, heating device, and image forming device
JP5320549B2 (en) Ceramic heater, heating device, image forming device
JP2010129444A (en) Plate heater, heating device, image forming device
JP2011096464A (en) Ceramic heater, heating device, and image forming apparatus
JP2009059539A (en) Planar heater, heating device, and image-forming device
JP2010019965A (en) Plate-like heater, heating device and image forming apparatus
JP2008040097A (en) Heating heater, heating device, image forming device
JP5447932B2 (en) Ceramic heater, heating device, image forming device
JP5381255B2 (en) Ceramic heater, heating device, image forming device
JP5010365B2 (en) Plate heater, heating device, image forming device
JP2007157456A (en) Ceramic heater, heating device, image forming device
JP4948898B2 (en) Heater, heating device, image forming apparatus
JP2009199862A (en) Ceramic heater, heating device, and image formation device
JP2010054567A (en) Ceramic heater, heating unit and image forming apparatus
JP2009224210A (en) Plate heater, heating device, and image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312