JP2010007094A - Ferritic heat resistant steel - Google Patents

Ferritic heat resistant steel Download PDF

Info

Publication number
JP2010007094A
JP2010007094A JP2008164243A JP2008164243A JP2010007094A JP 2010007094 A JP2010007094 A JP 2010007094A JP 2008164243 A JP2008164243 A JP 2008164243A JP 2008164243 A JP2008164243 A JP 2008164243A JP 2010007094 A JP2010007094 A JP 2010007094A
Authority
JP
Japan
Prior art keywords
haz
less
resistant steel
content
heat resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008164243A
Other languages
Japanese (ja)
Other versions
JP5169532B2 (en
Inventor
Hiromasa Hirata
弘征 平田
Kazuhiro Ogawa
和博 小川
Mitsuru Yoshizawa
満 吉澤
Masaaki Igarashi
正晃 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008164243A priority Critical patent/JP5169532B2/en
Priority to CN2009101422230A priority patent/CN101613832B/en
Publication of JP2010007094A publication Critical patent/JP2010007094A/en
Application granted granted Critical
Publication of JP5169532B2 publication Critical patent/JP5169532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferritic heat resistant steel having excellent weld crack resistance in a HAZ (Heat Affected Zone) and further having excellent creep strength and toughness. <P>SOLUTION: The ferritic heat resistant steel has a composition comprising, by mass, 0.04 to 0.16% C, >0.1 to ≤1.0% Si, ≤2.0% Mn, 1 to 8% Co, 7 to 13% Cr, 0.05 to 0.40% V, 0.01 to 0.09% Nb, either or both of Mo and W by 0.5 to 4% in total, 0.005 to 0.025% B, ≤0.03% Al and 0.003 to 0.06% N, and the balance Fe with impurities, and, in which, the contents of O, P and S as the impurities satisfy ≤0.02%, ≤0.03% and ≤0.02%, respectively, and further, the C content satisfies inequality (1) or (2) in accordance with welding heat input amount Q. The steel may further comprise one or more selected from Nd, Ta, Ca and Mg. (1) C≤-0.12×Q+0.31, when Q<1.8(kJ/mm). (2) C≤0.094, when Q≥1.8(kJ/mm). Here, Q denotes welding heat input amount (kJ/mm), and C denotes the C content (mass%). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、火力発電ボイラなど高温で使用される部材に用いられる溶接熱影響部の耐溶接割れ性に優れるとともに高温強度および靭性に優れるフェライト系耐熱鋼材に関する。   The present invention relates to a ferritic heat resistant steel material that is excellent in weld crack resistance of a weld heat-affected zone used for a member used at high temperatures such as a thermal power generation boiler, and is excellent in high temperature strength and toughness.

近年、火力発電においては熱効率を高めるため蒸気条件の高温高圧化が進められており、将来的には650℃、350気圧という超々臨界圧条件での操業が計画されている。フェライト系耐熱鋼材は、オーステナイト系ステンレス鋼材に比べて安価であり、かつ熱膨張係数が小さいという耐熱鋼材としての利点を有するため広く利用されている。   In recent years, high-temperature and high-pressure steam conditions have been promoted in thermal power generation to increase thermal efficiency, and in the future, operation under super-supercritical conditions of 650 ° C and 350 atmospheres is planned. Ferritic heat-resistant steel materials are widely used because they are less expensive than austenitic stainless steel materials and have an advantage as heat-resistant steel materials that have a low coefficient of thermal expansion.

フェライト系耐熱鋼材については、将来的な蒸気条件の過酷化に対応すべく高強度化が図られている。例えば、特許文献1や特許文献2には、WとMoの含有量を最適化するとともにCoおよびBを含有させることが提案されている。また、特許文献3にはWおよびMoを含有させることによって、微細な金属間化合物相による強化を図った鋼材が提案されている。そして特許文献4にはマルテンサイトラス界面に析出するM23炭化物や金属間化合物相を活用して高強度化を図った鋼材が提案されている。 Ferritic heat-resistant steel materials are being strengthened to cope with future severe steam conditions. For example, Patent Document 1 and Patent Document 2 propose that the contents of W and Mo are optimized and Co and B are included. Patent Document 3 proposes a steel material that is strengthened by a fine intermetallic compound phase by containing W and Mo. Patent Document 4 proposes a steel material that is strengthened by utilizing M 23 C 6 carbide and an intermetallic compound phase precipitated at the martensitic lath interface.

しかしながら、これらフェライト系耐熱鋼材を溶接構造物として使用する場合、例えば、「Science and Technology of Welding and Joining、1996、Vol.1、No.1、p.36〜42」に示されているように、溶接による熱サイクルを受けた溶接熱影響部(以下、「HAZ」という。)ではクリープ強度が大きく低下することがある。そのため、高強度化を図った鋼材の利点を十分に活用できないという問題がある。そこで、母材だけでなくHAZのクリープ強度の向上を目的とした鋼材についても提案がなされている。   However, when these ferritic heat resistant steel materials are used as welded structures, for example, as shown in “Science and Technology of Welding and Joining, 1996, Vol. 1, No. 1, p. 36-42”. In a heat affected zone (hereinafter referred to as “HAZ”) that has undergone a thermal cycle by welding, the creep strength may be greatly reduced. Therefore, there exists a problem that the advantage of the steel material aiming at high intensity | strength cannot fully be utilized. Therefore, not only a base material but also a steel material for the purpose of improving the creep strength of HAZ has been proposed.

例えば、特許文献5には、溶接入熱に対して安定なTi、ZrまたはHf系の窒化物を生成させることにより、特許文献6にはWを含有させるとともに(Nb、Ta)炭窒化物を微細に析出させることにより、そして、特許文献7と特許文献8にはCr炭化物の生成を抑制し、微細なVやNb等の炭窒化物の長時間安定性を高めるにより、それぞれ溶接継手部の長時間クリープ強度を改善した鋼が開示されている。このように炭窒化物を活用したHAZの強度改善手法が種々提案されているものの、実用面からはさらなるHAZ強度の向上が望まれている。   For example, Patent Document 5 generates Ti, Zr, or Hf-based nitrides that are stable against welding heat input, and Patent Document 6 contains W (Nb, Ta) carbonitrides. By precipitating finely, and in patent document 7 and patent document 8, generation | occurrence | production of Cr carbide | carbonized_material is suppressed, and long-term stability of carbonitrides, such as fine V and Nb, is improved, respectively. Steels with improved long term creep strength are disclosed. Although various HAZ strength improvement methods utilizing carbonitrides have been proposed in this way, further improvement in HAZ strength is desired from a practical aspect.

さらに、特許文献9には、Bを0.003%〜0.03%含有させてHAZでの細粒化を抑えることによって、HAZでのクリープ強度を改善するという方法が提案されている。   Furthermore, Patent Document 9 proposes a method of improving the creep strength in HAZ by containing B in an amount of 0.003% to 0.03% to suppress fine graining in HAZ.

特開平4-371551号公報Japanese Unexamined Patent Publication No. 4-371551 特開平4-371552号公報Japanese Unexamined Patent Publication No. 4-371552 特開2001-152293号公報JP 2001-152293 A 特開2002-241903号公報JP 2002-241903 A 特開平8-85848号公報JP-A-8-85848 特開平9-71845号公報Japanese Patent Laid-Open No. 9-71845 特開2001-279391号公報JP 2001-279391 A 特開2002-69588号公報JP 2002-69588 A 特開2004-300532号公報JP 2004-300532 A

フェライト系耐熱鋼材は安価であることに加えて熱膨張係数が小さいという利点を有するため、上記条件の高温高圧化がすすめられている火力発電ボイラなどで溶接構造物として使用されることが期待されている。   In addition to being inexpensive, ferritic heat-resistant steel has the advantage of having a low coefficient of thermal expansion, so it is expected to be used as a welded structure in thermal power boilers where high-temperature and high-pressure conditions are recommended under the above conditions. ing.

そして、上述のように、さらに高温高圧条件でも使用することができるように、更なる高強度化とともに溶接継手のHAZのクリープ強度を改善するために、種々の提案がなされている。   As described above, various proposals have been made for further increasing the strength and improving the HAZ creep strength of the welded joint so that it can be used even under high temperature and high pressure conditions.

しかしながら、たとえば、B含有鋼材については上記特許文献9にも開示されているように、BはHAZでのクリープ強度を改善する効果を有する元素であることが知られている一方で、溶接に際しては、溶接金属の凝固割れやHAZの液化割れ感受性を高める元素であることが広く知られている。そのため、ボイラ用主蒸気管や圧力容器など厚肉部材として使用される場合には、十分な溶接性(耐溶接割れ性)が得られないといった問題がある。加えて、フェライト系耐熱鋼材が厚肉部材として使用される場合には、実用上十分な靭性を有することも求められる。   However, for example, as disclosed in Patent Document 9 for the B-containing steel material, B is known to be an element having an effect of improving the creep strength in HAZ. It is widely known that it is an element that increases the susceptibility to solidification cracking of weld metal and liquefaction cracking of HAZ. Therefore, when it is used as a thick member such as a main steam pipe for a boiler or a pressure vessel, there is a problem that sufficient weldability (weld crack resistance) cannot be obtained. In addition, when a ferritic heat resistant steel material is used as a thick member, it is required to have practically sufficient toughness.

このように、HAZの高強度化は未だ不十分であるだけでなく、溶接時の十分な耐溶接割れ性、靭性が得られていないという問題がある。   As described above, there is a problem that not only the strength of HAZ is increased, but also sufficient weld crack resistance and toughness during welding cannot be obtained.

本発明は、この様な状況に鑑み、HAZの耐溶接割れ性に優れるとともにクリープ強度および靭性にも優れるフェライト系耐熱鋼材を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a ferritic heat resistant steel material that is excellent in weld cracking resistance of HAZ and also excellent in creep strength and toughness.

上述したとおり、HAZのクリープ強度を向上させるためには、Cr、Co、VおよびNbを所定の範囲に規制するとともに、Bを含有させることが有効であるが、HAZを高強度化するのに必要な量のBを含有した場合、HAZおよび溶接金属の割れ感受性が増大し、溶接割れ性に問題があることが明らかとなった。さらに、溶接入熱の増大とともに、その感受性が高まることも明らかとなった。   As described above, in order to improve the creep strength of HAZ, it is effective to restrict Cr, Co, V and Nb to a predetermined range and to contain B, but for increasing the strength of HAZ. When the necessary amount of B was contained, it became clear that the cracking susceptibility of HAZ and weld metal increased, and there was a problem in weld crackability. Furthermore, it became clear that the sensitivity increases as the welding heat input increases.

本発明者らは、HAZにおけるクリープ強度が汎用鋼の破断時間の3倍以上の破断時間を有することを目標とし、フェライト系耐熱鋼材に関して種々に検討した結果、HAZでのクリープ強度低下を改善し、かつ優れた溶接性を両立するためには、CおよびBの含有量を規定するとともに溶接入熱を最適化することによって、問題解決を図ることができることを見出した。   As a result of various investigations on ferritic heat resistant steels, the present inventors have aimed to have a creep strength in HAZ that has a rupture time that is at least three times the rupture time of general-purpose steel. In order to achieve both excellent weldability, it has been found that the problem can be solved by defining the contents of C and B and optimizing the welding heat input.

また、Cr:7〜13%、Co:1〜8%、V:0.05〜0.40%およびNb:0.01〜0.09%の組成範囲を有するフェライト系耐熱鋼材において、Bを含有させた場合、HAZが高強度化されることを確認した。   Moreover, in the ferritic heat resistant steel material having a composition range of Cr: 7 to 13%, Co: 1 to 8%, V: 0.05 to 0.40% and Nb: 0.01 to 0.09%, when B is contained, HAZ is high. It was confirmed that it was strengthened.

HAZでのクリープ強度が母材に比べて低下するのは、溶接熱サイクルによりAc1変態点からAc3変態点の間の温度に加熱されることによる細粒化が一因である。細粒化は元の組織であるフェライト相(焼き戻しマルテンサイト相)がこの温度域に加熱された場合、粒界にオーステナイト相が新たに核生成し、成長することによって生じる。Bは粒界に偏析しやすい元素であり、この温度域に加熱された場合、元のフェライト相の粒界に偏析して粒界のエネルギーを低減し、オーステナイト相の核生成を抑制・遅延させることにより細粒化を抑制する。その結果、HAZでのクリープ強度を改善するものと考えられる。 The reason why the creep strength in the HAZ is lower than that of the base material is partly due to the refinement by heating to a temperature between the Ac 1 transformation point and the Ac 3 transformation point by the welding heat cycle. When the ferrite phase (tempered martensite phase), which is the original structure, is heated to this temperature range, the fine graining is caused by newly nucleating and growing an austenite phase at the grain boundary. B is an element that easily segregates at the grain boundary. When heated to this temperature range, it segregates at the grain boundary of the original ferrite phase to reduce the energy of the grain boundary and suppress / delay nucleation of the austenite phase. This prevents fine graining. As a result, it is considered that the creep strength in HAZ is improved.

しかしながら、クリープ強度の低下を軽減する効果が得られる必要量以上のBを含有した場合、溶接金属の凝固割れおよびHAZの液化割れ感受性が増大することがわかった。   However, it has been found that when B is contained in an amount more than the necessary amount that can reduce the creep strength, the sensitivity to solidification cracking of weld metal and liquefaction cracking of HAZ increases.

これは、Bは粒界に偏析しやすい元素であると同時に融点を大きく低下させる元素であることが一因である。加えて、SおよびPもBと同様に粒界偏析しやすく、かつ融点を大きく低下させる元素である。そのため、溶融線直近のHAZでは、Bの粒界偏析にPおよびSの粒界偏析が重畳し、粒界溶融が生じ、熱応力もしくは外部応力により粒界が開口し、液化割れを生じるものと考えられる。特に、溶接入熱が大きい場合、高温に加熱される領域が広がるため、これら元素の粒界偏析に起因した粒界溶融がより広範囲で生じること、ならびに熱応力が生じやすくなることにより、液化割れがより発生しやすくなる。   This is partly because B is an element that easily segregates at grain boundaries and at the same time an element that greatly reduces the melting point. In addition, S and P are elements that are likely to segregate at the grain boundaries as well as B, and greatly reduce the melting point. Therefore, in the HAZ closest to the melting line, the grain boundary segregation of P and S is superimposed on the grain boundary segregation of B, grain boundary melting occurs, the grain boundary opens due to thermal stress or external stress, and liquefaction cracking occurs. Conceivable. In particular, when the welding heat input is large, the region heated to a high temperature is widened, so that the grain boundary melting due to the grain boundary segregation of these elements occurs in a wider range, and the thermal stress is liable to occur. Is more likely to occur.

溶接金属の凝固割れは、溶接材料の成分を調整することで防止は可能である。一方、HAZの液化割れは、使用する鋼の組成に係わる課題であり、実用化に際しては大きな制約となる。このような問題点を踏まえ、HAZの液化割れの防止を可能とし、かつHAZのクリープ強度低下を抑制しうる要件を鋭意調査した。   Solidification cracking of the weld metal can be prevented by adjusting the components of the weld material. On the other hand, liquefaction cracking of HAZ is a problem related to the composition of the steel to be used, and becomes a major restriction in practical use. In light of these problems, the present inventors have earnestly investigated requirements that can prevent liquefaction cracking of HAZ and can suppress a decrease in the creep strength of HAZ.

検討を繰り返した結果、Cの含有量を所定の範囲に規定した場合にのみ、液化割れの防止が可能になるとの新たな知見が得られた。そして、この理由は、次の通り考えられる。   As a result of repeated studies, new knowledge was obtained that liquefaction cracking can be prevented only when the C content is defined within a predetermined range. And this reason is considered as follows.

すなわち、CはBと同様に、融点降下元素として作用し、上述のBによる融点低下作用に重畳し、HAZの液化割れ感受性を高める。そのため、Cの含有量を低減することにより、融点の低下を軽減することが可能となる。さらに、実溶接を考慮した場合、液化割れを防止しうるCの含有量の上限が溶接入熱量に依存することを見出した。   That is, C, like B, acts as a melting point lowering element, superimposes on the melting point lowering action by B described above, and increases the liquefaction cracking sensitivity of HAZ. Therefore, it is possible to reduce the lowering of the melting point by reducing the C content. Furthermore, when actual welding was considered, it discovered that the upper limit of C content which can prevent a liquefaction crack depends on welding heat input.

加えて、Cはその相互作用により、硫化物や隣化物の生成自由エネルギーに影響を与える。即ち、高温ではC含有量の増加とともにCrやNd等の隣化物もしくは硫化物の溶解度が減少し、C量が特定の含有量を超えるとこれらの溶解度が再び増加する傾向を有する。硫化物や燐化物の溶解度が増加した場合、溶接等の熱影響により粒界に偏析するSやPの量が増え、液化割れ感受性が高まる。そのため、C含有量を減じた本発明範囲のC含有量の場合、硫化物や燐化物の溶解度が小さくなり安定な化合物が形成される。それに伴い、粒界におけるSおよびPが減少し融点低下抑制との相乗作用により、HAZの液化割れが防止できるものと考えられた。   In addition, C affects the free energy of formation of sulfides and vicinals by its interaction. That is, at high temperatures, the solubility of vicinals or sulfides such as Cr and Nd decreases with an increase in the C content, and when the C content exceeds a specific content, the solubility tends to increase again. When the solubility of sulfide or phosphide increases, the amount of S or P segregated at the grain boundary due to the thermal effect of welding or the like increases, and the liquefaction cracking sensitivity increases. Therefore, in the case of the C content within the range of the present invention in which the C content is reduced, the solubility of sulfides and phosphides is reduced, and a stable compound is formed. Along with this, it was considered that S and P at the grain boundaries were reduced and the synergistic action with the suppression of the melting point lowering could prevent liquefaction cracking of HAZ.

しかしながら、Bの含有量を高めることに加えてCの含有量を低減した場合、HAZの靭性が著しく損なわれることが明らかとなった。これは、C含有量の低減により、マルテンサイト変態点が上昇することに起因し、マルテンサイトラスが成長しやすく、粗大となることに起因すると考えられた。   However, it has been found that when the C content is reduced in addition to increasing the B content, the toughness of the HAZ is significantly impaired. This was thought to be due to the fact that the martensite transformation point increased due to the reduction of the C content, and that the martensite lath was likely to grow and become coarse.

これらの検討の結果から、HAZの液化割れの防止を可能とし、かつHAZのクリープ強度低下の抑制と靭性確保を両立しうる必要要件は、B:0.005〜0.025%およびC:0.04〜0.16%であり、かつ溶接入熱量Q(kJ/mm)により、Cの含有量の上限を下記の通り管理する必要があることが分かった。   From the results of these studies, the necessary requirements that can prevent liquefaction cracking of HAZ and that can simultaneously suppress the decrease in the creep strength of HAZ and ensure toughness are B: 0.005-0.025% and C: 0.04-0.16%. It was also found that the upper limit of the C content needs to be managed as follows according to the welding heat input Q (kJ / mm).

Q<1.8(kJ/mm)のとき、C≦-0.12×Q+0.31 ・・・(1)
Q≧1.8(kJ/mm)のとき、C≦0.094 ・・・(2)
ここで、Qは溶接入熱量(kJ/mm)、CはC含有量(質量%)を示す。
When Q <1.8 (kJ / mm), C ≦ −0.12 × Q + 0.31 (1)
When Q ≧ 1.8 (kJ / mm), C ≦ 0.094 (2)
Here, Q represents the welding heat input (kJ / mm), and C represents the C content (mass%).

本発明は、上記の知見を基礎としてなされたもので、その要旨は下記の(1)〜(4)に示すフェライト系耐熱鋼材にある。   The present invention has been made on the basis of the above knowledge, and the gist thereof is a ferritic heat resistant steel material shown in the following (1) to (4).

(1) 質量%で、C:0.04〜0.16%、Si:0.1%を超えて1.0%以下、Mn:2.0%以下、Co:1〜8%、Cr:7〜13%、V:0.05〜0.40%、Nb:0.01〜0.09%、MoおよびWの一方または両方を合計で0.5〜4%、B:0.005〜0.025%、Al:0.03%以下並びにN:0.003〜0.06%を含み、残部がFeおよび不純物からなり、不純物としてのO、PおよびSがそれぞれ、O:0.02%以下、P:0.03%以下およびS:0.02%以下のフェライト系耐熱鋼材であって、さらに前記C含有量が溶接入熱量Qに応じて下記(1)式または(2)式を満足することを特徴とするフェライト系耐熱鋼材。
Q<1.8(kJ/mm)のとき、C≦-0.12×Q+0.31 ・・・(1)
Q≧1.8(kJ/mm)のとき、C≦0.094 ・・・(2)
ここで、Qは溶接入熱量(kJ/mm)、CはC含有量(質量%)を示す。
(1) By mass%, C: 0.04 to 0.16%, Si: more than 0.1% and 1.0% or less, Mn: 2.0% or less, Co: 1 to 8%, Cr: 7 to 13%, V: 0.05 to 0.40 %, Nb: 0.01 to 0.09%, one or both of Mo and W in total 0.5 to 4%, B: 0.005 to 0.025%, Al: 0.03% or less and N: 0.003 to 0.06%, with the balance being Fe and A ferritic heat-resistant steel material comprising impurities, wherein O, P and S as impurities are O: 0.02% or less, P: 0.03% or less and S: 0.02% or less, respectively, and the C content is welding heat input. A ferritic heat resistant steel material satisfying the following formula (1) or (2) according to Q.
When Q <1.8 (kJ / mm), C ≦ −0.12 × Q + 0.31 (1)
When Q ≧ 1.8 (kJ / mm), C ≦ 0.094 (2)
Here, Q represents the welding heat input (kJ / mm), and C represents the C content (mass%).

(2) 質量%で、Feの一部に代えて、Nd:0.08%以下を含むことを特徴とする上記(1)のフェライト系耐熱鋼材。   (2) The ferritic heat resistant steel material according to the above (1), characterized by containing Nd: 0.08% or less in place of part of Fe in mass%.

(3) 質量%で、Feの一部に代えて、Ta:0.08%以下を含むことを特徴とする上記(1)または(2)のフェライト系耐熱鋼材。   (3) The ferritic heat resistant steel material according to the above (1) or (2), characterized by containing Ta: 0.08% or less in mass% instead of part of Fe.

(4) 質量%で、Feの一部に代えて、Ca:0.02%以下およびMg:0.02%以下のうちの1種または2種を含むことを特徴とする上記(1)〜(3)のいずれかのフェライト系耐熱鋼材。   (4) The above-mentioned (1) to (3), characterized by containing one or two of Ca: 0.02% or less and Mg: 0.02% or less in place of part of Fe by mass% Any ferritic heat resistant steel.

本発明によれば、HAZの耐溶接割れ性に優れるとともにクリープ強度および靭性にも優れるフェライト系耐熱鋼材を提供することができる。     ADVANTAGE OF THE INVENTION According to this invention, the ferritic heat-resistant steel materials which are excellent in the weld cracking resistance of HAZ, and are excellent also in creep strength and toughness can be provided.

以下に、本発明に係るフェライト系耐熱鋼材材を構成する成分の作用効果と含有量の限定理由を説明する。なお、含有量に関する「%」は「質量%」を意味する。   Below, the effect of the component which comprises the ferritic heat-resistant steel material which concerns on this invention, and the reason for limitation of content are demonstrated. In addition, "%" regarding content means "mass%".

C:0.04〜0.16%、かつ、
溶接入熱量Qが1.8kJ/mm未満の場合、C≦-0.12×Q+0.31(%)
溶接入熱量Qが1.8kJ/mm以上の場合、C≦0.094%以下
Cは、Bとともに本発明における重要な元素である。Cは炭化物を形成し、高温強度の確保に寄与するとともにマルテンサイト組織を得るのに有効な元素であるため、必須の元素である。しかしながら、粒界に偏析するとBやPおよびSと重畳して粒界の融点低下を促し、かつ粗粒HAZの硫化物や燐化物の生成に間接的に影響を及ぼし、液化割れ感受性に影響をあたえる。特に、粒界偏析による液化割れ感受性の増大は溶接時の入熱量が大きくなるほど顕著となる。Cそのものによる粒界の融点低下を抑制し、かつ粗粒HAZで安定した硫化物や燐化物を形成させ、SやPの粒界偏析に起因した融点低下を抑制して液化割れを防止するためには、Bの含有量を後述の範囲に管理するとともに、C含有量を溶接入熱により規定される上限を満足する必要がある。しかし、0.16%を超える量を含有させると、HAZが極端に硬化し、延性の低下を招くため、入熱に係わらず。0.16%以下の範囲とする必要がある。一方、0.04%を下回る場合、マルテンサイト変態点が上昇することに起因し、マルテンサイトラスが成長しやすく、粗大となり靭性の低下を招くため0.04%以上含有させる必要がある。 Cの望ましい下限は0.05%である。
C: 0.04 to 0.16%, and
When welding heat input Q is less than 1.8kJ / mm, C≤-0.12 × Q + 0.31 (%)
When the welding heat input Q is 1.8 kJ / mm or more, C ≦ 0.094% or less C, together with B, is an important element in the present invention. C is an essential element because it forms carbides, contributes to securing high-temperature strength and is effective in obtaining a martensite structure. However, if segregated at the grain boundary, it will overlap with B, P and S to promote the melting point of the grain boundary, and indirectly affect the formation of sulfides and phosphides in the coarse grain HAZ, affecting the liquefaction cracking susceptibility. Give it. In particular, the increase in liquefaction cracking susceptibility due to grain boundary segregation becomes more pronounced as the heat input during welding increases. In order to suppress the decrease in the melting point of the grain boundary due to C itself and to form stable sulfides and phosphides with the coarse grain HAZ, and to prevent the liquefaction cracking by suppressing the lowering of the melting point due to the segregation of S and P grain boundaries. Therefore, it is necessary to manage the B content within the range described later and satisfy the upper limit defined by the welding heat input for the C content. However, if the content exceeds 0.16%, the HAZ is extremely hardened and the ductility is lowered, so regardless of heat input. It is necessary to make the range 0.16% or less. On the other hand, when the content is less than 0.04%, the martensite transformation point is increased, so that the martensite lath is likely to grow and becomes coarse, resulting in a decrease in toughness. A desirable lower limit of C is 0.05%.

Si:0.1%を超えて1.0%以下
Siは脱酸剤として0.1%を超えて含有させるが、過剰に含有させるとクリープ延性および靭性の低下を招くため、上限を1.0%とする。望ましくは、0.8%以下である。より望ましくは0.2%を超えて0.7%以下である。
Si: more than 0.1% and not more than 1.0% Si is contained in an amount exceeding 0.1% as a deoxidizer, but if it is contained excessively, the creep ductility and toughness are reduced, so the upper limit is made 1.0%. Desirably, it is 0.8% or less. More desirably, it is more than 0.2% and 0.7% or less.

Mn:2.0%以下
MnもSiと同様、脱酸剤として含有させるが、過剰に含有させた場合、クリープ脆化および靭性の低下を招く。そのため、2.0%以下とする。望ましくは1.8%以下である。しかしながら、過度の低減は、脱酸効果が十分に得られず鋼の清浄度を劣化させるとともに、製造コストの増大を招くため、特に下限は設けないが、0.01%以上であることが望ましい。
Mn: 2.0% or less Mn is also contained as a deoxidizing agent, as is Si, but when it is contained excessively, creep embrittlement and toughness decrease are caused. Therefore, 2.0% or less. Desirably, it is 1.8% or less. However, excessive reduction does not provide a sufficient deoxidation effect and deteriorates the cleanliness of the steel and causes an increase in production cost. Therefore, a lower limit is not particularly provided, but it is preferably 0.01% or more.

Co:1〜8%
Coは、オーステナイト生成元素であり、マトリックスのマルテンサイト化に必要な元素である。その効果を得るためには1%以上含有させる必要がある。しかし、8%を越えて含有させるとクリープ延性の著しい低下を招く。望ましくは2%を超えて7%以下である。
Co: 1-8%
Co is an austenite-generating element and is an element necessary for the martensite formation of the matrix. In order to obtain the effect, it is necessary to contain 1% or more. However, if the content exceeds 8%, the creep ductility is significantly reduced. Desirably, it exceeds 2% and is 7% or less.

Cr:7〜13%
Crは、高温用鋼において耐酸化性および耐高温腐食性を確保するとともにマトリックスのマルテンサイト組織を安定して得るために必須の元素である。その効果を得るためには、7%以上含有させることが必要である。しかし、過剰に含有させると、多量のCr炭化物の生成により炭化物の安定性を低下させ、クリープ強度の低下を招くとともに、靭性も劣化する、そのため、13%以下とする必要がある。望ましくは、8〜12%である。さらに望ましくは8〜10%である。
Cr: 7-13%
Cr is an essential element for securing oxidation resistance and high temperature corrosion resistance in a high temperature steel and obtaining a matrix martensite structure stably. In order to obtain the effect, it is necessary to contain 7% or more. However, if it is contained excessively, the stability of the carbide is reduced due to the production of a large amount of Cr carbide, leading to a decrease in creep strength and toughness being deteriorated. Therefore, it is necessary to make it 13% or less. Desirably, it is 8 to 12%. More desirably, it is 8 to 10%.

V:0.05〜0.40%
VはNbとともに粒内に微細な炭窒化物を形成し、クリープ強度の向上に大きく寄与する元素である。その効果を得るためには、0.05%以上含有させることが必要である。しかし、過剰に含有させた場合、炭窒化物の成長速度の増大を招き、その分散強化効果が早期に消失するとともに、靭性の低下を招くため、0.40%以下とする必要がある。望ましくは0.10〜0.35%である。
V: 0.05-0.40%
V is an element that forms fine carbonitrides in the grains together with Nb and greatly contributes to the improvement of creep strength. In order to acquire the effect, it is necessary to make it contain 0.05% or more. However, when it is contained excessively, the growth rate of carbonitride is increased, the dispersion strengthening effect disappears early, and the toughness is reduced. Therefore, it is necessary to be 0.40% or less. Desirably, it is 0.10 to 0.35%.

Nb:0.01〜0.09%
NbはVとともに粒内に高温まで安定な微細炭窒化物を形成し、クリープ強度の向上に大きく寄与する元素である。その効果を得るためには、少なくとも0.01%以上含有させることが必要である。しかし、過剰に含有させた場合、炭窒化物の成長速度の増大を招き、その分散強化効果が早期に消失するとともに、靭性の低下を招くため、0.09%以下とする必要がある。
Nb: 0.01-0.09%
Nb is an element that, together with V, forms fine carbonitrides that are stable up to high temperatures in the grains and greatly contributes to the improvement of creep strength. In order to obtain the effect, it is necessary to contain at least 0.01% or more. However, when it is contained excessively, the growth rate of carbonitride is increased, the dispersion strengthening effect disappears early, and the toughness is reduced, so it is necessary to be 0.09% or less.

MoおよびWの一方または両方:合計で0.5〜4%
MoおよびWはマトリックスを固溶強化し、クリープ強度の向上に寄与する元素である。この効果を得るためにはMoおよびWの一方または両方を、合計で0.5%以上含有させることが必要である。しかし、4%を超えて含有させると粗大な金属間化合物を生成し、靭性の極端な低下を招く。望ましくは0.8〜3.5%である。なお、Wのみを単独で含有させる場合には、下限は1%とすることが望ましい。
One or both of Mo and W: 0.5 to 4% in total
Mo and W are elements that solid-solution strengthen the matrix and contribute to the improvement of creep strength. In order to obtain this effect, it is necessary to contain one or both of Mo and W in total of 0.5% or more. However, if the content exceeds 4%, a coarse intermetallic compound is produced, which causes an extreme decrease in toughness. Desirably, it is 0.8 to 3.5%. When only W is contained alone, the lower limit is desirably 1%.

B:0.005〜0.025%
BはCとともに本発明における重要な元素である。BはHAZにおいて粒界に偏析して粒界エネルギーを下げることにより、オーステナイト相の核生成を遅延させ、細粒化を抑制する。その効果を十分に得るためには少なくとも、0.005%以上含有させることが必要である。しかしながら、粗粒HAZにおいては、粒界偏析したBは粒界の融点低下を促し、SおよびPの偏析と重畳して、液化割れを発生させる。これを防止するためには、C含有量を溶接入熱量に応じて前述の範囲に規定する必要がある。一方、Bが0.025%を超えるとHAZのクリープ強度低下軽減の効果が飽和するため上限とする。なお、B含有量の下限は0.007%以上が望ましい。さらに望ましい範囲は0.01%を超えて0.018%以下である。
B: 0.005-0.025%
B is an important element in the present invention together with C. B segregates at the grain boundaries in the HAZ and lowers the grain boundary energy, thereby delaying nucleation of the austenite phase and suppressing fine graining. In order to obtain the effect sufficiently, it is necessary to contain at least 0.005% or more. However, in coarse-grained HAZ, grain boundary segregated B promotes a decrease in the melting point of the grain boundary and overlaps with the segregation of S and P to cause liquefaction cracks. In order to prevent this, it is necessary to define the C content in the above-described range according to the welding heat input. On the other hand, if B exceeds 0.025%, the effect of reducing the reduction in creep strength of HAZ is saturated, so the upper limit is set. The lower limit of the B content is preferably 0.007% or more. A more desirable range is more than 0.01% and not more than 0.018%.

Al:0.03%以下
Alは脱酸剤として含有させるが、過剰に含有させるとクリープ延性および靭性の低下を招くため、上限を0.03%とする。望ましくは、0.02%以下である。しかしながら、過度の低減は、脱酸効果が十分に得られず鋼の清浄度を劣化させるとともに、製造コストの増大を招く。そのため、Alは0.001%以上含有させるのが望ましい。
Al: 0.03% or less Al is contained as a deoxidizing agent. However, if excessively contained, the creep ductility and toughness are reduced, so the upper limit is made 0.03%. Desirably, it is 0.02% or less. However, excessive reduction results in an insufficient deoxidation effect and deteriorates the cleanliness of the steel and increases the manufacturing cost. Therefore, it is desirable to contain Al 0.001% or more.

N:0.003〜0.06%
NはVやNbを含む微細な炭窒化物を形成し、クリープ強度の確保に有効な元素である。その効果を得るためには0.003%以上含有させることが必要である。しかし、過剰に含有させると、炭窒化物の析出量の増大を招き、脆化の原因となる。そのためN含有量の上限を0.06%とする。
N: 0.003-0.06%
N is an element that forms fine carbonitrides containing V and Nb and is effective in ensuring creep strength. In order to acquire the effect, it is necessary to make it contain 0.003% or more. However, if it is contained excessively, the amount of carbonitride precipitated increases and causes embrittlement. Therefore, the upper limit of N content is 0.06%.

本発明に係るフェライト系耐熱鋼材は、上記の成分のほか、残部がFeと不純物からなるものである。そして、不純物中のO、PおよびSは、次に述べるようにそれらの含有量を抑制する必要がある。   The ferritic heat resistant steel material according to the present invention is composed of Fe and impurities in addition to the above components. And it is necessary to suppress the content of O, P and S in the impurities as described below.

O:0.02%以下
Oは不純物として存在するが、多量に含まれる場合には、多量の酸化物を生成し、加工性や延性を劣化させる。そのため、0.02%以下とする必要がある。
O: 0.02% or less O is present as an impurity, but when it is contained in a large amount, it generates a large amount of oxide, which deteriorates workability and ductility. Therefore, it is necessary to make it 0.02% or less.

P:0.03%以下
Pは不純物として含まれるが、S、Bとともに粗粒HAZにおいて粒界に偏析し、融点を低下させ液化割れを招く。それを防止するためには、CおよびS、Bを所定の範囲に規定するとともに、Pは0.03%以下とする必要がある。
P: 0.03% or less P is contained as an impurity, but segregates at grain boundaries in coarse-grained HAZ together with S and B, lowers the melting point, and causes liquefaction cracking. In order to prevent this, C, S, and B must be defined within a predetermined range, and P must be 0.03% or less.

S:0.02%以下
SはPと同様、不純物として含まれ、粗粒HAZにおいて粒界に偏析し、融点を低下させ液化割れを招く。それを防止するためには、CおよびS、Pを所定の範囲に規定するとともに、Sは0.02%以下とする必要がある。
S: 0.02% or less S, like P, is contained as an impurity and segregates at the grain boundary in the coarse grain HAZ, lowering the melting point and causing liquefaction cracking. In order to prevent this, C, S, and P must be defined within a predetermined range, and S must be 0.02% or less.

本発明に係るフェライト系耐熱鋼材材は、必要に応じて、さらに、次に示す元素の所定量を含有させることができる。   The ferritic heat-resistant steel material according to the present invention can further contain a predetermined amount of the following elements as necessary.

Nd:0.08%以下
NdはSやPとの親和力が強く、粗粒HAZの粒界において、SやPと化合物を形成し、SやPによる融点降下を抑制し、HAZの液化割れを防止する。さらには、SやPによる高温での使用中の粒界脆化を軽減してHAZのクリープ延性を改善するのに有効であるので、必要に応じて含有させてもよい。しかしながら、酸素との親和力も強く、過剰に含有させた場合には、余分な酸化物を生成し、HAZの靭性低下を招くため、上限は0.08%とする。望ましい上限は0.07%であり、さらに望ましくは0.06%である。なお、Ndを含有させることによる上記の効果を確実に得るためには0.005%以上含有させることが望ましい。より望ましくは0.015%以上含有させることが望ましい。
Nd: 0.08% or less Nd has a strong affinity with S and P, forms a compound with S and P at the grain boundary of coarse HAZ, suppresses melting point drop due to S and P, and prevents liquefaction cracking of HAZ . Furthermore, since it is effective in reducing the grain boundary embrittlement during use at high temperatures due to S and P and improving the creep ductility of HAZ, it may be contained if necessary. However, the affinity with oxygen is also strong, and when it is contained excessively, an excess oxide is generated and the toughness of HAZ is lowered, so the upper limit is made 0.08%. A desirable upper limit is 0.07%, and more desirably 0.06%. In addition, in order to acquire the said effect by containing Nd reliably, it is desirable to make it contain 0.005% or more. More desirably, the content is 0.015% or more.

Ta:0.08%以下
TaはVやNbと同様に高温まで安定な微細炭化物を形成し、クリープ強度の向上に大きく寄与するため必要に応じて含有させてもよい。しかし、過剰に含有させた場合、炭化物の成長速度の増大を招き、その分散強化効果が早期に消失するとともに、靭性の低下を招くため、0.08%以下とする必要がある。なお、Taによる効果を得るためには、0.005%以上含有させることが望ましい。
Ta: 0.08% or less Ta, like V and Nb, forms fine carbides that are stable up to a high temperature and contributes greatly to the improvement of creep strength, and may be contained as necessary. However, when it is contained excessively, the growth rate of carbides is increased, the dispersion strengthening effect disappears early, and the toughness is lowered, so that it is necessary to be 0.08% or less. In addition, in order to acquire the effect by Ta, it is desirable to make it contain 0.005% or more.

Ca:0.02%以下
Caは鋼の熱間加工性を向上させる元素であり、熱間加工性を向上させる必要がある場合には含有させることができる。しかしながら、その含有量が0.02%を超えると介在物の粗大化を招いて逆に加工性や靭性を損なう。なお、Caによる効果を得るためには、0.0003%以上含有させることが望ましい。また、より望ましくは0.001〜0.01%である。
Ca: 0.02% or less Ca is an element that improves the hot workability of steel, and can be contained when it is necessary to improve the hot workability. However, if its content exceeds 0.02%, inclusions are coarsened and workability and toughness are adversely affected. In addition, in order to acquire the effect by Ca, it is desirable to make it contain 0.0003% or more. Moreover, it is 0.001 to 0.01% more desirably.

Mg:0.02%以下
Mgは、Caと同様、鋼の熱間加工性を向上させる元素であり、熱間加工性を向上させる必要がある場合には含有させることができる。しかしながら、その含有量が0.02%を超えると介在物の粗大化を招いて逆に加工性や靭性を損なう。なお、Mgによる効果を得るためには、0.0003%以上含有させることが望ましい。また、より望ましくは0.001〜0.01%である。
Mg: 0.02% or less Mg, like Ca, is an element that improves the hot workability of steel, and can be contained when it is necessary to improve the hot workability. However, if its content exceeds 0.02%, inclusions are coarsened and workability and toughness are adversely affected. In addition, in order to acquire the effect by Mg, it is desirable to make it contain 0.0003% or more. Moreover, it is 0.001 to 0.01% more desirably.

表1に示す化学組成を有する10種類の鋼を真空溶解炉により溶製し、鍛造・圧延をした後、1150℃で1時間保持後に空冷の焼きならしと、770℃で1.5時間保持後に空冷の焼きもどしをおこなった。なお、代符10は汎用鋼である火SUS410J3TBに相当する鋼であり、クリープ強度に関する比較鋼として使用した。そして、機械加工により、板厚12mm、幅50mmおよび長さ300mmの鋼板ならびに板厚10mm、幅100〜120mmおよび長さ300〜500mmの鋼板を作製した。板厚12mmの鋼板はロンジバレストレイン試験に供し、HAZの液化割れ感受性を評価した。   Ten steels with the chemical composition shown in Table 1 were melted in a vacuum melting furnace, forged and rolled, then air-cooled after holding at 1150 ° C for 1 hour, and air-cooled after holding at 770 ° C for 1.5 hours We baked and baked. In addition, the symbol 10 is steel equivalent to fire SUS410J3TB, which is a general-purpose steel, and was used as a comparative steel related to creep strength. Then, a steel plate having a plate thickness of 12 mm, a width of 50 mm and a length of 300 mm and a plate thickness of 10 mm, a width of 100 to 120 mm and a length of 300 to 500 mm were produced by machining. A steel plate having a thickness of 12 mm was subjected to the longibarestrain test, and the HAZ liquefaction cracking sensitivity was evaluated.

Figure 2010007094
Figure 2010007094

ロンジバレストレイン試験とは図1に模式的に示すように、GTA溶接により鋼板の長手方向にビードオンプレート溶接を行い、その溶接中に端部に力Fを付加して曲げによる歪を付与し、強制的にHAZに割れを発生させ、その合計長さを測定し、HAZの液化割れ感受性を評価する方法である。溶接条件は表2に示す条件とし、付加歪量は4%とし、HAZに液化割れが発生しなかったものを合格とした。   As shown schematically in FIG. 1, the longi ballest train test is performed by bead-on-plate welding in the longitudinal direction of the steel sheet by GTA welding, and a force F is applied to the ends during the welding to impart distortion due to bending. This is a method for forcibly generating cracks in the HAZ, measuring the total length thereof, and evaluating the liquefaction cracking sensitivity of the HAZ. The welding conditions were the conditions shown in Table 2, the amount of additional strain was 4%, and the case where no liquefaction cracking occurred in the HAZ was considered acceptable.

Figure 2010007094
Figure 2010007094

また、10mm厚さの鋼板から、板厚10mm、幅10mmおよび長さ100mmの試験材を採取し、HAZの強度低下が顕著な温度である1000℃に5秒間加熱するHAZ再現溶接熱サイクルを付与した。その後、試験材に740℃で30分保持後、空冷の溶接後熱処理を実施し、クリープ試験片を採取し、温度650℃および応力117.7MPaの条件にてクリープ試験を実施した。
さらに、板厚10mm、幅10mmおよび長さ100mmの試験材を採取し、HAZの靭性低下が顕著な温度である1350℃に5秒間加熱するHAZ再現溶接熱サイクルを付与した。その後、740℃で30分保持後、空冷の溶接後熱処理を施し、JIS Z2240(2006)の規定にしたがって、幅5mmの2mm Vノッチサブサイズシャルピー試験片を採取し、常温でのシャルピー衝撃試験を行った。シャルピー衝撃試験では、衝撃値34J/cm2以上を目標値とした。
In addition, a specimen with a thickness of 10 mm, a width of 10 mm, and a length of 100 mm was taken from a 10 mm thick steel sheet, and a HAZ reproducible welding heat cycle was applied, in which it was heated to 1000 ° C, a temperature at which HAZ strength was significantly reduced, for 5 seconds. did. Thereafter, the test material was held at 740 ° C. for 30 minutes, then subjected to air-cooling post-weld heat treatment, a creep test piece was collected, and a creep test was performed at a temperature of 650 ° C. and a stress of 117.7 MPa.
Further, a test material having a plate thickness of 10 mm, a width of 10 mm, and a length of 100 mm was sampled and subjected to a HAZ reproducible welding thermal cycle in which the sample was heated to 1350 ° C., which is a temperature at which HAZ toughness was significantly reduced, for 5 seconds. After that, after holding at 740 ° C for 30 minutes, air-cooled post-weld heat treatment was performed, and a 2mm V-notch sub-size Charpy test piece with a width of 5mm was sampled according to the provisions of JIS Z2240 (2006) and subjected to a Charpy impact test at room temperature. went. In the Charpy impact test, an impact value of 34 J / cm 2 or more was set as a target value.

表3にロンジバレストレイン試験における割れ長さ、そして、表4にクリープ試験における破断時間およびシャルピー衝撃試験における衝撃値を示す。また、図2にはロンジバレストレイン試験における割れ発生有無と、C量と溶接入熱との関係を図示する。   Table 3 shows the crack length in the longibarestrain test, and Table 4 shows the rupture time in the creep test and the impact value in the Charpy impact test. FIG. 2 shows the relationship between the presence or absence of cracking in the longibarestrain test, the amount of C, and welding heat input.

Figure 2010007094
Figure 2010007094

Figure 2010007094
Figure 2010007094

表3および図2より明らかなように、代符1〜3および6〜8にみるとおり、Bの含有量とCの含有量が本発明の規定範囲を満足し、そしてCの含有量と溶接入熱量とからなる関係式を満足している場合のみ、ロンジバレストレイン試験のような厳しい割れ試験においてもHAZの液化割れが生じず、目標とするHAZのクリープ強度および靭性を満足した。しかしながら、C量が溶接入熱との関係式を満足しない場合には、粗粒HAZの粒界の融点低下が著しく、ロンジバレストレイン試験においてHAZに液化割れが生じた。また、Bが本発明の規定範囲を下回る代符4および5は、HAZのクリープ強度が目標強度を満足しなかった。さらに、Cが本発明の規定範囲を下回る代符9は、HAZの衝撃値が目標値を満足しなかった。   As is apparent from Table 3 and FIG. 2, as seen in the symbols 1 to 3 and 6 to 8, the B content and the C content satisfy the specified range of the present invention, and the C content and the welding Only when the relational expression consisting of the amount of heat input was satisfied, even in severe crack tests such as the longibarestrain test, HAZ liquefaction cracks did not occur, and the target HAZ creep strength and toughness were satisfied. However, when the amount of C does not satisfy the relational expression with the welding heat input, the melting point of the grain boundary of the coarse HAZ is remarkably lowered, and liquefaction cracking occurs in the HAZ in the longibarestrain test. Moreover, in the symbols 4 and 5 where B is less than the specified range of the present invention, the creep strength of the HAZ did not satisfy the target strength. Further, in the case of C9 where C is below the specified range of the present invention, the impact value of HAZ did not satisfy the target value.

以上の結果より、本発明範囲を満たす化学成分を有する材料のみがHAZにおける優れた耐液化割れ性とクリープ強度の低下抑制とともに優れた靭性を両立することがわかる。   From the above results, it can be seen that only a material having a chemical component that satisfies the scope of the present invention achieves both excellent liquefaction resistance in HAZ and suppression of a decrease in creep strength and excellent toughness.

本発明によれば、HAZの液化割れの防止とクリープ強度低下の抑制とともに靭性確保を両立しうるフェライト系耐熱鋼材を提供するので、蒸気条件の高温高圧化が進められている火力発電ボイラなどで溶接構造物として使用することができる。   According to the present invention, a ferritic heat-resistant steel material capable of ensuring toughness as well as prevention of HAZ liquefaction cracking and suppression of creep strength reduction is provided. It can be used as a welded structure.

ロンジバレストレイン試験方法を示す。The Longi Ballest Train test method is shown. ロンジバレストレイン試験により得られたHAZの液化割れ発生の有無を、C含有量と溶接入熱量との関係により整理したものである。The presence or absence of the occurrence of liquefaction cracking in the HAZ obtained by the Longjibarestrain test is organized according to the relationship between the C content and the welding heat input.

Claims (4)

質量%で、C:0.04〜0.16%、Si:0.1%を超えて1.0%以下、Mn:2.0%以下、Co:1〜8%、Cr:7〜13%、V:0.05〜0.40%、Nb:0.01〜0.09%、MoおよびWの一方または両方を合計で0.5〜4%、B:0.005〜0.025%、Al:0.03%以下並びにN:0.003〜0.06%を含み、残部がFeおよび不純物からなり、不純物としてのO、PおよびSがそれぞれ、O:0.02%以下、P:0.03%以下およびS:0.02%以下のフェライト系耐熱鋼材であって、さらに前記C含有量が溶接入熱量Qに応じて下記(1)式または(2)式を満足することを特徴とするフェライト系耐熱鋼材。
Q<1.8(kJ/mm)のとき、C≦-0.12×Q+0.31 ・・・(1)
Q≧1.8(kJ/mm)のとき、C≦0.094 ・・・(2)
ここで、Qは溶接入熱量(kJ/mm)、CはC含有量(質量%)を示す。
In mass%, C: 0.04 to 0.16%, Si: more than 0.1% and 1.0% or less, Mn: 2.0% or less, Co: 1 to 8%, Cr: 7 to 13%, V: 0.05 to 0.40%, Nb : 0.01 to 0.09%, one or both of Mo and W in total 0.5 to 4%, B: 0.005 to 0.025%, Al: 0.03% or less and N: 0.003 to 0.06%, with the balance being Fe and impurities O, P and S as impurities are ferritic heat resistant steel materials of O: 0.02% or less, P: 0.03% or less and S: 0.02% or less, respectively, and the C content depends on the welding heat input Q A ferritic heat resistant steel material satisfying the following formula (1) or (2):
When Q <1.8 (kJ / mm), C ≦ −0.12 × Q + 0.31 (1)
When Q ≧ 1.8 (kJ / mm), C ≦ 0.094 (2)
Here, Q represents the welding heat input (kJ / mm), and C represents the C content (mass%).
質量%で、Feの一部に代えて、Nd:0.08%以下を含むことを特徴とする請求項1に記載のフェライト系耐熱鋼材。   2. The ferritic heat resistant steel material according to claim 1, wherein the ferritic heat resistant steel material includes Nd: 0.08% or less in place of part of Fe in mass%. 質量%で、Feの一部に代えて、Ta:0.08%以下を含むことを特徴とする請求項1または2に記載のフェライト系耐熱鋼材。   The ferritic heat resistant steel material according to claim 1 or 2, characterized by containing, in mass%, Ta: 0.08% or less instead of part of Fe. 質量%で、Feの一部に代えて、Ca:0.02%以下およびMg:0.02%以下のうちの1種または2種を含むことを特徴とする請求項1から3までのいずれかに記載のフェライト系耐熱鋼材。   4% or more of Ca: 0.02% or less and Mg: 0.02% or less are included instead of a part of Fe in mass%. Ferritic heat resistant steel.
JP2008164243A 2008-06-24 2008-06-24 Ferritic heat resistant steel Active JP5169532B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008164243A JP5169532B2 (en) 2008-06-24 2008-06-24 Ferritic heat resistant steel
CN2009101422230A CN101613832B (en) 2008-06-24 2009-06-23 Ferrite type heat-resisting steels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008164243A JP5169532B2 (en) 2008-06-24 2008-06-24 Ferritic heat resistant steel

Publications (2)

Publication Number Publication Date
JP2010007094A true JP2010007094A (en) 2010-01-14
JP5169532B2 JP5169532B2 (en) 2013-03-27

Family

ID=41493716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008164243A Active JP5169532B2 (en) 2008-06-24 2008-06-24 Ferritic heat resistant steel

Country Status (2)

Country Link
JP (1) JP5169532B2 (en)
CN (1) CN101613832B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014178A (en) * 2014-07-02 2016-01-28 新日鐵住金株式会社 High strength ferritic heat resistant steel structure and method for producing the same
JP2016216815A (en) * 2015-05-19 2016-12-22 新日鐵住金株式会社 High Cr ferritic heat resistant steel
WO2017104815A1 (en) * 2015-12-18 2017-06-22 新日鐵住金株式会社 Welding material for ferrite heat-resistant steel, welding joint for ferrite heat-resistant steel, and method for producing welding joint for ferrite heat-resistant steel
WO2020116588A1 (en) 2018-12-05 2020-06-11 日本製鉄株式会社 Method for manufacturing ferritic heat resistant steel welded joint
JP2021016884A (en) * 2019-07-19 2021-02-15 日本製鉄株式会社 Ferritic heat-resistant dissimilar steel weld joint and method for producing the same
US11060156B2 (en) 2016-09-30 2021-07-13 Nippon Steel Corporation Method of manufacturing welded structure of ferritic heat-resistant steel and welded structure of ferritic heat-resistant steel
US11167369B2 (en) 2016-09-30 2021-11-09 Nippon Steel Corporation Method of manufacturing welded structure of ferritic heat-resistant steel and welded structure of ferritic heat-resistant steel
EP3943634A4 (en) * 2019-03-19 2023-04-05 Nippon Steel Corporation Ferritic heat-resistant steel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103131953A (en) * 2011-11-24 2013-06-05 江苏星火特钢有限公司 Ferrite heat-resistant steel and production method thereof
CN103131951A (en) * 2011-11-24 2013-06-05 江苏星火特钢有限公司 Ferrite heat-resistant steel
CN111005020B (en) * 2019-12-10 2020-12-11 清华大学 Method for preventing liquefaction cracks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152293A (en) * 1999-11-22 2001-06-05 Sumitomo Metal Ind Ltd HIGH Cr FERRITIC HEAT RESISTING STEEL
JP2002235154A (en) * 2001-02-07 2002-08-23 Sumitomo Metal Ind Ltd HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP2003193178A (en) * 2001-12-27 2003-07-09 Sumitomo Metal Ind Ltd Heat resistant low alloy ferritic steel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1075563C (en) * 1994-07-06 2001-11-28 关西电力株式会社 Process for producing ferritic iron-base alloy and ferritic heat-resistant steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152293A (en) * 1999-11-22 2001-06-05 Sumitomo Metal Ind Ltd HIGH Cr FERRITIC HEAT RESISTING STEEL
JP2002235154A (en) * 2001-02-07 2002-08-23 Sumitomo Metal Ind Ltd HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP2003193178A (en) * 2001-12-27 2003-07-09 Sumitomo Metal Ind Ltd Heat resistant low alloy ferritic steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012040853; 平田弘征、他4名: 'フェライト系耐熱鋼の溶接熱影響部特性に及ぼすC,Bの影響' 溶接学会全国大会講演概要 No.82, 20080317, Page.154-155 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014178A (en) * 2014-07-02 2016-01-28 新日鐵住金株式会社 High strength ferritic heat resistant steel structure and method for producing the same
JP2016216815A (en) * 2015-05-19 2016-12-22 新日鐵住金株式会社 High Cr ferritic heat resistant steel
US11090755B2 (en) 2015-12-18 2021-08-17 Nippon Steel Corporation Welding material for ferritic heat-resistant steel, welded joint for ferritic heat-resistant steel, and method for producing welded joint for ferritic heat-resistant steel
WO2017104815A1 (en) * 2015-12-18 2017-06-22 新日鐵住金株式会社 Welding material for ferrite heat-resistant steel, welding joint for ferrite heat-resistant steel, and method for producing welding joint for ferrite heat-resistant steel
JPWO2017104815A1 (en) * 2015-12-18 2018-08-09 新日鐵住金株式会社 Welding material for ferritic heat resistant steel, welded joint for ferritic heat resistant steel, and method for producing welded joint for ferritic heat resistant steel
KR20180095639A (en) 2015-12-18 2018-08-27 신닛테츠스미킨 카부시키카이샤 Welding materials for ferritic heat resistant steels, welded joints for ferritic heat resistant steels and ferritic welded joints for heat resistant steels
KR102058602B1 (en) 2015-12-18 2019-12-23 닛폰세이테츠 가부시키가이샤 Manufacturing method of welding material for ferritic heat resistant steel, welding joint for ferritic heat resistant steel and welding joint for ferritic heat resistant steel
US11167369B2 (en) 2016-09-30 2021-11-09 Nippon Steel Corporation Method of manufacturing welded structure of ferritic heat-resistant steel and welded structure of ferritic heat-resistant steel
US11060156B2 (en) 2016-09-30 2021-07-13 Nippon Steel Corporation Method of manufacturing welded structure of ferritic heat-resistant steel and welded structure of ferritic heat-resistant steel
WO2020116588A1 (en) 2018-12-05 2020-06-11 日本製鉄株式会社 Method for manufacturing ferritic heat resistant steel welded joint
KR20210090704A (en) 2018-12-05 2021-07-20 닛폰세이테츠 가부시키가이샤 Manufacturing method of ferritic heat-resistant steel welded joint
US11834731B2 (en) 2018-12-05 2023-12-05 Nippon Steel Corporation Method of producing ferritic heat-resistant steel welded joint
EP3943634A4 (en) * 2019-03-19 2023-04-05 Nippon Steel Corporation Ferritic heat-resistant steel
JP2021016884A (en) * 2019-07-19 2021-02-15 日本製鉄株式会社 Ferritic heat-resistant dissimilar steel weld joint and method for producing the same
JP7376767B2 (en) 2019-07-19 2023-11-09 日本製鉄株式会社 Ferritic heat-resistant steel dissimilar welded joint and its manufacturing method

Also Published As

Publication number Publication date
CN101613832B (en) 2011-02-09
CN101613832A (en) 2009-12-30
JP5169532B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5169532B2 (en) Ferritic heat resistant steel
JP4697357B1 (en) Austenitic heat-resistant alloy
JP5206676B2 (en) Ferritic heat resistant steel
JP4948998B2 (en) Ferritic stainless steel and welded steel pipe for automotive exhaust gas flow path members
JP4970620B2 (en) Butt weld joint using high energy density beam
JP6384610B2 (en) Austenitic heat resistant alloys and welded structures
JP6384611B2 (en) Austenitic heat resistant alloys and welded structures
KR101561795B1 (en) Double pipe and welded structure utilizing same
JP6079165B2 (en) High toughness and corrosion resistant Ni alloy clad steel plate with excellent weld toughness and method for producing the same
JP2016000414A (en) METHOD OF PRODUCING Ni-BASED HEAT-RESISTANT ALLOY WELD JOINT, AND WELD JOINT PRODUCED BY THE METHOD
JP2013177674A (en) Base material for high-toughness clad steel plate excellent in toughness in welded part, and method for producing the clad steel plate
JP4784239B2 (en) Ferritic stainless steel filler rod for TIG welding
JP4844188B2 (en) casing
KR20220143175A (en) Austenitic stainless steel
JP6439579B2 (en) Method for producing austenitic heat-resistant alloy welded joint and welded joint obtained using the same
WO2021039266A1 (en) Austenitic heat-resistant steel
JP7295418B2 (en) welding material
JP6354281B2 (en) Ferritic heat resistant steel pipe
JP2000301377A (en) Welded joint of ferritic heat resistant steel and welding material
JP2020104141A (en) Ferritic heat-resistant steel weld metal and weld joint including the same
JP7436793B2 (en) Manufacturing method of welded joints of ferritic heat-resistant steel
JP6566166B1 (en) Steel sheet and manufacturing method thereof
JP2007009263A (en) Ferritic stainless steel with excellent impact perforation resistance
JP2021195602A (en) Low-alloy heat-resistant steel
JP2009074179A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R151 Written notification of patent or utility model registration

Ref document number: 5169532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350