JP2010017822A - Cutting method and apparatus - Google Patents

Cutting method and apparatus Download PDF

Info

Publication number
JP2010017822A
JP2010017822A JP2008182065A JP2008182065A JP2010017822A JP 2010017822 A JP2010017822 A JP 2010017822A JP 2008182065 A JP2008182065 A JP 2008182065A JP 2008182065 A JP2008182065 A JP 2008182065A JP 2010017822 A JP2010017822 A JP 2010017822A
Authority
JP
Japan
Prior art keywords
cutting
rotary blade
sliders
cut
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008182065A
Other languages
Japanese (ja)
Inventor
Hishu O
飛舟 王
Hiroyoshi Kato
浩良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakata Manufacturing Co Ltd
Original Assignee
Nakata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakata Manufacturing Co Ltd filed Critical Nakata Manufacturing Co Ltd
Priority to JP2008182065A priority Critical patent/JP2010017822A/en
Publication of JP2010017822A publication Critical patent/JP2010017822A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sawing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting method different from any of the conventional cutting methods, cutting round pipes and square pipes each having a square or rectangular cross section as well in the wide ranges of their sizes and thickness. <P>SOLUTION: The cutting method constitutes a toggle joint with a pair of sliders moving on a linear track in a same direction and two link arms and provides a rotating blade at a pivot portion of the links, allowing the position of the rotating blade viewed from the center of a workpiece to be freely controlled and moved only by controlling the positions of the pair of sliders moving toward and away from each other. The cutting method cuts the workpiece with such rotating blades disposed on two opposite sides of the workpiece, or in four positions surrounding the workpiece. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、2〜4枚の回転刃で管等を切断する切断方法とその装置に係り、丸管を初め断面正方形又は長方形の角管を広範囲のサイズ、肉厚にわたり切断できかつ切断速度を速くあるいは回転刃の寿命を長くできる切断方法とその装置に関する。   The present invention relates to a cutting method and apparatus for cutting a tube or the like with 2 to 4 rotary blades, and can cut a square tube having a square or rectangular cross section, including a round tube, over a wide range of sizes and thicknesses and a cutting speed. The present invention relates to a cutting method and apparatus capable of quickly or extending the life of a rotary blade.

丸管や角管の切断方法には、大径の回転刃やバンドソーを管のある直径方向に移動させて切断する方法(R方法という)がある。また、丸管の切断方法には、自転する回転刃を管回りに倣い公転させて切断する方法があり、1枚〜3枚の回転刃をドーナツ状の面板に装着して面板を管中心に回転させる方法(θ方法という)がある。   As a method of cutting a round tube or a square tube, there is a method of cutting by moving a large-diameter rotary blade or a band saw in the diameter direction of the tube (referred to as R method). In addition, there is a method of cutting a round tube by rotating and rotating a rotating blade around the tube and cutting it. One to three rotating blades are attached to a donut-shaped face plate, and the face plate is centered on the tube. There is a method of rotating (referred to as θ method).

さらに、回転刃を管外周に沿ってに倣い公転させて切断する方法として、上記の回転面板を使用することなく、2枚又は4枚の回転刃をそれぞれx-yの2軸方向に位置制御することで、複数の回転刃で周方向を分割して結果として管回りの倣いを実施して切断する方法(x-y方法という)がある。前記θ方法では、口径違いや角管を切断することができないが、上記x-y方法ではこれが可能となる。(特許文献1、2、3)   Furthermore, as a method of cutting by rotating and revolving along the outer periphery of the tube, the position of each of the two or four rotary blades is controlled in the xy biaxial direction without using the rotary face plate. Thus, there is a method of dividing the circumferential direction with a plurality of rotary blades and performing copying around the tube as a result (referred to as xy method). The θ method cannot cut the caliber or cut the square tube, but the xy method can do this. (Patent Documents 1, 2, and 3)

同様に口径違いや角管を切断する方法として、回転刃を揺動アームの先端に装着して当該アームの基端を直線移動可能にした揺動カッターを、管中心に対称に配置し、各アームの揺動角度と直線移動位置の制御によって切断する方法(x-θ方法という)が提案されている。(特許文献4)   Similarly, as a method of cutting the caliber or the square tube, a swinging cutter having a rotary blade attached to the tip of the swinging arm and allowing the base end of the arm to move linearly is arranged symmetrically around the center of the tube. A method of cutting by controlling the arm swing angle and the linear movement position (referred to as x-θ method) has been proposed. (Patent Document 4)

面板を回転させる前記θ方法では、口径違いや角管を切断することができないため、回転刃を揺動アームの先端に装着して当該アームの基端を面板に軸支装着した揺動カッターを複数個面板に装着し、各アームの揺動角度と面板の公転角度で回転刃の位置制御を行い切断する方法(θ-θ方法という)が実用化されている。(特許文献5、6)   In the θ method for rotating the face plate, the diameter difference and the square tube cannot be cut. Therefore, a swing cutter having a rotary blade attached to the tip of the swing arm and a base end of the arm pivotally attached to the face plate is used. A method (called a θ-θ method) in which a plurality of face plates are mounted, and the position of the rotary blade is controlled by the swing angle of each arm and the revolution angle of the face plate has been put into practical use. (Patent Documents 5 and 6)

同様に口径違いや角管を切断する方法として、管の直径方向に対向配置した回転刃を直径方向に位置調整可能にしてドーナツ状の面板に装着して面板を管中心に回転させる方法(R-θ方法という)がある。(特許文献7)
特開昭59-81015号 特許第2802139号 特許第2568953号 特許第2576206号 特公昭62-27926号 特許第2939409号 特開平09-47914号
Similarly, as a method of cutting the diameter tube or the square tube, a rotating blade arranged opposite to the diametric direction of the tube can be adjusted in the diametrical direction and attached to a donut-shaped face plate, and the face plate is rotated about the tube center (R -θ method). (Patent Document 7)
JP 59-81015 Patent No. 2802139 Patent No. 2568953 Patent No. 2576206 JP-B 62-27926 Patent No. 2939409 JP 09-47914 A

従来のx-y方法では、回転刃をx-yの2軸方向に位置制御可能にするために2軸方向に自在に構成したテーブル型やポスト型の可動ユニットを用意し、各ユニットにはx-yの2軸方向の駆動源が必須であり、このユニットを固定面板や門型スタンドに2〜4機を装着する等、切断装置として大型化する懸念があった。   The conventional xy method provides a table-type or post-type movable unit that can be freely configured in two axes in order to control the position of the rotary blade in the two axes of xy. Each unit has two xy axes. Directional drive source is essential, and there was a concern that this unit would be increased in size as a cutting device, such as mounting 2 to 4 units on a fixed face plate or a portal stand.

また、θ-θ方法やR-θ方法では、複数の回転刃ユニットを装着した面板を回転させるための機械機構が必要であり、装置が大型化するとともにかなりの重量物を回転させてこれを制御する必要があり、さらには、かかる切断装置を被切断材と同じ速度で移動させる走行切断機の構成とする場合は、重量物の面板の回転とこれらを載せた走行台車の駆動に多くの動力を要する問題があった。   In addition, the θ-θ method and the R-θ method require a mechanical mechanism for rotating a face plate equipped with a plurality of rotary blade units, which increases the size of the device and rotates a heavy object. In addition, in the case of a traveling cutting machine configured to move such a cutting device at the same speed as the material to be cut, a lot of rotation of the face plate of heavy objects and driving of the traveling carriage on which these are mounted There was a problem that required power.

この発明は、従来のいずれの方式の切断方法とも異なる切断方式で、丸管を初め断面正方形又は長方形の角管を広範囲のサイズ、肉厚にわたり切断できる方法であり、さらに装置の小型軽量化を可能にする切断方法とその装置の提供を目的としている。   The present invention is a cutting method different from any of the conventional methods, and can cut a round tube or a square tube having a square or rectangular cross section over a wide range of sizes and thicknesses, and further reduce the size and weight of the apparatus. It is an object of the present invention to provide a cutting method and a device that can be used.

発明者らは、回転刃を装着した面板を被切断材を中心に回転させる構成を採用しない新規な切断方法と装置を目的に種々検討した結果、同方向の直線軌道を移動する一対のスライダーと2本のリンクアームとでトッグルジョイントを構成してそのリンクの枢軸部に回転刃を設けると、近接離反する一対のスライダーの位置を制御するだけで被切断材の中心から見た回転刃の位置を自由に制御移動でき、かかる回転刃を少なくとも被切断材の対向する二方に配置して用いることにより、丸管を初め断面正方形又は長方形の角管を広範囲のサイズ、肉厚にわたり切断できることを知見し、この発明を完成した。   As a result of various studies for the purpose of a novel cutting method and apparatus that does not employ a configuration in which a face plate equipped with a rotary blade is rotated around a material to be cut, a pair of sliders that move in a straight track in the same direction When a toggle blade is configured with two link arms and a rotary blade is provided at the pivot of the link, the position of the rotary blade as seen from the center of the workpiece can be controlled simply by controlling the position of a pair of sliders that are close to and away from each other. It is possible to cut and control a round tube as well as a square tube with a square or rectangular cross section over a wide range of sizes and thicknesses by using such rotary blades arranged in at least two opposite sides of the material to be cut. As a result, the present invention was completed.

すなわち、この発明は、同方向の直線軌道を移動する一対のスライダーにそれぞれ軸支された2本のアームの他方端を枢軸支して形成するトッグルジョイントの枢軸側に自転可能な回転刃を設けた回転刃ユニットを、少なくとも被切断材の周囲の対向する二方に配置し、各回転刃ユニットの一対のスライダーの位置を制御して被切断材の外周形状に倣いながら切削を行うことを特徴とする切断方法(x-y-θ方法という)である。   That is, the present invention provides a rotary blade capable of rotating on the pivot side of a toggle joint formed by pivotally supporting the other ends of two arms each pivotally supported by a pair of sliders moving on a linear track in the same direction. The rotating blade units are arranged in at least two opposite sides around the material to be cut, and the positions of the pair of sliders of each rotating blade unit are controlled to perform cutting while following the outer peripheral shape of the material to be cut. Is a cutting method (referred to as xy-θ method).

また、この発明は、所要長さの直線軌道とこれに平行する他直線軌道を移動して相互に近接離反可能な一対のスライダーと、前記スライダーに各々軸支された所要長さのアームとで両アームの先端側を枢軸支して形成するトッグルジョイントと、当該枢軸部に自転可能に配置する回転刃とを有する回転刃ユニットが、被切断材の周囲の対向する二方又は該周囲四方に配置され、被切断材の外周を2枚又は4枚刃で切断する際に各回転刃が衝突しないよう各スライダーの直線軌道上の移動とその位置調整を行う駆動制御手段を有するとを特徴とする切断装置である。   The present invention also includes a pair of sliders that can move close to and away from each other by moving along a linear track having a required length and another linear track parallel to the linear track, and arms having a required length that are pivotally supported by the sliders. A rotary blade unit having a toggle joint formed by pivotally supporting the distal end sides of both arms and a rotary blade arranged to rotate on the pivot portion is provided on two opposite sides or four sides around the workpiece. It is arranged and has drive control means for moving each slider on a linear track and adjusting its position so that each rotary blade does not collide when cutting the outer periphery of the workpiece with two or four blades It is a cutting device.

さらに、発明者らは、上記構成の切断方法とその装置において、
直線軌道がボールねじ軸であり、スライダーがボールねじに螺合するナット部材である構成、
複数の直線軌道のボールねじ軸がその端部でべベルギアを介して他のボールねじ軸と連結され、これらに歯合する1つの電動機にて、複数のボールねじに螺合するスライダーが同期移動可能にした駆動制御手段を有する構成、
2組又は4組の回転刃ユニットを走行台車に載置し、走行台車を所要進行方向に移動する被切断材に同期移動可能に駆動制御手段を有する走行切断機の構成、
を併せて提案する。
Furthermore, the inventors in the cutting method and apparatus of the above configuration,
A configuration in which the linear track is a ball screw shaft and the slider is a nut member screwed into the ball screw;
The ball screw shafts of multiple linear tracks are connected to other ball screw shafts via bevel gears at their ends, and the slider that engages with multiple ball screws is moved synchronously with one motor that meshes with them. A configuration having drive control means enabled;
A configuration of a traveling cutting machine having two or four sets of rotary blade units mounted on a traveling carriage and having a drive control means that can be moved synchronously with a workpiece to be moved in the required traveling direction of the traveling carriage,
We propose together.

この発明は、同方向の直線軌道を移動する一対のスライダーにそれぞれ軸支された2本のアームの他方端を枢軸支して形成するトッグルジョイントを採用することで、従来のθ-θ方法やR-θ方法と比較すると、複数の回転刃ユニットを装着した面板自体を被切断材を中心に回転させる機構が不要であり、また、従来のx-y方法と比較しても回転刃をx-yの2軸方向に位置制御可能にするための機械機構が簡単となり、装置の小型化が可能となり、特に走行切断機の構成を採用する際には比較的軽量な切断装置を走行させることが可能である。   The present invention employs a toggle joint formed by pivotally supporting the other ends of two arms that are pivotally supported by a pair of sliders that move along a straight track in the same direction, thereby providing a conventional θ-θ method, Compared to the R-θ method, there is no need for a mechanism that rotates the face plate itself with multiple rotary blade units around the material to be cut. A mechanical mechanism for enabling position control in the axial direction is simplified, and the apparatus can be downsized. In particular, when a traveling cutting machine configuration is adopted, a relatively lightweight cutting apparatus can be driven. .

この発明は、回転刃ユニットに一対のスライダーを有するトッグルジョイントを採用するため、直線軌道にボールねじ軸を用いると、一つのモーターで複数のスライダーの位置制御を行うことが可能であり、駆動制御手段がシンプルであるとともに、回転刃外径やアーム長さを適宜選定すると、2組の回転刃ユニットでも丸管と断面正方形の角管を広範囲のサイズ、肉厚にわたり切断でき、4組の回転刃ユニットを用いることで、装置の小型化を図りながら、断面矩形の角管を広範囲のサイズ、肉厚にわたり切断できる。   Since this invention employs a toggle joint having a pair of sliders in the rotary blade unit, it is possible to control the position of a plurality of sliders with a single motor when a ball screw shaft is used in a linear track. With simple means and appropriate selection of the outer diameter and arm length of the rotary blade, a round tube and a square tube with a square cross-section can be cut over a wide range of sizes and thicknesses even with two sets of rotary blade units. By using the blade unit, a rectangular tube having a rectangular cross section can be cut over a wide range of sizes and thicknesses while downsizing the apparatus.

図1に示す模式図は、丸管の被切断材Pを初め断面正方形の被切断材Ps又は矩形の被切断材Prを切断する回転刃の駆動制御を行う装置の構成例を被切断材の軸方向に見た説明図である。
ここでは、被切断材P,Ps,Prに対して四方から同時に切断できる4枚刃の構成を説明する。4枚の回転刃のいずれもが、同方向の直線軌道を移動する一対のスライダーと2本のリンクアームとでトッグルジョイントを構成し、そのリンク機構の枢軸部に回転刃を設けた構成からなる。
The schematic diagram shown in FIG. 1 is an example of the configuration of an apparatus that performs drive control of a rotary blade that cuts a workpiece Ps having a square cross section or a material to be cut Pr having a square section, as well as a workpiece P of a round tube. It is explanatory drawing seen in the axial direction.
Here, a description will be given of the configuration of a four-blade capable of simultaneously cutting from four directions on the workpieces P, Ps, and Pr. Each of the four rotary blades consists of a pair of sliders that move along a linear track in the same direction and two link arms to form a toggle joint, and a rotary blade is provided at the pivot portion of the link mechanism. .

詳述すると、直線軌道として図の左側の垂直方向に配置したボール軸Sa1,Sb1に螺合するナット部材を垂直方向に移動する一対のスライダーA1,B1とし、スライダーA1,B1にそれぞれリンクアーム8,9を軸支接続し、リンクアーム8,9の他方端同士を軸支接続して枢軸部となし、ここに回転刃V1を回転自在に配置してある。
被切断材Pを挟む反対側の図右側にも垂直方向にボール軸Sa2,Sb2が配置され、同様にこれに螺合する一対のスライダーA2,B2にもリンクアーム8,9が軸支されてトッグルジョイントを構成し、枢軸部に回転刃V2を設けてある。
More specifically, the nut members screwed into the ball shafts Sa1 and Sb1 arranged in the vertical direction on the left side of the figure as a straight track are a pair of sliders A1 and B1 that move in the vertical direction. , 9 are pivotally connected, and the other ends of the link arms 8, 9 are pivotally connected to form a pivotal portion, and the rotary blade V1 is rotatably arranged here.
Ball axes Sa2 and Sb2 are also arranged in the vertical direction on the right side of the opposite side of the material to be cut P, and similarly, link arms 8 and 9 are also pivotally supported by a pair of sliders A2 and B2 that are screwed into the same. A toggle joint is formed and a rotary blade V2 is provided at the pivot.

また、水平方向の直線軌道として図の上側に配置したボール軸Sa3,Sb3に螺合するナット部材を水平方向に移動する一対のスライダーA3,B3とし、スライダーA3,B3にそれぞれリンクアーム8,9を軸支接続し、リンクアーム8,9の他方端同士を軸支接続して枢軸部となし、ここに回転刃H3を回転自在に配置してある。
被切断材Pを挟む反対側の図下側にも水平方向にボール軸Sa4,Sb4が配置され、同様にこれに螺合する一対のスライダーA4,B4にもリンクアーム8,9が軸支されてトッグルジョイントを構成し、枢軸部に回転刃H4を設けてある。
Further, a nut member screwed to the ball shafts Sa3 and Sb3 arranged on the upper side of the figure as a horizontal linear track is a pair of sliders A3 and B3 that move in the horizontal direction, and link arms 8 and 9 are respectively attached to the sliders A3 and B3. And the other ends of the link arms 8 and 9 are pivotally connected to form a pivotal portion, and the rotary blade H3 is rotatably arranged here.
The ball shafts Sa4 and Sb4 are also arranged in the horizontal direction on the lower side of the opposite side across the material P to be cut, and similarly, the link arms 8 and 9 are also pivotally supported by a pair of sliders A4 and B4 that are screwed into the same. The toggle joint is configured, and the rotary blade H4 is provided at the pivot portion.

スライダーA1,B1、A2,B2は、それぞれの対が垂直方向の同じ方向に移動することも相互に近接離反することも可能であり、また、2対のスライダーA1,B1,A2,B2は、各回転刃V1,V2がここでは時計回り又は反時計回りに移動するように、図で短く表示してあるリンクアーム8と接続するスライダーA1,A2同士と、図で長く表示してあるリンクアーム9と接続するスライダーB1,B2同士とが同期して逆方向に移動できるように構成してある。   The sliders A1, B1, A2, and B2 can move in the same direction in the vertical direction, and can move close to and away from each other, and the two pairs of sliders A1, B1, A2, and B2 The sliders A1 and A2 connected to the link arm 8 shown short in the figure and the link arm shown long in the figure so that each rotary blade V1, V2 moves clockwise or counterclockwise here The sliders B1 and B2 connected to 9 can be moved in the opposite direction in synchronization with each other.

すなわち、対向位置にある垂直方向のボール軸Sa1,Sa2同士は水平方向のボール軸Sa3を介してべベルギア7,7で噛み合い、対向位置にある他の垂直方向のボール軸Sb1,Sb2同士は水平方向の連結軸5を介してべベルギア7,7で噛み合い、異なる位置のボール軸Sa1,Sa2、Sb1,Sb2同士は相互に回転方向が逆になるよう、同じ位置のボール軸Sa1,Sb1、Sa2,Sb2同士は回転方向が同じとなる構成してあり、また、全てのボール軸のねじピッチが同じとなっているので、一対のスライダーA1,B1、A2,B2同士をそれぞれ同じ方向に移動させると、回転刃V1,V2は被切断材Pの中心から見ると同じ回転方向に同じ距離だけ直線移動することになる。   That is, the vertical ball axes Sa1 and Sa2 at the opposite positions are engaged with each other by the bevel gears 7 and 7 via the horizontal ball axis Sa3, and the other vertical ball axes Sb1 and Sb2 at the opposite positions are horizontal. The ball shafts Sa1, Sb1, Sa2 at the same position are meshed with the bevel gears 7, 7 via the connecting shaft 5 in the direction, and the ball axes Sa1, Sa2, Sb1, Sb2 at different positions are opposite to each other. , Sb2 are configured to have the same rotational direction, and since the thread pitch of all the ball shafts is the same, the pair of sliders A1, B1, A2, B2 are moved in the same direction, respectively. Then, the rotary blades V1 and V2 move linearly by the same distance in the same rotation direction when viewed from the center of the workpiece P.

又、スライダーA3,B3、A4,B4は、それぞれの対が水平方向の同じ方向に移動することも相互に近接離反することも可能であり、また、2対のスライダーA3,B3,A4,B4は、各回転刃V3,V4がここでは時計回り又は反時計回りに移動するように、図で短く表示してあるリンクアーム8と接続するスライダーA3,A4同士と、図で長く表示してあるリンクアーム9と接続するスライダーB3,B4同士とが同期して逆方向に移動できるように構成してある。   The sliders A3, B3, A4, and B4 can move in the same horizontal direction, or can move close to and away from each other, and two pairs of sliders A3, B3, A4, and B4. Shows the sliders A3 and A4 that are connected to the link arm 8 that is short in the figure so that the rotary blades V3 and V4 move clockwise or counterclockwise here, and are long in the figure The sliders B3 and B4 connected to the link arm 9 are configured to be able to move in the reverse direction in synchronization with each other.

すなわち、対向位置にある水平方向のボール軸Sa3,Sa4同士は垂直方向のボール軸Sa2を介してべベルギア7,7で噛み合い、対向位置にある他の水平方向のボール軸Sb3,Sb4同士は垂直方向の連結軸6を介してべベルギア7,7で噛み合い、異なる位置のボール軸Sa3,Sa4、Sb3,Sb4同士は相互に回転方向が逆になるよう、同じ位置のボール軸Sa3,Sb3、Sa4,Sb4同士は回転方向が同じとなる構成してあり、また、全てのボール軸のねじピッチが同じとなっているので、一対のスライダーA3,B3、A4,B4同士をそれぞれ同じ方向に移動させると、回転刃V3,V4は被切断材Pの中心から見ると同じ回転方向に同じ距離だけ水平移動することになる。   That is, the horizontal ball axes Sa3 and Sa4 at the opposite positions are engaged with each other by the bevel gears 7 and 7 via the vertical ball axis Sa2, and the other horizontal ball axes Sb3 and Sb4 at the opposite positions are vertical. Meshed with bevel gears 7 and 7 via the connecting shaft 6 in the direction, and the ball shafts Sa3, Sa4, Sa4 at the same position so that the ball shafts Sa3, Sa4, Sb3, Sb4 at different positions are opposite to each other. , Sb4 are configured to have the same rotation direction, and the thread pitch of all the ball shafts is the same, so the pair of sliders A3, B3, A4, B4 are moved in the same direction, respectively. Then, the rotary blades V3 and V4 move horizontally by the same distance in the same rotation direction when viewed from the center of the workpiece P.

従って、垂直と水平が組み合わされた正方形配置の4本のボール軸Sa1,Sa3,Sa2,Sa4と、連結軸5を介して連結された垂直方向のボール軸Sb1,Sb2と、連結軸6を介して連結された水平方向のボール軸Sb3,Sb4とは、3組としてそれぞれ個別に接続する1機のモーターMによって上述の各組のスライダーが同期駆動される構成である。   Therefore, four ball shafts Sa1, Sa3, Sa2, Sa4 in a square arrangement in which vertical and horizontal are combined, vertical ball shafts Sb1, Sb2 connected through a connecting shaft 5, and a connecting shaft 6 are used. The horizontal ball shafts Sb3 and Sb4 connected in this manner are configured such that the above-described sliders are driven synchronously by a single motor M that is individually connected as three sets.

なお、図1では理解を容易にするためにボール軸等を並列表記するが、図の左側の垂直方向のボール軸Sa1,Sb1と連結軸6は同じ垂直面上に相互に隣接して配置されるため、図1の上側の水平方向ボール軸Sa3,Sb3と連結軸5も同様に同じ水平面上に相互に隣接して配置され、他の垂直及び水平方向のボール軸Sa2,Sb2、Sa4,Sb4も同様配置される。
図2〜図6は、上記のボール軸等の並列表記を行わずに破断して図示するか、想像線で表記している。
In FIG. 1, the ball axes and the like are shown in parallel for easy understanding, but the vertical ball axes Sa1 and Sb1 and the connecting shaft 6 on the left side of the figure are arranged adjacent to each other on the same vertical plane. Therefore, the upper horizontal ball axes Sa3, Sb3 and the connecting shaft 5 in FIG. 1 are also arranged adjacent to each other on the same horizontal plane, and the other vertical and horizontal ball axes Sa2, Sb2, Sa4, Sb4 Are similarly arranged.
FIGS. 2 to 6 are shown by rupturing without using the parallel notation of the above-described ball axis or the like, or by imaginary lines.

図2と図3は断面正方形の角管である被切断材Psを切断する際に、垂直方向に移動する一対の回転刃V1,V2の作動状態を示す説明図であり、図2は被切断材Prが大径角管、図3は小径角管の場合を示す。
一対の回転刃V1,V2を支持する各リンクアーム8,9対は、同等長さを有するように設定しているため、各回転刃V1,V2の被切断材Psに対する位置制御は、リンクアーム8,9の開き角度で設定できる。
2 and 3 are explanatory views showing the operating state of the pair of rotary blades V1 and V2 that move in the vertical direction when cutting the workpiece Ps, which is a square tube having a square cross section, and FIG. The material Pr is a large diameter square tube, and FIG. 3 shows a small diameter square tube.
Since each link arm 8 and 9 pair supporting the pair of rotary blades V1 and V2 is set to have the same length, the position control of the rotary blades V1 and V2 with respect to the workpiece Ps is performed by the link arm. It can be set with an opening angle of 8,9.

すなわち、一対のスライダーA1,B1、A2,B2同士の間隔を一定に調整し、ボール軸Sa1,Sb1対を左回転、ボール軸Sa2,Sb2対を右回転させてこれを同じ方向に移動させると、回転刃V1は上昇する方向に、回転刃V2は下降方向にそれぞれ直線移動する。
図2と図3に図示のごとく、回転刃V1,V2の刃先位置を被切断材Psの寸法とその肉厚を考慮した位置に設定し、自転する回転刃V1,V2を上記のように直線移動させることで、被切断材Psの垂直方向の二辺を同時に切断することができる。
That is, if the distance between the pair of sliders A1, B1, A2, B2 is adjusted to be constant, the ball shaft Sa1, Sb1 pair is rotated counterclockwise, the ball shaft Sa2, Sb2 pair is rotated clockwise and moved in the same direction. The rotary blade V1 moves linearly in the upward direction and the rotary blade V2 moves in the downward direction.
As shown in Fig. 2 and Fig. 3, the cutting edge position of rotary blades V1 and V2 is set to a position that takes into account the dimensions and thickness of the workpiece Ps, and the rotating rotary blades V1 and V2 are straight as described above. By moving, two vertical sides of the material to be cut Ps can be cut simultaneously.

図1に示す水平方向のスライダーA3,B3、A4,B4にリンクアーム8,9を介して支持される回転刃H3,H4は、前述のごとくトッグルジョイント機構もスライダー機構も同等であるため、上記した回転刃V1,V2と同様の作動によって、それぞれ水平方向に、例えば回転刃H3は図の右方向へ、回転刃H4は図の左方向へ直線移動して、被切断材Psの水平方向の二辺を同時に切断することができる。
従って、4枚の回転刃V1,V2,H3,H4は、断面正方形の角管の各辺部を同時に切断することができ、2枚刃で2辺分ずつ切断するものと比較すれば、切断速度が向上し、また刃の寿命も永くなる。
The rotary blades H3 and H4 supported by the horizontal sliders A3, B3, A4, and B4 via the link arms 8 and 9 shown in FIG. 1 have the same toggle joint mechanism and slider mechanism as described above. By the same operation as the rotary blades V1 and V2, the rotary blade H3 moves linearly in the horizontal direction, for example, the rotary blade H3 moves in the right direction in the figure, and the rotary blade H4 moves in the horizontal direction in the figure in the horizontal direction. Two sides can be cut simultaneously.
Therefore, the four rotary blades V1, V2, H3, and H4 can cut each side of a square tube with a square cross section at the same time, cutting compared to cutting two sides with two blades. Speed is increased and blade life is extended.

図4は、断面長方形の角管である被切断材Prを切断する際に、垂直方向に移動する回転刃V1と、水平方向に移動する回転刃H3の作動状態を示す説明図であり、被切断材Prが大径角管の場合を示す。
被切断材Prが断面長方形であるが、回転刃V1,H3の作動は直線移動であり、上述の断面正方形の角管を切断する場合と同じである。すなわち、被切断材Prの水平方向の辺が最も長いので、水平方向に移動する回転刃H3の軌跡長さが基準となり、垂直方向に移動する回転刃V1も同じ軌跡長さを移動する。
FIG. 4 is an explanatory diagram showing the operating state of the rotary blade V1 that moves in the vertical direction and the rotary blade H3 that moves in the horizontal direction when cutting the workpiece Pr that is a rectangular tube having a rectangular cross section. The case where the cutting material Pr is a large-diameter square tube is shown.
The material Pr to be cut has a rectangular cross section, but the operation of the rotary blades V1 and H3 is linear movement, which is the same as that in the case of cutting a square tube having a square cross section. That is, since the horizontal side of the workpiece Pr is the longest, the trajectory length of the rotary blade H3 that moves in the horizontal direction is the reference, and the rotary blade V1 that moves in the vertical direction also moves the same trajectory length.

図4に示すごとく、垂直方向の回転刃V1は最下降位置をスタート位置として最初は被切断材Prとの接触はなく上昇移動し、やがて所要位置で被切断材Prと接触、切断が開始され、水平方向の回転刃H3は最も左寄りの位置をスタート位置として直ちに被切断材Prと接触、切断しながら右方向へ移動して切断を完了する。   As shown in FIG. 4, the rotary blade V1 in the vertical direction starts with the lowest position as the start position and moves up without contact with the material Pr at first, and eventually comes into contact with the material Pr and starts cutting at the required position. The horizontal rotary blade H3 immediately moves in the right direction while making contact with and cutting the workpiece Pr with the position closest to the left as the start position to complete the cutting.

垂直方向のボール軸Sa1は水平方向のボール軸Sa3を介してべベルギア7で噛み合うため、ボール軸Sa1とボール軸Sa3同士は逆回転するが、これに螺合しているスライダーA1,A3同士は同期して被切断材Prの中心から見ると同じ回転方向に同じ距離だけ直線移動するように構成されており、図示しないスライダーA3,A4も同様であり、他のスライダーB1,B3、B2,B4も同様に被切断材Prの中心から見ると同じ回転方向に同じ距離だけ直線移動することで、先の断面正方形の被切断材Psを切断する場合と全く同様に断面長方形の被切断材Prを切断することができる。   Since the vertical ball axis Sa1 meshes with the bevel gear 7 via the horizontal ball axis Sa3, the ball axis Sa1 and the ball axis Sa3 rotate in reverse, but the sliders A1 and A3 screwed into this are Synchronously, when viewed from the center of the material to be cut Pr, it is configured to move linearly by the same distance in the same rotational direction, and the same applies to the sliders A3, A4 (not shown), and the other sliders B1, B3, B2, B4 Similarly, when viewed from the center of the material to be cut Pr, by linearly moving the same distance in the same rotational direction, the material Pr having a rectangular cross section is exactly the same as the case of cutting the material Ps having a square cross section. Can be cut.

図5は丸管の被切断材Pを切断する場合を示すが、図2と図3の断面正方形の被切断材Psを切断する場合と同じように主に垂直方向に移動する一対の回転刃V1,V2の作動状態を示す説明図である。
ここで一対の回転刃V1,V2は、丸管の被切断材Pの外形を倣うために、被切断材Pの中心から見て円弧移動しなければならないため、リンクアーム8,9の開き角度は一定でなく、一対のスライダーA1,B1、A2,B2はそれぞれ同方向に直線移動しながら同時にスライダーA1,B1、A2,B2同士の間隔を所定距離となるように変化させ必要があり、異なるグループのスライダーが螺合するボール軸Sa1,Sa2とボール軸Sb1,Sb2は個別に回転制御される。
FIG. 5 shows a case in which the material to be cut P of a round tube is cut, but a pair of rotary blades that move mainly in the vertical direction as in the case of cutting the material to be cut Ps having a square cross section in FIGS. It is explanatory drawing which shows the operating state of V1, V2.
Here, since the pair of rotary blades V1 and V2 must move in an arc as viewed from the center of the workpiece P in order to follow the outer shape of the workpiece P of the round tube, the opening angle of the link arms 8 and 9 The pair of sliders A1, B1, A2, and B2 must be changed so that the distance between the sliders A1, B1, A2, and B2 becomes a predetermined distance while moving linearly in the same direction. The ball shafts Sa1 and Sa2 and the ball shafts Sb1 and Sb2 with which the sliders of the group are screwed are individually controlled to rotate.

図5において、図示しない主に水平方向に移動する一対の回転刃H3,H4も、上述の主に垂直方向に移動する一対の回転刃V1,V2と同様の動作を実行することで、4枚の回転刃で丸管の外周の1/4ずつ同時に切断することができる。   In FIG. 5, a pair of rotary blades H3, H4 that move mainly in the horizontal direction (not shown) are also operated in the same manner as the pair of rotary blades V1, V2 that move mainly in the vertical direction described above. Can be cut simultaneously by 1/4 of the outer circumference of the round tube.

なお、図5では大口径の丸管を4枚の回転刃で切断することを想定して丸管の被切断材Pの外周の1/4部分を倣うようにリンクアーム8,9の長さと回転刃の外径並びにボール軸長さを選定して図示するが、ここで回転刃の外径の選定とともにリンクアーム8,9の長さ並びにボール軸長さを適宜選定すると、一対の回転刃V1,V2は、丸管の被切断材Pの外周の1/2部分を倣うことが可能であり、一対の回転刃V1,V2のみで種々外径の丸管の被切断材Pはもちろん、断面正方形の角管である被切断材Psも広範囲の外径寸法のものを切断できることが明らかである。   In addition, in FIG. 5, assuming that the large diameter round tube is cut with four rotary blades, the length of the link arms 8 and 9 is set so as to follow the 1/4 portion of the outer periphery of the workpiece P of the round tube. The outer diameter of the rotary blade and the ball shaft length are selected and shown in the figure. When the outer diameter of the rotary blade and the length of the link arms 8 and 9 and the ball shaft length are appropriately selected, a pair of rotary blades is selected. V1 and V2 can follow the half part of the outer periphery of the round tube workpiece P. Of course, only a pair of rotary blades V1 and V2 can be used for cutting materials P of various outer diameter round tubes, It is clear that the material to be cut Ps, which is a square tube having a square cross section, can cut a wide range of outer diameter dimensions.

この発明において、直線軌道を移動する一対のスライダーの構成は、実施例に用いた直線軌道がボールねじ軸であり、スライダーがボールねじに螺合するナット部材を用いる構成のほか、単なるねじ機構、ギア機構、ジャッキ機構、公知の直動機構とレールを用いる構成等、直線移動できる機構を適宜採用できる。   In this invention, the configuration of the pair of sliders that move along the linear track includes a configuration in which the linear track used in the embodiment is a ball screw shaft, and the slider uses a nut member that is screwed onto the ball screw. A mechanism capable of linear movement, such as a gear mechanism, a jack mechanism, or a configuration using a known linear motion mechanism and rail, can be appropriately employed.

この発明において、実施例では、複数の直線軌道のボールねじ軸がその端部でべベルギアを介して他のボールねじ軸と連結され、これらに歯合する1つの電動機にて、複数のボールねじに螺合するスライダーが同期移動可能にした駆動制御手段を採用し、モーターの数を減らしてスライダーの位置制御を容易にすることができる。
スライダーの送り機構に公知の直動機構とレールを用いる場合等、各スライダーの位置制御を個別に行うことも可能である。
In this embodiment, in the embodiment, the ball screw shafts of a plurality of linear tracks are connected to other ball screw shafts via bevel gears at their ends, and a plurality of ball screws are engaged with one electric motor that meshes with them. By adopting a drive control means in which the slider screwed to can be moved synchronously, the number of motors can be reduced to facilitate the position control of the slider.
It is also possible to individually control the position of each slider, such as when a known linear motion mechanism and rail are used as the slider feed mechanism.

この発明において、走行切断機の構成を採用する場合、走行台車やその走行駆動方法には、公知のいずれの構成も採用できる。   In the present invention, when the configuration of the traveling cutting machine is employed, any known configuration can be employed for the traveling carriage and the traveling drive method thereof.

実施例1
図6に示す切断機は、走行切断機の構成である。装置本体は、ボール軸を軸支して収納する4つのフレーム11,12,13,14により正方形枠体の構造からなる。水平の下側フレーム14内には車輪15が内蔵され、床に固定されるレール21,21上を走行可能であり、垂直のフレーム11とこの下側フレーム14の外側には駆動ユニット20が配置され、駆動されるピニオンギアがレール21の側面に設けたラックに歯合して装置本体が走行する。
Example 1
The cutting machine shown in FIG. 6 has a traveling cutting machine configuration. The main body of the apparatus has a square frame structure with four frames 11, 12, 13, and 14 that support and store the ball shaft. Wheels 15 are built in the horizontal lower frame 14 and can run on rails 21 and 21 fixed to the floor, and the drive unit 20 is disposed outside the vertical frame 11 and the lower frame 14. Then, the driven pinion gear meshes with the rack provided on the side surface of the rail 21, and the apparatus main body travels.

ボール軸の駆動モーターMは、図1で説明した構成、スライダーのAグループは4本のボール軸を1台のモーターで駆動し、スライダーのBは上下の2軸をを1台のモーター、残りをさらに1台のモーターで駆動する構成を採用するため、上側フレーム12上に3台のモーターMを載置してある。なお、矩形管を切断しない構成では、スライダーのBグループも4本のボール軸を1台のモーターで駆動することが可能で、2台の駆動モーターでよい。   The drive motor M for the ball axis is configured as described in FIG. 1. The A group of sliders drives four ball axes with one motor, and the slider B for the upper and lower two axes with one motor, the rest 3 motors M are mounted on the upper frame 12 in order to employ a configuration in which the motor is further driven by one motor. In the configuration in which the rectangular tube is not cut, the B group of the slider can also drive the four ball shafts with one motor, and may use two drive motors.

リンクアーム18はギア列を内蔵する構成であり、スライダー11Aの軸支部の図で裏面側に駆動モーターが設けられて、内蔵ギア列を介してアーム先端の回転歯V1を回転させることができる。   The link arm 18 is configured to incorporate a gear train, and a drive motor is provided on the back side of the shaft support portion of the slider 11A so that the rotation tooth V1 at the tip of the arm can be rotated via the built-in gear train.

実施例2
上述した図6の切断装置において、回転刃の外径を320mmとし、回転刃軸芯位置の水平方向のストロークが350mmとなるようにリンクアーム18,19長さとスライダーの軸支位置を設定した。
Example 2
In the cutting device of FIG. 6 described above, the outer diameter of the rotary blade was set to 320 mm, and the lengths of the link arms 18 and 19 and the shaft support position of the slider were set so that the horizontal stroke of the rotary blade axis position was 350 mm.

切断可能なサイズは、板厚みが5.0mm〜25.4mm、丸管は216.3mm〜660.4mm、正方形角管は175mm×175mm〜500mm×500mm、矩形管は200mm×150mm〜600mm×300mmであった。
また、刃物周速度は200m/min〜500m/minを得ることができた。
Cutable sizes were 5.0 mm to 25.4 mm in plate thickness, 216.3 mm to 660.4 mm for round tubes, 175 mm × 175 mm to 500 mm × 500 mm for square tubes, and 200 mm × 150 mm to 600 mm × 300 mm for rectangular tubes.
Moreover, the blade peripheral speed was able to obtain 200m / min-500m / min.

この発明による切断方法及び装置は、固定切断も走行切断も可能であり、実施例で明らかなように、丸管を初め断面正方形又は長方形の角管を広範囲のサイズ、肉厚にわたり切断でき、切断速度を速くあるいは回転刃の寿命を長くできる。   The cutting method and apparatus according to the present invention can perform both fixed cutting and traveling cutting. As is apparent from the embodiments, it is possible to cut a round tube and a square tube having a square or rectangular cross section over a wide range of sizes and thicknesses. The speed can be increased or the life of the rotary blade can be extended.

図1は、丸管、断面正方形又は矩形の被切断材を切断する回転刃の駆動制御を行う装置の構成例を被切断材の軸方向に見た模式説明図である。FIG. 1 is a schematic explanatory view of a configuration example of a device that performs drive control of a rotary blade that cuts a round tube, a square or a rectangular cross-section of the workpiece, as viewed in the axial direction of the workpiece. 図2は、断面正方形の大径角管を切断する際に、垂直方向に移動する一対の回転刃の作動状態を示す説明図である。FIG. 2 is an explanatory diagram showing an operating state of a pair of rotary blades that move in the vertical direction when a large-diameter tube having a square cross section is cut. 図3は、断面正方形の小径角管を切断する際に、垂直方向に移動する一対の回転刃の作動状態を示す説明図である。FIG. 3 is an explanatory diagram showing an operating state of a pair of rotary blades that move in the vertical direction when a small-diameter tube having a square cross section is cut. 図4は、断面長方形の角管である被切断材を切断する際に、垂直方向に移動する回転刃と水平方向に移動する回転刃の作動状態を示す説明図である。FIG. 4 is an explanatory view showing the operating state of the rotary blade that moves in the vertical direction and the rotary blade that moves in the horizontal direction when cutting the workpiece that is a rectangular tube having a rectangular cross section. 図5は、大径丸管を切断する際に、垂直方向に移動する一対の回転刃の作動状態を示す説明図である。FIG. 5 is an explanatory diagram showing an operating state of a pair of rotary blades that move in the vertical direction when cutting a large-diameter round tube. 図6は、走行切断機の構成例を被切断材の軸方向に見た説明図である。FIG. 6 is an explanatory view of a configuration example of the traveling cutting machine as viewed in the axial direction of the workpiece.

符号の説明Explanation of symbols

P,Ps,Pr 被切断材
M モーター
V1,V2 回転刃(垂直方向)
H3,H4 回転刃(水平方向)
A1,B1,A2,B2 スライダー(垂直方向)
A3,B3,A4,B4 スライダー(水平方向)
Sa1,Sb1,Sa2,Sb2 ボール軸(垂直方向)
Sa3,Sb3,Sa4,Sb4 ボール軸(水平方向)
5 連結軸(垂直方向)
6 連結軸(水平方向)
7 べベルギア
8,9 リンクアーム
11,12,13,14 フレーム
11A,11B,12A,12B,13A,13B,14A,14B スライダー
15 車輪
18,19 リンクアーム
20 駆動ユニット
21 レール
P, Ps, Pr material to be cut
M motor
V1, V2 Rotary blade (vertical direction)
H3, H4 rotary blade (horizontal direction)
A1, B1, A2, B2 slider (vertical direction)
A3, B3, A4, B4 slider (horizontal direction)
Sa1, Sb1, Sa2, Sb2 Ball axis (vertical direction)
Sa3, Sb3, Sa4, Sb4 Ball axis (horizontal direction)
5 Connecting shaft (vertical direction)
6 Connecting shaft (horizontal direction)
7 Bevel gear
8,9 Link arm
11,12,13,14 frame
11A, 11B, 12A, 12B, 13A, 13B, 14A, 14B Slider
15 wheels
18,19 Link arm
20 Drive unit
21 rails

Claims (5)

同方向の直線軌道を移動する一対のスライダーにそれぞれ軸支された2本のアームの他方端を枢軸支して形成するトッグルジョイントの枢軸側に自転可能な回転刃を設けた回転刃ユニットを、少なくとも被切断材の周囲の対向する二方に配置し、各回転刃ユニットの一対のスライダーの直線軌道上の位置を制御して被切断材の外周形状に倣いながら切削を行う切断方法。 A rotary blade unit provided with a rotary blade capable of rotating on the pivot side of a toggle joint formed by pivotally supporting the other end of two arms pivotally supported by a pair of sliders that move in a linear track in the same direction, A cutting method in which cutting is performed while following the outer peripheral shape of a material to be cut by disposing at least two opposite sides around the material to be cut and controlling the positions of a pair of sliders of each rotary blade unit on a linear track. 所要長さの直線軌道とこれに平行する他直線軌道を移動して相互に近接離反可能な一対のスライダーと、前記スライダーに各々軸支された所要長さのアームとで両アームの先端側を枢軸支して形成するトッグルジョイントと、当該枢軸部に自転可能に配置する回転刃とを有する回転刃ユニットが、被切断材の周囲の対向する二方又は該周囲四方に配置され、被切断材の外周を2枚又は4枚刃で切断する際に各回転刃が衝突しないよう各スライダーの直線軌道上の移動とその位置調整を行う駆動制御手段を有する切断装置。 A pair of sliders that can move close to and away from each other by moving along a linear track of the required length and another linear track parallel to this, and the arms of the required length that are pivotally supported by the sliders, A rotary blade unit having a toggle joint that is pivotally supported and a rotary blade that is rotatably arranged on the pivot part is arranged on two opposite sides or around the circumference of the material to be cut. A cutting apparatus having drive control means for moving each slider on a linear track and adjusting its position so that the rotary blades do not collide with each other when the outer periphery of the blade is cut with two or four blades. 直線軌道がボールねじ軸であり、スライダーがボールねじに螺合するナット部材である請求項2に記載の切断装置。 3. The cutting device according to claim 2, wherein the linear track is a ball screw shaft, and the slider is a nut member screwed onto the ball screw. 複数の直線軌道のボールねじ軸がその端部でべベルギアを介して他のボールねじ軸と連結され、これらに歯合する1つの電動機にて、複数のボールねじに螺合するスライダーが同期移動可能にした駆動制御手段を有する請求項3に記載の切断装置。 The ball screw shafts of multiple linear tracks are connected to other ball screw shafts via bevel gears at their ends, and the slider that engages with multiple ball screws is moved synchronously with one motor that meshes with them. 4. The cutting apparatus according to claim 3, further comprising a drive control means that is enabled. 請求項2に記載の切断装置において、2組又は4組の回転刃ユニットを走行台車に載置し、走行台車を所要進行方向に移動する被切断材に同期移動可能に駆動制御手段を有する走行式の切断装置。 3. The cutting apparatus according to claim 2, wherein two or four sets of rotary blade units are mounted on a traveling carriage, and the traveling carriage has a drive control means that can be moved synchronously to a workpiece that moves in the required traveling direction. Type cutting device.
JP2008182065A 2008-07-11 2008-07-11 Cutting method and apparatus Pending JP2010017822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008182065A JP2010017822A (en) 2008-07-11 2008-07-11 Cutting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008182065A JP2010017822A (en) 2008-07-11 2008-07-11 Cutting method and apparatus

Publications (1)

Publication Number Publication Date
JP2010017822A true JP2010017822A (en) 2010-01-28

Family

ID=41703198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008182065A Pending JP2010017822A (en) 2008-07-11 2008-07-11 Cutting method and apparatus

Country Status (1)

Country Link
JP (1) JP2010017822A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6072971B1 (en) * 2016-09-16 2017-02-01 株式会社中田製作所 Pipe cutting machine
CN106914660A (en) * 2017-04-24 2017-07-04 东莞市鹏翼自动化科技有限公司 A kind of automation device
WO2018052069A1 (en) * 2016-09-16 2018-03-22 株式会社中田製作所 Pipe cutting machine
JP2018047531A (en) * 2016-09-23 2018-03-29 ナカジマ鋼管株式会社 Steel pipe processing device
JPWO2018052069A1 (en) * 2017-01-20 2019-10-10 株式会社中田製作所 Pipe cutting machine
CN114986610A (en) * 2022-06-17 2022-09-02 中国农业大学 Portable matrix bag perforating device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109661287B (en) * 2016-09-16 2021-09-24 株式会社中田制作所 Pipe cutting machine
WO2018052069A1 (en) * 2016-09-16 2018-03-22 株式会社中田製作所 Pipe cutting machine
CN109661287A (en) * 2016-09-16 2019-04-19 株式会社中田制作所 Pipe cutting machine
US20190255629A1 (en) * 2016-09-16 2019-08-22 Nakata Manufacturing Co., Ltd. Pipe cutting machine
JP6072971B1 (en) * 2016-09-16 2017-02-01 株式会社中田製作所 Pipe cutting machine
US10744578B2 (en) * 2016-09-16 2020-08-18 Nakata Manufacturing Co., Ltd. Pipe cutting machine
JP7007696B2 (en) 2016-09-23 2022-01-25 ナカジマ鋼管株式会社 Steel pipe processing equipment
JP2018047531A (en) * 2016-09-23 2018-03-29 ナカジマ鋼管株式会社 Steel pipe processing device
JPWO2018052069A1 (en) * 2017-01-20 2019-10-10 株式会社中田製作所 Pipe cutting machine
JP6993341B2 (en) 2017-01-20 2022-01-13 株式会社中田製作所 Tube cutting machine
CN106914660A (en) * 2017-04-24 2017-07-04 东莞市鹏翼自动化科技有限公司 A kind of automation device
CN114986610A (en) * 2022-06-17 2022-09-02 中国农业大学 Portable matrix bag perforating device
CN114986610B (en) * 2022-06-17 2022-11-18 中国农业大学 Portable matrix bag perforating device

Similar Documents

Publication Publication Date Title
JP5774360B2 (en) Machine tool table unit
JP2010017822A (en) Cutting method and apparatus
KR101522789B1 (en) Spinning processing apparatus
CN201862863U (en) Machine tool layout of vertical four-axle numerical control gear shaving machine
JP2014004650A (en) Manufacturing apparatus and manufacturing method of crown gear
CN204639883U (en) A kind of stainless steel tube polissoir
US20130047803A1 (en) Cutting machine
CN104960365A (en) Ball head carving machine
CN105059886A (en) Turnover mechanism
CN103658843A (en) Multi-head pipe cutter
CN102653055B (en) Multifunctional cylindrical cutting and beveling machine
EP2647461A1 (en) Cutting apparatus with plate on which two torches are mounted
JP2021529100A (en) Spindle head that can realize fixed point rotation in multiple directions and three axes are symmetrically connected in parallel
JP2001252838A (en) Machine tool having turning main spindle head
JPH1128636A (en) Feed gear of industrial machine and industrial machine using feed gear
JP5798262B1 (en) Cutting device
CN203765081U (en) Multi-head pipe cutting machine
JP2006026835A (en) Five-axis working device
JP5430289B2 (en) Cutting device
JP2015182170A (en) Machine tool
JP6072971B1 (en) Pipe cutting machine
CN203526978U (en) Variable-angle bearing platform driven by two screws
JP5682966B2 (en) Wire forming machine
CN207190631U (en) A kind of engraving machine
JPH05294656A (en) Numerically controlled cutting machine for glass plate