JP2010012470A - CASTING METHOD OF HYPER-EUTECTIC Al-Si BASED ALLOY, AND INGOT THEREOF - Google Patents

CASTING METHOD OF HYPER-EUTECTIC Al-Si BASED ALLOY, AND INGOT THEREOF Download PDF

Info

Publication number
JP2010012470A
JP2010012470A JP2008171838A JP2008171838A JP2010012470A JP 2010012470 A JP2010012470 A JP 2010012470A JP 2008171838 A JP2008171838 A JP 2008171838A JP 2008171838 A JP2008171838 A JP 2008171838A JP 2010012470 A JP2010012470 A JP 2010012470A
Authority
JP
Japan
Prior art keywords
molten metal
primary
ingot
hypereutectic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008171838A
Other languages
Japanese (ja)
Other versions
JP5157684B2 (en
Inventor
Kaoru Sugita
薫 杉田
Eikichi Sagisaka
栄吉 鷺坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2008171838A priority Critical patent/JP5157684B2/en
Publication of JP2010012470A publication Critical patent/JP2010012470A/en
Application granted granted Critical
Publication of JP5157684B2 publication Critical patent/JP5157684B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a casting method of a hyper-eutectic Al-Si based alloy wherein a primary crystal Si is made fine and the primary crystal Si is uniformly distributed, and an ingot of the hyper-eutectic Al-Si based alloy in which the primary crystal Si is made fine and uniformly distributed. <P>SOLUTION: The molten hyper-eutectic Al-Si based alloy containing the primary crystal Si fining agent is supplied from a heat insulating molten metal storage part 3 of a hot top part 2 to a quenching mold 4 so as to be cooled and solidified to manufacture an ingot B of the hyper-eutectic Al-Si based alloy. A molten metal discharging port 6 of the heat insulating molten metal storage part 3 is continuous to a molten metal introducing port 7 of the quenching mold 4, and the diameter of the molten metal introducing port 7 is larger than that of the molten metal discharging port 6. Thus, a lower end face of the hot top part 2 in contact with the quenching mold 4 is exposed in the molten metal introducing port 7, and an eaves part 8 is formed by the exposed lower end face. The width d of the eaves part 8 is 1-10 mm. The solidification time from the liquidus temperature in the molten metal 1 to be cooled in the quenching mold 4 to the eutectic temperature is ≤3 s. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、初晶Siが微細化され且つ均一に分布している過共晶Al−Si系合金の鋳塊及びその鋳造方法に関する。   The present invention relates to an ingot of a hypereutectic Al—Si alloy in which primary crystal Si is refined and uniformly distributed, and a casting method thereof.

過共晶Al−Si系合金は、熱膨張係数が小さく、耐熱性にも優れている。また、溶湯が凝固する際に高硬度で高剛性の初晶Siが晶出するため、耐摩耗性と剛性に優れ、ピストン、クランクケース、ブレーキドラム、シリンダーライナー、半導体製造用搬送装置、工作機械部品等の軽量化を目的として、従来の鉄鋳物を代替して使用されている。ところが、過共晶Al−Si系合金は、初晶Siが大きく成長した鋳造組織になり易いので、この状態で塑性加工や切削加工を施すと、初晶Siとアルミニウムマトリックスの界面等に亀裂が入り、機械的性質が低下するおそれがある。また、この初晶Siが均一に分布しておらず、分布に粗密乃至偏りのある偏析状態が生じていても、機械的性質が低下するおそれがある。   A hypereutectic Al—Si alloy has a small coefficient of thermal expansion and excellent heat resistance. In addition, high-hardness and high-rigidity primary Si crystallizes when the molten metal solidifies, so it has excellent wear resistance and rigidity. Piston, crankcase, brake drum, cylinder liner, semiconductor manufacturing conveyor, machine tool It is used in place of conventional iron castings for the purpose of reducing the weight of components and the like. However, hypereutectic Al-Si alloys tend to have a cast structure in which primary crystal Si has grown greatly. If plastic processing or cutting is performed in this state, cracks will occur at the interface between primary crystal Si and the aluminum matrix. The mechanical properties may be reduced. Further, even if this primary crystal Si is not uniformly distributed and a segregation state in which the distribution is dense or uneven occurs, the mechanical properties may be deteriorated.

この初晶Siは、溶湯に初晶Si微細化剤を添加して鋳造したり、鋳造の際に溶湯を急冷凝固することによって微細化することができるが、初晶Siの偏析状態を均一にする方法は未だ見出されていない。
例えば、特許文献1には、初晶Si微細化剤としてP、Caを含有させ、PとCaとの質量比P/Caを調整したAl−Si系合金(Siの含有量は13〜21質量%)の溶湯をホットトップDC(Direct Chill)鋳造し、初晶Siを微細化する技術が開示されている。
This primary crystal Si can be refined by adding an initial crystal Si refiner to the molten metal or by rapidly solidifying the molten metal at the time of casting, but the segregation state of the primary crystal Si can be made uniform. No method has been found yet.
For example, Patent Document 1 discloses an Al—Si based alloy containing P and Ca as primary crystal Si refining agents and adjusting the mass ratio P / Ca of P and Ca (the Si content is 13 to 21 mass). %) Of the molten metal is cast by hot top DC (Direct Chill) to refine the primary crystal Si.

詳述すると、特許文献1の実施例8には、Siを17質量%、Cuを4.5質量%、Mgを0.6質量%含有し、残部がAlである合金の溶湯を、溶湯温度780℃、速度150mm/分の鋳造条件でホットトップDC鋳造法により鋳造して、直径98mmの鋳塊を製造した例が開示されている。そして、Pの含有量が58ppm、Caの含有量が1ppmの場合は、鋳塊の初晶Siの粒径は45μmとなり、Pの含有量が61ppm、Caの含有量が17ppm、P/Caが3.2の場合は、鋳塊の初晶Siの粒径は18μmとなっている。
また、特許文献1の図11には、Siの含有量が23質量%、Pの含有量が60〜80ppm、Caの含有量が50〜80ppmの場合は、初晶Siは微細化されるものの粒径は30μm程度であることが説明されている。
特許第2730423号公報
Specifically, in Example 8 of Patent Document 1, a molten alloy containing 17% by mass of Si, 4.5% by mass of Cu, 0.6% by mass of Mg, and the balance being Al, An example in which an ingot having a diameter of 98 mm is manufactured by casting by a hot top DC casting method under casting conditions of 780 ° C. and a speed of 150 mm / min is disclosed. When the P content is 58 ppm and the Ca content is 1 ppm, the particle size of the primary Si in the ingot is 45 μm, the P content is 61 ppm, the Ca content is 17 ppm, and the P / Ca is In the case of 3.2, the particle diameter of the primary crystal Si in the ingot is 18 μm.
Moreover, in FIG. 11 of patent document 1, when Si content is 23 mass%, P content is 60-80 ppm, and Ca content is 50-80 ppm, although primary crystal Si is refined | miniaturized, It is explained that the particle size is about 30 μm.
Japanese Patent No. 2730423

しかしながら、特許文献1においては、初晶Si微細化剤としてP、Caを含有させたり、P/Caを調整したりして、初晶Siを微細化させる技術が開示されているものの、初晶Siの分布状態には言及されていない。
そこで、本発明は、上記のような従来技術が有する問題点を解決し、初晶Siを微細化することができ且つ初晶Siを均一に分布させることのできる過共晶Al−Si系合金の鋳造方法を提供することを課題とする。また、本発明は、初晶Siが微細化され且つ均一に分布している過共晶Al−Si系合金の鋳塊を提供することを併せて課題とする。
However, Patent Document 1 discloses a technique for making primary Si fine by adding P and Ca as primary crystal Si refinement agents or adjusting P / Ca, but primary crystal Si is refined. No mention is made of the distribution of Si.
Therefore, the present invention solves the problems of the prior art as described above, and is a hypereutectic Al-Si alloy that can refine primary crystal Si and uniformly distribute primary crystal Si. It is an object to provide a casting method. Another object of the present invention is to provide a hypereutectic Al-Si alloy ingot in which primary crystal Si is refined and uniformly distributed.

本発明者らは、鋭意研究の結果、過共晶Al−Si系合金の溶湯を凝固させる際に、固液共存状態の存在時間を可及的に短時間とし、固体と液体の相対的な移動を抑制すると(すなわち、Siを豊富に含有する溶湯が流動して、晶出した初晶Siに接近しにくいようにすれば)、初晶Siの偏析状態が小さくなるという知見を得て本発明を完成するに至った。
ここで固液共存状態とは、溶湯の温度が低下して液相線温度に到達した際に、初晶Siの晶出が始まるが、その初晶Siの固体と液相とが共存している状態を意味する。この固液共存状態で初晶Siは成長し、更に溶湯の温度が低下すると共晶温度に達し、共晶反応が起きると同時に初晶Siの成長も停止する。
As a result of intensive studies, the inventors of the present invention have made the existence time of the solid-liquid coexistence state as short as possible when solidifying the melt of the hypereutectic Al-Si alloy, and the relative relationship between the solid and the liquid Obtaining the knowledge that the segregation state of the primary Si becomes small if the movement is suppressed (that is, if the molten metal containing Si is made to flow and hardly approach the crystallized primary Si). The invention has been completed.
Here, the solid-liquid coexistence state means that when the temperature of the molten metal decreases and reaches the liquidus temperature, crystallization of primary Si starts, but the solid and liquid phase of primary Si coexist. Means the state. In this solid-liquid coexistence state, primary Si grows, and when the temperature of the molten metal further decreases, the eutectic temperature is reached, and at the same time as the eutectic reaction occurs, the growth of primary Si stops.

すなわち、本発明の過共晶Al−Si系合金の鋳造方法は、初晶Si微細化剤を含有するAl−Si系合金の溶湯を、ホットトップ部から急冷鋳型へ送って冷却凝固し、過共晶Al−Si系合金の鋳塊を製造するホットトップDC鋳造法において、前記ホットトップ部の溶湯吐出口と前記急冷鋳型の溶湯導入口とを連続させ、前記溶湯吐出口よりも前記溶湯導入口の方を大きくすることにより、前記急冷鋳型と接する前記ホットトップ部の端面を前記溶湯導入口内に露出させ、この露出した端面により形成される庇部の幅を1mm以上10mm以下とするとともに、前記急冷鋳型で冷却される前記溶湯における液相線温度から共晶温度に至るまでの凝固時間を3秒以内とすることを特徴とする。
このような鋳造方法によれば、微細な初晶Siが均一に分布した過共晶Al−Si系合金を得ることができる。
That is, in the method for casting a hypereutectic Al—Si alloy of the present invention, the molten Al—Si alloy containing the primary crystal refiner is sent from the hot top portion to the quenching mold and cooled and solidified. In the hot top DC casting method for producing an ingot of eutectic Al-Si alloy, the molten metal discharge port of the hot top part and the molten metal inlet of the quenching mold are made continuous, and the molten metal is introduced from the molten metal discharge port. By enlarging the mouth, the end surface of the hot top portion that is in contact with the quenching mold is exposed in the melt introduction port, and the width of the flange portion formed by the exposed end surface is 1 mm or more and 10 mm or less, The solidification time from the liquidus temperature to the eutectic temperature in the molten metal cooled by the quenching mold is within 3 seconds.
According to such a casting method, a hypereutectic Al—Si based alloy in which fine primary Si is uniformly distributed can be obtained.

なお、初晶Si微細化剤の添加により、溶湯にPを20ppm以上130ppm以下含有させることが好ましく、Pを40ppm以上130ppm以下含有させることがさらに好ましい。そうすれば、微細な初晶Siが均一に分布した過共晶Al−Si系合金を、容易に得ることができる。また、初晶Si微細化剤の添加により、溶湯にPを20ppm以上130ppm以下、Caを6ppm以上130ppm以下含有させるとともに、PとCaとの質量比P/Caを0.6以上6以下に調整することがより好ましい。そうすれば、溶湯における液相線温度から共晶温度に至るまでの凝固時間を10秒以内と遅くしても、微細な初晶Siが均一に分布した過共晶Al−Si系合金を容易に得ることができる。
さらに、初晶Si微細化補助剤の添加により、溶湯にMg,Sr,及びBaの少なくとも1種を含有させてもよい。初晶Si微細化補助剤を添加した場合は、Mg,Sr,及びBaの含有量をそれぞれ0.5質量%以下とすることが好ましい。そうすれば、より微細な初晶Siが均一に分布した過共晶Al−Si系合金を得ることができる。
In addition, it is preferable to contain 20 ppm or more and 130 ppm or less of P in the molten metal by adding the primary Si refiner, and it is more preferable to contain P of 40 ppm or more and 130 ppm or less. By doing so, it is possible to easily obtain a hypereutectic Al—Si alloy in which fine primary crystal Si is uniformly distributed. Also, by adding the primary Si refiner, the molten metal contains P in a range of 20 ppm to 130 ppm and Ca in a range of 6 ppm to 130 ppm, and the mass ratio P / Ca of P and Ca is adjusted to 0.6 to 6 More preferably. Then, even if the solidification time from the liquidus temperature to the eutectic temperature in the molten metal is delayed to within 10 seconds, a hypereutectic Al-Si alloy in which fine primary Si is uniformly distributed can be easily obtained. Can get to.
Further, at least one of Mg, Sr, and Ba may be contained in the molten metal by adding an auxiliary agent for refining primary crystal Si. When the primary Si refinement aid is added, the contents of Mg, Sr, and Ba are each preferably 0.5% by mass or less. Then, a hypereutectic Al—Si alloy in which finer primary Si is uniformly distributed can be obtained.

また、本発明の過共晶Al−Si系合金の鋳塊は、前述の過共晶Al−Si系合金の鋳造方法により製造された鋳塊であって、表面から7mm内方の位置における初晶Siの偏析状態が偏析率0%であることを特徴とする。
このような構成の過共晶Al−Si系合金の鋳塊は、優れた機械的性質や耐摩耗性を有している。特に、Si含有量が21質量%超過27質量%以下である高Si量の過共晶Al−Si系合金の場合も、前述のような構成であれば、優れた機械的性質や耐摩耗性を備えている。
The hypereutectic Al-Si alloy ingot of the present invention is an ingot produced by the above-described hypereutectic Al-Si alloy casting method, and is the first ingot at a position 7 mm inward from the surface. The segregation state of crystal Si is characterized by a segregation rate of 0%.
An ingot of a hypereutectic Al—Si alloy having such a configuration has excellent mechanical properties and wear resistance. In particular, in the case of a hypereutectic Al—Si based alloy having a Si content exceeding 21% by mass and not more than 27% by mass, excellent mechanical properties and wear resistance can be obtained with the above-described configuration. It has.

本発明の過共晶Al−Si系合金の鋳造方法は、初晶Siが微細化され且つ均一に分布している過共晶Al−Si系合金の鋳塊を、容易に製造することができる。また、本発明の過共晶Al−Si系合金の鋳塊は、優れた機械的性質や耐摩耗性を有している。   The method for casting a hypereutectic Al—Si alloy of the present invention can easily produce a hypereutectic Al—Si alloy ingot in which primary Si is refined and uniformly distributed. . Moreover, the ingot of the hypereutectic Al-Si alloy of the present invention has excellent mechanical properties and wear resistance.

アルミニウム合金の鋳造法は種々開発されているが、生産性に優れた方法として、以下のようなDC鋳造法が実用に供されている。すなわち、内壁面を水冷した急冷鋳型内に樋で導いた溶湯を注ぎ、該溶湯を急冷鋳型の内壁面で冷却凝固させるとともに、凝固直後の鋳塊を下方又は側方へ順次引き出し、そこに冷却水を噴射して急冷するという鋳造法である。このような方法により、中実状又は中空状(管状)の鋳塊が得られる。   Various aluminum alloy casting methods have been developed, but the following DC casting method is put to practical use as a method with excellent productivity. That is, the molten metal guided by a slag is poured into a quenching mold whose inner wall surface is water-cooled, and the molten metal is cooled and solidified on the inner wall surface of the quenching mold, and the ingot immediately after solidification is sequentially drawn downward or sideward and cooled there It is a casting method in which water is jetted and cooled rapidly. By such a method, a solid or hollow (tubular) ingot is obtained.

該DC鋳造法においては、樋で導かれた溶湯が急冷鋳型内に直接注湯されるため、凝固終了まで溶湯が激しく流動するので、溶湯の漏れ防止のために、通常は急冷鋳型の高さ(鋳塊の引き出し方向の長さ)を高くする(例えば80mm)。そのため、急冷鋳型に接して凝固する部分の厚さも厚く、しかも凝固収縮により生じる急冷鋳型と鋳塊との間の空隙区間も長くなり、その結果、鋳塊の一部が再溶解を起こして組織的均一性に欠ける、溶湯の流動パターンが鋳塊の凝固組織に反映して結晶粒のサイズの粗細が生じるなどの問題が発生し、製品の均一性乃至歩留まりを損ねることになる。   In the DC casting method, the molten metal guided by the slag is poured directly into the quenching mold, so that the molten metal flows vigorously until the end of solidification. Therefore, in order to prevent leakage of the molten metal, the height of the quenching mold is usually used. (Length of the ingot drawing direction) is increased (for example, 80 mm). Therefore, the thickness of the part that solidifies in contact with the quenching mold is also thick, and the gap section between the quenching mold and the ingot caused by solidification shrinkage becomes long, and as a result, part of the ingot undergoes remelting and the structure The problem is that the uniformity of the product or the yield is impaired due to the problem that the molten metal flow pattern is reflected in the solidified structure of the ingot and the crystal grain size becomes coarse.

このような溶湯の急冷鋳型内での流動を小さくする鋳造方法として、断熱湯溜部を有するホットトップ部を前記構造の急冷鋳型の上部に設けたホットトップ連続鋳造法があり、高品質の鋳塊の製造に供されている。すなわち、該ホットトップ連続鋳造法によれば、樋で導いた溶湯をホットトップ部の断熱湯溜部に一旦滞留させて溶湯の流動を抑制できるので、急冷鋳型内の溶湯の流動はかなり制限され、その結果、結晶粒のサイズの粗細差が小さくなる。しかも、溶湯温度も低くすることができるので、急冷鋳型の高さも低くでき、急冷鋳型に接して凝固する部分や急冷鋳型からの抜熱により凝固する部分が再溶解して生じる再溶解層も薄く、均一な表層の鋳塊が得られる。また、溶湯の流動パターンから生じる粗細のばらつきも小さくでき、製品の均一性乃至歩留まりを向上できる。   As a casting method for reducing the flow of the molten metal in the quenching mold, there is a hot top continuous casting method in which a hot top portion having a heat insulating hot water reservoir is provided at the upper part of the quenching mold having the above structure. It is used for mass production. That is, according to the hot top continuous casting method, the molten metal guided by the boil can be temporarily retained in the heat insulating hot water reservoir of the hot top portion to suppress the flow of the molten metal, so that the flow of the molten metal in the quenching mold is considerably limited. As a result, the coarse / fine difference in crystal grain size is reduced. In addition, since the molten metal temperature can be lowered, the height of the quenching mold can also be lowered, and the remelted layer formed by remelting the part that solidifies in contact with the quenching mold and the part that solidifies due to heat removal from the quenching mold is thin. A uniform surface ingot is obtained. In addition, it is possible to reduce the variation in coarseness and fineness caused by the flow pattern of the molten metal, and to improve the product uniformity and yield.

このようなことから、均一な表層を有する鋳塊を得るために、ホットトップ部の溶湯吐出口(すなわち、断熱湯溜部の内径)よりも急冷鋳型の溶湯導入口(すなわち、急冷鋳型の内径)の方が大きくされており、急冷鋳型と接するホットトップ部の端面を溶湯導入口内に露出させ、この露出した端面により庇部が形成されている。そして、庇部の幅(径方向長さ)は14〜20mm程度に設定されている。さらに、ホットトップ部と急冷鋳型との間からガスを噴出させるような工夫も行なわれている。いずれにしても、断熱湯溜部と急冷鋳型とを備えたホットトップDC鋳造装置では、上記のような庇部を有する構造は必須であり、避けることができない。   For this reason, in order to obtain an ingot having a uniform surface layer, the molten metal inlet of the quenching mold (that is, the inner diameter of the quenching mold) rather than the molten metal discharge port of the hot top section (that is, the inner diameter of the heat insulating hot water reservoir). ) Is made larger, and the end surface of the hot top portion in contact with the quenching mold is exposed in the molten metal inlet, and the flange portion is formed by the exposed end surface. And the width | variety (diameter direction length) of the collar part is set to about 14-20 mm. Furthermore, a device has been devised to eject gas from between the hot top portion and the quench mold. In any case, in a hot top DC casting apparatus provided with a heat insulating hot water reservoir and a quenching mold, the structure having the flange as described above is essential and cannot be avoided.

一方、Siを12.7質量%以上含有する過共晶Al−Si系合金においては、加工性を付与するためには初晶Siを微細化することは必須であり、そのために初晶Si微細化剤の添加が行われている。例えば、P及びCaを適量含有させ、PとCaとの質量比P/Caを調整する必要があることは公知である。そこで、本発明者らは、過共晶Al−Si系合金における初晶Siの晶出と成長について下記のように考察した。   On the other hand, in a hypereutectic Al-Si alloy containing 12.7% by mass or more of Si, it is essential to refine the primary crystal Si in order to impart workability. An agent is added. For example, it is known that P and Ca need to be contained in appropriate amounts and the mass ratio P / Ca of P and Ca needs to be adjusted. Therefore, the present inventors considered the crystallization and growth of primary Si in a hypereutectic Al—Si alloy as follows.

なお、過共晶Al−Si系合金の「系」とは、Al−Siの2元系の合金だけでなく、強度、耐熱性、加工性、耐摩耗性、高剛性、その他の特性を付与するために他種の元素を含有させた3元系以上の合金を含むことを意味する。添加可能な元素としては、例えば、Cu,Mg,Ni,Cr,Mn,Zn,Fe,Zr,Tiがあげられる。そして、その含有量は、例えば、Cuは6質量%以下、Mgは1.5質量%以下、Niは4質量%以下、Crは0.5質量%以下、Mnは2.0質量%以下、Znは1.0質量%以下、Feは1.0質量%以下、Zrは0.4質量%以下、Tiは0.3質量%以下である。   The “system” of hypereutectic Al—Si alloy is not only Al—Si binary alloy but also strength, heat resistance, workability, wear resistance, high rigidity, and other characteristics. In order to do so, it means that a ternary or higher alloy containing other kinds of elements is included. Examples of elements that can be added include Cu, Mg, Ni, Cr, Mn, Zn, Fe, Zr, and Ti. And the content is, for example, Cu is 6 mass% or less, Mg is 1.5 mass% or less, Ni is 4 mass% or less, Cr is 0.5 mass% or less, Mn is 2.0 mass% or less, Zn is 1.0 mass% or less, Fe is 1.0 mass% or less, Zr is 0.4 mass% or less, and Ti is 0.3 mass% or less.

(1)溶湯の凝固時間を短くすると、初晶Siの成長を抑制することができる。溶解しているSiは状態図の液相線温度に到達してはじめて初晶Siとして晶出するから、この凝固時間とは、溶湯が液相線温度から共晶温度に至るまでの時間である。つまり、凝固時間の開始温度は、急冷鋳型に注がれる直前の溶湯の温度ではなく、液相線温度である。このように、溶解しているSiは、液相線温度と共晶温度との間で結晶核(初晶Siや初晶Si微細化剤(例えばAl−P化合物))に晶出し成長するものと考えられるから、溶湯の凝固時間を短くすれば、晶出した初晶Siの成長を抑制し初晶Siを微細化することができる。   (1) If the solidification time of the molten metal is shortened, the growth of primary crystal Si can be suppressed. Since the dissolved Si crystallizes as primary Si only after reaching the liquidus temperature in the phase diagram, this solidification time is the time from the molten metal to the eutectic temperature from the liquidus temperature. . That is, the start temperature of the solidification time is not the temperature of the molten metal immediately before being poured into the quenching mold, but the liquidus temperature. Thus, the dissolved Si crystallizes and grows in the crystal nucleus (primary Si or primary Si refiner (for example, Al-P compound)) between the liquidus temperature and the eutectic temperature. Therefore, if the solidification time of the molten metal is shortened, the growth of the crystallized primary crystal Si can be suppressed and the primary crystal Si can be refined.

(2)液相線温度と共晶温度との間(固液共存状態)において固体と液体の相対的な移動を抑えると、初晶Siが微細化され粗細差が小さくなり、且つ初晶Siの偏析状態が小さくなる。溶湯中に初晶Siが晶出すると、その周囲の溶湯のSi含有量は少なくなる。初晶Siの結晶核の数が多ければ初晶Siは微細化される。溶湯が流動して、初晶Siの周囲の溶湯よりもSi含有量の多い溶湯が先に晶出した初晶Siと接触すると、その時点で溶湯中のSiが晶出し初晶Siが成長し粗大化すると思われる。従来のホットトップDC鋳造装置のように庇部の幅が14〜20mmであると、庇部直下では、溶湯が渦を巻いたり流れ込むなどして流動し、溶湯の拡散が生じるため、初晶Siの成長が促され、粗細の差が大きくなるものと思われる。また、一部の初晶Siは、溶湯の流束の変化域に遍在しやすいので、初晶Siが偏析状態になりやすいものと思われる。   (2) When the relative movement of the solid and the liquid is suppressed between the liquidus temperature and the eutectic temperature (solid-liquid coexistence state), the primary Si is refined and the coarse and fine difference is reduced, and the primary Si The segregation state becomes smaller. When primary Si crystallizes in the molten metal, the Si content of the molten metal around it is reduced. If the number of crystal nuclei of primary Si is large, primary Si is miniaturized. When the molten metal flows and a molten metal having a higher Si content than the molten metal around the primary crystal Si comes into contact with the primary crystal Si crystallized first, the Si in the molten metal crystallizes and the primary crystal Si grows. It seems to be coarse. When the width of the flange is 14 to 20 mm as in the conventional hot top DC casting apparatus, the molten metal flows in a vortex or flows in just below the flange, and the diffusion of the molten metal occurs. It seems that the growth of the growth will be promoted and the difference between coarse and fine will increase. Moreover, since some primary crystal Si tends to be ubiquitous in the change region of the flux of the molten metal, it is considered that the primary crystal Si tends to be segregated.

これらの知見に基づいて本発明者らは本発明を完成するに至ったので、本発明に係る過共晶Al−Si系合金の鋳塊及びその鋳造方法の実施の形態を、図面を参照しながら以下に詳細に説明する。図1は、過共晶Al−Si系合金の鋳塊を製造するホットトップDC鋳造装置の構造を説明する断面図である。
合金元素が常法により溶解され、必要に応じて脱滓、脱ガス処理が施されたAl−Si系合金の溶湯1が、図示しない保持炉に貯留されている。Siの含有量は、過共晶Al−Si系合金を形成する量(約13質量%以上)であるならば特に限定されるものではないが、21質量%超過27質量%以下が好ましい。また、Al−Si系合金は、AlとSiの2元系合金でもよいし、Al,Siの他にCu,Mg,Ni,Cr,Mn,Zn,Fe,Zr,Ti等の他の合金元素を1種以上含む合金でもよい。
Based on these findings, the present inventors have completed the present invention, and therefore, referring to the drawings, embodiments of a hypereutectic Al-Si alloy ingot and a casting method thereof according to the present invention will be described. However, it explains in detail below. FIG. 1 is a cross-sectional view illustrating the structure of a hot top DC casting apparatus for producing an ingot of a hypereutectic Al—Si alloy.
An alloy element 1 is melted by a conventional method, and an Al—Si alloy melt 1 that has been degassed and degassed as necessary is stored in a holding furnace (not shown). Although content of Si will not be specifically limited if it is the quantity (about 13 mass% or more) which forms a hypereutectic Al-Si type alloy, More than 21 mass% and 27 mass% or less are preferable. The Al—Si alloy may be a binary alloy of Al and Si, or other alloy elements such as Cu, Mg, Ni, Cr, Mn, Zn, Fe, Zr, and Ti in addition to Al and Si. An alloy containing one or more of them may be used.

また、この溶湯1は、初晶Si微細化剤を含有している。初晶Si微細化剤の種類は特に限定されるものではないが、リン,リン含有合金,又はリン化合物が好ましく、リン,リン含有合金,又はリン化合物とカルシウム含有合金又はカルシウム化合物との両方を用いることがより好ましい。リン含有合金としては、Al−P,Cu−P,Fe−P,Ni−P等があげられ、リン化合物としてはリン酸塩,五塩化リン等があげられる。   Moreover, this molten metal 1 contains primary crystal Si refiner. Although the kind of primary crystal Si refiner is not particularly limited, phosphorus, a phosphorus-containing alloy, or a phosphorus compound is preferable, and phosphorus, a phosphorus-containing alloy, or both a phosphorus compound and a calcium-containing alloy or a calcium compound are used. More preferably, it is used. Examples of the phosphorus-containing alloy include Al-P, Cu-P, Fe-P, and Ni-P. Examples of the phosphorus compound include phosphate and phosphorus pentachloride.

初晶Si微細化剤としてリン,リン含有合金,又はリン化合物を使用する場合には、初晶Si微細化剤としての効果を考えると、Pの含有量(初晶Si微細化剤のうちPのみの質量により算出した含有量、以降も同様である)は20ppm以上130ppm以下であることが好ましい。また、初晶Si微細化剤としてリン,リン含有合金,又はリン化合物とカルシウム含有合金又はカルシウム化合物との両方を使用する場合には、初晶Si微細化剤としての効果を考えると、Pの含有量は20ppm以上130ppm以下、Caの含有量は6ppm以上130ppm以下で、さらにPとCaとの質量比P/Caは0.6以上6以下であることが好ましい。   When phosphorus, a phosphorus-containing alloy, or a phosphorus compound is used as the primary Si refiner, considering the effect as the primary Si refiner, the P content (P in the primary Si refiner) The content calculated from the mass of only the same, and so on) is preferably 20 ppm or more and 130 ppm or less. Further, when using phosphorus, a phosphorus-containing alloy, or both a phosphorus compound and a calcium-containing alloy or a calcium compound as the primary Si refiner, considering the effect as the primary Si refiner, P The content is preferably 20 ppm or more and 130 ppm or less, the Ca content is 6 ppm or more and 130 ppm or less, and the mass ratio P / Ca of P and Ca is preferably 0.6 or more and 6 or less.

さらに、初晶Si微細化剤とともに初晶Si微細化補助剤を用いてもよい。初晶Si微細化補助剤としては、金属マグネシウム,マグネシウム含有合金,マグネシウム化合物,金属ストロンチウム,ストロンチウム含有合金,ストロンチウム化合物,金属バリウム,バリウム含有合金,及びバリウム化合物の少なくとも1種が好ましい。初晶Si微細化補助剤を使用する場合には、初晶Si微細化補助剤としての効果を考えると、Mg,Sr,Baの含有量はそれぞれ0.5質量%以下であることが好ましい。   Furthermore, a primary Si refinement aid may be used together with the primary Si refiner. As the primary Si refinement aid, at least one of metal magnesium, magnesium-containing alloy, magnesium compound, metal strontium, strontium-containing alloy, strontium compound, metal barium, barium-containing alloy, and barium compound is preferable. When the primary crystal Si refinement aid is used, the content of Mg, Sr, and Ba is preferably 0.5% by mass or less in consideration of the effect as the primary crystal Si refinement aid.

なお、初晶Si微細化剤としてリン,リン含有合金,又はリン化合物とカルシウム含有合金又はカルシウム化合物との両方を使用する場合においては、その使用効果を高めるためには、カルシウム含有合金又はカルシウム化合物の溶湯1への添加時期は鋳造直前が好ましい。添加後の保持時間が長くなると、Ca−P化合物が成長して初晶Siの結晶核となるAlP化合物の形成が妨げられ、初晶Si微細化性能が低下するためと思われる。   In addition, in the case of using phosphorus, a phosphorus-containing alloy, or both a phosphorus compound and a calcium-containing alloy or a calcium compound as the primary crystal Si refiner, in order to enhance the use effect, the calcium-containing alloy or the calcium compound The time of adding to the molten metal 1 is preferably immediately before casting. If the holding time after the addition becomes long, the Ca—P compound grows and the formation of the AlP compound that becomes the crystal nucleus of the primary Si is prevented, and the primary Si refinement performance is likely to deteriorate.

前記保持炉内の溶湯1は、樋10を通してホットトップDC鋳造装置のホットトップ部2に供給される。ホットトップ部2はセラミックス製であるとともに、円柱形の空間である断熱湯溜部3を有しており、溶湯1はこの断熱湯溜部3内に貯留される。このとき、樋10の下流側端部における湯面M1と断熱湯溜部3内の湯面M2は、略同一高さとする。また、断熱湯溜部3内への単位時間当たりの溶湯1の流れ込み量を小さくするために、樋10の内法を大きくしてもよい。さらに、必要に応じて、フィルタを使用して溶湯1から介在物を除去してもよい。なお、溶湯1の保温が可能で且つ高温の溶湯1により溶解,変質等が生じないならば、ホットトップ部2の材質はセラミックスに限定されるものではない。また、断熱湯溜部3の形状は円柱形に限定されるものではなく、角柱形等の他の形状でもよい。   The molten metal 1 in the holding furnace is supplied to the hot top portion 2 of the hot top DC casting apparatus through the jar 10. The hot top portion 2 is made of ceramics and has a heat insulating hot water reservoir 3 that is a cylindrical space. The molten metal 1 is stored in the heat insulating hot water reservoir 3. At this time, the hot water surface M1 in the downstream end part of the bowl 10 and the hot water surface M2 in the heat insulation hot water storage part 3 are made into the substantially same height. Further, in order to reduce the amount of molten metal 1 flowing into the heat insulating hot water reservoir 3 per unit time, the inner method of the bowl 10 may be increased. Furthermore, you may remove an inclusion from the molten metal 1 using a filter as needed. Note that the material of the hot top portion 2 is not limited to ceramics as long as the molten metal 1 can be kept warm and is not melted or altered by the high-temperature molten metal 1. Moreover, the shape of the heat insulation hot water reservoir 3 is not limited to a cylindrical shape, and may be other shapes such as a prismatic shape.

ホットトップ部2の下方には急冷鋳型4が設置されており、両者2,4は接触している。急冷鋳型4は金属製でドーナツ状をなしており、その円柱状の中心孔5内に断熱湯溜部3内の溶湯1が送られるようになっている。また、急冷鋳型4の内部は空洞となっていて、冷却水11が循環されており、この冷却水11で冷却された急冷鋳型4の中心孔5の内壁面によって溶湯1が冷却されるようになっている。なお、水以外の冷媒を冷却水11の代わりに用いてもよい。   A quenching mold 4 is installed below the hot top portion 2, and both 2 and 4 are in contact with each other. The quenching mold 4 is made of metal and has a donut shape, and the molten metal 1 in the heat insulating hot water reservoir 3 is fed into the cylindrical center hole 5. Further, the inside of the quench mold 4 is hollow, and the cooling water 11 is circulated, so that the molten metal 1 is cooled by the inner wall surface of the center hole 5 of the quench mold 4 cooled by the cooling water 11. It has become. A refrigerant other than water may be used instead of the cooling water 11.

断熱湯溜部3の下端の開口部である溶湯吐出口6と、急冷鋳型4の中心孔5の上端の開口部である溶湯導入口7とは同心に配され且つ連続しており、溶湯吐出口6の直径よりも溶湯導入口7の直径の方が大径とされているため、急冷鋳型4と接するホットトップ部2の下端面の一部が溶湯導入口7内に露出しており、この露出したドーナツ状の下端面により庇部8が形成されている。そして、この庇部8の幅d(径方向長さ)は、1mm以上10mm以下とされている。   The molten metal discharge port 6 that is an opening at the lower end of the heat insulating hot water reservoir 3 and the molten metal introduction port 7 that is an opening at the upper end of the central hole 5 of the quenching mold 4 are arranged concentrically and are continuous. Since the diameter of the molten metal inlet 7 is larger than the diameter of the outlet 6, a part of the lower end surface of the hot top portion 2 in contact with the quenching mold 4 is exposed in the molten metal inlet 7. A flange 8 is formed by the exposed bottom surface of the donut. And the width | variety d (diameter direction length) of this collar part 8 shall be 1 mm or more and 10 mm or less.

急冷鋳型4の中心孔5内に導入された溶湯1は、中心孔5の内壁面で急冷され凝固し、これによりシェル12が形成される。急冷鋳型4には、急冷鋳型4内の冷却水11を鋳塊Bの表面に噴射する放水口13が設けられているので、鋳造開始時には急冷鋳型4内に位置している図示しない受台を下方に移動させ、下方に引き出された鋳塊Bに冷却水11を噴射して冷却することにより、過共晶Al−Si系合金の鋳塊Bを連続して鋳造することができる。   The molten metal 1 introduced into the center hole 5 of the quench mold 4 is rapidly cooled and solidified on the inner wall surface of the center hole 5, thereby forming a shell 12. Since the quenching mold 4 is provided with a water discharge port 13 for injecting the cooling water 11 in the quenching mold 4 onto the surface of the ingot B, a cradle (not shown) located in the quenching mold 4 at the start of casting is provided. The ingot B of hypereutectic Al—Si alloy can be continuously cast by moving downward and injecting the cooling water 11 into the ingot B drawn downward to cool it.

このとき、溶湯1が冷却され液相線温度に到達すると、初晶Siが晶出し固液共存状態となり、さらに冷却されて共晶温度に到達すると凝固が完了するが、液相線温度から共晶温度に至るまでの凝固時間が所定時間以内となるように、冷却速度を制御して鋳造を行う。この所定時間は、初晶Si微細化剤として例えばリン,リン含有合金,又はリン化合物を使用した場合は3秒であり、初晶Si微細化剤としてリン,リン含有合金,又はリン化合物とカルシウム含有合金又はカルシウム化合物との両方を使用した場合は10秒である。前記凝固時間が前記所定時間以内となるように冷却速度を速くするためには、鋳造速度を速くする、急冷鋳型4の高さ(鋳塊Bの引き出し方向の長さ)を小さくする、溶湯1の温度を高くする等の手段が考えられる。   At this time, when the molten metal 1 is cooled and reaches the liquidus temperature, primary Si is crystallized and enters a solid-liquid coexistence state, and when further cooled and reaches the eutectic temperature, solidification is completed. Casting is performed by controlling the cooling rate so that the solidification time until reaching the crystallization temperature is within a predetermined time. This predetermined time is, for example, 3 seconds when phosphorus, a phosphorus-containing alloy, or a phosphorus compound is used as the primary Si refiner, and phosphorus, a phosphorus-containing alloy, or a phosphorus compound and calcium are used as the primary Si refiner. It is 10 seconds when both the containing alloy and the calcium compound are used. In order to increase the cooling rate so that the solidification time is within the predetermined time, the casting rate is increased, the height of the quenching mold 4 (the length in the drawing direction of the ingot B) is decreased, and the molten metal 1 Means such as increasing the temperature of the gas can be considered.

なお、図1に示してある点線L1 は、温度が液相線温度である部分を示し、実線L2 は、温度が共晶温度ある部分を示す。よって、点線L1 よりも上方の部分は、初晶Siが晶出していない液相部分であり、点線L1 と実線L2 との間の部分は、初晶Siが晶出し固液共存状態となっている部分であり、実線L2 の下方の部分は、凝固が完了した部分である。 Note that a dotted line L 1 shown in FIG. 1 indicates a portion where the temperature is the liquidus temperature, and a solid line L 2 indicates a portion where the temperature is the eutectic temperature. Therefore, the part above the dotted line L 1 is a liquid phase part where the primary crystal Si is not crystallized, and the part between the dotted line L 1 and the solid line L 2 is a state where the primary crystal Si crystallizes and the solid-liquid coexistence state. The portion below the solid line L 2 is a portion where solidification has been completed.

このようにして鋳造を行えば、初晶Siが微細化され且つ均一に分布している過共晶Al−Si系合金の鋳塊Bを製造することができる。すなわち、冷却速度が速く溶湯1の凝固時間が短いので、初晶Siが成長しにくく、その結果、初晶Siが微細化される。また、庇部8の幅dが短いので、溶湯1の流動が生じにくく、その結果、初晶Siの粗細の差が小さくなるとともに、初晶Siが偏析状態になりにくい。例えば、鋳塊Bの偏析状態を調べるため、表面から7mm内方の位置における初晶Siの偏析率を測定すると、0%であった。この鋳造方法によれば、上記と同様に初晶Siが微細化され且つ均一に分布している過共晶Al−Si系合金の鋳塊を製造することができる。
このような過共晶Al−Si系合金の鋳塊Bは、優れた機械的性質や耐摩耗性を有しているので、押出加工や切削加工することが容易であり、また、ピストン、クランクケース、ブレーキドラム、シリンダーライナー、半導体製造用搬送装置、工作機械部品等の部材として好適に使用することができる。
When casting is performed in this manner, a hypereutectic Al—Si alloy ingot B in which primary Si is refined and uniformly distributed can be manufactured. That is, since the cooling rate is fast and the solidification time of the molten metal 1 is short, the primary crystal Si hardly grows, and as a result, the primary crystal Si is refined. Further, since the width d of the flange portion 8 is short, the molten metal 1 is unlikely to flow, and as a result, the coarse-fine difference between the primary crystal Si is reduced and the primary crystal Si is not easily segregated. For example, in order to investigate the segregation state of the ingot B, the segregation rate of primary Si at a position 7 mm inward from the surface was measured and found to be 0%. According to this casting method, an ingot of a hypereutectic Al—Si alloy in which the primary crystal Si is refined and uniformly distributed can be produced as described above.
Such a hypereutectic Al-Si alloy ingot B has excellent mechanical properties and wear resistance, and is therefore easy to extrude and cut. It can be suitably used as a member such as a case, a brake drum, a cylinder liner, a semiconductor manufacturing transport device, or a machine tool part.

〔実施例〕
以下に、実施例を示して、本発明をさらに具体的に説明する。表1に示すような組成のAl−Si系合金の溶湯を準備した。なお、残部はAl及び不可避の微量不純物である。また、表1中の数値の単位である%及びppmは、いずれも質量基準である。さらに、表1中の「−印」は微量不純物レベルの量であることを示す。
〔Example〕
Hereinafter, the present invention will be described more specifically with reference to examples. A molten Al—Si alloy having a composition as shown in Table 1 was prepared. The balance is Al and inevitable trace impurities. In addition,% and ppm, which are units of numerical values in Table 1, are based on mass. Furthermore, “-mark” in Table 1 indicates that the amount is a trace impurity level.

そして、その溶湯を用いて、前述した本実施形態とほぼ同様のホットトップDC鋳造装置及び鋳造方法により鋳造を行った。その際には、庇部の幅、鋳造速度(鋳塊の下方への引き出し速度) 、及び凝固時間を種々変えて鋳造し、得られた過共晶Al−Si系合金の鋳塊の初晶Siの平均粒径(μm)、初晶Siの粒径の標準偏差(σ) 、初晶Siの偏析状態を測定した。これらの測定方法を以下に示す。   And using the molten metal, it casted with the hot top DC casting apparatus and casting method substantially the same as this embodiment mentioned above. In that case, the primary crystal of the ingot of the hypereutectic Al-Si alloy obtained by casting with various changes in the width of the flange, the casting speed (speed of pulling out the ingot downward), and the solidification time. The average grain size (μm) of Si, the standard deviation (σ) of the grain size of primary Si, and the segregation state of primary Si were measured. These measuring methods are shown below.

<凝固時間の測定方法について>
図1に示すように、金属線に固定した熱電対20を断熱湯溜部内に挿入し、鋳塊の鋳造と共に下降するように設定することにより、鋳塊の表面から7mm内方の位置の温度を測定した。そして、冷却曲線を作図して、凝固開始点から共晶温度に達するまでの時間を算出して、液相線温度から共晶温度に至るまでの時間とした。表面から7mm内方の位置を測定位置としたのは、庇部の下方又はその近傍に位置しており、庇部の効果を把握できる位置であるからである。
<Measurement method of coagulation time>
As shown in FIG. 1, by inserting a thermocouple 20 fixed to a metal wire into a heat insulating hot water reservoir and setting it to descend with the casting of the ingot, a temperature at a position 7 mm inward from the surface of the ingot is obtained. Was measured. Then, a cooling curve was drawn, and the time from the solidification start point to the eutectic temperature was calculated to be the time from the liquidus temperature to the eutectic temperature. The reason why the position 7 mm inward from the surface is the measurement position is that it is located below or in the vicinity of the buttocks and is a position where the effect of the buttocks can be grasped.

<初晶Siの平均粒径及び初晶Siの粒径の標準偏差の測定方法について>
鋳塊の表面から7mm内方の位置の鋳造組織を金属顕微鏡で観察し、観察写真をカールツァイス社製KS400画像解析装置で解析した。画像解析の条件として、測定面積を0.98mm2 とするとともに、円相当径5μm以下のものは共晶Siと判断して解析から除外した。
そして、重なり合う初晶Siを分離して測定するため、縮退処理を1回、膨張処理を1回それぞれ行い、さらに重なり合う初晶Siの重なり合う部分を手動で切り離し、個々の面積から初晶Siの円相当径を計算し、平均値と標準偏差とを求めた。
<Measurement Method of Average Deviation of Primary Si and Standard Deviation of Primary Si Particle Size>
The cast structure at a position 7 mm inward from the surface of the ingot was observed with a metal microscope, and the observation photograph was analyzed with a KS400 image analyzer manufactured by Carl Zeiss. As conditions for image analysis, the measurement area was set to 0.98 mm 2, and those with an equivalent circle diameter of 5 μm or less were determined as eutectic Si and excluded from the analysis.
In order to separate and measure the overlapping primary crystal Si, the degeneration process is performed once and the expansion process is performed once, and the overlapping parts of the overlapping primary crystal Si are manually separated, and the primary crystal Si circles are separated from the individual areas. The equivalent diameter was calculated, and the average value and standard deviation were obtained.

<初晶Siの偏析状態の測定方法について>
前記のようにして測定した粒径が5μmを超える初晶Siが2個以下と判断された部分を、楕円形で近似した。そして、該楕円の短径が200μm以上のものの面積の合計値を測定面積で除した値(初晶Siのない面積の占有率) を偏析率とした。
<測定結果の判定方法について>
偏析率が0%で、且つ、初晶Siの円相当径の平均値が30μm以下のものを合格とし、各表においては○印を表示した。そして、そうでないものを不合格とし、×印を表示した。
<Measurement method of segregation state of primary Si>
The portion where the number of primary crystal Si having a particle size measured as described above exceeding 5 μm was determined to be 2 or less was approximated by an ellipse. The value obtained by dividing the total area of the ellipses whose minor axis is 200 μm or more by the measured area (occupation ratio of the area without primary Si) was defined as the segregation rate.
<About the determination method of measurement results>
A sample having a segregation rate of 0% and an average equivalent circle diameter of primary Si of 30 μm or less was accepted, and “◯” was displayed in each table. And the thing which is not so was made disqualified, and x mark was displayed.

次に、測定結果について説明する。表2に、Siの含有量が22質量%であるAl−Si系合金の溶湯から直径57mmの鋳塊を鋳造した場合の各種鋳造条件及び測定結果を示す。   Next, the measurement result will be described. Table 2 shows various casting conditions and measurement results when an ingot having a diameter of 57 mm is cast from a molten Al-Si alloy having a Si content of 22% by mass.

試料No.1〜3は、庇部の幅を10mm以下と短くし且つ凝固時間を10秒以内と短くしたので、初晶Siの平均粒径が30μm以下と微細で、偏析率が0%と均一分散していることが判る。一方、庇部の幅が長い試料No.4,5は、偏析率が11%及び21%で均一分散していないことが判る。また、凝固時間が長い試料No.6は、初晶Siの平均粒径が大きく初晶Siが粗大化していることが判る。
表3に、Siの含有量が27質量%であるAl−Si系合金の溶湯から直径57mmの鋳塊を鋳造した場合の各種鋳造条件及び測定結果を示す。
Sample No. 1-3, the width of the collar portion was shortened to 10 mm or less and the solidification time was shortened to within 10 seconds, so that the average grain size of primary Si was as fine as 30 μm or less and the segregation rate was uniformly dispersed at 0%. You can see that On the other hand, Sample No. 4 and 5 show that the segregation ratios are 11% and 21% and are not uniformly dispersed. In addition, Sample No. No. 6 shows that the average grain size of primary crystal Si is large and primary crystal Si is coarsened.
Table 3 shows various casting conditions and measurement results when an ingot having a diameter of 57 mm is cast from a molten Al-Si alloy having a Si content of 27 mass%.

試料No.7〜9は、庇部の幅を短くし且つ凝固時間を短くしたので、初晶Siの平均粒径が30μm以下と微細で、偏析率が0%と均一分散していることが判る。一方、庇部の幅が長い試料No.10,11は、偏析率が17%及び27%で均一分散していないことが判る。また、凝固時間が長い試料No.12は、初晶Siの平均粒径が大きく初晶Siが粗大化していることが判る。
表4に、Siの含有量が24質量%であるAl−Si系合金の溶湯から直径97mmの鋳塊を鋳造した場合の各種鋳造条件及び測定結果を示す。
Sample No. In Nos. 7 to 9, since the width of the collar portion was shortened and the solidification time was shortened, it can be seen that the average grain size of primary crystal Si is as fine as 30 μm or less and the segregation rate is uniformly dispersed at 0%. On the other hand, Sample No. 10 and 11 show that the segregation ratios are 17% and 27% and are not uniformly dispersed. In addition, Sample No. No. 12 shows that the average grain size of primary crystal Si is large and primary crystal Si is coarsened.
Table 4 shows various casting conditions and measurement results when an ingot having a diameter of 97 mm was cast from a molten Al-Si alloy having a Si content of 24 mass%.

試料No.13〜15は、庇部の幅を短くし且つ凝固時間を短くしたので、初晶Siの平均粒径が30μm以下と微細で、偏析率が0%と均一分散していることが判る。また、初晶Si微細化補助剤によるMgを含有する試料No.16,17は、初晶Siの平均粒径がさらに微細で、偏析率が0%で均一分散していることが判る。これらの結果から、初晶Si微細化補助剤の効果が奏されていることが判る。   Sample No. In Nos. 13 to 15, since the width of the collar portion was shortened and the solidification time was shortened, it can be seen that the average grain size of primary Si is as fine as 30 μm or less and the segregation rate is uniformly dispersed at 0%. Sample No. 1 containing Mg by the primary crystal Si refinement aid. 16 and 17, it can be seen that the average grain size of primary Si is finer and the segregation rate is 0% and is uniformly dispersed. From these results, it can be seen that the effect of the primary Si refinement aid is exhibited.

一方、庇部の幅が長い試料No.18,19は、偏析率が15%及び22%で均一分散していないことが判る。また、凝固時間が長い試料No.20は、初晶Siの平均粒径が大きく初晶Siが粗大化していることが判る。
表5に、Siの含有量が17質量%であるAl−Si系合金の溶湯から直径97mmの鋳塊を鋳造した場合の各種鋳造条件及び測定結果を示す。
On the other hand, Sample No. 18 and 19 show that the segregation rates are 15% and 22%, and they are not uniformly dispersed. In addition, Sample No. No. 20 shows that the average grain size of primary Si is large and primary Si is coarsened.
Table 5 shows various casting conditions and measurement results when an ingot having a diameter of 97 mm was cast from a molten Al-Si alloy having a Si content of 17% by mass.

試料No.22〜24は、庇部の幅を短くし且つ凝固時間を短くしたので、初晶Siの平均粒径が30μm以下と微細で、偏析率が0%と均一分散していることが判る。一方、庇部の幅が長い試料No.26,27は、偏析率が19%及び31%で均一分散していないことが判る。
試料No.25は、初晶Si微細化剤としてPのみを含有させCaは含有していない例であるが、庇部の幅を短くし且つ凝固時間を3秒以内と短くすれば、初晶Siの平均粒径が30μm以下と微細になり、偏析率が0%と均一分散することが判る。また、試料No.21(Siの含有量は24質量%)及び試料No.28も、初晶Si微細化剤としてPのみを含有させCaは含有していない例であるが、凝固時間が3秒超過と長いため、初晶Siの平均粒径が30μmを超え粗大化していることが判る。
表6に、Siの含有量が22質量%であるAl−Si系合金の溶湯から直径130mmの鋳塊を鋳造した場合の各種鋳造条件及び測定結果を示す。
Sample No. In Nos. 22 to 24, since the width of the collar portion was shortened and the solidification time was shortened, it can be seen that the average grain size of primary crystal Si is as fine as 30 μm or less and the segregation rate is uniformly dispersed at 0%. On the other hand, Sample No. 26 and 27 show that the segregation rates are 19% and 31% and are not uniformly dispersed.
Sample No. 25 is an example in which only P is contained as a primary Si refiner and Ca is not contained. However, if the width of the collar portion is shortened and the solidification time is shortened to within 3 seconds, the average of primary Si It can be seen that the particle size becomes as fine as 30 μm or less and the segregation rate is uniformly dispersed at 0%. Sample No. 21 (content of Si is 24 mass%) and Sample No. 28 is an example in which only P is contained as the primary Si refinement agent and Ca is not contained, but since the solidification time is as long as 3 seconds or more, the average grain size of primary crystal Si is larger than 30 μm and coarsened. I know that.
Table 6 shows various casting conditions and measurement results when an ingot having a diameter of 130 mm is cast from a molten Al-Si alloy having a Si content of 22 mass%.

試料No.29〜31は、庇部の幅を短くし且つ凝固時間を短くしたので、初晶Siの平均粒径が30μm以下と微細で、偏析率が0%と均一分散していることが判る。一方、庇部の幅が長い試料No.32,33は、偏析率が10%及び18%で均一分散していないことが判る。また、凝固時間が長い試料No.34は、初晶Siの平均粒径が大きく初晶Siが粗大化していることが判る。   Sample No. In Nos. 29 to 31, since the width of the collar portion was shortened and the solidification time was shortened, it can be seen that the average grain size of primary crystal Si is as fine as 30 μm or less and the segregation rate is uniformly dispersed at 0%. On the other hand, Sample No. 32 and 33 show that the segregation rates are 10% and 18%, and they are not uniformly dispersed. In addition, Sample No. No. 34 shows that the average grain size of primary Si is large and primary Si is coarsened.

図2,3は、試料No.29,33の初晶Siの偏析状態を示す写真である。図2の試料No.29は、初晶Siが均一に分散しており、図3の試料No.33は、初晶Siが偏析していて不均一であることが判る。
なお、比較例として、庇部が無い場合の例を示す。すなわち、庇部の幅が0mmであることを除いて試料No.29と同様に鋳造を行った。庇部の幅を完全に0mmとすることはホットトップDC鋳造装置の製造上困難であり、どうしてもホットトップ部の溶湯吐出口内に急冷鋳型の端面の少なくとも一部が露出することとなるので、該部分と鋳塊との摩擦により鋳塊に肌荒れが生じ、鋳造の続行が不可能であった。また、鋳造できた部分も肌荒れがあり、偏析率が50%であった。
2 and 3 show sample Nos. It is a photograph which shows the segregation state of 29,33 primary crystal Si. Sample No. 2 in FIG. In No. 29, primary Si is uniformly dispersed. No. 33 shows that the primary crystal Si is segregated and non-uniform.
In addition, the example in case there is no collar part is shown as a comparative example. That is, sample no. Casting was performed in the same manner as in No. 29. It is difficult to manufacture the hot top DC casting apparatus to make the width of the collar portion completely 0 mm, and at least a part of the end surface of the quenching mold is inevitably exposed in the molten metal discharge port of the hot top portion. The surface of the ingot was rough due to friction between the part and the ingot, and the casting could not be continued. Also, the casted part had rough skin, and the segregation rate was 50%.

過共晶Al−Si系合金の鋳塊を製造するホットトップDC鋳造装置の構造を説明する断面図である。It is sectional drawing explaining the structure of the hot top DC casting apparatus which manufactures the ingot of a hypereutectic Al-Si type alloy. 初晶Siが均一分散している過共晶Al−Si系合金の偏析状態を示す図である。It is a figure which shows the segregation state of the hypereutectic Al-Si type alloy in which primary Si is uniformly disperse | distributed. 初晶Siが偏析している過共晶Al−Si系合金の偏析状態を示す図である。It is a figure which shows the segregation state of the hypereutectic Al-Si type alloy in which primary crystal Si segregates.

符号の説明Explanation of symbols

1 溶湯
2 ホットトップ部
3 断熱湯溜部
4 急冷鋳型
6 溶湯吐出口
7 溶湯導入口
8 庇部
B 鋳塊
d 庇部の幅
DESCRIPTION OF SYMBOLS 1 Molten metal 2 Hot top part 3 Insulation hot water storage part 4 Quenching mold 6 Molten metal discharge port 7 Molten metal introduction port 8 庇 part B Ingot d Width of heel part

Claims (5)

初晶Si微細化剤を含有するAl−Si系合金の溶湯を、ホットトップ部から急冷鋳型へ送って冷却凝固し、過共晶Al−Si系合金の鋳塊を製造するホットトップDC鋳造法において、
前記ホットトップ部の溶湯吐出口と前記急冷鋳型の溶湯導入口とを連続させ、前記溶湯吐出口よりも前記溶湯導入口の方を大きくすることにより、前記急冷鋳型と接する前記ホットトップ部の端面を前記溶湯導入口内に露出させ、この露出した端面により形成される庇部の幅を1mm以上10mm以下とするとともに、
前記急冷鋳型で冷却される前記溶湯における液相線温度から共晶温度に至るまでの凝固時間を3秒以内とすることを特徴とする過共晶Al−Si系合金の鋳造方法。
Hot-top DC casting method for producing a hypereutectic Al-Si-based ingot by sending a molten Al-Si-based alloy containing a primary Si refiner from a hot-top part to a quench mold and cooling and solidifying it In
The end surface of the hot top portion that is in contact with the quenching mold by causing the melt discharge port of the hot top portion and the melt introduction port of the quenching mold to be continuous and making the melt introduction port larger than the melt discharge port. And the width of the collar portion formed by the exposed end face is 1 mm or more and 10 mm or less,
A method for casting a hypereutectic Al-Si-based alloy, characterized in that a solidification time from the liquidus temperature to the eutectic temperature in the molten metal cooled by the quenching mold is within 3 seconds.
初晶Si微細化剤を含有するAl−Si系合金の溶湯を、ホットトップ部から急冷鋳型へ送って冷却凝固し、過共晶Al−Si系合金の鋳塊を製造するホットトップDC鋳造法において、
前記ホットトップ部の溶湯吐出口と前記急冷鋳型の溶湯導入口とを連続させ、前記溶湯吐出口よりも前記溶湯導入口の方を大きくすることにより、前記急冷鋳型と接する前記ホットトップ部の端面を前記溶湯導入口内に露出させ、この露出した端面により形成される庇部の幅を1mm以上10mm以下とするとともに、
前記初晶Si微細化剤の添加により前記溶湯にPを20ppm以上130ppm以下含有させ、前記急冷鋳型で冷却される前記溶湯における液相線温度から共晶温度に至るまでの凝固時間を3秒以内とすることを特徴とする過共晶Al−Si系合金の鋳造方法。
Hot-top DC casting method for producing a hypereutectic Al-Si-based ingot by sending a molten Al-Si-based alloy containing a primary Si refiner from a hot-top part to a quench mold and cooling and solidifying it In
The end surface of the hot top portion that is in contact with the quenching mold by causing the melt discharge port of the hot top portion and the melt introduction port of the quenching mold to be continuous and making the melt introduction port larger than the melt discharge port. And the width of the collar portion formed by the exposed end face is 1 mm or more and 10 mm or less,
By adding the primary crystal Si refiner, the molten metal contains 20 ppm or more and 130 ppm or less of P, and the solidification time from the liquidus temperature to the eutectic temperature in the molten metal cooled by the quenching mold is within 3 seconds. A method for casting a hypereutectic Al-Si alloy, characterized in that:
初晶Si微細化剤を含有するAl−Si系合金の溶湯を、ホットトップ部から急冷鋳型へ送って冷却凝固し、過共晶Al−Si系合金の鋳塊を製造するホットトップDC鋳造法において、
前記ホットトップ部の溶湯吐出口と前記急冷鋳型の溶湯導入口とを連続させ、前記溶湯吐出口よりも前記溶湯導入口の方を大きくすることにより、前記急冷鋳型と接する前記ホットトップ部の端面を前記溶湯導入口内に露出させ、この露出した端面により形成される庇部の幅を1mm以上10mm以下とするとともに、
前記初晶Si微細化剤の添加により、PとCaとの質量比P/Caが0.6以上6以下となるように、前記溶湯にPを20ppm以上130ppm以下、Caを6ppm以上130ppm以下含有させ、前記急冷鋳型で冷却される前記溶湯における液相線温度から共晶温度に至るまでの凝固時間を10秒以内とすることを特徴とする過共晶Al−Si系合金の鋳造方法。
Hot-top DC casting method for producing a hypereutectic Al-Si-based ingot by sending a molten Al-Si-based alloy containing a primary Si refiner from a hot-top part to a quench mold and cooling and solidifying it In
The end surface of the hot top portion that is in contact with the quenching mold by causing the melt discharge port of the hot top portion and the melt introduction port of the quenching mold to be continuous and making the melt introduction port larger than the melt discharge port. And the width of the collar portion formed by the exposed end face is 1 mm or more and 10 mm or less,
The molten metal contains P in a range of 20 ppm to 130 ppm and Ca in a range of 6 ppm to 130 ppm so that the mass ratio P / Ca of P and Ca is 0.6 to 6 by adding the primary Si refiner. And a solidification time from the liquidus temperature to the eutectic temperature in the molten metal cooled by the quenching mold is within 10 seconds.
初晶Si微細化補助剤の添加により前記溶湯にMg,Sr,及びBaの少なくとも1種を含有させ、その含有量をそれぞれ0.5質量%以下とすることを特徴とする請求項2又は請求項3に記載の過共晶Al−Si系合金の鋳造方法。   3. The molten metal containing at least one of Mg, Sr, and Ba by adding a primary Si refinement aid, the content of each being 0.5% by mass or less. Item 4. A method for casting a hypereutectic Al-Si alloy according to Item 3. 請求項1〜4のいずれか一項に記載の過共晶Al−Si系合金の鋳造方法により製造された鋳塊であって、表面から7mm内方の位置における初晶Siの偏析状態が偏析率0%であることを特徴とする過共晶Al−Si系合金の鋳塊。   It is an ingot manufactured by the hypereutectic Al-Si type alloy casting method as described in any one of Claims 1-4, Comprising: The segregation state of primary Si in the position inside 7 mm from the surface is segregated An ingot of a hypereutectic Al-Si alloy characterized by a rate of 0%.
JP2008171838A 2008-06-30 2008-06-30 Hypereutectic Al-Si alloy casting method and ingot Expired - Fee Related JP5157684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008171838A JP5157684B2 (en) 2008-06-30 2008-06-30 Hypereutectic Al-Si alloy casting method and ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008171838A JP5157684B2 (en) 2008-06-30 2008-06-30 Hypereutectic Al-Si alloy casting method and ingot

Publications (2)

Publication Number Publication Date
JP2010012470A true JP2010012470A (en) 2010-01-21
JP5157684B2 JP5157684B2 (en) 2013-03-06

Family

ID=41699101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008171838A Expired - Fee Related JP5157684B2 (en) 2008-06-30 2008-06-30 Hypereutectic Al-Si alloy casting method and ingot

Country Status (1)

Country Link
JP (1) JP5157684B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614579A (en) * 2013-12-12 2014-03-05 兴发铝业(成都)有限公司 Energy-saving and efficient aluminum alloy casting process
CN104384462A (en) * 2014-12-12 2015-03-04 西南铝业(集团)有限责任公司 Hot-top casting technology of 7A05 aluminum alloy and aluminum alloy thereof
CN104384482A (en) * 2014-10-29 2015-03-04 青岛科技大学 Method for refining primary silicon in hypereutectic aluminum silicon alloy
CN109957686A (en) * 2019-03-22 2019-07-02 福建工程学院 A kind of cylinder applies alusil alloy and preparation process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6227900A (en) 1999-07-21 2001-02-13 Tropix, Inc. Luminescence detection workstation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158210A (en) * 1992-08-19 1994-06-07 Nippon Light Metal Co Ltd Hyper eutectic al-si alloy having excellent workability and manufacture thereof
JPH06279904A (en) * 1993-03-30 1994-10-04 Nippon Light Metal Co Ltd Production of hyper-eutectic al-si alloy for forging and forging stock
JP2008018467A (en) * 2006-07-14 2008-01-31 Toyama Gokin Kk CONTINUOUS CASTING METHOD OF Al-Si-BASED ALUMINUM ALLOY
WO2008016169A1 (en) * 2006-08-01 2008-02-07 Showa Denko K.K. Process for production of aluminum alloy formings, aluminum alloy formings and production system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158210A (en) * 1992-08-19 1994-06-07 Nippon Light Metal Co Ltd Hyper eutectic al-si alloy having excellent workability and manufacture thereof
JPH06279904A (en) * 1993-03-30 1994-10-04 Nippon Light Metal Co Ltd Production of hyper-eutectic al-si alloy for forging and forging stock
JP2008018467A (en) * 2006-07-14 2008-01-31 Toyama Gokin Kk CONTINUOUS CASTING METHOD OF Al-Si-BASED ALUMINUM ALLOY
WO2008016169A1 (en) * 2006-08-01 2008-02-07 Showa Denko K.K. Process for production of aluminum alloy formings, aluminum alloy formings and production system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614579A (en) * 2013-12-12 2014-03-05 兴发铝业(成都)有限公司 Energy-saving and efficient aluminum alloy casting process
CN103614579B (en) * 2013-12-12 2015-07-15 兴发铝业(成都)有限公司 Energy-saving and efficient aluminum alloy casting process
CN104384482A (en) * 2014-10-29 2015-03-04 青岛科技大学 Method for refining primary silicon in hypereutectic aluminum silicon alloy
CN104384482B (en) * 2014-10-29 2016-05-04 青岛科技大学 A kind of method of primary silicon in refinement transcocrystallized Al-Si alloy
CN104384462A (en) * 2014-12-12 2015-03-04 西南铝业(集团)有限责任公司 Hot-top casting technology of 7A05 aluminum alloy and aluminum alloy thereof
CN104384462B (en) * 2014-12-12 2016-07-20 西南铝业(集团)有限责任公司 The hot top casting technique of a kind of 7A05 aluminium alloy and aluminium alloy thereof
CN109957686A (en) * 2019-03-22 2019-07-02 福建工程学院 A kind of cylinder applies alusil alloy and preparation process

Also Published As

Publication number Publication date
JP5157684B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5027844B2 (en) Method for producing aluminum alloy molded product
JP5360591B2 (en) Aluminum alloy ingot and method for producing the same
JP5157684B2 (en) Hypereutectic Al-Si alloy casting method and ingot
JP2003505251A (en) Semi-solid thickening of metal alloy
JP4907248B2 (en) Continuous casting method of Al-Si aluminum alloy
JP2007119855A (en) Aluminum alloy molten metal treatment method, treatment device, method for casting aluminum alloy ingot for forging, forged and molded product, and casting apparatus for aluminum alloy ingot
US9783871B2 (en) Method of producing aluminium alloys containing lithium
RU2729246C1 (en) Casting method for active metal
CN110387478B (en) Semi-continuous casting method of aluminum-silicon alloy cast ingot
CN107498010A (en) The preparation technology and device of a kind of light alloy semisolid slurry
JP2014037622A (en) Continuously cast rod and forging
JP5689669B2 (en) Continuous casting method of Al-Si aluminum alloy
JP2003183756A (en) Aluminum alloy for semi-solid molding
WO2023084867A1 (en) Aluminum alloy ingot, aluminum alloy material, and method for manufacturing aluminum alloy material
WO2023084864A1 (en) Aluminum alloy ingot, aluminum alloy material, and method for manufacturing aluminum alloy material
JP4544507B2 (en) Al-Si eutectic alloy, casting made of Al alloy, Al alloy for casting, and production method thereof
EP4098382B1 (en) Aluminum alloy ingot and method for manufacturing same
WO2023032911A1 (en) Aluminum alloy ingot and method for producing same
JP2023012240A (en) Horizontal continuous casting apparatus, aluminum alloy cast rod manufacturing method
JP2023161784A (en) Aluminum alloy forging and method for manufacturing the same
JP2008012545A (en) Aluminum alloy solidified body and its production method
JP2023094440A (en) Aluminum alloy forging
JP2021123789A (en) Aluminium alloy ingot and method for manufacturing the same
JP2023094439A (en) Aluminum alloy forging
JP2023104587A (en) Aluminum alloy forged product and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees