JP2010012492A - Energization welding method and apparatus - Google Patents

Energization welding method and apparatus Download PDF

Info

Publication number
JP2010012492A
JP2010012492A JP2008174076A JP2008174076A JP2010012492A JP 2010012492 A JP2010012492 A JP 2010012492A JP 2008174076 A JP2008174076 A JP 2008174076A JP 2008174076 A JP2008174076 A JP 2008174076A JP 2010012492 A JP2010012492 A JP 2010012492A
Authority
JP
Japan
Prior art keywords
members
joining
energization
inert gas
contact surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008174076A
Other languages
Japanese (ja)
Inventor
Takeshi Tsukamoto
武志 塚本
Keiji Kawanaka
啓嗣 川中
Tadashi Kasuya
忠 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008174076A priority Critical patent/JP2010012492A/en
Publication of JP2010012492A publication Critical patent/JP2010012492A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress oxidation of members to be joined, by means of local inert gas shielding without using a chamber for performing atmospheric control in energization sintering welding. <P>SOLUTION: An energization welding apparatus is constituted so that energization is performed between members, in a state where the pressure is applied so as to cause the surface pressure on the contact surface by bringing a plurality of conductive members into contact with the contact surface, and the members are heated by resistive heat generation of the interface and inside the materials, so that the members are joined to each other, wherein an inert gas is blown off toward the surface of the members near the interface from nozzles arranged with prescribed spaces apart along the outer periphery of the interface of the members, without using a chamber for performing atmospheric control. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、主として難溶接性金属材料の同種材、及び異種材の通電接合方法及び装置に関するものである。   The present invention mainly relates to a method and an apparatus for energizing and joining the same kind of difficult-to-weld metal materials and different kinds of materials.

金属材料の接合方法の中で、接合する部材に加圧下で通電を行い、接合界面の電気抵抗、及び材料内部の電気抵抗によるジュール発熱を利用して材料を加熱し接合する電気抵抗溶接法は、接合部に集中して温度上昇や材料変形が生じるためエネルギー効率が良く、接合時間も短い。このような利点から自動車産業を始めとして幅広く適用されている。   Among metal material joining methods, electrical resistance welding is a method of heating and joining materials by applying current to members to be joined under pressure and using Joule heat generated by the electrical resistance of the joining interface and the electrical resistance inside the material. Since the temperature rises and the material is deformed by concentrating on the joint, energy efficiency is good and the joining time is short. Because of these advantages, it is widely applied in the automobile industry.

一方で電気抵抗溶接法は、大きな電流密度で急加熱を行う手法であることから、接合界面や部材と電極との接触状態によって加熱挙動が変化し、溶接品質にばらつきを生じることがある。特に接合する面積が大きくなると均質な溶接部を得ることが困難である。また接合部の材料を溶融させて結合する場合がほとんどであり、溶融,凝固に伴って割れや脆性化合物を生じるような溶接性の悪い材料では良好な品質を得ることができない。   On the other hand, since the electric resistance welding method is a method of performing rapid heating at a large current density, the heating behavior may change depending on the bonding interface or the contact state between the member and the electrode, and the welding quality may vary. In particular, it is difficult to obtain a uniform weld when the area to be joined increases. Further, in most cases, the material of the joint portion is melted and bonded, and good quality cannot be obtained with a material having poor weldability that generates cracks or brittle compounds with melting and solidification.

このような問題の解決手法として、例えば特許第3548509号に記載のあるような通電焼結接合法と呼ばれる接合法がある。この方法には、直流の連続通電を行うもの、もしくは直流のパルス通電を行うものがあり、連続通電焼結接合法,パルス通電焼結接合法,パルス通電接合法,放電プラズマ焼結接合法,放電プラズマ接合法などと称されている。図4はこの接合法の基本構成を示した説明図である。接合される部材11は接合面5を合わせて対向配置された電極1の間に挟まれ、加圧機構4により電極1を介して接合面5に圧力が付与された状態で、接合電源3から通電経路2を介して電極1間に連続電流、もしくはパルス電流、あるいはこれらを組み合わせた電流を流して接合界面を中心に抵抗発熱させる。このときの電流密度は電気抵抗溶接の十数分の一から数十分の一程度である。接合する材料の溶融温度以下の固相温度範囲で加熱を行い、材料の軟化,変形による接合界面の密着と固相拡散現象により接合がなされる。電気抵抗溶接に比べて接合部の加熱速度が小さく、温度上昇に伴って接合面の微小な変形が生じて界面の密着度が上がるため、接合面積が大きくても均質な接合部を得ることが容易であり、また接合する材料の溶融を伴わないため接合による変形が小さい。溶融接合では良好な品質が得にくい難溶接材料の接合にも適する。変形による接合界面の密着と固相拡散現象を利用した接合方法には、ホットプレス法や固相拡散接合法があるが、これらの手法は接合する部材全体を熱処理炉中で均一に加熱するため、接合に要する時間が数時間から数十時間と長く、部材全体が同様に変形するため接合変形が大きい。通電焼結接合法は局部加熱であることから、これらの方法よりも接合に要する時間を短くでき、接合変形も抑制することが可能である。   As a method for solving such a problem, for example, there is a joining method called an electric current sintering joining method as described in Japanese Patent No. 3548509. In this method, there is a method in which DC continuous energization or DC pulse energization is performed. Continuous energization sintering joining method, pulse energization sintering joining method, pulse energization joining method, discharge plasma sintering joining method, This is called a discharge plasma bonding method. FIG. 4 is an explanatory view showing the basic structure of this joining method. The member 11 to be joined is sandwiched between the electrodes 1 arranged to face each other with the joining surface 5 in a state where pressure is applied to the joining surface 5 via the electrode 1 by the pressurizing mechanism 4 from the joining power source 3. A continuous current, a pulse current, or a combination of these is passed between the electrodes 1 through the energization path 2 to generate resistance heat around the junction interface. The current density at this time is about one tenth to several tenths of that of electric resistance welding. Heating is performed in a solid phase temperature range equal to or lower than the melting temperature of the material to be bonded, and bonding is performed by adhesion of the bonding interface and solid phase diffusion phenomenon due to softening and deformation of the material. Compared with electrical resistance welding, the heating rate of the joint is small, and the joint surface is slightly deformed as the temperature rises, increasing the degree of adhesion at the interface, so a uniform joint can be obtained even if the joint area is large. It is easy and does not involve melting of the materials to be joined, so deformation due to joining is small. It is also suitable for joining difficult-to-weld materials where good quality is difficult to achieve with melt bonding. There are hot press method and solid phase diffusion bonding method as the bonding method using the adhesion of the bonding interface due to deformation and the solid phase diffusion phenomenon. These methods are used to heat the entire member to be bonded uniformly in a heat treatment furnace. The time required for joining is as long as several hours to several tens of hours, and the whole member is similarly deformed, so that joining deformation is large. Since the electric current sintering joining method is local heating, the time required for joining can be shortened and joining deformation can be suppressed as compared with these methods.

しかし、従来の通電焼結接合法においても、通電加熱中には接合する材料の酸化を防止するため雰囲気の制御が必要であり、雰囲気制御が可能なチャンバ内に電極を配置し、真空雰囲気または不活性ガス雰囲気下で接合を行う必要があった。バッチ式のプロセスとなること、接合前,接合後の雰囲気調整に時間を要することから、量産型の製品への適用が難しい欠点を有していた。   However, even in the conventional electric sintering joining method, it is necessary to control the atmosphere to prevent oxidation of the materials to be joined during the electric heating, and an electrode is arranged in a chamber capable of controlling the atmosphere, and a vacuum atmosphere or It was necessary to perform bonding in an inert gas atmosphere. Since it is a batch process and it takes time to adjust the atmosphere before and after bonding, it has a drawback that it is difficult to apply to mass-produced products.

特許第3548509号Japanese Patent No. 3548509

本発明が解決しようとする課題は、従来の通電焼結接合において、接合する部材の酸化を防止するため、雰囲気制御が可能なチャンバを必要とし、通電接合に要する時間以外に、雰囲気調整のための時間を要する点である。   The problem to be solved by the present invention is that a chamber capable of controlling the atmosphere is required in order to prevent oxidation of the members to be joined in the conventional electric sintering bonding, and for adjusting the atmosphere in addition to the time required for the electric welding. It takes a long time.

第一の発明は、複数の通電可能な部材を接触させて接触面に面圧が生じるように加圧を行った状態で、部材間に通電を行い、接触面及び材料内部の抵抗発熱によって前記部材を加熱し、部材同士を接合する通電接合装置において、雰囲気制御を行うためのチャンバを有さず、部材の接触面の外周に沿って所定の間隔を隔てて配置したノズルから、接触面近傍の部材表面に向かって不活性ガスを吹き付ける機構を有することを特徴とする。   In the first invention, a plurality of energizable members are brought into contact with each other in a state where pressure is applied so that surface pressure is generated on the contact surface. In a current-carrying apparatus that heats members and joins the members together, the nozzle does not have a chamber for atmosphere control, and is arranged in the vicinity of the contact surface from a nozzle arranged at a predetermined interval along the outer periphery of the contact surface of the member. It has the mechanism which sprays an inert gas toward the member surface of this.

第二の発明は、複数の通電可能な部材を接触させて接触面に面圧が生じるように加圧を行った状態で、部材間に通電を行い、接触面及び材料内部の抵抗発熱によって前記部材を加熱し、部材同士を接合する通電接合装置において、雰囲気制御を行うためのチャンバを有さず、部材の接触面の外周に沿って所定の間隔を隔てて配置したノズルから、接触面近傍の部材表面に向かって垂直に不活性ガスを吹き付ける機構を有することを特徴とする。   In a second invention, a plurality of members capable of energization are brought into contact with each other in a state where pressurization is performed so that a surface pressure is generated on the contact surface. In a current-carrying apparatus that heats members and joins the members together, the nozzle does not have a chamber for atmosphere control, and is arranged in the vicinity of the contact surface from a nozzle arranged at a predetermined interval along the outer periphery of the contact surface of the member. It has the mechanism which sprays an inert gas perpendicularly | vertically toward the member surface of this.

第三の発明は、複数の通電可能な部材を接触させて接触面に面圧が生じるように加圧を行った状態で、部材間に通電を行い、接触面及び材料内部の抵抗発熱によって前記部材を加熱し、部材同士を接合する通電接合装置において、雰囲気制御を行うためのチャンバを有さず、部材の接触面の外周に沿って所定の間隔を隔てて配置したノズルから、接触面近傍の部材表面に平行に不活性ガスを吹き付ける機構を有することを特徴とする通電接合装置。   According to a third aspect of the present invention, in a state where a plurality of energizable members are brought into contact with each other and pressure is applied so that surface pressure is generated on the contact surface, the members are energized, and the contact surface and the internal resistance of the material cause heat generation. In a current-carrying apparatus that heats members and joins the members together, the nozzle does not have a chamber for atmosphere control, and is arranged in the vicinity of the contact surface from a nozzle arranged at a predetermined interval along the outer periphery of the contact surface of the member. An energization joining apparatus having a mechanism for spraying an inert gas parallel to the surface of the member.

第四の発明は、第一から第三の発明において、部材の周囲に部材の外周面から所定の間隔を隔てて遮蔽物を配置し、前記のノズルから噴出された不活性ガスが部材と遮蔽物の間の空間に充填される構造を有することを特徴とする。   According to a fourth invention, in the first to third inventions, a shielding object is arranged around the member at a predetermined interval from the outer peripheral surface of the member, and the inert gas ejected from the nozzle is shielded from the member. It is characterized by having a structure filled in a space between objects.

第五の発明は、第一から第三の発明において、部材の周囲に部材の外周面から所定の間隔を隔てて前記ノズルと一体化した遮蔽物を配置し、該ノズルから噴出された不活性ガスが部材とノズルと一体化された遮蔽物の間の空間に充填される構造を有することを特徴とする。   According to a fifth invention, in the first to third inventions, a shield integrated with the nozzle is arranged around the member at a predetermined interval from the outer peripheral surface of the member, and the inert gas ejected from the nozzle is arranged. It has a structure in which gas is filled in a space between a member and a shield integrated with a nozzle.

第六の発明は、複数の通電可能な部材を接触させて接触面に面圧が生じるように加圧を行った状態で、部材間に通電を行い、接触面及び材料内部の抵抗発熱によって前記部材を加熱し、部材同士を接合する通電接合方法において、部材の接触面の外周に沿って所定の間隔を隔てて配置したノズルから、接触面近傍の部材表面に向かって不活性ガスを吹き付け、通電加熱された接触面近傍の部材表面を酸化から保護することを特徴とする。   In a sixth aspect of the present invention, a plurality of energizable members are brought into contact with each other in a state where pressure is applied so that surface pressure is generated on the contact surface. In the energization joining method in which the members are heated and the members are joined to each other, an inert gas is blown toward the surface of the member near the contact surface from a nozzle arranged at a predetermined interval along the outer periphery of the contact surface of the member, It is characterized in that the surface of the member in the vicinity of the contact surface that has been electrically heated is protected from oxidation.

第七の発明は、複数の通電可能な部材を接触させて接触面に面圧が生じるように加圧を行った状態で、部材間に通電を行い、接触面及び材料内部の抵抗発熱によって前記部材を加熱し、部材同士を接合する通電接合方法において、部材の接触面の外周に沿って所定の間隔を隔てて配置したノズルから、接触面近傍の部材表面に向かって垂直、もしくは部材表面に平行に不活性ガスを吹き付け、通電加熱された接触面近傍の部材表面を酸化から保護することを特徴とする。   In a seventh aspect of the present invention, energization is performed between the members in a state where a plurality of energizable members are brought into contact so as to generate a surface pressure on the contact surface, and the contact surface and the internal resistance of the material cause heat generation. In the energization joining method in which the members are heated and the members are joined to each other, from a nozzle arranged at a predetermined interval along the outer periphery of the contact surfaces of the members, the surface is perpendicular to the member surface near the contact surface or on the member surface An inert gas is sprayed in parallel to protect the surface of the member near the contact surface that is energized and heated from oxidation.

第八の発明は、第六から第七の発明において、部材の周囲に部材の外周面から所定の間隔を隔てて遮蔽物を配置し、前記のノズルから噴出された不活性ガスを部材と遮蔽物の間の空間に充填して、通電加熱された接触面近傍の部材表面を酸化から保護することを特徴とする。   According to an eighth invention, in the sixth to seventh inventions, a shielding object is arranged around the member at a predetermined interval from the outer peripheral surface of the member, and the inert gas ejected from the nozzle is shielded from the member. The space between the objects is filled, and the surface of the member near the contact surface that is energized and heated is protected from oxidation.

本発明の接合装置及び方法は第一に、雰囲気制御を行うためのチャンバを不要化し、装置構成を簡略化できる利点がある。   First, the bonding apparatus and method of the present invention have an advantage that a chamber for controlling the atmosphere is unnecessary and the apparatus configuration can be simplified.

本発明の接合装置及び方法は第二に、雰囲気調整に要する時間を不要化し、接合のタクトタイムを大幅に短縮できる利点がある。   Secondly, the bonding apparatus and method of the present invention have the advantage that the time required for adjusting the atmosphere is unnecessary and the tact time of bonding can be greatly shortened.

第一の形態として、大気による酸化を抑制しながら金属部材同士を接合して接合体を得るという目的を、部材を接触させて接触面に面圧が生じるように加圧を行った状態で、部材間に直流パルス電流による通電を行い、接触面及び材料内部の抵抗発熱によって前記部材を加熱し所定の接合温度まで昇温,保持する過程において、部材の接触面の外周に沿って所定の間隔を隔てて配置したノズルから、接触面近傍の部材表面に向かって垂直に不活性ガスを連続的に吹き付けることにより実現した。   As a first form, with the purpose of joining metal members together while suppressing oxidation by the atmosphere to obtain a joined body, in a state where pressure is applied so that the surface pressure is generated on the contact surface by contacting the members, In the process of energizing the member with a direct current pulse current, heating the member by resistance heat generation inside the contact surface and the material and raising the temperature to a predetermined bonding temperature, the predetermined interval along the outer periphery of the contact surface of the member This was realized by continuously spraying an inert gas vertically from the nozzle arranged at a distance toward the member surface near the contact surface.

第二の形態として、大気による酸化を抑制しながら金属部材同士を接合して接合体を得るという目的を、部材を接触させて接触面に面圧が生じるように加圧を行った状態で、部材間に直流パルス電流による通電を行い、接触面及び材料内部の抵抗発熱によって前記部材を加熱し所定の接合温度まで昇温,保持する過程において、部材の外周面から所定の間隔を隔てて遮蔽物を配置し、前記の遮蔽物と一体化され部材の接触面の外周に沿って所定の間隔を隔てて配置したノズルから、部材と遮蔽物の間に形成された空間に、接触面近傍の部材表面に対して平行に不活性ガスを連続的に吹き付けることにより実現した。   As a second form, with the purpose of joining metal members together while suppressing oxidation by the atmosphere to obtain a joined body, in a state where pressure is applied so that a contact surface generates pressure on the contact surface, The member is energized by a DC pulse current, and the member is shielded at a predetermined interval from the outer peripheral surface of the member in the process of heating and heating the member to the predetermined bonding temperature by resistance heating inside the contact surface and the material. An object is arranged, and from a nozzle that is integrated with the shield and arranged at a predetermined interval along the outer periphery of the contact surface of the member, a space near the contact surface is formed in a space formed between the member and the shield. This was realized by continuously blowing an inert gas parallel to the surface of the member.

第三の形態として、大気による酸化を抑制しながら金属部材同士を接合して接合体を得るという目的を、部材を接触させて接触面に面圧が生じるように加圧を行った状態で、部材間に直流パルス電流による通電を行い、接触面及び材料内部の抵抗発熱によって前記部材を加熱し所定の接合温度まで昇温,保持する過程において、部材の外周面から所定の間隔を隔てて遮蔽物を配置し、前記の遮蔽物と一体化され部材の接触面の外周に沿って所定の間隔を隔てて対向配置したノズルから、部材と遮蔽物の間に形成された空間に、接触面近傍の部材表面に対して平行に不活性ガスを連続的に吹き付けることにより実現した。   As a third form, with the purpose of joining metal members together while suppressing oxidation by the atmosphere to obtain a joined body, in a state where pressurization is performed so that surface pressure is generated on the contact surface by contacting the members, The member is energized by a DC pulse current, and the member is shielded at a predetermined interval from the outer peripheral surface of the member in the process of heating and heating the member to the predetermined bonding temperature by resistance heating inside the contact surface and the material. An object is arranged, and the vicinity of the contact surface is formed in a space formed between the member and the shield from a nozzle that is integrated with the shield and is opposed to the member at a predetermined interval along the outer periphery of the contact surface. This was realized by continuously blowing an inert gas parallel to the surface of the member.

図1は本発明の第一の実施例であって、二つの金属部材を接合する場合の接合部材,電極,接合電源,加圧機構,ノズル,不活性ガス供給源を示した説明図である。1は電極、11は接合部材、2は通電経路、3は接合電源、4は加圧機構、5は接合面、6はノズル、61はガス吹き出し口、62は不活性ガス流、7は不活性ガス供給源、71は不活性ガス供給経路である。本実施例では接合部材をSUS403、不活性ガスをアルゴンとした。接合部材11は接合面5を向かい合わせて二つの電極1により保持され、加圧機構4により電極1を介して加圧されている。この状態で、接合面5の外周に沿って所定の間隔を隔てて配置されたリング形状のノズル6のガス吹き出し口61から、接合面5近傍の接合部材11の外周面に向かって、不活性ガス供給源7から不活性ガス供給経路71を介して供給された不活性ガス流62を所定の流量で吹き付ける。不活性ガスの流量が安定したのち、接合部材11を把持する二つの電極1の間に接合電源3から通電経路2を介して電流を流し、部材同士の接触面である接合面5で抵抗発熱させて、接合する材料の固相線温度以下の所定の接合温度まで加熱を行う。加圧機構4により接合面5に付与された圧力と、通電による接合部の加熱により固相状態で拡散接合が達成される。接合後、接合面の断面観察を行ったところ、接合界面に隙間は無く良好に接合されていた。また、接合により得られた継手から試験片を採取して引張試験を行ったところ、母材と同等の引張強さを有していた。   FIG. 1 is a first embodiment of the present invention, and is an explanatory view showing a joining member, an electrode, a joining power source, a pressurizing mechanism, a nozzle, and an inert gas supply source when joining two metal members. . DESCRIPTION OF SYMBOLS 1 is an electrode, 11 is a joining member, 2 is an energizing path, 3 is a joining power source, 4 is a pressurizing mechanism, 5 is a joining surface, 6 is a nozzle, 61 is a gas outlet, 62 is an inert gas flow, and 7 is inactive An active gas supply source 71 is an inert gas supply path. In this embodiment, the joining member is SUS403, and the inert gas is argon. The joining member 11 is held by the two electrodes 1 with the joining surfaces 5 facing each other, and is pressurized by the pressurizing mechanism 4 via the electrodes 1. In this state, it is inactive from the gas outlet 61 of the ring-shaped nozzle 6 arranged at a predetermined interval along the outer periphery of the bonding surface 5 toward the outer peripheral surface of the bonding member 11 in the vicinity of the bonding surface 5. An inert gas flow 62 supplied from the gas supply source 7 via the inert gas supply path 71 is blown at a predetermined flow rate. After the flow rate of the inert gas is stabilized, current flows between the two electrodes 1 that hold the bonding member 11 from the bonding power source 3 through the energization path 2, and resistance heat is generated at the bonding surface 5 that is a contact surface between the members. Then, heating is performed to a predetermined bonding temperature not higher than the solidus temperature of the material to be bonded. Diffusion bonding is achieved in a solid state by the pressure applied to the bonding surface 5 by the pressurizing mechanism 4 and heating of the bonded portion by energization. After the joining, when the cross section of the joining surface was observed, there was no gap at the joining interface and the joining was good. Moreover, when the test piece was extract | collected from the joint obtained by joining and the tensile test was done, it had the tensile strength equivalent to a base material.

本実施例では、接合する部材をSUS403としたが、他の通電可能な材料であってもよい。部材の数が三つ以上であっても、また部材の材質が異なっても構わない。加圧機構には空圧式,油圧式,電動式,バネ式等の加圧手段を用いればよい。接合する部材に印加する電流は直流パルス,交流パルス、もしくは直流,交流の連続通電や、これらを組み合わせたものを用いることが出来る。なお全ての通電の方向(極性)は反対になっても構わない。不活性ガスは、本実施例で使用したアルゴンのほかに、ヘリウム,窒素等を用いても良い。不活性ガスの吹き出し口は複数の吹き出し口を接合する部材の外周に沿って所定の間隔で配置した形態であっても、連続したスリット状の吹き出し口であっても接合部近傍の部材表面の酸化を抑制することが可能である。接合温度は接合する材料の固相線温度以下であることが望ましいが、接合面に接合に必要十分な面圧が存在する範囲においては、接合界面でごく僅かな溶融が生じても接合は達成される。   In this embodiment, the member to be joined is SUS403, but other energizable materials may be used. Even if the number of members is three or more, the material of the members may be different. For the pressurizing mechanism, pressurizing means such as a pneumatic type, a hydraulic type, an electric type, and a spring type may be used. As a current to be applied to the members to be joined, a direct current pulse, an alternating current pulse, continuous direct current of direct current or alternating current, or a combination thereof can be used. All energization directions (polarities) may be reversed. As the inert gas, helium, nitrogen or the like may be used in addition to the argon used in this embodiment. The inert gas outlets may be arranged at predetermined intervals along the outer periphery of the member that joins the plurality of outlets, or even if they are continuous slit-like outlets, It is possible to suppress oxidation. It is desirable that the bonding temperature be lower than the solidus temperature of the material to be bonded. However, as long as there is sufficient surface pressure necessary for bonding at the bonding surface, bonding can be achieved even if a slight melting occurs at the bonding interface. Is done.

図2は本発明の第二の実施例であって、三つの金属部材を接合する場合の接合部材,電極,接合電源,加圧機構,ノズル,不活性ガス供給源を示した説明図である。1は電極、11は接合部材、2は通電経路、3は接合電源、4は加圧機構、5は接合面、8はノズルと一体化した遮蔽物、81はガス吹き出し口、82は不活性ガス流、7は不活性ガス供給源、71は不活性ガス供給経路である。本実施例では接合部材をSUS304、不活性ガスを窒素とした。接合部材11は接合面5を向かい合わせて二つの電極1により保持され、加圧機構4により電極1を介して加圧されている。この状態で、接合面5の外周に沿って所定の間隔を隔てて配置された筒形状のノズルと一体化した遮蔽物8のガス吹き出し口81から、接合面5近傍の接合部材11の外周面に沿って平行に、遮蔽物8と接合部材11の外周面との間に出来た空間に向かって、不活性ガス供給源7から不活性ガス供給経路71を介して供給された不活性ガス流82を所定の流量で噴出する。不活性ガスの流量が安定したのち、接合部材11を把持する二つの電極1の間に接合電源3から通電経路2を介して電流を流し、部材同士の接触面である接合面5で抵抗発熱させて、接合する材料の固相線温度以下の所定の接合温度まで加熱を行う。加圧機構4により接合面5に付与された圧力と、通電による接合部の加熱により固相状態で拡散接合が達成される。接合後、接合面の断面観察を行ったところ、接合界面に隙間は無く良好に接合されていた。また、接合により得られた継手から試験片を採取して引張試験を行ったところ、母材と同等の引張強さを有していた。   FIG. 2 is an explanatory diagram showing a second embodiment of the present invention, showing a joining member, an electrode, a joining power source, a pressurizing mechanism, a nozzle, and an inert gas supply source when joining three metal members. . 1 is an electrode, 11 is a joining member, 2 is an energizing path, 3 is a joining power source, 4 is a pressurizing mechanism, 5 is a joining surface, 8 is a shield integrated with a nozzle, 81 is a gas outlet, and 82 is inert. The gas flow, 7 is an inert gas supply source, and 71 is an inert gas supply path. In this embodiment, the joining member is SUS304 and the inert gas is nitrogen. The joining member 11 is held by the two electrodes 1 with the joining surfaces 5 facing each other, and is pressurized by the pressurizing mechanism 4 via the electrodes 1. In this state, the outer peripheral surface of the bonding member 11 in the vicinity of the bonding surface 5 from the gas outlet 81 of the shield 8 integrated with the cylindrical nozzle disposed at a predetermined interval along the outer periphery of the bonding surface 5. The inert gas flow supplied from the inert gas supply source 7 through the inert gas supply path 71 toward the space formed between the shield 8 and the outer peripheral surface of the joining member 11 in parallel with each other. 82 is ejected at a predetermined flow rate. After the flow rate of the inert gas is stabilized, current flows between the two electrodes 1 that hold the bonding member 11 from the bonding power source 3 through the energization path 2, and resistance heat is generated at the bonding surface 5 that is a contact surface between the members. Then, heating is performed to a predetermined bonding temperature not higher than the solidus temperature of the material to be bonded. Diffusion bonding is achieved in a solid state by the pressure applied to the bonding surface 5 by the pressurizing mechanism 4 and heating of the bonded portion by energization. After the joining, when the cross section of the joining surface was observed, there was no gap at the joining interface and the joining was good. Moreover, when the test piece was extract | collected from the joint obtained by joining and the tensile test was done, it had the tensile strength equivalent to a base material.

本実施例では、接合する部材をSUS304としたが、他の通電可能な材料であってもよい。部材の数が二つまたは四つ以上であっても、また部材の材質が異なっても構わない。加圧機構には空圧式,油圧式,電動式,バネ式等の加圧手段を用いればよい。接合する部材に印加する電流は直流パルス,交流パルス、もしくは直流,交流の連続通電や、これらを組み合わせたものを用いることが出来る。なお全ての通電の方向(極性)は反対になっても構わない。不活性ガスは、本実施例で使用した窒素のほかに、ヘリウム,アルゴン等を用いても良い。不活性ガスの吹き出し口は複数の吹き出し口を接合する部材の外周に沿って所定の間隔で配置した形態であっても、連続したスリット状の吹き出し口であっても接合部近傍の部材表面の酸化を抑制することが可能である。本実施例では、ガス吹き出し口から、接合部材の外周面に沿って平行に上方から下方へ向かって不活性ガスを吹き出したが、下方から上方へ向かって吹き出しても同様の効果が得られる。不活性ガスを接合部材の外周面に沿って平行に吹き出すことにより、大気の巻き込みが少なくなり、少ないガス流量で酸化を抑制することができる。接合部材の形状によって、不活性ガスを接合部近傍の接合部材表面に沿って流すことが出来ない場合には、ガス吹き出し口を筒形状の遮蔽物の接合面の外周に沿った位置に設け、不活性ガスを接合面に垂直に吹き付けてもよい。接合温度は接合する材料の固相線温度以下であることが望ましいが、接合面に接合に必要十分な面圧が存在する範囲においては、接合界面でごく僅かな溶融が生じても接合は達成される。   In this embodiment, the member to be joined is SUS304, but other energizable materials may be used. Even if the number of members is two or four or more, the material of the members may be different. For the pressurizing mechanism, pressurizing means such as a pneumatic type, a hydraulic type, an electric type, and a spring type may be used. As a current to be applied to the members to be joined, a direct current pulse, an alternating current pulse, continuous direct current of direct current or alternating current, or a combination thereof can be used. All energization directions (polarities) may be reversed. As the inert gas, helium, argon or the like may be used in addition to nitrogen used in this embodiment. The inert gas outlets may be arranged at predetermined intervals along the outer periphery of the member that joins the plurality of outlets, or even if they are continuous slit-like outlets, It is possible to suppress oxidation. In this embodiment, the inert gas was blown out from the upper side to the lower side in parallel along the outer peripheral surface of the joining member from the gas blowing port, but the same effect can be obtained by blowing out from the lower side to the upper side. By blowing the inert gas in parallel along the outer peripheral surface of the joining member, the entrainment of the air is reduced, and oxidation can be suppressed with a small gas flow rate. If the inert gas cannot flow along the surface of the bonding member near the bonding portion due to the shape of the bonding member, a gas outlet is provided at a position along the outer periphery of the bonding surface of the cylindrical shield, An inert gas may be sprayed perpendicularly to the bonding surface. It is desirable that the bonding temperature be lower than the solidus temperature of the material to be bonded. However, as long as there is sufficient surface pressure necessary for bonding at the bonding surface, bonding can be achieved even if a slight melting occurs at the bonding interface. Is done.

また、図面に記載のように、筒形状の遮蔽物8の長さは接合する部材11の合計長さよりも短いことが好ましい。その結果、電極と遮蔽物の間の隙間を不活性ガスの排出口とし、接合部を酸化から保護するとともに、装置の大型化を回避できる。   As shown in the drawings, the length of the cylindrical shield 8 is preferably shorter than the total length of the members 11 to be joined. As a result, the gap between the electrode and the shield can be used as an inert gas discharge port to protect the joint from oxidation and avoid the increase in size of the apparatus.

図3は本発明の第三の実施例であって、二つの金属部材を接合する場合の接合部材,電極,接合電源,加圧機構,ノズル,不活性ガス供給源を示した説明図である。1は電極、11は接合部材、2は通電経路、3は接合電源、4は加圧機構、5は接合面、8はノズルと一体化した遮蔽物、81はガス吹き出し口、82は不活性ガス流、7は不活性ガス供給源、71は不活性ガス供給経路である。本実施例では接合部材をSKD61、不活性ガスをヘリウムとした。接合部材11は接合面5を向かい合わせて二つの電極1により保持され、加圧機構4により電極1を介して加圧されている。この状態で、接合面5の外周に沿って所定の間隔を隔てて上下に配置された一対の筒形状のノズルと一体化した遮蔽物8のガス吹き出し口81から、接合面5近傍の接合部材11の外周面に沿って平行に、遮蔽物8と接合部材11の外周面との間に出来た空間に向かって、不活性ガス供給源7から不活性ガス供給経路71を介して供給された不活性ガス流82を所定の流量で噴出する。不活性ガスの流量が安定したのち、接合部材11を把持する二つの電極1の間に接合電源3から通電経路2を介して電流を流し、部材同士の接触面である接合面5で抵抗発熱させて、接合する材料の固相線温度以下の所定の接合温度まで加熱を行う。加圧機構4により接合面5に付与された圧力と、通電による接合部の加熱により固相状態で拡散接合が達成される。接合後、接合面の断面観察を行ったところ、接合界面に隙間は無く良好に接合されていた。また、接合により得られた継手から試験片を採取して引張試験を行ったところ、母材と同等の引張強さを有していた。   FIG. 3 is an explanatory view showing a third embodiment of the present invention, showing a joining member, an electrode, a joining power source, a pressurizing mechanism, a nozzle, and an inert gas supply source when joining two metal members. . 1 is an electrode, 11 is a joining member, 2 is an energizing path, 3 is a joining power source, 4 is a pressurizing mechanism, 5 is a joining surface, 8 is a shield integrated with a nozzle, 81 is a gas outlet, and 82 is inert. The gas flow, 7 is an inert gas supply source, and 71 is an inert gas supply path. In this embodiment, the joining member is SKD61 and the inert gas is helium. The joining member 11 is held by the two electrodes 1 with the joining surfaces 5 facing each other, and is pressurized by the pressurizing mechanism 4 via the electrodes 1. In this state, a joining member in the vicinity of the joining surface 5 from the gas outlet 81 of the shield 8 integrated with a pair of cylindrical nozzles arranged above and below the outer periphery of the joining surface 5 at a predetermined interval. 11 is supplied from the inert gas supply source 7 through the inert gas supply path 71 toward the space formed between the shielding object 8 and the outer peripheral surface of the joining member 11 in parallel along the outer peripheral surface of 11. An inert gas stream 82 is ejected at a predetermined flow rate. After the flow rate of the inert gas is stabilized, current flows between the two electrodes 1 that hold the bonding member 11 from the bonding power source 3 through the energization path 2, and resistance heat is generated at the bonding surface 5 that is a contact surface between the members. Then, heating is performed to a predetermined bonding temperature not higher than the solidus temperature of the material to be bonded. Diffusion bonding is achieved in a solid state by the pressure applied to the bonding surface 5 by the pressurizing mechanism 4 and heating of the bonded portion by energization. After the joining, when the cross section of the joining surface was observed, there was no gap at the joining interface and the joining was good. Moreover, when the test piece was extract | collected from the joint obtained by joining and the tensile test was done, it had the tensile strength equivalent to a base material.

本実施例では、接合する部材をSKD61としたが、他の通電可能な材料であってもよい。部材の数が三つ以上であっても、また部材の材質が異なっても構わない。加圧機構には空圧式,油圧式,電動式,バネ式等の加圧手段を用いればよい。接合する部材に印加する電流は直流パルス,交流パルス、もしくは直流,交流の連続通電や、これらを組み合わせたものを用いることが出来る。なお全ての通電の方向(極性)は反対になっても構わない。不活性ガスは、本実施例で使用したヘリウムのほかに、窒素,アルゴン等を用いても良い。不活性ガスの吹き出し口は複数の吹き出し口を接合する部材の外周に沿って所定の間隔で配置した形態であっても、連続したスリット状の吹き出し口であっても接合部近傍の部材表面の酸化を抑制することが可能である。接合温度は接合する材料の固相線温度以下であることが望ましいが、接合面に接合に必要十分な面圧が存在する範囲においては、接合界面でごく僅かな溶融が生じても接合は達成される。   In this embodiment, the member to be joined is SKD61, but another energizable material may be used. Even if the number of members is three or more, the material of the members may be different. For the pressurizing mechanism, pressurizing means such as a pneumatic type, a hydraulic type, an electric type, and a spring type may be used. As a current to be applied to the members to be joined, a direct current pulse, an alternating current pulse, continuous direct current of direct current or alternating current, or a combination thereof can be used. All energization directions (polarities) may be reversed. As the inert gas, nitrogen, argon or the like may be used in addition to the helium used in this embodiment. The inert gas outlets may be arranged at predetermined intervals along the outer periphery of the member that joins the plurality of outlets, or even if they are continuous slit-like outlets, It is possible to suppress oxidation. It is desirable that the bonding temperature be lower than the solidus temperature of the material to be bonded. Is done.

また、図3で遮蔽物を上下に配置しているように、遮蔽物を分割することにより接合面を挟んだ上下の接合部材の双方を均質にシールドすることが可能となる。   Further, as shown in FIG. 3, the shielding objects are vertically arranged, so that it is possible to uniformly shield both the upper and lower joining members sandwiching the joining surface by dividing the shielding objects.

自動車分野における機構部品の異材接合,一般産業機械のインペラや油圧回路の形成、鋳造や樹脂成形分野における金型冷却構造の形成に応用が可能である。   It can be applied to dissimilar joining of mechanical parts in the automobile field, formation of impellers and hydraulic circuits for general industrial machines, and formation of mold cooling structures in the fields of casting and resin molding.

本発明の第一の実施例を示す説明図である。It is explanatory drawing which shows the 1st Example of this invention. 本発明の第二の実施例を示す説明図である。It is explanatory drawing which shows the 2nd Example of this invention. 本発明の第三の実施例を示す説明図である。It is explanatory drawing which shows the 3rd Example of this invention. パルス通電焼結接合法の基本構成を示した説明図である。It is explanatory drawing which showed the basic composition of the pulse electric current sintering joining method.

符号の説明Explanation of symbols

1 電極
2 通電経路
3 接合電源
4 加圧機構
5 接合面
6 ノズル
7 不活性ガス供給源
8 ノズルと一体化した遮蔽物
11 接合部材
61,81 不活性ガス吹き出し口
62,82 不活性ガス流
71 不活性ガス供給経路
DESCRIPTION OF SYMBOLS 1 Electrode 2 Current supply path 3 Bonding power supply 4 Pressurization mechanism 5 Bonding surface 6 Nozzle 7 Inert gas supply source 8 Shielding object integrated with nozzle 11 Joining members 61 and 81 Inert gas outlets 62 and 82 Inert gas supply path

Claims (11)

複数の通電可能な部材を接触させた接触面に面圧が生じるように加圧する加圧機構と、前記部材間に通電を行う電極及び電源と、を有し、前記部材間の接触面または前記部材内部の抵抗発熱により前記部材同士を接合する通電接合装置において、
前記部材の接触面の外周に沿って配置され、前記接触面近傍の部材表面に不活性ガスを吹き付ける少なくとも一つのノズルと、を有することを特徴とする通電接合装置。
A pressurizing mechanism that pressurizes a contact surface where a plurality of energizable members are in contact with each other so as to generate a surface pressure; and an electrode and a power source that conduct current between the members; In the energization joining apparatus that joins the members by resistance heat generation inside the member,
An energization joining apparatus comprising: at least one nozzle that is disposed along an outer periphery of a contact surface of the member and blows an inert gas onto a member surface in the vicinity of the contact surface.
請求項1に記載された通電接合装置であって、
前記ノズルは、前記不活性ガスを前記部材表面に垂直に吹きつける機構を有することを特徴とする通電接合装置。
An energization joining apparatus according to claim 1,
The nozzle has a mechanism for blowing the inert gas perpendicularly to the surface of the member.
複数の通電可能な部材を接触させた接触面に面圧が生じるように加圧する加圧機構と、
前記部材間に通電を行う電極及び電源と、を有し、前記部材間の接触面または前記部材内部の抵抗発熱により前記部材同士を接合する通電接合装置において、
前記部材の表面に沿って不活性ガスを吹きつける少なくとも一つのノズルを有することを特徴とする通電接合装置。
A pressurizing mechanism that pressurizes the contact surface where a plurality of energizable members are in contact with each other so as to generate a surface pressure;
In an energization joining apparatus that has an electrode and a power source that conduct electricity between the members, and joins the members by resistance heat generation between the contact surfaces between the members or inside the members,
An energization joining apparatus comprising at least one nozzle for blowing an inert gas along a surface of the member.
請求項1から3のいずれかに記載の通電接合装置において、
前記部材の周囲に所定の間隔を隔てて配置された遮蔽物を有し、
接合時に前記不活性ガスは、前記部材と前記遮蔽物の空間に充填されることを特徴とする通電接合装置。
In the electricity joining apparatus in any one of Claim 1 to 3,
A shield disposed around the member at a predetermined interval;
In the joining, the inert gas is filled in a space between the member and the shield.
請求項4に記載の通電接合装置において、
前記遮蔽物は前記ノズルと一体化された構造を有することを特徴とする通電接合装置。
In the energization joining apparatus according to claim 4,
The current-carrying apparatus according to claim 1, wherein the shield has a structure integrated with the nozzle.
請求項4に記載された通電接合装置において、
前記遮蔽物は筒形状を有し、前記筒の長さは、前記接合する部材の合計長さよりも短いことを特徴とする通電接合装置。
In the energization joining apparatus according to claim 4,
The current-carrying apparatus according to claim 1, wherein the shield has a cylindrical shape, and a length of the cylinder is shorter than a total length of the members to be joined.
請求項4に記載された通電接合装置において、
前記遮蔽物は筒形状を有し、前記遮蔽物の両端部近傍に前記ノズルを有することを特徴とする通電接合装置。
In the energization joining apparatus according to claim 4,
The current-carrying apparatus according to claim 1, wherein the shield has a cylindrical shape, and the nozzles are provided in the vicinity of both end portions of the shield.
複数の通電可能な部材を接触させ、接触面に面圧が生じるように加圧を行い、加圧された状態の前記部材間に通電を行い、前記部材間の接合を行う通電接合方法において、
前記接合時に部材の接触面に部材外周側より不活性ガスを吹き付けることを特徴とする通電接合方法。
In an energization joining method in which a plurality of energizable members are brought into contact, pressurization is performed so that surface pressure is generated on the contact surface, energization is performed between the members in a pressurized state, and joining between the members is performed.
An energization joining method characterized by spraying an inert gas from the outer peripheral side of the member onto the contact surface of the member during the joining.
請求項8に記載された通電接合方法において、前記不活性ガスは、前記少なくとも二つの部材の表面に略垂直に吹きつけることを特徴とする通電接合方法。   9. The energization joining method according to claim 8, wherein the inert gas is sprayed substantially perpendicularly on the surfaces of the at least two members. 複数の通電可能な部材を接触させ、接触面に面圧が生じるように加圧を行い、加圧された状態の前記部材間に通電を行い、前記部材間の接合を行う通電接合方法において、
前記接合時に前記部材に沿って不活性ガスを流すことを特徴とする通電接合方法。
In an energization joining method in which a plurality of energizable members are brought into contact, pressurization is performed so that surface pressure is generated on the contact surface, energization is performed between the members in a pressurized state, and joining between the members is performed.
An energization joining method, wherein an inert gas is caused to flow along the member during the joining.
請求項8ないし10のいずれかの通電接合方法において、
前記部材の外周面から所定の間隔を隔てて配置された遮蔽物と前記部材との間に、前記不活性ガスを流すことを特徴とする通電接合方法。
In the energization joining method according to any one of claims 8 to 10,
An energization joining method, wherein the inert gas is allowed to flow between a shielding object disposed at a predetermined interval from an outer peripheral surface of the member and the member.
JP2008174076A 2008-07-03 2008-07-03 Energization welding method and apparatus Pending JP2010012492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008174076A JP2010012492A (en) 2008-07-03 2008-07-03 Energization welding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008174076A JP2010012492A (en) 2008-07-03 2008-07-03 Energization welding method and apparatus

Publications (1)

Publication Number Publication Date
JP2010012492A true JP2010012492A (en) 2010-01-21

Family

ID=41699122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008174076A Pending JP2010012492A (en) 2008-07-03 2008-07-03 Energization welding method and apparatus

Country Status (1)

Country Link
JP (1) JP2010012492A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006068A (en) * 2010-06-28 2012-01-12 Eco−A株式会社 Device and method for electric diffusion joining
WO2013065175A1 (en) * 2011-11-04 2013-05-10 Eco-A株式会社 Current diffusion bonding apparatus and current diffusion boding method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180787A (en) * 1987-12-28 1989-07-18 Mitsubishi Electric Corp Electrifying and heating type pressure welding machine
JP2006043742A (en) * 2004-08-05 2006-02-16 Univ Of Fukui Brazing method and brazing apparatus for member to be joined

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180787A (en) * 1987-12-28 1989-07-18 Mitsubishi Electric Corp Electrifying and heating type pressure welding machine
JP2006043742A (en) * 2004-08-05 2006-02-16 Univ Of Fukui Brazing method and brazing apparatus for member to be joined

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006068A (en) * 2010-06-28 2012-01-12 Eco−A株式会社 Device and method for electric diffusion joining
WO2013065175A1 (en) * 2011-11-04 2013-05-10 Eco-A株式会社 Current diffusion bonding apparatus and current diffusion boding method
US9669488B2 (en) 2011-11-04 2017-06-06 Eco-A Co., Ltd. Current diffusion bonding apparatus and current diffusion bonding method

Similar Documents

Publication Publication Date Title
US10166635B2 (en) Welding device comprising an active heating device for heating the workpiece
US11292085B2 (en) Method for working a first component and a second component by laser welding and corresponding device
CN106853548A (en) Welding electrode for carrying out resistance spot welding to the job stacking including aluminium workpiece and steel workpiece
US20150290736A1 (en) Welding wire feeding device and method
KR20120005438A (en) Masking jig, substrate heating device, and coating method
KR20120101335A (en) Methods and systems for resistance spot welding using direct current micro pulses
US10036083B2 (en) Reaction material pre-placement for reaction metallurgical joining
US8735782B2 (en) System for forming brazed joint between tie wire and workpiece, and methods therefor
KR20170094824A (en) Vacuum diffusion inosculating apparatus and method
JP2010012492A (en) Energization welding method and apparatus
US20070220743A1 (en) Electric current bonding apparatus and electric current bonding method
JP2011050977A (en) Indirect spot welding method
JP4890855B2 (en) Current-carrying method and apparatus
JP5814906B2 (en) Resistance welding method and resistance welding apparatus
EP3338936B1 (en) Method of joining elements to components
CN107004454B (en) Method for producing a contact region of a layer of an electric heating device and device for an electric heating device of a motor vehicle
JP2012187616A (en) Resistance welding apparatus and resistance welding method
KR101500042B1 (en) Welding structure
CN112638567A (en) Method for producing at least one defined connection layer between two components made of different metals
JP4089423B2 (en) Coated wire wire stripping device
JP2000054106A (en) Treatment of sprayed coating film
JP2004351495A (en) Device for joining solid by pulse energizing
JP2014034059A (en) Electromagnetic welding method for colliding metallic jets, and magnetic flux generating coil
JP2017051966A (en) Arc welding device and arc welding method
JP2004114108A (en) Method and equipment for welding metallic member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710