JP2010009918A - Lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery Download PDF

Info

Publication number
JP2010009918A
JP2010009918A JP2008167320A JP2008167320A JP2010009918A JP 2010009918 A JP2010009918 A JP 2010009918A JP 2008167320 A JP2008167320 A JP 2008167320A JP 2008167320 A JP2008167320 A JP 2008167320A JP 2010009918 A JP2010009918 A JP 2010009918A
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
negative electrode
secondary battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008167320A
Other languages
Japanese (ja)
Other versions
JP5223494B2 (en
Inventor
Naruaki Okuda
匠昭 奥田
Gen Sasaki
厳 佐々木
Yasuhito Kondo
康仁 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008167320A priority Critical patent/JP5223494B2/en
Publication of JP2010009918A publication Critical patent/JP2010009918A/en
Application granted granted Critical
Publication of JP5223494B2 publication Critical patent/JP5223494B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the deterioration of battery characteristics caused by repeated charges and the discharge of a lithium-ion secondary battery at a high output. <P>SOLUTION: In a positive electrode current collector 11 of the lithium-ion secondary battery 10, an ion movement regulating part 28 to regulate the movement of lithium ions in a face direction orthogonal to the thickness direction of the positive electrode current collector 11 between a positive electrode and a negative electrode is formed. This ion movement regulating part 28 is formed of a plurality of walls of openings 30 installed in the thickness direction so that a positive electrode active material 12 is filled. In the ion movement regulating part 28, the walls to form the openings in a face of the positive electrode current collector may be formed closely or erectly, or a through-hole as an opening may be formed and formed of by the walls of the through-hole in the face of a flat-plate current collector. This ion movement regulating part may be installed at least at one or more of the positive electrode current collector 11, a negative electrode current collector 14, and a separator 19. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

従来、リチウムイオン二次電池としては、両面に開口し内部で3次元構造で貫通させた多数の小孔を有する金属多孔シートを集電体として用い、小孔を通して表裏両面の活物質の間でリチウムイオンを移動可能な構成とし、集電体の表裏でイオン的に短絡させることにより、集電体の表側での容量比と集電体の裏側での容量比とがより均一なものとなり、均一の厚さで活物質が集電体の表面に塗着されないときの不具合を抑制するものが提案されている(例えば、特許文献1参照)。
特開平9−45334号公報
Conventionally, as a lithium ion secondary battery, a metal porous sheet having a large number of small holes that are open on both sides and penetrated in a three-dimensional structure is used as a current collector. By making lithium ions movable and ionically short-circuiting on the front and back of the current collector, the capacity ratio on the front side of the current collector and the capacity ratio on the back side of the current collector become more uniform, The thing which suppresses the malfunction when an active material is not apply | coated to the surface of an electrical power collector with uniform thickness is proposed (for example, refer patent document 1).
JP 9-45334 A

しかしながら、この特許文献1に記載されたリチウムイオン二次電池では、金属多孔シートを集電体に用いることにより、集電体の表裏でイオン的に短絡させることにより複数積層した正極及び負極の各々の間の容量差についてはより均一なものとすることができるが、集電体の表裏でのリチウムイオンの移動しか考慮されていなかった。このため、例えば、定電圧充電を行わずに、高出力(例えば電流密度5C以上など)で繰り返し充放電を行う場合などには、発熱・放熱、電極拘束力等の不均一に起因して電池反応の進行しやすい部分や電池反応の進行しにくい部分などが局部的に発生し、電極面内での反応が不均一に進行し、繰り返しに応じて電極等の面方向へのリチウムイオンの分布のばらつきが蓄積され、同一の電極の面方向へのリチウムイオンの移動がより生じることになり、電極間を移動するリチウムイオンが減少するなどして電池出力の低下や電池容量の低下が生じるという問題があった。   However, in the lithium ion secondary battery described in Patent Document 1, by using a metal porous sheet as a current collector, each of a plurality of positive electrodes and negative electrodes laminated by ion short-circuiting on the front and back of the current collector However, only the movement of lithium ions on the front and back of the current collector was considered. For this reason, for example, when charging and discharging are repeatedly performed at a high output (for example, a current density of 5 C or more) without performing constant voltage charging, the battery is caused by unevenness of heat generation, heat dissipation, electrode binding force, etc. The part where the reaction is likely to proceed and the part where the battery reaction is difficult to proceed are locally generated, the reaction within the electrode surface proceeds non-uniformly, and the lithium ion distribution in the surface direction of the electrode etc. according to repetition Variation of the battery is accumulated, and lithium ions move more in the surface direction of the same electrode, resulting in a decrease in battery output and a decrease in battery capacity due to a decrease in lithium ions moving between the electrodes. There was a problem.

本発明は、このような課題に鑑みなされたものであり、高出力での繰り返し充放電による電池性能の低下をより抑制することができるリチウムイオン二次電池を提供することを主目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the lithium ion secondary battery which can suppress the fall of the battery performance by repeated charging / discharging by high output more.

上述した目的を達成するために鋭意研究したところ、本発明者らは、正極と負極との間で厚さ方向と直交する面方向へのリチウムイオンの移動を規制するイオン移動規制部を有する電池用部材を備えるものとすると、高出力での繰り返し充放電による電池性能の低下をより抑制することができることを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-described object, the present inventors have found that a battery having an ion movement restricting portion that restricts movement of lithium ions in a plane direction perpendicular to the thickness direction between the positive electrode and the negative electrode. It has been found that the battery member can be further prevented from being deteriorated in battery performance due to repeated charging and discharging at high output.

即ち、本発明のリチウムイオン二次電池は、
正極と負極との間でリチウムイオンが移動することにより充放電するリチウム二次電池であって、
前記正極と前記負極との間で厚さ方向と直交する面方向へのリチウムイオンの移動を規制するイオン移動規制部を有する電池用部材を備えているものである。
That is, the lithium ion secondary battery of the present invention is
A lithium secondary battery that is charged and discharged by movement of lithium ions between a positive electrode and a negative electrode,
A battery member having an ion movement restricting portion for restricting movement of lithium ions in a plane direction orthogonal to the thickness direction between the positive electrode and the negative electrode is provided.

このリチウムイオン二次電池では、高出力での繰り返し充放電による電池性能の低下をより抑制することができる。このような効果が得られる理由は明らかではないが、以下のように推測される。例えば、室温下で電流密度が1C程度であれば、電極面内の不均一的な反応は無視できる程度に小さいが、5C以上では発熱・放熱、電極拘束力等の不均一に起因して電池反応の進行しやすい部分や電池反応の進行しにくい部分などが局部的に発生し、電極面内での反応が不均一に進行し、繰り返しに応じて電極等の面方向へのリチウムイオンの分布のばらつきが蓄積されていく。これに起因して、同一の電極の面方向へのリチウムイオンや電解液の移動がより生じることになり、電極間を移動するリチウムイオンが減少するなどして電池出力の低下や電池容量の低下が生じうる。本発明では、正極と負極との間で厚さ方向と直交する面方向へのリチウムイオンの移動を規制するイオン移動規制部を有しており、電池反応の進行しやすい部分や電池反応の進行しにくい部分などが局部的に発生したとしても、リチウムイオンが電極の面方向へ移動するのを抑制可能である。このため、高出力での繰り返し充放電による電池性能の低下をより抑制することができるものと推測される。   In this lithium ion secondary battery, it is possible to further suppress deterioration in battery performance due to repeated charging and discharging at high output. The reason why such an effect is obtained is not clear, but is presumed as follows. For example, if the current density is about 1 C at room temperature, the non-uniform reaction in the electrode surface is negligibly small, but if it is 5 C or more, the battery is caused by non-uniformity such as heat generation / heat dissipation and electrode binding force. The part where the reaction is likely to proceed and the part where the battery reaction is difficult to proceed are locally generated, the reaction within the electrode surface proceeds non-uniformly, and the lithium ion distribution in the surface direction of the electrode etc. according to repetition Variations are accumulated. As a result, more lithium ions and electrolyte move in the surface direction of the same electrode, resulting in a decrease in battery output and battery capacity due to a decrease in lithium ions moving between the electrodes. Can occur. In the present invention, there is an ion movement restricting portion that restricts the movement of lithium ions in the plane direction perpendicular to the thickness direction between the positive electrode and the negative electrode, and the portion where the battery reaction easily proceeds or the progress of the battery reaction. Even if a difficult part or the like is locally generated, it is possible to suppress movement of lithium ions in the surface direction of the electrode. For this reason, it is estimated that the fall of the battery performance by repeated charging / discharging by high output can be suppressed more.

本発明のリチウムイオン二次電池は、リチウムイオンを吸蔵・放出しうる正極活物質を有する正極と、リチウムイオンを吸蔵・放出しうる負極活物質を有する負極と、正極と負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、を備えている。図1は、本発明のリチウムイオン二次電池10の一例を示す模式図である。このリチウムイオン二次電池10は、集電体11に正極活物質12を形成した正極シート13と、集電体14の表面に負極活物質17を形成した負極シート18と、正極シート13と負極シート18との間に設けられたセパレータ19と、正極シート13と負極シート18の間を満たすイオン伝導媒体としての非水電解液20と、を備えたものである。このリチウムイオン二次電池10では、正極シート13と負極シート18との間にセパレータ19を挟み、これらを複数積層して捲回し円筒ケース22に挿入し、正極シート13に接続された正極端子24と負極シートに接続された負極端子26とを配設して形成されている。   The lithium ion secondary battery of the present invention includes a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions, and interposed between the positive electrode and the negative electrode. And an ion conduction medium that conducts lithium ions. FIG. 1 is a schematic view showing an example of a lithium ion secondary battery 10 of the present invention. The lithium ion secondary battery 10 includes a positive electrode sheet 13 in which a positive electrode active material 12 is formed on a current collector 11, a negative electrode sheet 18 in which a negative electrode active material 17 is formed on the surface of the current collector 14, a positive electrode sheet 13 and a negative electrode The separator 19 provided between the sheet | seat 18 and the non-aqueous electrolyte 20 as an ion conduction medium with which the space | interval between the positive electrode sheet 13 and the negative electrode sheet 18 is provided are provided. In this lithium ion secondary battery 10, a separator 19 is sandwiched between a positive electrode sheet 13 and a negative electrode sheet 18, a plurality of these are stacked, wound, inserted into a cylindrical case 22, and a positive electrode terminal 24 connected to the positive electrode sheet 13. And a negative electrode terminal 26 connected to the negative electrode sheet.

本発明のリチウムイオン二次電池の正極は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極合材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。正極活物質としては、遷移金属元素を含む硫化物や、リチウムと遷移金属元素とを含む酸化物などを用いることができる。具体的には、TiS2、TiS3、MoS3、FeS2などの遷移金属硫化物、Li(1-x)MnO2(0<x<1など、以下同じ)、Li(1-x)Mn24などのリチウムマンガン複合酸化物、Li(1-x)CoO2などのリチウムコバルト複合酸化物、Li(1-x)NiO2などのリチウムニッケル複合酸化物、LiV23などのリチウムバナジウム複合酸化物、V25などの遷移金属酸化物などを用いることができる。これらのうち、リチウムの遷移金属複合酸化物、例えば、LiCoO2、LiNiO2、LiMnO2、LiV23などが好ましい。導電材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンマー(EPDM)、スルホン化EPDM、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。正極活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。 The positive electrode of the lithium ion secondary battery of the present invention is obtained by mixing a positive electrode active material, a conductive material, and a binder, and adding a suitable solvent to form a paste-like positive electrode mixture. And may be formed by compression to increase the electrode density as necessary. As the positive electrode active material, a sulfide containing a transition metal element, an oxide containing lithium and a transition metal element, or the like can be used. Specifically, transition metal sulfides such as TiS 2 , TiS 3 , MoS 3 , FeS 2 , Li (1-x) MnO 2 (0 <x <1, etc., the same shall apply hereinafter), Li (1-x) Mn Lithium manganese composite oxide such as 2 O 4 , lithium cobalt composite oxide such as Li (1-x) CoO 2 , lithium nickel composite oxide such as Li (1-x) NiO 2 , lithium such as LiV 2 O 3 Vanadium composite oxides, transition metal oxides such as V 2 O 5, and the like can be used. Of these, lithium transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiV 2 O 3 are preferable. The conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the positive electrode. For example, graphite such as natural graphite (scale-like graphite, scale-like graphite) or artificial graphite, acetylene black, carbon black, What mixed 1 type (s) or 2 or more types, such as ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) can be used. Among these, as the conductive material, carbon black and acetylene black are preferable from the viewpoints of electron conductivity and coatability. The binder serves to bind the active material particles and the conductive material particles, for example, a polytetrafluoroethylene (PTFE), a polyvinylidene fluoride (PVDF), a fluorine-containing resin such as fluorine rubber, or polypropylene, Thermoplastic resins such as polyethylene, ethylene-propylene-dienemer (EPDM), sulfonated EPDM, natural butyl rubber (NBR) and the like can be used alone or as a mixture of two or more. In addition, an aqueous dispersion of cellulose or styrene butadiene rubber (SBR), which is an aqueous binder, can also be used. Examples of the solvent for dispersing the positive electrode active material, the conductive material, and the binder include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, and N, N-dimethylaminopropyl. Organic solvents such as amine, ethylene oxide, and tetrahydrofuran can be used. Moreover, a dispersing agent, a thickener, etc. may be added to water, and an active material may be slurried with latex, such as SBR. As the thickener, for example, polysaccharides such as carboxymethyl cellulose and methyl cellulose can be used alone or as a mixture of two or more. Examples of the application method include roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, and the like, and any of these can be used to obtain an arbitrary thickness and shape.

本発明のリチウムイオン二次電池の正極集電体11には、正極と負極との間で正極集電体11の厚さ方向と直交する面方向へのリチウムイオンの移動を規制するイオン移動規制部28が形成されている。このイオン移動規制部28は、正極活物質12が充填されるように厚さ方向に設けられた複数の開口30の壁部により形成されている。この開口30は、表裏面での容量比の分布をより均一なものとする点では貫通孔としてもよいし、活物質との電気的な接続を確保する点では有底孔としてもよい。即ち、イオン移動規制部28は、平板状の正極集電体の面に開口を形成する壁部(立壁部)が密接又は立設して形成されているものとしてもよいし、平板状の集電体の面に開口部としての貫通孔が穿設されこの貫通孔の壁部により形成されているものとしてもよい。ここでは、1枚の集電板の表面に、開口が形成されたエキスパンドメタル又は開口が形成されたパンチング板のいずれかを貼り合わせることにより、有底孔を有する開口30を形成しているものとした。このように、正極シート13では、イオン移動規制部28により間仕切られた小部屋に正極活物質12が充填されている構造となっている。この開口の形状は、円形としてもよいし、矩形や六角形や八角形など多角形としてもよい。また、開口の大きさは電池容量や電池出力に応じて適宜選択すればよいが、例えば1mm以上10mm以下としてもよい。集電体の部材面積に対する開口面積の比率である開口率は、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。開口率が70%以上であれば、正極活物質の量が相対的に小さくなるのを抑制することができる。また、機械的強度やリチウムイオンの面方向の移動を規制する効果を考慮すると、開口率は、98%以下であることが好ましい。また、正極集電体11に固着させる正極活物質12は、開口30の空間にのみ充填するのが最も好ましいが、正極集電体11の表面にも固着させるものとしてもよい。このとき、正極集電体11の表面には、イオン移動規制部28の厚さの50%以下の厚さで正極活物質12を固着させるものとするのが好ましい。正極集電体11上に形成される正極活物質12がイオン移動規制部28の厚さの50%の厚さ以下であれば、厚さ方向と直交する面方向にリチウムイオンが移動可能とはなるが、それでもリチウムイオンが移動するのをイオン移動規制部28により抑制することができ好ましい。この正極集電体11としては、アルミニウム、チタン、スレンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。正極集電体11の形状については、箔状、フィルム状、シート上、ネット上、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。正極集電体11の厚さは、例えば1〜500μmのものを用いることができる。   The positive electrode current collector 11 of the lithium ion secondary battery of the present invention has an ion movement restriction that restricts the movement of lithium ions in the plane direction perpendicular to the thickness direction of the positive electrode current collector 11 between the positive electrode and the negative electrode. A portion 28 is formed. The ion movement restricting portion 28 is formed by wall portions of a plurality of openings 30 provided in the thickness direction so as to be filled with the positive electrode active material 12. The opening 30 may be a through hole in terms of making the distribution of the capacitance ratio on the front and back surfaces more uniform, or may be a bottomed hole in terms of ensuring electrical connection with the active material. In other words, the ion movement restricting portion 28 may be formed such that a wall portion (standing wall portion) that forms an opening is in close contact with or standing on the surface of the flat plate-like positive electrode current collector, or a flat plate-like current collector. A through-hole as an opening may be formed on the surface of the electric body, and the wall may be formed by the through-hole. Here, an opening 30 having a bottomed hole is formed by bonding either an expanded metal having an opening or a punching plate having an opening formed on the surface of a current collector plate. It was. Thus, the positive electrode sheet 13 has a structure in which the positive electrode active material 12 is filled in small chambers partitioned by the ion movement restricting portion 28. The shape of the opening may be a circle or a polygon such as a rectangle, a hexagon, or an octagon. Further, the size of the opening may be appropriately selected according to the battery capacity and the battery output, but may be, for example, 1 mm or more and 10 mm or less. The opening ratio, which is the ratio of the opening area to the member area of the current collector, is preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more. If the aperture ratio is 70% or more, the amount of the positive electrode active material can be suppressed from becoming relatively small. In consideration of the mechanical strength and the effect of regulating the movement of lithium ions in the plane direction, the aperture ratio is preferably 98% or less. The positive electrode active material 12 to be fixed to the positive electrode current collector 11 is most preferably filled only in the space of the opening 30, but may be fixed to the surface of the positive electrode current collector 11. At this time, it is preferable that the positive electrode active material 12 is fixed to the surface of the positive electrode current collector 11 with a thickness of 50% or less of the thickness of the ion movement restricting portion 28. If the positive electrode active material 12 formed on the positive electrode current collector 11 is 50% or less of the thickness of the ion movement restricting portion 28, lithium ions can move in the plane direction perpendicular to the thickness direction. Even so, it is preferable that the lithium ion movement can be suppressed by the ion movement regulating unit 28. As the positive electrode current collector 11, aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, conductive glass, and the like are used for the purpose of improving adhesion, conductivity, and oxidation resistance. A surface treated with carbon, nickel, titanium, silver, or the like can be used. For these, the surface can be oxidized. Examples of the shape of the positive electrode current collector 11 include a foil shape, a film shape, a sheet, a net, a punched or expanded material, a lath body, a porous body, a foamed body, and a formed body of fiber groups. The thickness of the positive electrode current collector 11 can be, for example, 1 to 500 μm.

本発明のリチウムイオン二次電池の負極は、例えば負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極合材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。負極活物質としては、リチウム、リチウム合金、スズ化合物などの無機化合物、リチウムイオンを吸蔵・放出可能な炭素質材料、導電性ポリマーなどが挙げられるが、このうち炭素質材料が安全性の面から見て好ましい。この炭素質材料は、特に限定されるものではないが、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が、金属リチウムに近い作動電位を有し、高い作動電圧での充放電が可能であり電解質塩としてリチウム塩を使用した場合に自己放電を抑え、且つ充電時における不可逆容量を少なくできるため、好ましい。また、負極に用いられる導電材、結着材、溶剤などは、それぞれ正極で例示したものを用いることができる。   The negative electrode of the lithium ion secondary battery of the present invention is obtained by mixing a negative electrode active material, a conductive material, and a binder, and adding a suitable solvent to form a paste-like negative electrode mixture. And may be formed by compression to increase the electrode density as necessary. Examples of negative electrode active materials include inorganic compounds such as lithium, lithium alloys and tin compounds, carbonaceous materials capable of occluding and releasing lithium ions, and conductive polymers. Among these, carbonaceous materials are used from the viewpoint of safety. It is preferable to see. The carbonaceous material is not particularly limited, and examples thereof include cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, and carbon fibers. Of these, graphites such as artificial graphite and natural graphite have an operating potential close to that of metallic lithium, can be charged and discharged at a high operating voltage, and suppresses self-discharge when a lithium salt is used as an electrolyte salt. In addition, it is preferable because the irreversible capacity during charging can be reduced. In addition, as the conductive material, binder, solvent, and the like used for the negative electrode, those exemplified for the positive electrode can be used.

本発明のリチウムイオン二次電池の負極集電体14には、正極と負極との間で負極集電体14の厚さ方向と直交する面方向へのリチウムイオンの移動を規制するイオン移動規制部32が形成されている。このイオン移動規制部32は、負極活物質17が充填されるように厚さ方向に設けられた複数の開口34の壁部により形成されている。この開口34は、表裏面での容量比の分布をより均一なものとする点では貫通孔としてもよいし、活物質との電気的な接続を確保する点では有底孔としてもよい。即ち、イオン移動規制部32は、平板状の負極集電体の面に開口を形成する壁部(立壁部)が密接又は立設して形成されているものとしてもよいし、平板状の集電体の面に開口部としての貫通孔が穿設されこの貫通孔の壁部により形成されているものとしてもよい。ここでは、1枚の集電板の表面に、開口が形成されたエキスパンドメタル又は開口が形成されたパンチング板のいずれかを貼り合わせることにより、有底孔を有する開口34を形成しているものとした。このように、負極シート18では、イオン移動規制部32により間仕切られた小部屋に負極活物質17が充填されている構造となっている。この開口の形状は、円形としてもよいし、矩形や六角形や八角形など多角形としてもよい。また、開口の大きさは電池容量や電池出力に応じて適宜選択すればよいが、例えば1mm以上10mm以下としてもよい。集電体の部材面積に対する開口面積の比率である開口率は、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。開口率が70%以上であれば、負極活物質の量が相対的に小さくなるのを抑制することができる。また、機械的強度やリチウムイオンの面方向の移動を規制する効果を考慮すると、開口率は、98%以下であることが好ましい。また、負極集電体14に固着させる負極活物質17は、開口34の空間にのみ充填するのが最も好ましいが、負極集電体14の表面にも固着させるものとしてもよい。このとき、負極集電体14の表面には、イオン移動規制部32の厚さの50%以下の厚さで負極活物質17を固着させるものとするのが好ましい。負極集電体14の表面上に形成される負極活物質17がイオン移動規制部32の厚さの50%の厚さ以下であれば、厚さ方向と直交する面方向にリチウムイオンが移動可能とはなるが、それでもリチウムイオンが移動するのをイオン移動規制部32により抑制することができ好ましい。この負極集電体14としては、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。   In the negative electrode current collector 14 of the lithium ion secondary battery of the present invention, ion movement regulation that regulates the movement of lithium ions in the plane direction perpendicular to the thickness direction of the negative electrode current collector 14 between the positive electrode and the negative electrode. A portion 32 is formed. The ion movement restricting portion 32 is formed by wall portions of a plurality of openings 34 provided in the thickness direction so as to be filled with the negative electrode active material 17. The opening 34 may be a through hole in terms of making the distribution of the capacitance ratio on the front and back surfaces more uniform, or may be a bottomed hole in terms of ensuring electrical connection with the active material. In other words, the ion movement restricting portion 32 may be formed such that a wall portion (standing wall portion) that forms an opening is closely or standingly formed on the surface of the flat plate-like negative electrode current collector, or a flat plate-like current collector. A through-hole as an opening may be formed on the surface of the electric body, and the wall may be formed by the through-hole. Here, the opening 34 having a bottomed hole is formed by bonding either an expanded metal with an opening or a punching plate with an opening formed on the surface of a current collector plate. It was. Thus, the negative electrode sheet 18 has a structure in which the negative electrode active material 17 is filled in small chambers partitioned by the ion movement restriction unit 32. The shape of the opening may be a circle or a polygon such as a rectangle, a hexagon, or an octagon. Further, the size of the opening may be appropriately selected according to the battery capacity and the battery output, but may be, for example, 1 mm or more and 10 mm or less. The opening ratio, which is the ratio of the opening area to the member area of the current collector, is preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more. When the aperture ratio is 70% or more, the amount of the negative electrode active material can be suppressed from becoming relatively small. In consideration of the mechanical strength and the effect of regulating the movement of lithium ions in the plane direction, the aperture ratio is preferably 98% or less. The negative electrode active material 17 to be fixed to the negative electrode current collector 14 is most preferably filled only in the space of the opening 34, but may be fixed to the surface of the negative electrode current collector 14. At this time, it is preferable that the negative electrode active material 17 is fixed to the surface of the negative electrode current collector 14 with a thickness of 50% or less of the thickness of the ion movement restricting portion 32. If the negative electrode active material 17 formed on the surface of the negative electrode current collector 14 is 50% or less of the thickness of the ion movement restricting portion 32, lithium ions can move in the plane direction perpendicular to the thickness direction. Nevertheless, it is preferable that the lithium ion movement can be suppressed by the ion movement regulating unit 32. As this negative electrode current collector 14, in addition to copper, nickel, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., adhesion, conductivity and reduction resistance are improved. For this purpose, for example, a copper surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized.

本発明のリチウムイオン二次電池のイオン伝導媒体としては、支持塩を含む非水系電解液や非水系ゲル電解液などを用いることができる。非水電解液の溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネートやプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネート類、γ−ブチルラクトン、γ−バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、
テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3−ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。このうち、環状カーボネート類と鎖状カーボネート類との組み合わせが好ましい。この組み合わせによると、充放電の繰り返しでの電池特性を表すサイクル特性が優れているばかりでなく、電解液の粘度、得られる電池の電気容量、電池出力などをバランスの取れたものとすることができる。なお、環状カーボネート類は、比誘電率が比較的高く、電解液の誘電率を高めていると考えられ、鎖状カーボネート類は、電解液の粘度を抑えていると考えられる。
As an ion conduction medium of the lithium ion secondary battery of the present invention, a non-aqueous electrolyte solution containing a supporting salt, a non-aqueous gel electrolyte solution, or the like can be used. Examples of the solvent for the nonaqueous electrolytic solution include carbonates, esters, ethers, nitriles, furans, sulfolanes and dioxolanes, and these can be used alone or in combination. Specifically, as carbonates, cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl-n-butyl carbonate, methyl-t -Chain carbonates such as butyl carbonate, di-i-propyl carbonate, t-butyl-i-propyl carbonate, cyclic esters such as γ-butyllactone and γ-valerolactone, methyl formate, methyl acetate, ethyl acetate, Chain esters such as methyl butyrate, ethers such as dimethoxyethane, ethoxymethoxyethane and diethoxyethane, nitriles such as acetonitrile and benzonitrile,
Examples include furans such as tetrahydrofuran and methyltetrahydrofuran, sulfolanes such as sulfolane and tetramethylsulfolane, and dioxolanes such as 1,3-dioxolane and methyldioxolane. Among these, the combination of cyclic carbonates and chain carbonates is preferable. According to this combination, not only the cycle characteristics representing the battery characteristics in repeated charge and discharge are excellent, but also the viscosity of the electrolyte, the electric capacity of the obtained battery, the battery output, etc. should be balanced. it can. The cyclic carbonates are considered to have a relatively high relative dielectric constant and increase the dielectric constant of the electrolytic solution, and the chain carbonates are considered to suppress the viscosity of the electrolytic solution.

本発明のリチウムイオン二次電池に含まれている支持塩は、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiAsF6、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この電解質塩は、非水電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。電解質塩の濃度が0.1mol/L以上では、十分な電流密度を得ることができ、5mol/L以下では、電解液をより安定させることができる。また、この非水電解液には、リン系、ハロゲン系などの難燃剤を添加してもよい。また、液状のイオン伝導媒体の代わりに、固体のイオン伝導性ポリマーをイオン伝導媒体として用いることもできる。 The supporting salt contained in the lithium ion secondary battery of the present invention is, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3. , LiSbF 6, LiSiF 6, LiAlF 4, LiSCN, LiClO 4, LiCl, LiF, LiBr, LiI, and the like LiAlCl 4. Among these, from the group consisting of inorganic salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , and organic salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3. It is preferable from the viewpoint of electrical characteristics to use a combination of one or two or more selected salts. This electrolyte salt preferably has a concentration in the non-aqueous electrolyte of 0.1 mol / L or more and 5 mol / L or less, and more preferably 0.5 mol / L or more and 2 mol / L or less. When the concentration of the electrolyte salt is 0.1 mol / L or more, a sufficient current density can be obtained, and when the concentration is 5 mol / L or less, the electrolytic solution can be made more stable. Moreover, you may add flame retardants, such as a phosphorus type and a halogen type, to this non-aqueous electrolyte. Further, instead of the liquid ion conducting medium, a solid ion conducting polymer may be used as the ion conducting medium.

本発明のリチウムイオン二次電池は、負極と正極との間にセパレータ19を備えている。セパレータとしては、二次電池の使用範囲に耐えうる材質であれば特に限定されずに用いることができ、優れたレート特性を示す多孔膜や不織布などを単独又は併用することが好ましい。このセパレータは、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体及びフッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体などのフッ素系樹脂、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシド及びポリプロピレンオキシドなどのポリエーテル類、カルボキシルメチルセルロースやヒドロキシプロピルセルロースなどのセルロース類、ポリ(メタ)アクリル酸及びその他のエステル類を主体とする高分子化合物やその誘導体、これらの共重合体や混合物からなるフィルムなどが挙げられる。また、これらは単独で用いてもよいし、複合して用いてもよい。また、これらのフィルムには、例えばイオンの伝導性を高める添加剤や強度・耐食性を高めるような種々の添加剤を添加してもよい。この微多孔フィルムのうち、ポリエチレンやポリプロピレン、ポリフッ化ビニリデン、ポリスルホンなどが好ましく用いられる。   The lithium ion secondary battery of the present invention includes a separator 19 between the negative electrode and the positive electrode. As the separator, any material that can withstand the use range of the secondary battery can be used without particular limitation, and it is preferable to use a porous film or a non-woven fabric exhibiting excellent rate characteristics alone or in combination. This separator is, for example, a polyolefin resin such as polyethylene or polypropylene, a polyester resin such as polyethylene terephthalate or polybutylene terephthalate, a polyvinylidene fluoride, a vinylidene fluoride-tetrafluoroethylene copolymer, or a vinylidene fluoride-perfluoroethylene copolymer. Polymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride- Ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene Polymers and fluororesins such as vinylidene fluoride-ethylene-tetrafluoroethylene copolymer, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyethylene oxide and polypropylene oxide Examples include polyethers, celluloses such as carboxymethyl cellulose and hydroxypropyl cellulose, polymer compounds mainly composed of poly (meth) acrylic acid and other esters, derivatives thereof, and films made of copolymers or mixtures thereof. It is done. These may be used alone or in combination. Further, for example, an additive for enhancing ion conductivity and various additives for enhancing strength and corrosion resistance may be added to these films. Of these microporous films, polyethylene, polypropylene, polyvinylidene fluoride, polysulfone and the like are preferably used.

本発明のリチウムイオン二次電池のセパレータ19は、正極と負極との間で負極集電体14の厚さ方向と直交する面方向へのリチウムイオンの移動を規制するイオン移動規制部38が形成されている。このイオン移動規制部38は、セパレータ19の厚さ方向に設けられた複数の開口としての貫通孔36の壁部により形成されている。このセパレータ19は、厚さ方向には連続した貫通孔36が形成され、厚さ方向と直行する面方向には連続した孔を形成しない部材により構成されている。この貫通孔36の開口部の形状は、円形としてもよいし、矩形や六角形や八角形など多角形としてもよい。また、貫通孔36の開口の大きさは電池容量や電池出力に応じて適宜選択すればよいが、例えば1mm以上10mm以下としてもよい。セパレータ19の部材面積に対する開口面積の比率である開口率は、70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることが更に好ましい。開口率が70%以上であれば、リチウムイオンが電極間で移動しやすい。また、機械的強度やセパレータの機能を考慮すると、開口率は、90%以下であることが好ましい。   The separator 19 of the lithium ion secondary battery of the present invention is formed with an ion movement restricting portion 38 that restricts the movement of lithium ions in the plane direction perpendicular to the thickness direction of the negative electrode current collector 14 between the positive electrode and the negative electrode. Has been. The ion movement restricting portion 38 is formed by a wall portion of a through hole 36 as a plurality of openings provided in the thickness direction of the separator 19. The separator 19 is formed of a member in which a continuous through hole 36 is formed in the thickness direction and a continuous hole is not formed in a surface direction perpendicular to the thickness direction. The shape of the opening of the through hole 36 may be a circle or a polygon such as a rectangle, a hexagon, or an octagon. Further, the size of the opening of the through hole 36 may be appropriately selected according to the battery capacity and the battery output, but may be, for example, 1 mm or more and 10 mm or less. The opening ratio, which is the ratio of the opening area to the member area of the separator 19, is preferably 70% or more, more preferably 80% or more, and still more preferably 85% or more. When the aperture ratio is 70% or more, lithium ions easily move between the electrodes. In consideration of mechanical strength and separator function, the aperture ratio is preferably 90% or less.

本発明のリチウムイオン二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用するのが好ましい。   The shape of the lithium ion secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, it is preferable to apply to the large sized thing used for an electric vehicle etc.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、正極集電体11、負極集電体14及びセパレータ19のいずれにもイオン移動規制部を設けるものとしたが、これらのうち少なくとも1つにイオン移動規制部を設けるものとしてもよい。こうしても、高出力での繰り返し充放電による電池性能の低下をより抑制することができる。   For example, in the above-described embodiment, the positive electrode current collector 11, the negative electrode current collector 14, and the separator 19 are each provided with the ion movement restricting portion, but at least one of them is provided with the ion movement restricting portion. It may be a thing. Even if it does in this way, the fall of the battery performance by repeated charging / discharging by high output can be suppressed more.

上述した実施形態では、正極集電体11及び負極集電体14にイオン移動規制部を設けるものとしたが、特にこれに限定されず、正極シート13や負極シート18にイオン移動規制部を設けるものとすれば、どのように設けるものとしてもよい。   In the embodiment described above, the positive electrode current collector 11 and the negative electrode current collector 14 are provided with the ion movement restricting portion. However, the present invention is not particularly limited thereto, and the positive electrode sheet 13 and the negative electrode sheet 18 are provided with the ion movement restricting portion. As long as it is, it may be provided in any way.

上述した実施形態では、イオン移動規制部28,32は、正極集電体11又は負極集電体14と同じ材質で形成されているものとしたが、イオン移動規制部28,32は、リチウムイオンが通過できない材質で且つ電池反応時に安定な材質であればどのような材質により形成されていてもよい。   In the embodiment described above, the ion movement restricting portions 28 and 32 are made of the same material as the positive electrode current collector 11 or the negative electrode current collector 14, but the ion movement restricting portions 28 and 32 are made of lithium ions. May be formed of any material as long as it is a material that cannot pass through and is stable during battery reaction.

以下には、リチウムイオン二次電池を具体的に作製した例を、実験例として説明する。   Below, the example which produced the lithium ion secondary battery concretely is demonstrated as an experiment example.

[実験例1]
正極活物質として、LiNi0.8Co0.15Al0.052の層状構造リチウムニッケル複合酸化物を用いた。この正極活物質を85重量%、導電材としてカーボンブラックを10重量%、結着材としてポリフッ化ビニリデンを5重量%混合し、分散材としてN−メチル−2−ピロリドンを適量添加、分散してスラリー状正極合材とした。スラリー状正極合材を20μm厚のアルミニウム箔集電体の片面に塗布した後、乾燥前に図2の上段に示すAl製エキスパンドメタルを塗布した正極合材上に配置して乾燥させた。図2は、実験例に用いたイオン移動規制部としてのエキスパンドメタル及びパンチング集電体の説明図である。正極電極用のエキスパンドメタルは、壁厚さが0.2mm,開口が幅5mm×長さ10mmの菱形、厚さが35μm、開口率が95.4%、材質がAlであり、負極電極用のエキスパンドメタルは、壁厚さが0.2mm,開口が幅5mm×長さ10mmの菱形、厚さが40μm、開口率が95.4%、材質がCuである。裏面にも同じようにスラリー状正極合材を塗布後にAl製エキスパンドメタルを配置して乾燥させた。その後、ロールプレスで正極合材部の密度を2.5g/cm3に高密度化し、54mm幅×450mm長の形状に切り出したものを正極シートとした。なお、正極活物質の付着量は、エキスパンドメタルの無い部分で片面当り7mg/cm2であった。なお、エキスパンドメタルの開口率は90%を超えるため、電池反応を大きく阻害しないものである。負極活物質として、球状人造黒鉛を用いた。上記負極活物質を95重量%、結着材としてポリフッ化ビニリデンを5重量%混合し、分散材としてN−メチル−2−ピロリドンを適量添加、分散してスラリー状負極合材とした。スラリー状負極合材を10μm厚の銅箔集電体の両面に塗布した後、乾燥前に図2中段に示すCu製エキスパンドメタルを塗布した負極合材上に配置して乾燥させた。裏面にも同じようにスラリー状負極合材を塗布後にCu製エキスパンドメタルを配置して乾燥させた。その後、ロールプレスで負極合材密度を1.5g/cm3に高密度化し、56mm幅×500mm長の形状に切り出したものを負極シートとした。なお、負極活物質の付着量は、エキスパンドメタルの無い部分で片面当り5mg/cm2であった。負極の場合も、エキスパンドメタルの開口率は90%を超えるため、電池反応を大きく阻害しないものである。上記の正極シートと負極シートを、58mm幅で25μm厚の多孔質ポリエチレン製セパレータを挟んで捲回しロール状電極体を作製した。このセパレータは図3に示すように、厚さ方向には連続した孔であるが、厚さ方向と直行する面方向には連続した孔を形成しない多孔質セパレータで、開口率は70%であり、一般に使用されている厚さ方向にも面方向にも連続孔を有する不織布様のセパレータの開口率とほぼ同等である。このロール状電極体を18650型円筒ケースに挿入し、非水電解液を含侵させた後に密閉して円筒型リチウムイオン二次電池を作製した。非水電解液には、エチレンカーボネートとジエチルカーボネートを30:70体積%で混合した混合溶媒に、LiPF6を1Mの濃度で溶解したものを用いた。実験例1〜8の電池構成の概略を表す説明図を図4に示す。
[Experimental Example 1]
As the positive electrode active material, a layered structure lithium nickel composite oxide of LiNi 0.8 Co 0.15 Al 0.05 O 2 was used. 85% by weight of this positive electrode active material, 10% by weight of carbon black as a conductive material, 5% by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone as a dispersing agent is added and dispersed. A slurry-like positive electrode mixture was obtained. The slurry-like positive electrode mixture was applied to one side of a 20 μm-thick aluminum foil current collector, and was then placed and dried on the positive electrode mixture to which the Al expanded metal shown in the upper part of FIG. 2 was applied before drying. FIG. 2 is an explanatory diagram of an expanded metal and a punching current collector as an ion movement regulating unit used in the experimental example. The expanded metal for positive electrode has a wall thickness of 0.2 mm, an opening 5 mm wide × 10 mm long rhombus, a thickness of 35 μm, an aperture ratio of 95.4%, and a material of Al. The expanded metal has a rhombus with a wall thickness of 0.2 mm, an opening width of 5 mm × length of 10 mm, a thickness of 40 μm, an aperture ratio of 95.4%, and a material of Cu. Similarly, after applying the slurry-like positive electrode mixture on the back surface, an Al expanded metal was placed and dried. Thereafter, the density of the positive electrode mixture portion was increased to 2.5 g / cm 3 by a roll press and cut into a 54 mm wide × 450 mm long shape to obtain a positive electrode sheet. In addition, the adhesion amount of the positive electrode active material was 7 mg / cm 2 per side in a portion where no expanded metal was present. In addition, since the opening ratio of expanded metal exceeds 90%, the battery reaction is not greatly inhibited. Spherical artificial graphite was used as the negative electrode active material. 95% by weight of the negative electrode active material and 5% by weight of polyvinylidene fluoride as a binder were mixed, and an appropriate amount of N-methyl-2-pyrrolidone was added and dispersed as a dispersion material to obtain a slurry-like negative electrode mixture. After applying the slurry-like negative electrode mixture on both surfaces of a 10 μm thick copper foil current collector, the slurry-like negative electrode mixture was placed on the negative electrode mixture coated with Cu expanded metal shown in the middle of FIG. 2 and dried before drying. Similarly, after applying the slurry-like negative electrode mixture on the back surface, Cu expanded metal was placed and dried. Thereafter, the density of the negative electrode mixture was increased to 1.5 g / cm 3 with a roll press, and the negative electrode sheet was cut into a shape of 56 mm width × 500 mm length. In addition, the adhesion amount of the negative electrode active material was 5 mg / cm 2 per side in a portion where no expanded metal was present. Also in the case of the negative electrode, the open metal ratio of the expanded metal exceeds 90%, so that the battery reaction is not significantly inhibited. The positive electrode sheet and the negative electrode sheet were wound by sandwiching a porous polyethylene separator having a width of 58 mm and a thickness of 25 μm to produce a rolled electrode body. As shown in FIG. 3, this separator is a porous separator that is continuous in the thickness direction but does not form continuous holes in the surface direction perpendicular to the thickness direction, and has an opening ratio of 70%. The opening ratio of the nonwoven fabric-like separator having continuous holes both in the thickness direction and in the surface direction is generally equivalent. This roll-shaped electrode body was inserted into a 18650 type cylindrical case, impregnated with a non-aqueous electrolyte, and then sealed to produce a cylindrical lithium ion secondary battery. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1M in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at 30: 70% by volume was used. FIG. 4 is an explanatory diagram showing an outline of the battery configuration of Experimental Examples 1-8.

[実験例2〜6]
負極電極の表裏にエキスパンドメタル配置しないこと以外は実験例1と同様の電池構成として作成したものを実験例2とした。また、正極電極の表裏にエキスパンドメタル配置しないこと以外は実験例1と同様の電池構成として作成したものを実験例3とした。また、負極電極の表裏にエキスパンドメタル配置しないこと、およびセパレータに不織布様のポリエチレン製セパレータ、すなわちセパレータ中の孔が厚さ方向のみでなく、面方向にも連続している一般のセパレータを用いた以外は実験例1と同様の電池構成として作成したものを実験例4とした。また、正極電極の表裏にエキスパンドメタル配置しないこと、およびセパレータに不織布様のポリエチレン製セパレータ、すなわちセパレータ中の孔が厚さ方向のみでなく、面方向にも連続している一般のセパレータを用いた以外は実験例1と同様の電池構成として作成したものを実験例5とした。また、負極電極および正極電極の表裏にエキスパンドメタル配置しないこと以外は実験例1と同様の電池構成として作成したものを実験例6とした。
[Experimental Examples 2 to 6]
An experimental example 2 was prepared as a battery configuration similar to experimental example 1 except that no expanded metal was placed on the front and back of the negative electrode. An experimental example 3 was prepared as the same battery configuration as in experimental example 1 except that no expanded metal was placed on the front and back of the positive electrode. Moreover, the expanded metal is not disposed on the front and back of the negative electrode, and a non-woven polyethylene separator is used as the separator, that is, a general separator in which the holes in the separator are continuous not only in the thickness direction but also in the surface direction. Except for the above, a battery configuration similar to that of Experimental Example 1 was set as Experimental Example 4. Moreover, the expanded metal is not arranged on the front and back of the positive electrode, and a non-woven polyethylene separator is used as the separator, that is, a general separator in which the holes in the separator are continuous not only in the thickness direction but also in the surface direction. A battery configuration similar to that of Experimental Example 1 except for the above was designated as Experimental Example 5. An experimental example 6 was prepared as a battery configuration similar to that of Experimental example 1 except that no expanded metal was placed on the front and back of the negative electrode and the positive electrode.

[実験例7〜8]
負極電極および正極電極に用いる集電体に図2下段に示すパンチングメタルを使用し、パンチングメタルの開口にのみ正負極活物質を充填した以外は実験例1と同様の電池構成として作成したものを実験例7とした。なお、このパンチングメタルは、正極では材質をAlとし、負極では材質をCuとし、開口の孔径が10mm、孔ピッチが10.5mm、開口率が82%であるものを用いた。また、負極電極および正極電極に用いる集電体に図2下段に示すパンチングメタルを使用し、正極ではパンチングメタルの開口に正極合材を充填すると共に、このパンチングメタルの上下にこの厚さの50%の厚さとなる正極合材を配置し、負極では正極と同様にパンチングメタルの開口に負極合材を充填すると共に、パンチングメタルの上下にこの厚さの50%の厚さとなる負極合材を配置した以外は実験例1と同様の電池構成として作成したものを実験例8とした。
[Experimental Examples 7-8]
A battery configuration similar to that of Experimental Example 1 except that the punching metal shown in the lower part of FIG. 2 was used for the current collector used for the negative electrode and the positive electrode, and the positive and negative electrode active materials were filled only in the opening of the punching metal. It was set as Experimental example 7. The punching metal was made of Al for the positive electrode and Cu for the negative electrode, and had a hole diameter of 10 mm, a hole pitch of 10.5 mm, and an opening ratio of 82%. Further, a punching metal shown in the lower part of FIG. 2 is used for the current collector used for the negative electrode and the positive electrode, and in the positive electrode, the opening of the punching metal is filled with the positive electrode mixture, and the thickness of 50 mm above and below the punching metal. In the negative electrode, as in the positive electrode, the opening of the punching metal is filled with the negative electrode mixture, and the negative electrode mixture having a thickness of 50% of this thickness is formed above and below the punching metal. A battery configuration similar to that of Experimental Example 1 except for the arrangement was designated as Experimental Example 8.

[実験例9,10]
負極電極および正極電極の表裏にエキスパンドメタル配置しないこと、およびセパレータに不織布様のポリエチレン製セパレータ、すなわちセパレータ中の孔が厚さ方向のみでなく、面方向にも連続している一般のセパレータを用いた以外は実験例1と同様の電池構成として作成したものを実験例9とした。これは、いわゆる従来の電池構成である。また、負極電極および正極電極に用いる集電体に図2下段に示すパンチングメタルを使用し、正極ではパンチングメタルの開口に正極合材を充填すると共に、このパンチングメタルの上下にこの厚さの400%の厚さとなる正極合材を配置し、負極では正極と同様にパンチングメタルの開口に負極合材を充填すると共に、パンチングメタルの上下にこの厚さの400%の厚さとなる負極合材を配置した以外は実験例1と同様の電池構成として作成したものを実験例10とした。実験例9,10の電池構成の概略を表す説明図を図5に示す。
[Experimental Examples 9 and 10]
Do not place expanded metal on the front and back of the negative electrode and the positive electrode, and use a non-woven polyethylene separator for the separator, that is, a general separator in which the holes in the separator are continuous not only in the thickness direction but also in the surface direction. A battery configuration similar to that of Experimental Example 1 except for the above was designated as Experimental Example 9. This is a so-called conventional battery configuration. Further, a punching metal shown in the lower part of FIG. 2 is used for the current collector used for the negative electrode and the positive electrode. In the positive electrode, the opening of the punching metal is filled with the positive electrode mixture, and the thickness of 400 mm above and below the punching metal. In the negative electrode, the negative electrode mixture is filled in the opening of the punching metal in the same manner as the positive electrode, and 400% of the thickness is formed above and below the punching metal. A battery configuration similar to that of Experimental Example 1 except for the arrangement was designated as Experimental Example 10. An explanatory diagram showing an outline of the battery configuration of Experimental Examples 9 and 10 is shown in FIG.

[充放電サイクル試験]
充放電サイクル試験は、0℃の温度条件下で、電流密度10mA/cm2の定電流で充電上限電圧4.1Vまで充電を行い、次いで電流密度10mA/cm2の定電流で放電下限電圧3.0Vまで放電を行う充放電を1サイクルとし、このサイクルを合計200サイクル行った。そして、充放電サイクル試験前の放電容量を初期放電容量として、次式(1)を用いて200サイクル後の容量維持率を計算した。ここでは、定電圧充電を行わずに、高出力で充放電が繰り返される条件で各リチウムイオン二次電池の性能について検討した。
200サイクル後の放電容量/初期放電容量×100% … 式(1)
[Charge / discharge cycle test]
In the charge / discharge cycle test, charging was performed at a constant current with a current density of 10 mA / cm 2 to a charge upper limit voltage of 4.1 V under a temperature condition of 0 ° C., and then a discharge lower limit voltage of 3 with a constant current of 10 mA / cm 2. Charging / discharging for discharging to 0.0 V was defined as one cycle, and this cycle was performed 200 times in total. And the capacity | capacitance maintenance factor after 200 cycles was calculated using following Formula (1) by making discharge capacity before a charging / discharging cycle test into initial stage discharge capacity. Here, the performance of each lithium ion secondary battery was examined under conditions where charging and discharging were repeated at a high output without performing constant voltage charging.
Discharge capacity after 200 cycles / initial discharge capacity × 100% Formula (1)

[実験結果]
実験例1〜10の200サイクル後の容量維持率の測定結果を表1に示す。その結果、実験例1〜8はいずれも70%以上の高い容量維持率を示し、特に実験例1〜3、7、8は約90%と高い容量維持率であることがわかった。これは、高い電流密度の充放電時には、局所的な充放電反応の進行に伴う不均一的な電池反応が生じるが、実験例1〜8では、正負極合材中に存在するイオン移動規制部としてのエキスパンドメタルやパンチングメタル、あるいは、面内に連続孔を有しないイオン移動規制部としてのセパレータなどのいずれか1以上が、Liイオンや電解液の電極・セパレータの面方向への移動を抑制するためであると考えられる。上記結果から明らかなように、正極電極、負極電極、セパレータのすべてについて、面方向へLiイオンや電解液を移動させない構成にするのが望ましいが、正極電極、負極電極、セパレータのいずれか1つにイオン移動規制部を設ければ、高出力での繰り返し充放電による電池性能の低下をより抑制する効果を奏することがわかった。また、実験例7,8,10について、集電体にパンチングメタルを用いた場合であるが、厚さ方向と直交する面方向へ移動可能な領域がイオン移動規制部の厚さの400%存在すると、イオン移動規制部の効果がみられず(実験例10)、厚さ方向と直交する面方向へ移動可能な領域がイオン移動規制部の厚さの50%存在してもイオン移動規制部の効果を奏し(実験例8)、イオン移動規制部の面を超えない範囲で開口の空間に正負極合材が充填されていると高出力での繰り返し充放電による電池性能の低下をより抑制する効果を最も奏することがわかった(実験例7)。以上の結果から、正負電極においては、厚さ方向と直交する面方向へのリチウムイオンの移動を規制するイオン移動規制部を存在させれば同様の効果が期待できるので、例えば、電極合材中に適切な材料のメッシュ、ワイヤー、あるいは粉末等を配置させても同様の効果を奏するものと容易に類推できる。本発明は特にハイブリッド自動車の用途などの低温かつ大電流密度で使用されるリチウムイオン二次電池に適用すると効果的であることが明らかとなった。
[Experimental result]
Table 1 shows the measurement results of the capacity retention rate after 200 cycles of Experimental Examples 1 to 10. As a result, all of Experimental Examples 1 to 8 showed a high capacity retention rate of 70% or more, and in particular, Experimental Examples 1 to 3, 7 and 8 were found to have a high capacity maintenance rate of about 90%. This is because, during charging / discharging at a high current density, a non-uniform battery reaction occurs due to the progress of local charging / discharging reaction. Any one or more of expanded metal, punching metal, or separator as an ion movement restricting part that does not have a continuous hole in the surface suppresses movement of Li ions or electrolyte in the surface direction of the electrode / separator. It is thought that it is to do. As is clear from the above results, it is desirable that all of the positive electrode, the negative electrode, and the separator have a configuration in which Li ions and the electrolyte solution are not moved in the plane direction, but any one of the positive electrode, the negative electrode, and the separator. It was found that if an ion movement restricting portion is provided in the battery, it is possible to further suppress the deterioration of the battery performance due to repeated charging and discharging at high output. Further, in Experimental Examples 7, 8, and 10, when punching metal is used for the current collector, a region movable in the plane direction orthogonal to the thickness direction is 400% of the thickness of the ion movement restricting portion. Then, even if the effect of the ion movement restricting portion is not seen (Experimental Example 10) and the region movable in the plane direction perpendicular to the thickness direction is 50% of the thickness of the ion movement restricting portion, the ion movement restricting portion. (Experimental example 8), and the positive and negative electrode mixture is filled in the opening space within a range that does not exceed the surface of the ion movement regulating part, the deterioration of the battery performance due to repeated charge and discharge at high output is further suppressed. (Experimental example 7). From the above results, in the positive and negative electrodes, the same effect can be expected if there is an ion movement restricting portion that restricts the movement of lithium ions in the plane direction orthogonal to the thickness direction. It can be easily analogized that even if a mesh, wire, powder, or the like of an appropriate material is placed on the same, the same effect can be obtained. It has become clear that the present invention is particularly effective when applied to a lithium ion secondary battery that is used at a low temperature and a large current density, such as for hybrid vehicles.

Figure 2010009918
Figure 2010009918

本発明のリチウムイオン二次電池10の一例を示す模式図である。It is a schematic diagram which shows an example of the lithium ion secondary battery 10 of this invention. 実験例に用いたイオン移動規制部としてのエキスパンドメタル及びパンチング集電体の説明図である。It is explanatory drawing of the expanded metal and punching collector as an ion movement control part used for the experiment example. 実験例に用いたイオン移動規制部としてのセパレータの説明図である。It is explanatory drawing of the separator as an ion movement control part used for the experiment example. 実験例1〜8の電池構成の概略を表す説明図である。It is explanatory drawing showing the outline of the battery structure of Experimental Examples 1-8. 実験例9,10の電池構成の概略を表す説明図である。It is explanatory drawing showing the outline of the battery structure of Experimental example 9,10.

符号の説明Explanation of symbols

10 リチウムイオン二次電池、11 正極集電体、12 正極活物質、13 正極シート、14 負極集電体、17 負極活物質、18 負極シート、19 セパレータ、20 非水電解液、22 円筒ケース、24 正極端子、26 負極端子、28,32,38 イオン移動規制部、30,34 開口、36 貫通孔。   10 lithium ion secondary battery, 11 positive electrode current collector, 12 positive electrode active material, 13 positive electrode sheet, 14 negative electrode current collector, 17 negative electrode active material, 18 negative electrode sheet, 19 separator, 20 non-aqueous electrolyte, 22 cylindrical case, 24 positive electrode terminal, 26 negative electrode terminal, 28, 32, 38 ion movement restricting portion, 30, 34 opening, 36 through hole.

Claims (9)

正極と負極との間でリチウムイオンが移動することにより充放電するリチウム二次電池であって、
前記正極と前記負極との間で厚さ方向と直交する面方向へのリチウムイオンの移動を規制するイオン移動規制部を有する電池用部材を備えている、
リチウムイオン二次電池。
A lithium secondary battery that is charged and discharged by movement of lithium ions between a positive electrode and a negative electrode,
A battery member having an ion movement restricting portion for restricting movement of lithium ions in a plane direction perpendicular to the thickness direction between the positive electrode and the negative electrode;
Lithium ion secondary battery.
前記電池用部材は、厚さ方向に複数の開口が設けられ該開口に正極活物質が充填される正極集電体であり、
前記イオン移動規制部は、該開口を形成する壁部である、請求項1に記載のリチウムイオン二次電池。
The battery member is a positive electrode current collector in which a plurality of openings are provided in a thickness direction and the openings are filled with a positive electrode active material.
The lithium ion secondary battery according to claim 1, wherein the ion movement restricting portion is a wall portion that forms the opening.
前記正極集電体は、前記開口として貫通孔が設けられ該貫通孔に正極活物質が充填されている、請求項2に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 2, wherein the positive electrode current collector is provided with a through hole as the opening, and the through hole is filled with a positive electrode active material. 前記正極集電体は、該正極集電体の表面を超えない範囲で前記開口に正極活物質が充填されている、請求項2又は3に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 2 or 3, wherein the positive electrode current collector is filled with a positive electrode active material in the opening within a range not exceeding the surface of the positive electrode current collector. 前記電池用部材は、厚さ方向に複数の開口が設けられ該開口に負極活物質が充填される負極集電体であり、
前記イオン移動規制部は、該開口を形成する壁部である、請求項1に記載のリチウムイオン二次電池。
The battery member is a negative electrode current collector in which a plurality of openings are provided in a thickness direction and the openings are filled with a negative electrode active material,
The lithium ion secondary battery according to claim 1, wherein the ion movement restricting portion is a wall portion that forms the opening.
前記負極集電体は、前記開口として貫通孔が設けられ該貫通孔に負極活物質が充填されている、請求項5に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 5, wherein the negative electrode current collector is provided with a through hole as the opening, and the through hole is filled with a negative electrode active material. 前記負極集電体は、該負極集電体の表面を超えない範囲で前記開口に負極活物質が充填されている、請求項5又は6に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 5 or 6, wherein the negative electrode current collector is filled with the negative electrode active material in the opening within a range not exceeding the surface of the negative electrode current collector. 前記電池用部材は、開口である複数の貫通孔が設けられたセパレータであり、
前記イオン移動規制部は、該貫通孔を形成する壁部である、請求項1に記載のリチウムイオン二次電池。
The battery member is a separator provided with a plurality of through-holes that are openings,
The lithium ion secondary battery according to claim 1, wherein the ion movement restricting portion is a wall portion that forms the through hole.
前記電池用部材は、厚さ方向に複数の開口が設けられ該開口に正極活物質が充填される正極集電体と、厚さ方向に複数の開口が設けられ該開口に負極活物質が充填される負極集電体と、複数の貫通孔が開口として設けられたセパレータとのうち少なくとも1以上であり、
前記イオン移動規制部は、該開口を形成する壁部である、請求項1に記載のリチウムイオン二次電池。
The battery member includes a positive electrode current collector in which a plurality of openings are provided in a thickness direction and the openings are filled with a positive electrode active material, and a plurality of openings are provided in the thickness direction and the openings are filled with a negative electrode active material. At least one of the negative electrode current collector and the separator provided with a plurality of through holes as openings,
The lithium ion secondary battery according to claim 1, wherein the ion movement restricting portion is a wall portion that forms the opening.
JP2008167320A 2008-06-26 2008-06-26 Lithium ion secondary battery Expired - Fee Related JP5223494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008167320A JP5223494B2 (en) 2008-06-26 2008-06-26 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008167320A JP5223494B2 (en) 2008-06-26 2008-06-26 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2010009918A true JP2010009918A (en) 2010-01-14
JP5223494B2 JP5223494B2 (en) 2013-06-26

Family

ID=41590160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008167320A Expired - Fee Related JP5223494B2 (en) 2008-06-26 2008-06-26 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5223494B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029144A1 (en) * 2010-09-01 2012-03-08 トヨタ自動車株式会社 Secondary battery, and method for manufacturing secondary battery
JP2015503832A (en) * 2011-12-27 2015-02-02 エルジー・ケム・リミテッド Electrode assembly and secondary battery using the same
WO2016071967A1 (en) * 2014-11-05 2016-05-12 株式会社日立製作所 Lithium-ion cell and method for manufacturing same
JP2016126896A (en) * 2014-12-26 2016-07-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. Positive electrode for wound type lithium ion secondary battery, negative electrode for wound type lithium ion secondary battery, and wound type lithium ion secondary battery
CN107275683A (en) * 2017-08-06 2017-10-20 朱程显 Lithium coin cells with inside and outside steel loop
CN114551787A (en) * 2022-02-18 2022-05-27 星恒电源股份有限公司 Lithium battery positive plate and preparation method thereof
WO2023242676A1 (en) * 2022-06-17 2023-12-21 株式会社半導体エネルギー研究所 Lithium ion secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293298A (en) * 1995-04-21 1996-11-05 Fujitsu Ltd Spacer for secondary battery, and secondary battery
JPH0945334A (en) * 1995-07-26 1997-02-14 Katayama Tokushu Kogyo Kk Base material for lithium secondary battery plate, electrode plate using this base material and secondary battery using this electrode plate
JPH11283676A (en) * 1998-03-31 1999-10-15 Fuji Film Celltec Kk Nonaqueous electrolyte lithium secondary battery and its manufacture
JP2001126700A (en) * 1999-10-27 2001-05-11 Japan Storage Battery Co Ltd Separator for nonaqueous electrolyte secondary battery and battery using same, and method of fabricating separator
JP2005038612A (en) * 2003-07-15 2005-02-10 Ngk Spark Plug Co Ltd Lithium ion secondary battery and manufacturing method of the same
JP2006019146A (en) * 2004-07-01 2006-01-19 Tomoegawa Paper Co Ltd Separator for electronic component and manufacturing method thereof
JP2007035419A (en) * 2005-07-26 2007-02-08 Sharp Corp Battery
JP2007048738A (en) * 2005-07-14 2007-02-22 Tomoegawa Paper Co Ltd Separator for electronic part and its manufacturing method
JP2008036607A (en) * 2006-08-10 2008-02-21 Nihon Micro Coating Co Ltd Method of coating belt-like body
JP2008059765A (en) * 2006-08-29 2008-03-13 Hitachi Maxell Ltd Nonaqueous secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293298A (en) * 1995-04-21 1996-11-05 Fujitsu Ltd Spacer for secondary battery, and secondary battery
JPH0945334A (en) * 1995-07-26 1997-02-14 Katayama Tokushu Kogyo Kk Base material for lithium secondary battery plate, electrode plate using this base material and secondary battery using this electrode plate
JPH11283676A (en) * 1998-03-31 1999-10-15 Fuji Film Celltec Kk Nonaqueous electrolyte lithium secondary battery and its manufacture
JP2001126700A (en) * 1999-10-27 2001-05-11 Japan Storage Battery Co Ltd Separator for nonaqueous electrolyte secondary battery and battery using same, and method of fabricating separator
JP2005038612A (en) * 2003-07-15 2005-02-10 Ngk Spark Plug Co Ltd Lithium ion secondary battery and manufacturing method of the same
JP2006019146A (en) * 2004-07-01 2006-01-19 Tomoegawa Paper Co Ltd Separator for electronic component and manufacturing method thereof
JP2007048738A (en) * 2005-07-14 2007-02-22 Tomoegawa Paper Co Ltd Separator for electronic part and its manufacturing method
JP2007035419A (en) * 2005-07-26 2007-02-08 Sharp Corp Battery
JP2008036607A (en) * 2006-08-10 2008-02-21 Nihon Micro Coating Co Ltd Method of coating belt-like body
JP2008059765A (en) * 2006-08-29 2008-03-13 Hitachi Maxell Ltd Nonaqueous secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029144A1 (en) * 2010-09-01 2012-03-08 トヨタ自動車株式会社 Secondary battery, and method for manufacturing secondary battery
CN103081202A (en) * 2010-09-01 2013-05-01 丰田自动车株式会社 Secondary battery, and method for manufacturing secondary battery
JP5429389B2 (en) * 2010-09-01 2014-02-26 トヨタ自動車株式会社 Secondary battery and method for manufacturing secondary battery
JP2015503832A (en) * 2011-12-27 2015-02-02 エルジー・ケム・リミテッド Electrode assembly and secondary battery using the same
WO2016071967A1 (en) * 2014-11-05 2016-05-12 株式会社日立製作所 Lithium-ion cell and method for manufacturing same
JP2016126896A (en) * 2014-12-26 2016-07-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. Positive electrode for wound type lithium ion secondary battery, negative electrode for wound type lithium ion secondary battery, and wound type lithium ion secondary battery
CN107275683A (en) * 2017-08-06 2017-10-20 朱程显 Lithium coin cells with inside and outside steel loop
CN114551787A (en) * 2022-02-18 2022-05-27 星恒电源股份有限公司 Lithium battery positive plate and preparation method thereof
CN114551787B (en) * 2022-02-18 2024-04-26 星恒电源股份有限公司 Lithium battery positive plate and preparation method thereof
WO2023242676A1 (en) * 2022-06-17 2023-12-21 株式会社半導体エネルギー研究所 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP5223494B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5223494B2 (en) Lithium ion secondary battery
JP5381199B2 (en) Lithium secondary battery
JP6750196B2 (en) Non-aqueous lithium battery and method of using the same
JP2019091615A (en) Nonaqueous electrolyte secondary battery
JP6808948B2 (en) Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery
JP6205889B2 (en) Lithium secondary battery
JP5929183B2 (en) Electrode, lithium secondary battery, and electrode manufacturing method
JP5487598B2 (en) Lithium secondary battery and method of using the same
JP2016100278A (en) Electrode structure and lithium secondary battery
JP5271751B2 (en) Lithium ion secondary battery
JP2011071017A (en) Lithium secondary battery
JP2012216500A (en) Lithium secondary battery
JP6658182B2 (en) Electrode structure and lithium secondary battery
JP2016009532A (en) Lithium ion battery
JP5286870B2 (en) Lithium ion secondary battery manufacturing method and lithium ion secondary battery
JP5900415B2 (en) Electric storage device and manufacturing method thereof
JP2018085213A (en) Lithium secondary battery
JP2012226963A (en) Lithium secondary battery
JP2016162626A (en) Nonaqueous electrolyte battery
JP2004241222A (en) Manufacturing method of nonaqueous electrolytic solution battery
JP5504853B2 (en) How to use lithium secondary battery
JP6763810B2 (en) Lithium ion secondary battery
JP6870515B2 (en) Lithium ion capacitor and its manufacturing method
JP2015230824A (en) Electrode structure and lithium secondary battery
JP7136150B2 (en) Electrode for power storage device and power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

R151 Written notification of patent or utility model registration

Ref document number: 5223494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees