JP2010008331A - Photothermal conversion measuring instrument and its method - Google Patents

Photothermal conversion measuring instrument and its method Download PDF

Info

Publication number
JP2010008331A
JP2010008331A JP2008170444A JP2008170444A JP2010008331A JP 2010008331 A JP2010008331 A JP 2010008331A JP 2008170444 A JP2008170444 A JP 2008170444A JP 2008170444 A JP2008170444 A JP 2008170444A JP 2010008331 A JP2010008331 A JP 2010008331A
Authority
JP
Japan
Prior art keywords
light
measurement
metal thin
thin film
photothermal conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008170444A
Other languages
Japanese (ja)
Other versions
JP5001226B2 (en
Inventor
Akira Katayama
亮 片山
Eiji Takahashi
英二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008170444A priority Critical patent/JP5001226B2/en
Publication of JP2010008331A publication Critical patent/JP2010008331A/en
Application granted granted Critical
Publication of JP5001226B2 publication Critical patent/JP5001226B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect a measuring object material in a sample by suppressing influence of a photothermal effect of a solvent contained in the sample. <P>SOLUTION: This photothermal conversion measuring instrument includes a substrate 20, a metal thin film 30 and capturing film 32 formed on its surface, an exciting system, and a measuring system, so as to measure a heating amount by the photothermal effect of a measuring object material contained in a sample. The exciting system makes exciting light come through the substrate 20 from the side opposite to the capturing film 32 under the resonance condition that plasmon resonance is caused in the metal thin film 30. The exciting light is absorbed by the plasmon resonance in the metal thin film 30, the photothermal effect is caused in the measuring object material captured by the capturing film 32. The measuring system transmits measuring light through a measuring region Am where the refractive index of light is varied by the photothermal effect, and measures the phase change of the measuring light after the transmission. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、各種試料の含有物質の分析等に用いられる光熱変換測定装置及び方法に関するものである。   The present invention relates to a photothermal conversion measuring apparatus and method used for analysis of substances contained in various samples.

従来、各種試料の含有物質の分析等を行う手段として、光熱効果、すなわち、試料に励起光を照射したときにその照射部位が前記励起光を吸収して発熱する効果を利用した光熱変換測定が知られている。   Conventionally, as a means for performing analysis of substances contained in various samples, photothermal conversion measurement using a photothermal effect, that is, an effect that an irradiation site absorbs the excitation light and generates heat when the sample is irradiated with excitation light. Are known.

例えば、下記特許文献1には、測定対象物質とその溶媒を含む液体の試料に励起光を照射して当該測定対象物質に光熱効果を生じさせるとともに、その光熱効果による発熱量を光学的な測定装置により測定するものが開示されている。
特開2004−301520号公報
For example, in Patent Document 1 below, a liquid sample containing a measurement target substance and its solvent is irradiated with excitation light to cause a photothermal effect on the measurement target substance, and the amount of heat generated by the photothermal effect is optically measured. What is measured by an apparatus is disclosed.
JP 2004-301520 A

前記の光熱変換測定装置では、試料に含まれる溶媒が励起光を吸収し、この溶媒自身による光熱効果が大きくなる場合があり、この場合において当該試料中に含まれる測定対象物質が微量であると、その検出が困難となるおそれがある。例えば、超純水中の微量分子を検出するために波長が750nm以上の近赤外の励起光を照射すると、検出限界の3000倍に相当する背景信号が生じることになる。   In the photothermal conversion measuring apparatus, the solvent contained in the sample may absorb the excitation light, and the photothermal effect of the solvent itself may increase. In this case, the measurement target substance contained in the sample is a trace amount. The detection may be difficult. For example, when near-infrared excitation light having a wavelength of 750 nm or more is irradiated to detect trace molecules in ultrapure water, a background signal corresponding to 3000 times the detection limit is generated.

本発明は、このような事情に鑑み、試料中に含まれる溶媒の光熱効果による影響を抑えて同試料中の測定対象物質の検出を高精度で行うことが可能な光熱変換測定装置及び方法を提供することを目的とする。   In view of such circumstances, the present invention provides a photothermal conversion measurement apparatus and method capable of highly accurately detecting a measurement target substance in a sample while suppressing the influence of the photothermal effect of a solvent contained in the sample. The purpose is to provide.

前記課題を解決するための手段として、本発明は、測定対象物質及びその溶媒を含む試料に光熱効果を生じさせるための励起光を当該試料に照射してその光熱効果による前記測定対象物質の発熱量を測定するための光熱変換測定装置であって、透光性を有する基材と、前記基材の表面に形成され、プラズモン共鳴を生じることが可能な金属薄膜と、前記金属薄膜上に形成され、前記試料中に含まれる測定対象物質を捕捉する捕捉膜と、前記励起光を発する励起光源を含み、前記金属薄膜にプラズモン共鳴を生じさせる共鳴条件で当該金属薄膜に対して前記捕捉膜と反対の側から前記基材を通して前記励起光を入射し、当該金属薄膜に当該入射光を吸収させることにより、前記捕捉膜に捕捉された測定対象物質に光熱効果を生じさせる励起系と、前記光熱効果により光の屈折率が変化する測定域に前記励起光とは別の測定光を透過させてその透過後の測定光の位相変化を測定する測定系とを備えたものである。   As a means for solving the above-mentioned problems, the present invention irradiates the sample with excitation light for generating a photothermal effect on a sample containing the measurement target substance and its solvent, and generates heat of the measurement target substance due to the photothermal effect. A photothermal conversion measuring device for measuring a quantity, a base material having translucency, a metal thin film formed on the surface of the base material and capable of causing plasmon resonance, and formed on the metal thin film And a capture film that captures the measurement target substance contained in the sample, and an excitation light source that emits the excitation light, and the capture film with respect to the metal thin film under resonance conditions that cause plasmon resonance in the metal thin film. An excitation system that causes the excitation light to enter from the opposite side through the base material and causes the metal thin film to absorb the incident light, thereby generating a photothermal effect on the measurement target substance captured by the capture film; Wherein the excitation light to the measurement zone in which the optical refractive index of the photothermal effect changes is obtained and a measurement system by transmitting different measurement light for measuring the phase change of the post-transmission measurement light.

なお、ここでいう「プラズモン共鳴」とは、金属薄膜に特定の条件下で可視光または近赤外域の光が入射することにより、その光電場とプラズモン(金属中の自由電子が集団的に振動すること)との相互作用で光吸収が起こる現象をいう。   The term “plasmon resonance” as used herein refers to the incidence of light and plasmons (free electrons in a metal collectively oscillating when visible light or near-infrared light is incident on a metal thin film under specific conditions. This is a phenomenon in which light absorption occurs due to interaction with the

この装置では、金属薄膜上に形成された捕捉膜が試料中の測定対象物質を捕捉するとともに、当該金属薄膜に対して前記捕捉膜と反対の側から特定の共鳴条件で励起光が入射されることにより、この励起光がプラズモン共鳴により金属薄膜に吸収されてその裏側の捕捉膜に捕捉された前記測定対象物質に光熱効果を生じさせる。従って、この光熱効果により光の屈折率が変化する測定域に測定光を透過させてその位相変化を測定することにより、前記溶媒自身の光熱変化による影響を回避して前記測定対象物質を高精度で検出することができる。   In this apparatus, the capture film formed on the metal thin film captures the substance to be measured in the sample, and excitation light is incident on the metal thin film from a side opposite to the capture film under specific resonance conditions. As a result, the excitation light is absorbed by the metal thin film by plasmon resonance and causes a photothermal effect on the measurement target substance captured by the capture film on the back side. Therefore, the measurement light is transmitted through a measurement region where the refractive index of light changes due to the photothermal effect, and the phase change is measured, thereby avoiding the influence of the photothermal change of the solvent itself and making the measurement target substance highly accurate. Can be detected.

前記励起系としては、前記基材の少なくとも一部を構成し、前記励起光源からの光を前記共鳴条件で前記金属薄膜の表面に導く入射用光学素子を含むものが、好適である。この励起系は、前記基材の少なくとも一部を利用した簡素な構造で、前記金属薄膜に前記共鳴条件下で励起光を入射させることができる。   The excitation system preferably includes an incident optical element that constitutes at least part of the base material and guides light from the excitation light source to the surface of the metal thin film under the resonance condition. This excitation system has a simple structure using at least a part of the substrate, and allows excitation light to enter the metal thin film under the resonance condition.

前記入射用光学素子としては、例えば、前記金属薄膜に対して前記励起光を複数回反射させるプリズムが好適である。このプリズムは、前記金属薄膜で前記励起光を複数回反射させることにより、当該励起光の入射によるプラズモン共鳴及びこれによる光熱効果を高め、その結果として、測定信号の強度を増加させることができる。   As the incident optical element, for example, a prism that reflects the excitation light to the metal thin film a plurality of times is suitable. This prism reflects the excitation light a plurality of times with the metal thin film, thereby enhancing plasmon resonance due to the incidence of the excitation light and the photothermal effect thereby, and as a result, increasing the intensity of the measurement signal.

一方、前記測定系は、前記励起光とは別の光を発する測定用光源と、この測定用光源から発せられる光を測定光として前記測定域に透過させる測定光用光学系と、その透過後の測定光を受光して電気信号に変換する受光素子とを含むものが、好適である。   On the other hand, the measurement system includes a measurement light source that emits light different from the excitation light, a measurement light optical system that transmits light emitted from the measurement light source as measurement light to the measurement region, and It is preferable to include a light receiving element that receives the measurement light and converts it to an electrical signal.

この測定系も、前記測定域に前記測定光を複数回透過させるための透過用光学素子を含むことが、より好ましい。具体的には、前記金属薄膜のうち前記捕捉膜が形成された側の表面と対向するように配置され、前記金属薄膜の表面で反射した測定光を再び当該金属薄膜の表面に向けて反射させる測定光反射ミラーを含むものが、好適である。この測定系は、前記金属薄膜をミラーとして利用した簡素な構造で、測定精度の向上を実現する。   It is more preferable that this measurement system also includes a transmission optical element for transmitting the measurement light a plurality of times in the measurement area. Specifically, the measurement light reflected by the surface of the metal thin film is reflected again toward the surface of the metal thin film, which is disposed so as to face the surface of the metal thin film on which the trapping film is formed. Those including a measuring light reflecting mirror are preferred. This measurement system has a simple structure using the metal thin film as a mirror, and realizes improvement in measurement accuracy.

前記測定光の位相変化は、例えば光干渉法により測定することが可能である。そのための構成として、前記測定光用光学系は、前記測定用光源から発せられた光を前記測定光と参照光とに分光する分光素子と、前記参照光を前記測定域を透過する測定光と干渉させる参照光用光学系とを含み、その干渉後の測定光が前記受光素子に入射されるものが、好適である。   The phase change of the measurement light can be measured by, for example, optical interferometry. As a configuration for this, the optical system for measurement light includes a spectroscopic element that splits light emitted from the measurement light source into the measurement light and reference light, and measurement light that transmits the reference light through the measurement region; It is preferable to include an optical system for reference light that causes interference, and the measurement light after the interference is incident on the light receiving element.

また、前記測定光の位相変化を求めるための手段としては、前記測定系が、前記励起光源を変調させる励起光変調部と、前記受光素子の出力信号のうち前記励起光の変調周期と同じ周期成分のものを演算する信号処理部とを含む測定用回路を具備するものが、好適である。   Further, as a means for obtaining the phase change of the measurement light, the measurement system modulates the excitation light source and an excitation light modulation unit that modulates the excitation light source, and the same period as the modulation period of the excitation light among the output signals of the light receiving element What comprises the circuit for a measurement containing the signal processing part which calculates the thing of a component is suitable.

この構成によれば、前記測定光の位相変化を前記励起光の強度変調周期と同周期成分について算出することが、他の成分を有しないノイズの影響を除去しつつ測定光の屈折率変化のみを精度良く測定することを可能にする。すなわち、この測定は、測定信号のS/N比を向上させる。   According to this configuration, the phase change of the measurement light can be calculated for the same period component as the intensity modulation period of the excitation light, while only the refractive index change of the measurement light is removed while eliminating the influence of noise having no other component. Can be measured with high accuracy. That is, this measurement improves the S / N ratio of the measurement signal.

本発明では、前記試料を流すための試料用通路を前記基材とともに形成する通路形成部材を備え、前記試料用通路に前記基材の表面に形成された金属薄膜および捕捉膜が臨むことが、より好ましい。この通路形成部材は、前記通路に試料を流しながら当該試料中に含まれる測定対象物質の検出を行うことを可能にする。   In the present invention, it is provided with a passage forming member that forms a sample passage for flowing the sample together with the base material, and the metal thin film and the trapping film formed on the surface of the base material face the sample passage. More preferred. This passage forming member makes it possible to detect the substance to be measured contained in the sample while flowing the sample through the passage.

また本発明は、測定対象物質及びその溶媒を含む試料に光熱効果を生じさせるための励起光を当該試料に照射してその光熱効果による前記測定対象物質の発熱量を測定するための光熱変換測定方法であって、プラズモン共鳴を生じることが可能な金属薄膜上に形成された捕捉膜上に前記試料を流して当該捕捉膜に前記試料中の測定対象物質を捕捉させることと、前記金属薄膜に対して前記捕捉膜と反対の側から励起光を照射して当該金属薄膜に前記プラズモン共鳴を生じさせることにより、当該金属薄膜に当該入射光を吸収させて前記捕捉膜に捕捉された測定対象物質に光熱効果を生じさせることと、前記光熱効果により光の屈折率が変化する測定域に前記励起光とは別の測定光を透過させ、その位相変化を測定することとを含むものである。   The present invention also provides a photothermal conversion measurement for irradiating a sample containing a measurement target substance and a solvent thereof with excitation light for generating a photothermal effect and measuring the calorific value of the measurement target substance due to the photothermal effect. A method of flowing a sample on a capture film formed on a metal thin film capable of generating plasmon resonance, causing the capture film to capture a substance to be measured in the sample, and On the other hand, by irradiating excitation light from the side opposite to the capture film to cause the plasmon resonance in the metal thin film, the metal thin film absorbs the incident light and is captured by the capture film Generating a photothermal effect, and transmitting a measurement light different from the excitation light to a measurement region in which a refractive index of light changes due to the photothermal effect, and measuring a phase change thereof.

本発明の好ましい実施の形態を、図面を参照しながら説明する。   Preferred embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施の形態に係る光熱変換測定装置の例を示す。この装置は、測定対象物質(例えば金属イオン)及びその溶媒(例えば超純水)を含む試料中の当該測定対象物質を検出するためのもので、励起光源10と、複数の試料部12と、測定系とを備え、この測定系は、測定用光源13と、測定用光学系14と、複数の受光素子16と、測定用回路18とを備える。なお、この実施の形態に係る装置は2つの試料部12及び2つの受光素子16を具備するが、これらの個数は単数でも3以上でもよい。   FIG. 1 shows an example of a photothermal conversion measuring apparatus according to the first embodiment of the present invention. This apparatus is for detecting the measurement target substance in a sample containing a measurement target substance (for example, metal ions) and its solvent (for example, ultrapure water), and includes an excitation light source 10, a plurality of sample sections 12, The measurement system includes a measurement light source 13, a measurement optical system 14, a plurality of light receiving elements 16, and a measurement circuit 18. Although the apparatus according to this embodiment includes two sample parts 12 and two light receiving elements 16, the number of these may be one or three or more.

前記励起光源10は、前記各試料部12において後述のように励起光として用いられる光を発するもので、当該励起光源10には例えば各種レーザ(半導体レーザ、固体レーザ、ガスレーザなど)やランプ(白色光を出力するキセノンランプ等)が用いられることが可能である。   The excitation light source 10 emits light used as excitation light in each sample unit 12 as described later. The excitation light source 10 includes, for example, various lasers (semiconductor laser, solid laser, gas laser, etc.) and lamps (white color). It is possible to use a xenon lamp or the like that outputs light.

なお、この実施の形態のように複数の試料部12が存在する場合、その試料部12ごとに励起光源10が設けられてもよいし、当該励起光源10から発せられる励起光が試料部ごとに分割されてもよい。   When a plurality of sample parts 12 are present as in this embodiment, an excitation light source 10 may be provided for each sample part 12, and excitation light emitted from the excitation light source 10 is provided for each sample part. It may be divided.

図2及び図3に示すように、前記各試料部12は、基材であるプリズム20と、このプリズム20とともに試料の通路を形成するための通路形成部材22とを備える。これらは、例えば石英やPDMS(ポリジメチルシロサキン)のような透光材(特に紫外光透過性の高い材料)からなり、互いに平行に延びる複数本の試料用通路24を形成する。この実施の形態において、前記プリズム20は、前記各試料用通路24を下側から規定する底壁を構成し、前記通路形成部材22は、当該通路24を上側から規定する天壁26と、幅方向両側から規定する複数の側壁28とを有する。   As shown in FIGS. 2 and 3, each sample section 12 includes a prism 20 that is a base material, and a passage forming member 22 that forms a sample passage together with the prism 20. These are made of a light-transmitting material (particularly a material having a high ultraviolet light transmission property) such as quartz or PDMS (polydimethylsiloxane), and form a plurality of sample passages 24 extending in parallel to each other. In this embodiment, the prism 20 constitutes a bottom wall that defines the sample passages 24 from the lower side, and the passage forming member 22 has a width and a ceiling wall 26 that defines the passages 24 from the upper side. And a plurality of side walls 28 defined from both sides in the direction.

この装置の特徴として、前記プリズム20の上面すなわち前記各試料用通路24の底面上には、金属薄膜30が形成され、さらにその上に捕捉膜32が積層されている。前記金属薄膜30は、後述の励起光の入射によりプラズモン共鳴を起こすことが可能な条件を満たすもので、例えば、金または銀により50nm〜100nmの膜厚を有するように形成されたものが好適である。幅及び長さも適宜設定可能であるが、この実施の形態では、幅50μm、長さ2mm程度のものが形成される。   As a feature of this apparatus, a metal thin film 30 is formed on the upper surface of the prism 20, that is, on the bottom surface of each sample passage 24, and a capture film 32 is further laminated thereon. The metal thin film 30 satisfies a condition capable of causing plasmon resonance by incidence of excitation light, which will be described later. For example, the metal thin film 30 is preferably formed of gold or silver so as to have a film thickness of 50 nm to 100 nm. is there. The width and length can also be set as appropriate, but in this embodiment, a width of about 50 μm and a length of about 2 mm is formed.

前記捕捉膜32は、前記金属薄膜30上で前記測定対象物質を捕捉することが可能なアナライト(捕捉分子)が膜状に形成されたもので、例えばナトリウムイオンを捕捉する場合にはクラウンエーテルが、生体分子を捕捉する場合には抗体やアプタマーが用いられることが可能である。その膜厚は、一般には10nm以下である(すなわち単分子層である)ことが好ましい。   The capture film 32 is formed by forming an analyte (capture molecule) capable of capturing the measurement target substance on the metal thin film 30. For example, when capturing sodium ions, crown ether is used. However, antibodies and aptamers can be used when capturing biomolecules. The film thickness is generally preferably 10 nm or less (that is, a monomolecular layer).

さらに、前記プリズム20は、試料部12を構成するだけでなく、前記励起光源10とともに励起系を構成する入射用光学素子として機能する。すなわち、このプリズム20は、前記励起光源10から発せられる光(励起光)を、前記プラズモン共鳴を生じさせることが可能な条件(共鳴条件)下で前記金属薄膜30の下面(すなわち前記捕捉膜32と反対側の面)に入射させる。当該プリズム20は、この実施の形態では、前記試料用通路24の長手方向について上面よりも下面が短い台形プリズムであって、前記励起光を前記金属薄膜30の下面で複数回反射させる(すなわち通路長手方向に並ぶ複数の位置で反射させる)形状を有する。その入射角(金属薄膜30の法線方向に対して前記励起光の入射方向がなす角度)としては、例えば45°〜80°が好適である。   Furthermore, the prism 20 not only constitutes the sample portion 12 but also functions as an incident optical element that constitutes an excitation system together with the excitation light source 10. In other words, the prism 20 causes the light (excitation light) emitted from the excitation light source 10 to be under the metal thin film 30 (that is, the trapping film 32) under conditions (resonance conditions) that can cause the plasmon resonance. On the opposite side). In this embodiment, the prism 20 is a trapezoidal prism whose bottom surface is shorter than the top surface in the longitudinal direction of the sample passage 24, and reflects the excitation light multiple times on the bottom surface of the metal thin film 30 (that is, the passage). (Reflected at a plurality of positions aligned in the longitudinal direction). The incident angle (the angle formed by the incident direction of the excitation light with respect to the normal direction of the metal thin film 30) is, for example, preferably 45 ° to 80 °.

前記プラズモン共鳴により吸収された光は、前記捕捉膜32に捕捉された測定対象物質に光熱効果を生じさせる。この光熱効果が生ずる領域が本発明にいう測定域Am(図3)に相当する。前記のような複数回にわたる励起光の反射は、前記光熱効果を促進し、ひいては後述の検出信号を増強させて測定精度の向上に寄与する。この実施の形態では、各試料用通路24に比して大きな直径D(例えば2mm)をもつ励起光が入射されることにより、前記金属薄膜30に励起光が入射される領域が拡大されている。   The light absorbed by the plasmon resonance causes a photothermal effect on the measurement target substance captured by the capture film 32. The region where the photothermal effect occurs corresponds to the measurement region Am (FIG. 3) referred to in the present invention. Such multiple reflections of excitation light promote the photothermal effect, and thus enhance the detection signal described later, thereby contributing to improvement in measurement accuracy. In this embodiment, the excitation light having a diameter D (for example, 2 mm) larger than each sample passage 24 is incident, so that the region where the excitation light is incident on the metal thin film 30 is enlarged. .

なお、金属薄膜30が金からなる場合、励起光源10には赤色のレーザダイオードを用いることが好ましい。このとき、前記金属薄膜30への入射と同時に表面プラズモン共鳴の発生を検知するための信号を取得することも可能である。例としては、プラズモン共鳴を起こすための励起光の波長及び照射角度を一定に保ちながら、反射光強度をフォトダイオードで検出する方法が考えられる。この方法では、前記反射光強度の変化から、前記捕捉膜32による測定対象物質の捕捉で共鳴条件が変化したことを検知することができる。さらに、この反射光強度を一定に保つようなフィードバック制御に基いて照射角度を調整することが、プラズモン共鳴状態を安定させ、励起光の安定性を高めることを可能にする。   When the metal thin film 30 is made of gold, it is preferable to use a red laser diode for the excitation light source 10. At this time, it is also possible to acquire a signal for detecting the occurrence of surface plasmon resonance simultaneously with the incidence on the metal thin film 30. As an example, a method of detecting reflected light intensity with a photodiode while keeping the wavelength and irradiation angle of excitation light for causing plasmon resonance constant can be considered. In this method, it can be detected from the change in the reflected light intensity that the resonance condition has changed due to the capture of the substance to be measured by the capture film 32. Furthermore, adjusting the irradiation angle based on feedback control that keeps the reflected light intensity constant makes it possible to stabilize the plasmon resonance state and increase the stability of the excitation light.

前記測定用光源13は、前記試料の屈折率の変化を測定するための測定光の源となる光を発するものである。この測定用光源13には、例えば出力1mWのHe−Neレーザ発生器が用いられる。   The measurement light source 13 emits light serving as a measurement light source for measuring a change in the refractive index of the sample. For example, a He—Ne laser generator with an output of 1 mW is used as the measurement light source 13.

前記測定用光学系14は、分光素子であるビームスプリッタ38と、測定光用光学系40及び参照光用光学系50とを備える。   The measurement optical system 14 includes a beam splitter 38 which is a spectroscopic element, a measurement light optical system 40 and a reference light optical system 50.

前記ビームスプリッタ38は、前記測定用光源13から発せられる光を測定光と参照光とに分光するものである。具体的に、前記測定用光源13からの光は、前記ビームスプリッタ38をそのまま透過する光と、前記ビームスプリッタ38で90°に反射する光とに分光され、前者が測定光として前記測定光用光学系40に導かれ、後者が参照光として前記参照光用光学系50に導かれる。   The beam splitter 38 splits the light emitted from the measurement light source 13 into measurement light and reference light. Specifically, the light from the measurement light source 13 is split into light that passes through the beam splitter 38 as it is and light that is reflected at 90 ° by the beam splitter 38, and the former is used as the measurement light for the measurement light. The latter is guided to the optical system 40, and the latter is guided to the reference light optical system 50 as reference light.

前記測定光用光学系40は、測定光導入部44と、測定光反射ミラー46と、測定光導出部48とを備える。   The measurement light optical system 40 includes a measurement light introducing unit 44, a measurement light reflecting mirror 46, and a measurement light deriving unit 48.

前記測定光導入部44は、前記ビームスプリッタ38からの測定光をさらに2つの測定光に分割して前記各試料部12の測定域Amに導入するものであり、ビームスプリッタとミラーとの組合せにより構成される。この実施の形態では、図2及び図3に示されるように、前記試料部12の通路長手方向の一端部が測定光導入部12aとされ、この測定光導入部12aから斜め下向きに金属薄膜30上へ測定光を入射させるように、測定光導入部44が配置される。   The measurement light introducing unit 44 further divides the measurement light from the beam splitter 38 into two measurement lights and introduces them into the measurement area Am of each sample unit 12, and a combination of a beam splitter and a mirror. Composed. In this embodiment, as shown in FIGS. 2 and 3, one end portion of the sample portion 12 in the longitudinal direction of the passage serves as a measurement light introduction portion 12a, and the metal thin film 30 is inclined downward from the measurement light introduction portion 12a. The measurement light introducing unit 44 is arranged so that the measurement light is incident upward.

前記測定光反射ミラー46は、前記測定光を前記測定域Amに複数回透過させるための透過用光学素子として機能するものであり、この実施の形態では、前記各試料用通路24の上方となる複数の位置にそれぞれ配置される。より具体的には、前記金属薄膜30の上面(すなわち前記捕捉膜32が形成された側の表面)と対向するように前記通路形成部材22の天壁26の上面に配置され、前記金属薄膜30の表面で反射した測定光を再び当該金属薄膜の表面に向けて反射させるように配置される。測定光は、前記のように測定光導入部12aから斜め下向きに導入されるので、図3に示されるように前記金属薄膜30と前記測定光反射ミラー46との間で反射を繰り返しながら通路長手方向に進行し、前記測定光導入部12aと反対側に位置する測定光導出部12bから斜め上向きに導出される。   The measurement light reflection mirror 46 functions as a transmission optical element for transmitting the measurement light to the measurement area Am a plurality of times. In this embodiment, the measurement light reflection mirror 46 is above the sample passages 24. Arranged at a plurality of positions. More specifically, the metal thin film 30 is disposed on the upper surface of the top wall 26 of the passage forming member 22 so as to face the upper surface of the metal thin film 30 (that is, the surface on the side where the trapping film 32 is formed). It arrange | positions so that the measurement light reflected on the surface of this may be reflected toward the surface of the said metal thin film again. Since the measurement light is introduced obliquely downward from the measurement light introducing portion 12a as described above, the longitudinal direction of the passage is repeatedly reflected between the metal thin film 30 and the measurement light reflecting mirror 46 as shown in FIG. It proceeds in the direction and is derived obliquely upward from the measurement light deriving unit 12b located on the opposite side of the measurement light introducing unit 12a.

前記測定光導出部48は、ミラー等により構成され、前記測定光導出部12bからそれぞれ導出された測定光を対応する受光素子16に導く。その光路の途中にはそれぞれ干渉用光学素子である偏向ビームスプリッタ52がそれぞれ設けられる。   The measurement light deriving unit 48 is configured by a mirror or the like, and guides the measurement light derived from the measurement light deriving unit 12b to the corresponding light receiving element 16. A deflecting beam splitter 52, which is an optical element for interference, is provided in the middle of the optical path.

前記参照光用光学系50は、前記各偏向ビームスプリッタ52と、導入用光学系54とを備える。導入用光学系54は、ビームスプリッタやミラーの組合せにより構成され、前記ビームスプリッタ38で分光された参照光を分割して前記各偏向ビームスプリッタ52に導入する。前記各偏向ビームスプリッタ52は、前記測定光導出部48により前記各受光素子16にそれぞれ導かれる測定光と、前記導入用光学系54により分割された各参照光とを相互干渉させる。従って、前記各受光素子16には前記参照光と干渉した測定光が入射される。これらの受光素子16は、当該受光素子16に入射される測定光の強度に対応する電気信号をそれぞれ出力する。   The reference light optical system 50 includes the deflection beam splitters 52 and an introduction optical system 54. The introduction optical system 54 is configured by a combination of a beam splitter and a mirror, and divides the reference light split by the beam splitter 38 and introduces the reference light to each deflection beam splitter 52. The deflecting beam splitters 52 cause the measurement light guided to the light receiving elements 16 by the measurement light deriving unit 48 and the reference lights divided by the introduction optical system 54 to interfere with each other. Accordingly, measurement light that interferes with the reference light is incident on each light receiving element 16. These light receiving elements 16 each output an electrical signal corresponding to the intensity of the measurement light incident on the light receiving element 16.

前記測定用回路18は、励起光変調部11と、信号処理部17とを備える。   The measurement circuit 18 includes an excitation light modulation unit 11 and a signal processing unit 17.

前記励起光変調部11は、前記励起光源10から発せられる光を周期的に変調して光熱効果の測定に好適な励起光にする。例えば励起光がレーザの場合、励起光変調部11にはAOMやその他の変調回路を具備するものが好適であり、励起光がランプの場合、励起光変調部11にはオプティカルチョッパやシャッタを具備するものが好適である。また、その変調のための制御信号を発生させるものとしては、ファンクションジェネレータやDAコンバータを用いることが可能である。   The excitation light modulator 11 periodically modulates the light emitted from the excitation light source 10 to make excitation light suitable for measuring the photothermal effect. For example, when the excitation light is a laser, the excitation light modulation unit 11 preferably includes an AOM or other modulation circuit. When the excitation light is a lamp, the excitation light modulation unit 11 includes an optical chopper or a shutter. What is to be done is suitable. Further, a function generator or a DA converter can be used to generate a control signal for the modulation.

前記信号処理部17は、後述のように、前記励起光の変調周期と、前記各受光素子16が受光する測定光の強度変化とに基づき、前記試料の屈折率の変化を演算し(ロックイン検出)、その演算結果を図略の表示装置に表示させる。   As will be described later, the signal processing unit 17 calculates the change in the refractive index of the sample based on the modulation period of the excitation light and the change in the intensity of the measurement light received by each light receiving element 16 (lock-in). Detection), and the calculation result is displayed on a display device (not shown).

この光熱変換測定装置の具体的作用は次のとおりである。   The specific operation of this photothermal conversion measuring device is as follows.

前記各試料部12においては、試料用通路24にそれぞれ液体の試料が流れ、この試料中に含まれる測定対象物質を通路底部の捕捉膜32が捕捉する。   In each sample portion 12, a liquid sample flows through the sample passage 24, and the capture film 32 at the bottom of the passage captures the measurement target substance contained in the sample.

この試料部12に対し、励起光源10が発する励起光がプリズム20を通じて金属薄膜30の下面(前記捕捉膜32と反対側の面)に下側から入射する。この励起光は当該金属薄膜30で反射するが、当該金属薄膜30において発生するプラズモン共鳴により光吸収が発生する。その吸収された光は前記捕捉膜32に捕捉された測定対象物質に光熱効果を生じさせる。すなわち、前記測定対象物質を発熱させる。さらに、この実施の形態では、前記金属薄膜30で反射した励起光が前記プリズム20の下面で反射してもう一度金属薄膜30に当たることにより、前記光熱効果が生じる領域(測定域Am)が拡大される。   Excitation light emitted from the excitation light source 10 enters the sample portion 12 from below through the prism 20 onto the lower surface of the metal thin film 30 (surface opposite to the capturing film 32). The excitation light is reflected by the metal thin film 30, but light absorption occurs due to plasmon resonance generated in the metal thin film 30. The absorbed light causes a photothermal effect on the measurement target substance captured by the capture film 32. That is, the measurement target substance generates heat. Furthermore, in this embodiment, the excitation light reflected by the metal thin film 30 is reflected by the lower surface of the prism 20 and strikes the metal thin film 30 again, thereby expanding the region where the photothermal effect occurs (measurement region Am). .

その一方、測定用光学系14においては、測定用光源13から発せられる光をビームスプリッタ38が測定光と参照光とに分光し、そのうちの測定光を測定光用光学系40の測定光導入部44が前記各試料部12の測定光導入部12aに導入する。この測定光は、前記金属薄膜30とこれに対向する測定光反射ミラー46との間で反射を繰り返すうちに前記測定域Amを複数回透過する。当該測定域Amでは、前記光熱効果により試料の温度が前記変調の周期で変化し、当該試料の屈折率が変化しているため、当該測定域Amを通過する測定光の位相も同じ周期で変化する。   On the other hand, in the measurement optical system 14, the beam splitter 38 separates the light emitted from the measurement light source 13 into measurement light and reference light, and the measurement light is included in the measurement light introducing unit of the measurement light optical system 40. 44 is introduced into the measurement light introducing section 12a of each sample section 12. The measurement light passes through the measurement area Am a plurality of times while being repeatedly reflected between the metal thin film 30 and the measurement light reflecting mirror 46 facing the metal thin film 30. In the measurement area Am, because the temperature of the sample changes with the modulation period and the refractive index of the sample changes due to the photothermal effect, the phase of the measurement light passing through the measurement area Am also changes with the same period. To do.

このようにして位相が変化した測定光は、測定光導出部12bから導出され、測定光導出部48により各受光素子16へ導かれる。その一方、参照光用光学系50では、前記ビームスプリッタ38で分光された参照光を導入用光学系54が各偏向ビームスプリッタ52に導入する。これらの偏向ビームスプリッタ52は、前記測定光を前記参照光と干渉させてから各受光素子16に導く。   The measurement light whose phase has been changed in this manner is derived from the measurement light deriving unit 12 b and guided to each light receiving element 16 by the measurement light deriving unit 48. On the other hand, in the reference light optical system 50, the introduction optical system 54 introduces the reference light dispersed by the beam splitter 38 into each deflection beam splitter 52. These deflecting beam splitters 52 guide the measurement light to each light receiving element 16 after interfering with the reference light.

前記各受光素子16は、前記干渉後の測定光を受光し、その強度に対応する電気信号を信号処理部17に出力する。この電気信号は、前記測定光と前記参照光の周波数差(=|f1−f2|)に相当するうねり周波数をもつ信号となる。信号処理部17は、前記電気信号と、前記励起光変調部11による励起光の変調周期とに基づき、前記測定光の位相変化を演算する。すなわち、光干渉法による位相変化の測定を実行する。   Each of the light receiving elements 16 receives the measurement light after the interference, and outputs an electric signal corresponding to the intensity to the signal processing unit 17. This electrical signal is a signal having a swell frequency corresponding to the frequency difference (= | f1-f2 |) between the measurement light and the reference light. The signal processing unit 17 calculates the phase change of the measurement light based on the electrical signal and the modulation period of the excitation light by the excitation light modulation unit 11. That is, the phase change is measured by optical interferometry.

具体的に、前記干渉光の強度S1は、次の(1)式で表される。   Specifically, the intensity S1 of the interference light is expressed by the following equation (1).

S1=C1+C2・cos(2π・fb・t+φ) …(1)
同式において、C1、C2は前記測定用光学系14に含まれる各光学素子の特性や試料の透過率により定まる定数、φは前記測定光と前記参照光の光路長差による位相差、fbは前記測定光と前記参照光の周波数差(=f1−f2)である。この(1)式は、干渉後の測定光の強度S1の変化(前記励起光を照射しないとき或いはその光強度が小さいときとその光強度が大きいときとの差)から、前記位相差φの変化を求めることが可能であることを示している。信号処理部17は、この(1)式を利用して前記位相差φの変化を算出する。
S1 = C1 + C2 · cos (2π · fb · t + φ) (1)
In the equation, C1 and C2 are constants determined by the characteristics of each optical element included in the measurement optical system 14 and the transmittance of the sample, φ is a phase difference due to the optical path length difference between the measurement light and the reference light, and fb is It is a frequency difference (= f1-f2) between the measurement light and the reference light. This equation (1) is obtained from the change in the intensity S1 of the measurement light after interference (difference between when the excitation light is not irradiated or when the light intensity is low and when the light intensity is high). It shows that it is possible to seek change. The signal processing unit 17 calculates the change in the phase difference φ using the equation (1).

例えば、前記励起光の強度がチョッパの回転により周波数fで周期的に変調された場合、前記測定域Amでの試料の屈折率さらには当該測定域Amを通る測定光の光路長も前記周波数fで変化し(参照光の光路長は一定)、前記位相差φも周波数fで変化する。従って、前記位相差φの変化を前記周波数fの成分(前記励起信号の強度の変調周期と同周期成分)について測定(算出)することが、周波数fの成分を有しないノイズの影響を除去しつつ試料の屈折率変化のみを精度良く測定することを可能にする。すなわち、この測定は、前記位相差φの測定のS/N比を向上させる。   For example, when the intensity of the excitation light is periodically modulated at the frequency f by the rotation of the chopper, the refractive index of the sample in the measurement area Am and the optical path length of the measurement light passing through the measurement area Am are also the frequency f. (The optical path length of the reference light is constant), and the phase difference φ also changes with the frequency f. Therefore, measuring (calculating) the change in the phase difference φ with respect to the component of the frequency f (the same period component as the modulation period of the intensity of the excitation signal) eliminates the influence of noise having no frequency f component. It is possible to accurately measure only the refractive index change of the sample. That is, this measurement improves the S / N ratio of the measurement of the phase difference φ.

以上示した光熱変換測定装置では、金属薄膜30上に形成された捕捉膜32が試料中の測定対象物質を捕捉する一方、当該金属薄膜30に所定の共鳴条件で入射される励起光がプラズモン共鳴により吸収されて前記測定対象物質に光熱効果を生じさせるものであるから、当該光熱効果が生ずる測定域Amに測定光を透過させることにより、前記試料中における溶媒のもつ光熱効果にかかわらず、当該試料中に含まれる微量の測定対象物質の検出を高精度で行うことが可能である。   In the photothermal conversion measuring apparatus described above, the capture film 32 formed on the metal thin film 30 captures the measurement target substance in the sample, while the excitation light incident on the metal thin film 30 under a predetermined resonance condition is plasmon resonance. The photothermal effect is generated in the measurement target substance by being absorbed by the measurement object, so that the measurement light is transmitted through the measurement area Am in which the photothermal effect occurs, regardless of the photothermal effect of the solvent in the sample. It is possible to detect a very small amount of a measurement target substance contained in a sample with high accuracy.

特に、この実施の形態では、前記プリズム20が基材、通路形成用の部材、さらには入射用光学素子として兼用されるため、簡素な構造で前記励起光の入射を実現することが可能である。さらに、このプリズム20は、前記金属薄膜30で前記励起光を複数回反射させるので、当該励起光の入射によるプラズモン共鳴及びこれによる光熱効果を高め、その結果として、測定信号の強度を増加させることができる。この効果は、例えば、前記基材として前記プリズム20の代わりに透光材の下面にミラーが貼り付けられた素子が設けられることによっても得ることが可能である。   In particular, in this embodiment, since the prism 20 is also used as a base material, a passage forming member, and an incident optical element, the excitation light can be incident with a simple structure. . Furthermore, since the prism 20 reflects the excitation light a plurality of times by the metal thin film 30, it enhances the plasmon resonance caused by the incidence of the excitation light and the photothermal effect thereby increasing the intensity of the measurement signal. Can do. This effect can also be obtained, for example, by providing an element in which a mirror is attached to the lower surface of the translucent material instead of the prism 20 as the base material.

一方、当該装置の測定系においても、その測定光反射ミラー46が金属薄膜との間で前記測定光を反射させることにより、当該測定光が前記測定域Amを複数回追加するため、検出信号が増強されてより高精度の測定が実現される。また、当該測定光が前記測定域Amを通路長手方向に透過するように当該測定光を導くようにしても、同様の効果を得ることが可能である。   On the other hand, in the measurement system of the apparatus, the measurement light reflecting mirror 46 reflects the measurement light between the metal thin film and the measurement light adds the measurement area Am a plurality of times. Enhanced to achieve more accurate measurements. The same effect can be obtained even if the measurement light is guided so that the measurement light passes through the measurement area Am in the passage longitudinal direction.

なお、本発明は試料用通路を有するものに限られない。例えば、試料用容器内に静止状態で収容された試料中の測定対象物質の検出にも本発明を適用することが可能である。   In addition, this invention is not restricted to what has a channel | path for samples. For example, the present invention can be applied to detection of a measurement target substance in a sample accommodated in a stationary state in a sample container.

また、本発明において、金属薄膜及び捕捉膜に対する励起光及び測定光の入射方向は問わない。これらの光は側方から入射されてもよいし、通路長手方向に対して傾斜する方向に入射及び進行してもよい。   Moreover, in this invention, the incident direction of the excitation light and measurement light with respect to a metal thin film and a trapping film is not ask | required. These lights may be incident from the side, or may be incident and travel in a direction inclined with respect to the longitudinal direction of the passage.

前記基材、両膜及び試料用通路の形状も特に限定されず、例えば前記基材が前記試料用通路を囲む円筒状に形成され、その内側面上に金属薄膜及び捕捉膜が積層されてもよい。この場合も、前記測定光は前記金属薄膜の内側面で多重反射しながら通路長手方向に進行してもよいし、当該通路長手方向と略平行な方向に沿って測定域を通るように試料用通路内に照射されてもよい。また、励起光は前記金属薄膜の外面(円筒面)上に入射すればよく、当該外面に対して複数の方向(径方向成分を含む方向)から入射されてもよいし、図3に示されるのと同様に金属薄膜外面上で複数回反射するように入射されてもよい。   The shapes of the base material, both membranes, and the sample passage are not particularly limited. For example, the base material may be formed in a cylindrical shape surrounding the sample passage, and a metal thin film and a trapping film may be laminated on the inner surface thereof. Good. In this case as well, the measurement light may travel in the longitudinal direction of the passage while being multiple-reflected on the inner surface of the metal thin film, or may pass through the measurement region along a direction substantially parallel to the longitudinal direction of the passage. It may be irradiated in the passage. Further, the excitation light may be incident on the outer surface (cylindrical surface) of the metal thin film, and may be incident on the outer surface from a plurality of directions (directions including radial components), as shown in FIG. Similarly to the above, the light may be incident so as to be reflected a plurality of times on the outer surface of the metal thin film.

本発明の実施の形態に係る光熱変換測定装置の全体構成図である。It is a whole lineblock diagram of a photothermal conversion measuring device concerning an embodiment of the invention. 前記光熱変換測定装置における試料部の平面図である。It is a top view of the sample part in the said photothermal conversion measuring apparatus. 前記試料部の断面側面図である。It is a cross-sectional side view of the sample part.

符号の説明Explanation of symbols

10 励起光源
11 励起光変調部
12 試料部
13 測定用光源
14 測定用光学系
16 受光素子
17 信号処理部
18 測定用回路
20 プリズム
22 通路形成部材
24 試料用通路
30 金属薄膜
32 捕捉膜
38 ビームスプリッタ(分光素子)
40 測定光用光学系
44 測定光導入部
46 測定光反射ミラー
48 測定光導出部
50 参照光用光学系
52 偏向ビームスプリッタ
54 導入用光学系
Am 測定域
DESCRIPTION OF SYMBOLS 10 Excitation light source 11 Excitation light modulation part 12 Sample part 13 Measurement light source 14 Measurement optical system 16 Light receiving element 17 Signal processing part 18 Measurement circuit 20 Prism 22 Passage formation member 24 Sample path 30 Metal thin film 32 Capture film 38 Beam splitter (Spectral element)
40 Optical system for measuring light 44 Measuring light introducing part 46 Measuring light reflecting mirror 48 Measuring light deriving part 50 Optical system for reference light 52 Deflection beam splitter 54 Optical system for introducing Am Measuring area

Claims (10)

測定対象物質及びその溶媒を含む試料に光熱効果を生じさせるための励起光を当該試料に照射してその光熱効果による前記測定対象物質の発熱量を測定するための光熱変換測定装置であって、
透光性を有する基材と、
前記基材の表面に形成され、プラズモン共鳴を生じることが可能な金属薄膜と、
前記金属薄膜上に形成され、前記試料中に含まれる測定対象物質を捕捉する捕捉膜と、
前記励起光を発する励起光源を含み、前記金属薄膜にプラズモン共鳴を生じさせる共鳴条件で当該金属薄膜に対して前記捕捉膜と反対の側から前記基材を通して前記励起光を入射し、当該金属薄膜に当該入射光を吸収させることにより、前記捕捉膜に捕捉された測定対象物質に光熱効果を生じさせる励起系と、
前記光熱効果により光の屈折率が変化する測定域に前記励起光とは別の測定光を透過させてその透過後の測定光の位相変化を測定する測定系とを備えたことを特徴とする光熱変換測定装置。
A photothermal conversion measurement device for irradiating a sample containing a measurement target substance and a solvent thereof with excitation light for generating a photothermal effect and measuring the calorific value of the measurement target substance due to the photothermal effect,
A substrate having translucency,
A metal thin film formed on the surface of the substrate and capable of causing plasmon resonance;
A capture film that is formed on the metal thin film and captures a measurement target substance contained in the sample;
Including the excitation light source that emits the excitation light, and the excitation light is incident on the metal thin film from the side opposite to the trapping film through the substrate under a resonance condition that causes plasmon resonance in the metal thin film. An excitation system that causes a photothermal effect on the measurement target substance trapped in the trapping film by absorbing the incident light;
A measurement system for transmitting a measurement light different from the excitation light and measuring a phase change of the measurement light after the transmission in a measurement region in which the refractive index of the light changes due to the photothermal effect; Photothermal conversion measuring device.
請求項1記載の光熱変換測定装置において、
前記励起系は、前記基材の少なくとも一部を構成し、前記励起光源からの光を前記共鳴条件で前記金属薄膜の表面に導く入射用光学素子を含むことを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to claim 1,
The photothermal conversion measurement apparatus, wherein the excitation system includes at least a part of the base material and includes an incident optical element that guides light from the excitation light source to the surface of the metal thin film under the resonance condition.
請求項2記載の光熱変換測定装置において、
前記入射用光学素子は、前記金属薄膜に対して前記励起光を複数回反射させるプリズムであることを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to claim 2,
The photothermal conversion measuring apparatus, wherein the incident optical element is a prism that reflects the excitation light to the metal thin film a plurality of times.
請求項1〜3のいずれかに記載の光熱変換測定装置において、
前記測定系は、前記励起光とは別の光を発する測定用光源と、この測定用光源から発せられる光を測定光として前記測定域に透過させる測定光用光学系と、その透過後の測定光を受光して電気信号に変換する受光素子とを含むことを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to any one of claims 1 to 3,
The measurement system includes a measurement light source that emits light different from the excitation light, a measurement light optical system that transmits light emitted from the measurement light source as measurement light to the measurement region, and measurement after the measurement A photothermal conversion measuring device comprising: a light receiving element that receives light and converts it into an electrical signal.
請求項4記載の光熱変換測定装置において、
前記測定光用光学系は、前記測定光を前記測定域に複数回透過させるための透過用光学素子を含むことを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to claim 4,
The photothermal conversion measurement apparatus, wherein the measurement light optical system includes a transmission optical element for transmitting the measurement light through the measurement area a plurality of times.
請求項5記載の光熱変換測定装置において、
前記透過用光学素子は、前記金属薄膜のうち前記捕捉膜が形成された側の表面と対向するように配置され、前記金属薄膜の表面で反射した測定光を再び当該金属薄膜の表面に向けて反射させる測定光反射ミラーを含むことを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to claim 5,
The transmission optical element is disposed so as to face the surface of the metal thin film on which the trapping film is formed, and the measurement light reflected on the surface of the metal thin film is directed again toward the surface of the metal thin film. A photothermal conversion measuring apparatus comprising a measuring light reflecting mirror to be reflected.
請求項4〜6のいずれかに記載の光熱変換測定装置において、
前記測定系は、前記測定用光源から発せられた光を前記測定光と参照光とに分光する分光素子と、前記参照光を前記測定域を透過した後の測定光と干渉させる参照光用光学系とを含み、その干渉後の測定光が前記受光素子に入射されることを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to any one of claims 4 to 6,
The measurement system includes a spectroscopic element that separates light emitted from the measurement light source into the measurement light and reference light, and reference light optics that causes the reference light to interfere with measurement light after passing through the measurement region. A photothermal conversion measuring device, wherein the measurement light after the interference is incident on the light receiving element.
請求項4〜7のいずれかに記載の光熱変換測定装置において、
前記測定系は、前記励起光の強度を周期的に変調させる励起光変調部と、前記受光素子の出力信号の周期成分のうち前記変調の周期と同じ周期成分のものを演算する信号処理部とを含む測定用回路を具備することを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to any one of claims 4 to 7,
The measurement system includes an excitation light modulation unit that periodically modulates the intensity of the excitation light, and a signal processing unit that calculates a periodic component that is the same as the modulation period among the periodic components of the output signal of the light receiving element; A photothermal conversion measuring device comprising a measuring circuit including
請求項1〜8のいずれかに記載の光熱変換測定装置において、
前記試料を流すための試料用通路を前記基材とともに形成する通路形成部材を備え、前記試料用通路に前記基材の表面に形成された金属薄膜および捕捉膜が臨むことを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to any one of claims 1 to 8,
A photothermal conversion comprising: a passage forming member that forms a sample passage for flowing the sample together with the base material; and a metal thin film and a trapping film formed on a surface of the base material face the sample passage. measuring device.
測定対象物質及びその溶媒を含む試料に光熱効果を生じさせるための励起光を当該試料に照射してその光熱効果による前記測定対象物質の発熱量を測定するための光熱変換測定方法であって、
プラズモン共鳴を生じることが可能な金属薄膜上に形成された捕捉膜上に前記試料を流して当該捕捉膜に前記試料中の測定対象物質を捕捉させることと、
前記金属薄膜に対して前記捕捉膜と反対の側から励起光を照射して当該金属薄膜に前記プラズモン共鳴を生じさせることにより、当該金属薄膜に当該入射光を吸収させて前記捕捉膜に捕捉された測定対象物質に光熱効果を生じさせることと、
前記光熱効果により光の屈折率が変化する測定域に前記励起光とは別の測定光を透過させ、その位相変化を測定することとを含む光熱変換測定方法。
A photothermal conversion measurement method for measuring the calorific value of the measurement target substance by irradiating the sample with excitation light for generating a photothermal effect on a sample containing the measurement target substance and its solvent,
Flowing the sample onto a capture film formed on a metal thin film capable of generating plasmon resonance, and causing the capture film to capture a substance to be measured in the sample;
By irradiating the metal thin film with excitation light from the side opposite to the capture film to cause the plasmon resonance in the metal thin film, the metal thin film absorbs the incident light and is captured by the capture film. Producing a photothermal effect on the measured substance,
A photothermal conversion measurement method comprising: transmitting measurement light different from the excitation light to a measurement region in which a refractive index of light changes due to the photothermal effect, and measuring a phase change thereof.
JP2008170444A 2008-06-30 2008-06-30 Photothermal conversion measuring device and method Expired - Fee Related JP5001226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008170444A JP5001226B2 (en) 2008-06-30 2008-06-30 Photothermal conversion measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008170444A JP5001226B2 (en) 2008-06-30 2008-06-30 Photothermal conversion measuring device and method

Publications (2)

Publication Number Publication Date
JP2010008331A true JP2010008331A (en) 2010-01-14
JP5001226B2 JP5001226B2 (en) 2012-08-15

Family

ID=41589008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170444A Expired - Fee Related JP5001226B2 (en) 2008-06-30 2008-06-30 Photothermal conversion measuring device and method

Country Status (1)

Country Link
JP (1) JP5001226B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105466863A (en) * 2015-11-18 2016-04-06 天津工业大学 A membrane enrichment-ultraviolet-visible diffuse reflection spectroscopy based trace heavy-metal-ion measuring method
CN115308164A (en) * 2022-10-11 2022-11-08 成都赛林斯科技实业有限公司 Device and method for continuously measuring refractive index and dispersion of molten glass in online real time manner
CN116533419A (en) * 2023-06-06 2023-08-04 广东汇发塑业科技有限公司 Air cooler control method of multilayer co-extrusion film forming machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658873A (en) * 1992-08-05 1994-03-04 Toto Ltd Optical sensor, detection method using optical sensor, and formation of molecular recognizing film for optical
JP2004301520A (en) * 2003-03-28 2004-10-28 Kobe Steel Ltd Photothermal conversion measuting instrument and its method
JP2006242649A (en) * 2005-03-01 2006-09-14 Kobe Steel Ltd Apparatus and method for measuring photothermal conversion, and sample cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658873A (en) * 1992-08-05 1994-03-04 Toto Ltd Optical sensor, detection method using optical sensor, and formation of molecular recognizing film for optical
JP2004301520A (en) * 2003-03-28 2004-10-28 Kobe Steel Ltd Photothermal conversion measuting instrument and its method
JP2006242649A (en) * 2005-03-01 2006-09-14 Kobe Steel Ltd Apparatus and method for measuring photothermal conversion, and sample cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105466863A (en) * 2015-11-18 2016-04-06 天津工业大学 A membrane enrichment-ultraviolet-visible diffuse reflection spectroscopy based trace heavy-metal-ion measuring method
CN115308164A (en) * 2022-10-11 2022-11-08 成都赛林斯科技实业有限公司 Device and method for continuously measuring refractive index and dispersion of molten glass in online real time manner
CN115308164B (en) * 2022-10-11 2022-12-13 成都赛林斯科技实业有限公司 Device and method for continuously measuring refractive index and dispersion of molten glass in online real time manner
CN116533419A (en) * 2023-06-06 2023-08-04 广东汇发塑业科技有限公司 Air cooler control method of multilayer co-extrusion film forming machine
CN116533419B (en) * 2023-06-06 2023-10-20 广东汇发塑业科技有限公司 Air cooler control method of multilayer co-extrusion film forming machine

Also Published As

Publication number Publication date
JP5001226B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5959509B2 (en) Measuring unit and gas analyzer
JP5094484B2 (en) Fluorescence detection method and fluorescence detection apparatus
JP2008292473A (en) Film thickness measuring device and technique
KR20110127122A (en) Sample analyzing apparatus
JP2011075513A (en) Gas spectroscopic analysis device
US20090218496A1 (en) Sensing apparatus and a method of detecting substances
US10036702B2 (en) Method, device and sensor for determining an absorption behavior of a medium
JP5001226B2 (en) Photothermal conversion measuring device and method
JP4491277B2 (en) Sample analyzer
JP2009204476A (en) Sensing device
JP6538191B2 (en) Measuring device, measuring method and computer program
JP2010210543A (en) Sensor unit, terahertz spectral measurement apparatus, and terahertz spectral measurement method
JP2005321244A (en) Optical measuring instrument
JP2005127748A (en) Photothermal converting/measuring apparatus and method
JP2010164511A (en) Sensor unit, terahertz spectral measurement apparatus, and terahertz spectral measurement method
JP4290142B2 (en) Photothermal conversion measuring apparatus and method
JP2006220600A (en) Photothermal conversion measuring instrument and its method
JP2006300808A (en) Raman spectrometry system
JP2014142299A (en) Gas concentration measurement device
JP4116979B2 (en) Photothermal conversion measuring apparatus and method
JP4742166B2 (en) Sample analyzer
JP4299798B2 (en) Photothermal conversion measuring device, sample cell
JP2010091428A (en) Scanning optical system
JP2006300661A (en) Interferometer and fourier spectral device
JP4740792B2 (en) Photothermal conversion measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees