JP2010006660A - Hydrogen storing apparatus and hydrogen storing method - Google Patents

Hydrogen storing apparatus and hydrogen storing method Download PDF

Info

Publication number
JP2010006660A
JP2010006660A JP2008169523A JP2008169523A JP2010006660A JP 2010006660 A JP2010006660 A JP 2010006660A JP 2008169523 A JP2008169523 A JP 2008169523A JP 2008169523 A JP2008169523 A JP 2008169523A JP 2010006660 A JP2010006660 A JP 2010006660A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogenation reaction
hydrogenation
line
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008169523A
Other languages
Japanese (ja)
Other versions
JP5243861B2 (en
Inventor
Ryutaro Koide
隆太郎 小出
Motoi Saito
基 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2008169523A priority Critical patent/JP5243861B2/en
Publication of JP2010006660A publication Critical patent/JP2010006660A/en
Application granted granted Critical
Publication of JP5243861B2 publication Critical patent/JP5243861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storing apparatus where the regenerating operation of a hydrogenation reaction catalyst can be performed and a hydrogen storing method using the hydrogen storing apparatus. <P>SOLUTION: In the hydrogen storing apparatus equipped with at least two reactors having the hydrogenation reaction catalyst inside, it is characterized in that the reactors have an aromatic hydrocarbon supplying line, a hydrogen supplying line and a product discharging line to hydrogenate an aromatic hydrocarbon in the reactors, an oxygen supplying line, a chlorine compound supplying line and an exhaust gas exhausting line in regeneration to regenerate the hydrogenation reaction catalyst in the reactors and a flow path changing means that the aromatic hydrocarbon supplying line, the hydrogen supplying line and the product discharging line can be available when the hydrogenation of the aromatic hydrocarbon is performed and that the oxygen supplying line, the chlorine compound supplying line and the exhaust gas exhausting line in regeneration can be available when the regeneration of the hydrogenation reaction catalyst is performed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水素化反応触媒の再生操作が可能な水素貯蔵装置およびその水素貯蔵装置を用いた水素貯蔵方法に関する。   The present invention relates to a hydrogen storage device capable of regenerating a hydrogenation reaction catalyst and a hydrogen storage method using the hydrogen storage device.

近年、環境問題やエネルギー問題の観点から、新しいエネルギー源として水素が有望視されており、例えば、水素を燃料として用いる水素自動車、あるいは水素を用いる燃料電池などの開発が進められている。特に、水素を用いる燃料電池は、小型でも高い発電効率を有しており、加えて騒音や振動も発生せず、さらには廃熱を利用することができるなどの優れた利点を有している。   In recent years, hydrogen has been considered promising as a new energy source from the viewpoint of environmental problems and energy problems. For example, development of hydrogen automobiles using hydrogen as fuel or fuel cells using hydrogen has been promoted. In particular, a fuel cell using hydrogen has a high power generation efficiency even with a small size, and also has excellent advantages such as no noise and vibrations, and the ability to use waste heat. .

ここで、水素をエネルギー源として利用するためには、燃料となる水素を安全かつ安定的に供給する必要がある。そのため、水素を圧縮水素や液体水素として直接供給する方法、水素吸蔵合金やカーボンナノチューブなどの水素吸蔵材料を利用して水素を貯蔵及び供給する方法、メタノールや炭化水素を水蒸気改質して水素を供給する方法など、種々の水素供給方法が提案されている。   Here, in order to use hydrogen as an energy source, it is necessary to supply hydrogen as a fuel safely and stably. Therefore, a method of directly supplying hydrogen as compressed hydrogen or liquid hydrogen, a method of storing and supplying hydrogen using a hydrogen storage material such as a hydrogen storage alloy or carbon nanotube, and steam reforming methanol or hydrocarbons to generate hydrogen. Various hydrogen supply methods such as a supply method have been proposed.

また、近年、水素吸蔵率が高く、水素吸蔵と水素供給の繰返し(再利用)が可能な水素貯蔵媒体として有機ハイドライドが着目されており、上述した方法以外の水素供給方法として、芳香族炭化水素の水素化反応と、芳香族炭化水素の水素化物の脱水素反応とを繰り返すことにより水素を供給する、水素貯蔵・供給システムが提案されている(例えば、特許文献1参照。)。この芳香族炭化水素水素化物を用いた水素供給方法では、水の電気分解装置から得られた高純度の水素ガスを用いて芳香族化合物を水素化し、脂環式化合物として水素を吸蔵した後、該脂環式化合物を脱水素反応させて水素を取り出し、燃料電池に水素を供給している。そして、この脱水素反応の際に生じた芳香族化合物に、高純度の水素ガスを用いて再び水素を添加している。
特開2001−198469号公報
In recent years, organic hydride has attracted attention as a hydrogen storage medium having a high hydrogen storage rate and capable of repeated (reuse) hydrogen storage and hydrogen supply. As a hydrogen supply method other than the method described above, aromatic hydrocarbons are used. A hydrogen storage / supply system has been proposed in which hydrogen is supplied by repeating the hydrogenation reaction of 1 and the dehydrogenation reaction of an aromatic hydrocarbon hydride (see, for example, Patent Document 1). In this hydrogen supply method using an aromatic hydrocarbon hydride, an aromatic compound is hydrogenated using high-purity hydrogen gas obtained from a water electrolyzer, and after storing the hydrogen as an alicyclic compound, The alicyclic compound is dehydrogenated to take out hydrogen, and hydrogen is supplied to the fuel cell. Then, hydrogen is added again to the aromatic compound generated during the dehydrogenation reaction using high-purity hydrogen gas.
JP 2001-198469 A

ここで、特許文献1に記載の水素貯蔵・供給システムの水素貯蔵装置では、水素貯蔵体である芳香族化合物に水素を貯蔵するための水素化反応において高純度の水素ガスを用いるとしているが、このような高純度水素ガスは高価であるため、高純度水素ガスを用いたシステムは経済性が悪く、実用的でない。   Here, in the hydrogen storage device of the hydrogen storage / supply system described in Patent Document 1, high-purity hydrogen gas is used in a hydrogenation reaction for storing hydrogen in an aromatic compound that is a hydrogen storage body. Since such high-purity hydrogen gas is expensive, a system using high-purity hydrogen gas is not economical and is not practical.

一方、石油精製や石油化学プラント、あるいは、製鉄所の副生水素等の安価な低純度水素ガスを芳香族炭化水素の水素化反応の原料に使用する場合には、低純度水素ガス中に含まれる硫黄分等の被毒物質により、水素化反応に使用される水素化反応触媒が比較的早期に劣化してしまうという問題があった。そして、劣化した触媒は、新しいものと交換するか、再生して使用する必要があるところ、経済性の観点から水素化反応触媒を再生する方法の確立が求められていた。   On the other hand, if low-purity hydrogen gas such as by-product hydrogen from petroleum refining or petrochemical plants or steelworks is used as a raw material for aromatic hydrocarbon hydrogenation, it is included in the low-purity hydrogen gas. There is a problem that the hydrogenation reaction catalyst used in the hydrogenation reaction deteriorates relatively early due to poisonous substances such as sulfur content. Then, the deteriorated catalyst needs to be replaced with a new one or regenerated and used. Therefore, establishment of a method for regenerating the hydrogenation reaction catalyst has been demanded from the viewpoint of economy.

この発明は、上記課題を有利に解決することを目的とするものであり、水素化反応触媒の再生操作が可能な水素貯蔵装置および該水素貯蔵装置を用いた水素貯蔵方法を提供するものである。   An object of the present invention is to advantageously solve the above problems, and to provide a hydrogen storage device capable of regenerating a hydrogenation reaction catalyst and a hydrogen storage method using the hydrogen storage device. .

本発明者らは、上記目的を達成するために鋭意検討した結果、劣化した水素化反応触媒を酸素と塩素化合物とに接触させることにより、水素化反応触媒の再生が可能であることを見出した。また、一度硫化された貴金属触媒は、通常、高純度水素等で還元しても水素化活性が戻らないが、上述の酸素と塩素化合物とを用いた再生方法では水素化活性が劣化前のレベル近くまで回復することも見出した。   As a result of intensive studies to achieve the above object, the present inventors have found that the hydrogenation reaction catalyst can be regenerated by bringing the deteriorated hydrogenation reaction catalyst into contact with oxygen and a chlorine compound. . In addition, once the noble metal catalyst that has been sulfided does not return to hydrogenation activity even if it is reduced with high-purity hydrogen or the like, the regeneration method using the above-described oxygen and chlorine compounds has hydrogenation activity at a level before deterioration. I also found that it recovered to near.

すなわち、本発明の水素貯蔵装置は、再生対象の水素化反応触媒に酸素と塩素化合物とを接触させて前記水素化反応触媒を再生する水素化反応触媒再生方法を利用可能なものである。このような水素化反応触媒再生方法を利用すれば、水素ガス中に含まれる被毒物質により水素化反応触媒が劣化しても、劣化した触媒を効果的に再生して繰り返し使用することができる。ここで、酸素および塩素化合物は加熱した状態で水素化反応触媒に接触させることが好ましく、予め加熱したものを反応器に供給しても良いし、反応器に供給した後に反応器内で加熱しても良い。具体的には、再生時の触媒層の温度が200〜700℃、好適には300〜600℃、さらに好適には、350〜550℃となるように再生操作を行うのが好ましい。   That is, the hydrogen storage device of the present invention can utilize a hydrogenation reaction catalyst regeneration method in which oxygen and a chlorine compound are brought into contact with a hydrogenation reaction catalyst to be regenerated to regenerate the hydrogenation reaction catalyst. By utilizing such a hydrogenation reaction catalyst regeneration method, even if the hydrogenation reaction catalyst deteriorates due to poisonous substances contained in hydrogen gas, the deteriorated catalyst can be effectively regenerated and used repeatedly. . Here, it is preferable that the oxygen and chlorine compounds are brought into contact with the hydrogenation reaction catalyst in a heated state, and those heated in advance may be supplied to the reactor, or heated in the reactor after being supplied to the reactor. May be. Specifically, it is preferable to perform the regeneration operation so that the temperature of the catalyst layer during regeneration is 200 to 700 ° C, preferably 300 to 600 ° C, and more preferably 350 to 550 ° C.

本発明の水素貯蔵装置は、水素化反応触媒を内部に有する反応器を少なくとも2つ備える、水素を貯蔵するための装置であって、前記反応器が、該反応器内で芳香族炭化水素を水素化するための、芳香族炭化水素供給ライン、水素供給ライン、および生成物排出ラインと、該反応器内で前記水素化反応触媒を再生するための、酸素供給ライン、塩素化合物供給ライン、および再生排ガス排出ラインと、前記芳香族炭化水素の水素化を行う際には前記芳香族炭化水素供給ライン、前記水素供給ライン、および前記生成物排出ラインを流通可能とし、前記水素化反応触媒の再生を行う際には前記酸素供給ライン、前記塩素化合物供給ライン、および前記再生排ガス排出ラインを流通可能とする流路切り替え手段とを備えることを特徴とするものである。この水素貯蔵装置によれば、酸素と塩素化合物とを用いた上述の触媒再生操作が可能である。また、このように同一の反応器内で水素化反応と水素化反応触媒の再生とを行えるようにすることで、装置の設置に必要な面積を低減することができる。更に、流路切り替え手段を備える少なくとも2つの反応器を設けることにより、水素化反応触媒が劣化した反応器では触媒の再生処理を行いつつ、他の反応器では水素化反応を継続して行うことが可能となる。   The hydrogen storage apparatus of the present invention is an apparatus for storing hydrogen, comprising at least two reactors having hydrogenation reaction catalysts therein, wherein the reactor contains aromatic hydrocarbons in the reactor. An aromatic hydrocarbon supply line, a hydrogen supply line, and a product discharge line for hydrogenation; and an oxygen supply line, a chlorine compound supply line for regenerating the hydrogenation reaction catalyst in the reactor, and Regeneration exhaust gas discharge line, and when hydrogenating the aromatic hydrocarbon, the aromatic hydrocarbon supply line, the hydrogen supply line, and the product discharge line can be circulated to regenerate the hydrogenation reaction catalyst And a flow path switching means for allowing the oxygen supply line, the chlorine compound supply line, and the regenerated exhaust gas discharge line to flow. That. According to this hydrogen storage device, the above-described catalyst regeneration operation using oxygen and a chlorine compound is possible. Further, by making it possible to perform the hydrogenation reaction and the regeneration of the hydrogenation reaction catalyst in the same reactor in this way, the area required for installing the apparatus can be reduced. Furthermore, by providing at least two reactors equipped with flow path switching means, the hydrogenation reaction catalyst is regenerated in the reactor where the hydrogenation reaction catalyst has deteriorated, while the hydrogenation reaction is continued in the other reactors. Is possible.

また、本発明の水素貯蔵方法は、請求項1に記載の水素貯蔵装置を用いた水素の貯蔵方法であって、少なくとも一つの反応器で芳香族炭化水素を水素化して水素を貯蔵し、他の少なくとも一つの反応器で、水素化反応触媒に酸素と塩素化合物とを接触させて、水素化反応触媒を再生することを特徴とするものである。これにより、水素ガス中に含まれる被毒物質により水素化反応触媒が劣化しても、劣化した触媒を効果的に再生して繰り返し使用することができる。また、水素化反応触媒が劣化した反応器では触媒の再生処理を行いつつ、他の反応器では水素化反応を継続して行うことが可能となる。   The hydrogen storage method of the present invention is a hydrogen storage method using the hydrogen storage device according to claim 1, wherein hydrogen is stored by hydrogenating aromatic hydrocarbons in at least one reactor, and the like. The hydrogenation reaction catalyst is regenerated by bringing the hydrogenation reaction catalyst into contact with oxygen and a chlorine compound in at least one reactor. Thereby, even if the hydrogenation reaction catalyst deteriorates due to the poisoning substance contained in the hydrogen gas, the deteriorated catalyst can be effectively regenerated and used repeatedly. In addition, it is possible to continue the hydrogenation reaction in other reactors while performing the regeneration process of the catalyst in the reactor in which the hydrogenation reaction catalyst has deteriorated.

本発明によれば、劣化した水素化反応触媒を再生して、触媒を繰り返し使用することができる。   According to the present invention, a deteriorated hydrogenation reaction catalyst can be regenerated and the catalyst can be used repeatedly.

以下に、本発明の好適な実施の形態を、図1に基づいて具体的に説明する。但し、本発明は、図1に示す形態に限定されるものではない。   A preferred embodiment of the present invention will be specifically described below with reference to FIG. However, the present invention is not limited to the form shown in FIG.

図1に示す水素貯蔵装置1は、水素化反応触媒を充填した2つの水素化反応器1aおよび1bを備える。そして、各水素化反応器1a,1bには、図示しないタンクから芳香族炭化水素を供給する芳香族炭化水素供給ラインおよび製油プラントの副生水素を供給する水素供給ラインからなる原料供給ライン4と、水素化反応の生成物を排出する生成物ライン5と、酸素を供給する酸素供給ラインおよび塩素化合物を供給する塩素化合物供給ラインからなる再生ガス供給ライン6と、再生処理の排ガスを排出する再生排ガス排出ライン7とが設けられている。また、再生ガス供給ライン6には図示しない熱交換器が設けられている。   A hydrogen storage device 1 shown in FIG. 1 includes two hydrogenation reactors 1a and 1b filled with a hydrogenation reaction catalyst. Each hydrogenation reactor 1a, 1b includes a raw material supply line 4 comprising an aromatic hydrocarbon supply line for supplying aromatic hydrocarbons from a tank (not shown) and a hydrogen supply line for supplying by-product hydrogen of the refinery plant; The product line 5 for discharging the product of the hydrogenation reaction, the regeneration gas supply line 6 comprising the oxygen supply line for supplying oxygen and the chlorine compound supply line for supplying chlorine compound, and the regeneration for discharging the exhaust gas of the regeneration treatment An exhaust gas discharge line 7 is provided. The regeneration gas supply line 6 is provided with a heat exchanger (not shown).

ここで、各水素化反応器1a,1bの原料供給ライン4、生成物ライン5、再生ガス供給ライン6、再生排ガス排出ライン7はそれぞれ、図1に示すように、1本のラインから2本のラインが分岐して各水素化反応器1a,1bに接続する構成となっている。そして、各ラインが分岐する場所には、原料、再生ガス、生成物、および再生排ガスの流路を切り替えることが可能な流路切り替え弁2a,3a,2b,3bが設けられている。従って、水素貯蔵装置1では、水素化反応器1aおよび1bの何れか一方で水素化反応を行い、他方で水素化反応触媒の再生を行うことにより、芳香族炭化水素の水素化を連続して行うことができる。なお、切り替え弁には通常の流路選択バルブを用いることができる。   Here, as shown in FIG. 1, the raw material supply line 4, the product line 5, the regeneration gas supply line 6, and the regeneration exhaust gas discharge line 7 of each of the hydrogenation reactors 1 a and 1 b are two from one line. These lines are branched and connected to the hydrogenation reactors 1a and 1b. And the flow-path switching valve 2a, 3a, 2b, 3b which can switch the flow path of a raw material, regeneration gas, a product, and regeneration exhaust gas is provided in the place where each line branches. Therefore, in the hydrogen storage device 1, hydrogenation of the aromatic hydrocarbon is continuously performed by performing the hydrogenation reaction in one of the hydrogenation reactors 1 a and 1 b and regenerating the hydrogenation reaction catalyst on the other side. It can be carried out. A normal flow path selection valve can be used as the switching valve.

即ち、水素化反応器1aで芳香族炭化水素の水素化を行い、水素化反応器1bで触媒再生を行う場合には、弁2aおよび2bにより原料ガスが水素化反応器1aのみに流れて水素化反応の生成物が水素化反応器1aのみから排出されるようにすると共に、弁3aおよび3bにより再生ガスが水素化反応器1bのみに流れて再生排ガスが水素化反応器1bのみから排出されるようにする。一方、水素化反応器1bで芳香族炭化水素の水素化を行い、水素化反応器1aで触媒再生を行う場合には、流路が先に述べた場合と逆方向となるように弁2a,2b,3a,3bで流路を切り替える。   That is, when hydrogenation of an aromatic hydrocarbon is performed in the hydrogenation reactor 1a and catalyst regeneration is performed in the hydrogenation reactor 1b, the raw material gas flows only to the hydrogenation reactor 1a through the valves 2a and 2b and hydrogen The product of the hydrogenation reaction is discharged only from the hydrogenation reactor 1a, and the regeneration gas flows only to the hydrogenation reactor 1b by the valves 3a and 3b, and the regeneration exhaust gas is discharged only from the hydrogenation reactor 1b. So that On the other hand, when hydrogenation of aromatic hydrocarbons is performed in the hydrogenation reactor 1b and catalyst regeneration is performed in the hydrogenation reactor 1a, the valves 2a, The flow path is switched by 2b, 3a, 3b.

水素化反応器1a,1bでの水素化反応は、水素化反応触媒の存在下、LHSVが0.1〜5hr-1、好ましくは0.3〜2hr-1、反応温度が80〜400℃、好ましくは100℃〜350℃、反応圧力が0.02〜4.0MPaG、好ましくは0.05〜3.0MPaG、水素ガスと原料油の供給割合(H/Oil)が3.0〜30mol/mol、好ましくは3.5〜15mol/molの条件下で、芳香族炭化水素と共に水素を流通しながら実施する。なお、水素化反応の反応温度、即ち、反応器内の水素化反応触媒層の平均温度は、副生水素の純度(水素含有率)や組成、芳香族炭化水素の組成等に応じて適宜選択される。 In the hydrogenation reaction in the hydrogenation reactors 1a and 1b, in the presence of a hydrogenation reaction catalyst, LHSV is 0.1 to 5 hr −1 , preferably 0.3 to 2 hr −1 , and the reaction temperature is 80 to 400 ° C. Preferably, it is 100 to 350 ° C., the reaction pressure is 0.02 to 4.0 MPaG, preferably 0.05 to 3.0 MPaG, and the supply ratio of hydrogen gas and raw material oil (H 2 / Oil) is 3.0 to 30 mol / The reaction is carried out under the conditions of mol, preferably 3.5 to 15 mol / mol, while flowing hydrogen together with the aromatic hydrocarbon. The reaction temperature of the hydrogenation reaction, that is, the average temperature of the hydrogenation reaction catalyst layer in the reactor is appropriately selected according to the purity (hydrogen content) and composition of by-product hydrogen, the composition of the aromatic hydrocarbon, and the like. Is done.

ここで、水素化反応器1a及び1bへの芳香族炭化水素の供給方式としては、芳香族炭化水素を液体で供給する方式、および予熱して気体で供給する方式のいずれをとることもできるが、特には、固定床式の水素化反応器に気体で供給することが好ましい。   Here, as a method of supplying the aromatic hydrocarbons to the hydrogenation reactors 1a and 1b, either a method of supplying the aromatic hydrocarbons in liquid or a method of supplying the hydrocarbons in a preheated gas can be used. In particular, it is preferable to supply the gas to a fixed bed type hydrogenation reactor.

なお、原料となる芳香族炭化水素としては、具体的に、トルエン等のベンゼン類、ナフタレン類がある。また、供給する水素としては、製油プラントの副生水素の他、製鉄所のコークスガス(COG)、石油化学プラントの副生ガス等がある。ここで、上記副生水素の水素含有率は5〜99体積%、好ましくは10〜90体積%、さらに好ましくは、20〜80体積%である。また、副生水素は、水素の他に低級炭化水素(メタン、エタン、エチレン、アセチレン、プロパン、プロピレン、ブタジエン等、炭素数1〜6までの炭化水素)を1〜95%含んでもよい。さらに、副生水素には、硫化水素、一酸化炭素、二酸化炭素、アンモニア、塩酸、水蒸気等の無機ガスが含まれることがある。副生水素に含まれる硫化水素の濃度範囲は、0.5〜1000体積ppm、好ましくは1〜200体積ppm、一酸化炭素の濃度範囲は、1〜5000体積ppm、好ましくは10〜2000体積ppmである。   Specific examples of the aromatic hydrocarbon as a raw material include benzenes such as toluene and naphthalenes. Further, as hydrogen to be supplied, there are coke gas (COG) of a steel mill, byproduct gas of a petrochemical plant, etc. in addition to byproduct hydrogen of an oil refinery plant. Here, the hydrogen content of the by-product hydrogen is 5 to 99% by volume, preferably 10 to 90% by volume, and more preferably 20 to 80% by volume. The by-product hydrogen may contain 1 to 95% of lower hydrocarbons (methane, ethane, ethylene, acetylene, propane, propylene, butadiene and other hydrocarbons having 1 to 6 carbon atoms) in addition to hydrogen. Furthermore, by-product hydrogen may contain inorganic gases such as hydrogen sulfide, carbon monoxide, carbon dioxide, ammonia, hydrochloric acid, and water vapor. The concentration range of hydrogen sulfide contained in the byproduct hydrogen is 0.5 to 1000 volume ppm, preferably 1 to 200 volume ppm, and the concentration range of carbon monoxide is 1 to 5000 volume ppm, preferably 10 to 2000 volume ppm. It is.

水素化反応器1a及び1bに充填する水素化反応触媒としては、白金、ルテニウム、パラジウム、ロジウム、スズ、レニウム、及びゲルマニウムよりなる群から選択される少なくとも1種の金属を多孔質担体に担持したものが好ましく、水素化反応器1aおよび1bに供給する芳香族炭化水素の種類により、平均細孔径を適宜選択することが好ましい。すなわち、1環のベンゼン類を用いる場合には、特に40〜80Åの平均細孔径を持つ触媒が好ましく、2環のナフタレン類を用いる場合には、特に65〜130Åの平均細孔径を持つ触媒を選択することが好ましく、いずれも好ましい細孔径をもつ細孔の容量が全細孔容量の50%以上であることが好ましい。   As a hydrogenation reaction catalyst charged in the hydrogenation reactors 1a and 1b, at least one metal selected from the group consisting of platinum, ruthenium, palladium, rhodium, tin, rhenium, and germanium is supported on a porous carrier. The average pore diameter is preferably selected appropriately depending on the type of aromatic hydrocarbon supplied to the hydrogenation reactors 1a and 1b. That is, when using one-ring benzenes, a catalyst having an average pore diameter of 40 to 80 mm is particularly preferable. When using two-ring naphthalenes, a catalyst having an average pore diameter of 65 to 130 mm is particularly preferable. It is preferable to select them, and it is preferable that the volume of pores having a preferable pore diameter is 50% or more of the total pore volume.

水素化反応触媒の平均細孔径および細孔容量の比率を制御するには、触媒の担体としてAl23あるいはSiO2を用いることが好ましく、それぞれ単独で用いてもよいし、適当な割合で両者を組み合わせて用いてもよい。芳香族炭化水素が1環と2環の混合物である場合は、その組成により、好ましい平均細孔径をもつ触媒を混合して用いても良い。 To control the ratio of the average pore size and pore volume of the hydrogenation reaction catalyst is preferably used Al 2 O 3 or SiO 2 as a carrier for the catalyst may be used alone, in suitable proportions You may use combining both. When the aromatic hydrocarbon is a mixture of one ring and two rings, a catalyst having a preferable average pore diameter may be mixed depending on the composition.

また、水素化反応触媒における金属担持率は、0.001〜10質量%の範囲が好ましく、0.01〜5質量%の範囲が更に好ましい。金属担持率が0.001質量%未満では、十分に水素化反応を進行させることができず、一方、10質量%を超えて金属を担持しても、金属の増量に見合う効果が得られない。   Further, the metal loading in the hydrogenation reaction catalyst is preferably in the range of 0.001 to 10% by mass, and more preferably in the range of 0.01 to 5% by mass. If the metal loading is less than 0.001% by mass, the hydrogenation reaction cannot sufficiently proceed. On the other hand, even if the metal is loaded exceeding 10% by mass, an effect commensurate with the increase in the amount of metal cannot be obtained. .

水素化反応器1a,1bでの水素化反応触媒の再生は、酸素および塩素化合物の流通下、GHSVが100〜20000hr-1、好ましくは1000〜10000hr-1、反応温度が200〜700℃、好ましくは300〜600℃、さらに好ましくは、400〜550℃、反応圧力が0〜2.0MPaG、好ましくは0〜1.0MPaG、酸素/塩素化合物モル比10〜10000mol/mol、好ましくは50〜5000mol/molの条件下で実施する。 Regeneration of the hydrogenation reaction catalyst in the hydrogenation reactors 1a and 1b is carried out under the flow of oxygen and chlorine compounds, with GHSV of 100 to 20000 hr −1 , preferably 1000 to 10000 hr −1 , reaction temperature of 200 to 700 ° C. Is 300 to 600 ° C, more preferably 400 to 550 ° C, the reaction pressure is 0 to 2.0 MPaG, preferably 0 to 1.0 MPaG, and the oxygen / chlorine compound molar ratio is 10 to 10000 mol / mol, preferably 50 to 5000 mol / mol. Carry out under mol conditions.

ここで、酸素としては、空気に含まれる酸素の他、高純度酸素を用いることができ、塩素化合物としては、塩化水素の他、メチルクロライド、ジクロルメチレン、クロロホルム、四塩化炭素、エチレンジクロライド、トリクロルエチレン等の有機塩素化合物を用いることができる。   Here, as oxygen, high-purity oxygen can be used in addition to oxygen contained in air, and as a chlorine compound, in addition to hydrogen chloride, methyl chloride, dichloromethylene, chloroform, carbon tetrachloride, ethylene dichloride, An organic chlorine compound such as trichloroethylene can be used.

なお、具体的な水素化反応触媒の再生操作は、例えば、(1)水素化反応器への芳香族炭化水素および副生水素の供給を停止し、(2)図示しないパージガスラインを用いて水素化反応器内を水素ガスまたは窒素ガスで置換・乾燥し、(3)加熱した酸素および塩素化合物を水素化反応器に供給して上記条件で触媒を再生し、(4)図示しないパージガスラインを用いて水素化反応器内を水素ガスまたは窒素ガスで置換することにより行うことができる。ここで、好適には、触媒再生後(上記(1)〜(4)の操作後)であって水素化反応開始前に、(5)再生した触媒を水素含有ガスで還元し、還元した再生触媒を水素化反応に供する。   The specific hydrogenation reaction catalyst regeneration operation includes, for example, (1) stopping the supply of aromatic hydrocarbons and by-product hydrogen to the hydrogenation reactor, and (2) hydrogenation using a purge gas line (not shown). (3) Supply heated oxygen and chlorine compounds to the hydrogenation reactor to regenerate the catalyst under the above conditions, (4) Purge gas line (not shown) It can be performed by replacing the inside of the hydrogenation reactor with hydrogen gas or nitrogen gas. Here, preferably after regeneration of the catalyst (after the operations (1) to (4) above) and before the start of the hydrogenation reaction, (5) the regenerated catalyst is reduced with a hydrogen-containing gas and reduced. The catalyst is subjected to a hydrogenation reaction.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

1%Pd−Pt/Al23(触媒A:平均細孔径72.9Å、全細孔容量に占める40〜80Åの細孔容量の割合60%)を充填した固定床流通式反応装置を用い、下記の実験1〜6を行った。なお、触媒層の容積は10cm3とし、芳香族炭化水素にはトルエンを用いた。 Using a fixed bed flow reactor filled with 1% Pd—Pt / Al 2 O 3 (Catalyst A: average pore diameter 72.9%, ratio of pore volume of 40 to 80% of total pore volume) The following experiments 1 to 6 were performed. Incidentally, the volume of the catalyst layer was set to 10 cm 3, the aromatic hydrocarbon with toluene.

(実験1)
反応圧力0.3MPaG、液空間速度(LHSV)=0.75hr-1、水素/オイル比(H2/Oil)=7.0mol/molの条件下で、水素ガスとして、純水素(純度99.95%)を流通し、トルエンの水素化反応を6時間行った。
(Experiment 1)
Under the conditions of a reaction pressure of 0.3 MPaG, a liquid hourly space velocity (LHSV) = 0.75 hr −1 , and a hydrogen / oil ratio (H 2 /Oil)=7.0 mol / mol, pure hydrogen (purity 99.99%) was used as hydrogen gas. 95%), and the hydrogenation reaction of toluene was carried out for 6 hours.

(実験2)
反応圧力0.3MPaG、液空間速度(LHSV)=1.0hr-1、水素/オイル比(H2/Oil)=5.0mol/molの条件下で、水素ガスとして、純水素(純度99.95%)を流通し、トルエンの水素化反応を340時間行った。
(Experiment 2)
Under the conditions of a reaction pressure of 0.3 MPaG, a liquid hourly space velocity (LHSV) = 1.0 hr −1 , and a hydrogen / oil ratio (H 2 /Oil)=5.0 mol / mol, pure hydrogen (purity 99.99%) was used as hydrogen gas. 95%) and the hydrogenation reaction of toluene was carried out for 340 hours.

(実験3)
反応圧力0.9MPaG、液空間速度(LHSV)=0.75hr-1、水素/オイル比(H2/Oil)=7.0mol/molの条件下で、水素ガスとして、副生水素ガス(水素80体積%、メタン12体積%、エタン8体積%、硫化水素5体積ppm)を流通し、トルエンの水素化反応を6時間行った。
(Experiment 3)
The reaction pressure 0.9MPaG, liquid hourly space velocity (LHSV) = 0.75hr -1, under the conditions of a hydrogen / oil ratio (H 2 /Oil)=7.0mol/mol, as hydrogen gas, by-product hydrogen gas (hydrogen 80 volume%, methane 12 volume%, ethane 8 volume%, hydrogen sulfide 5 volume ppm) were circulated, and the hydrogenation reaction of toluene was performed for 6 hours.

(実験4)
反応圧力0.9MPaG、液空間速度(LHSV)=1.0hr-1、水素/オイル比(H2/Oil)=5.0mol/molの条件下で、水素ガスとして、硫化水素を100体積ppm含む水素ガスを流通し、トルエンの水素化反応を340時間行った。
(Experiment 4)
Under the conditions of a reaction pressure of 0.9 MPaG, a liquid space velocity (LHSV) = 1.0 hr −1 , a hydrogen / oil ratio (H 2 /Oil)=5.0 mol / mol, 100 ppm by volume of hydrogen sulfide as hydrogen gas Hydrogen gas containing was circulated and toluene hydrogenation reaction was carried out for 340 hours.

(実験5)
実験4で劣化した触媒Aに、常圧(0.0MPaG)、500℃で、0.5%HCl/Nガス(150mL/min)および空気(1L/min)を30分間流通して再生触媒を得た。その後、該再生触媒を用いて実験1と同様にして水素化反応を行った。
(Experiment 5)
Regenerated catalyst by circulating 0.5% HCl / N 2 gas (150 mL / min) and air (1 L / min) for 30 minutes at normal pressure (0.0 MPaG) and 500 ° C. through catalyst A deteriorated in Experiment 4 Got. Thereafter, a hydrogenation reaction was performed in the same manner as in Experiment 1 using the regenerated catalyst.

(実験6)
実験4で劣化した触媒Aに、反応圧力0.3MPaG、400℃で、純水素(純度99.95%)を流量150mL/hrで14時間流通した。その後、該純水素流通後の触媒を用いて実験1と同様にして水素化反応を行った。
(Experiment 6)
Pure hydrogen (purity 99.95%) was passed through the catalyst A deteriorated in Experiment 4 at a reaction pressure of 0.3 MPaG and 400 ° C. at a flow rate of 150 mL / hr for 14 hours. Thereafter, a hydrogenation reaction was performed in the same manner as in Experiment 1 using the catalyst after the pure hydrogen flow.

各実験における触媒層の平均温度、トルエン転化率、およびメチルシクロヘキサン選択率を表1に示す。ここで、触媒層の平均温度は、触媒層中央部に挿入した保護管の内部に設置した熱電対を用いて、触媒層を反応器入口側の部分、中間の部分、反応器出口側の部分に三等分した場合の各部の中央にあたる位置の温度を測定して算出した。なお、トルエン転化率とは反応したトルエンの割合を指し、メチルシクロヘキサン選択率とは、反応したトルエンのうち、メチルシクロヘキサンになったトルエンの割合を指す。   Table 1 shows the average temperature of the catalyst layer, toluene conversion rate, and methylcyclohexane selectivity in each experiment. Here, the average temperature of the catalyst layer is determined by using a thermocouple installed in a protective tube inserted in the center of the catalyst layer, and the catalyst layer is a part on the reactor inlet side, an intermediate part, and a part on the reactor outlet side. The temperature at the position corresponding to the center of each part when divided into three equal parts was measured and calculated. In addition, toluene conversion rate refers to the proportion of reacted toluene, and methylcyclohexane selectivity refers to the proportion of toluene that has become methylcyclohexane among the reacted toluene.

Figure 2010006660
Figure 2010006660

表1によれば、触媒Aは、純水素ガスを用いて芳香族炭化水素を水素化することができ(実験1)、硫化水素を含まない系では長時間の運転によっても水素化活性の劣化が見られない(実験2)。また、副生水素ガスを用いた場合も圧力や触媒層温度を上げることで高い転化率を得ることができる(実験3)。しかし、硫化水素を含む水素ガスにおいては、長時間の運転において硫化水素による劣化が進み水素化活性が低下する(実験4)。ここで、実験4で劣化した触媒Aは、純水素で14時間処理しても水素化活性が回復しないが(実験6)、酸素と塩素化合物とを用いた再生方法を使用して再生した触媒は、劣化前の触媒Aの転化率(実験1)とほぼ同じであった(実験5)。これらの結果から、本発明に係る水素貯蔵方法によれば、複数の反応器を切り替えて水素化または再生に用いることで、長期間に亘り連続的に水素化反応を行うことができることが明らかとなった。   According to Table 1, the catalyst A can hydrogenate aromatic hydrocarbons using pure hydrogen gas (Experiment 1). In a system that does not contain hydrogen sulfide, the hydrogenation activity deteriorates even after long-term operation. Is not seen (Experiment 2). Further, even when by-product hydrogen gas is used, a high conversion rate can be obtained by increasing the pressure and the catalyst layer temperature (Experiment 3). However, in hydrogen gas containing hydrogen sulfide, deterioration due to hydrogen sulfide proceeds and the hydrogenation activity decreases during a long operation (Experiment 4). Here, although the catalyst A deteriorated in Experiment 4 does not recover its hydrogenation activity even after being treated with pure hydrogen for 14 hours (Experiment 6), the catalyst regenerated using a regeneration method using oxygen and a chlorine compound. Was almost the same as the conversion rate of the catalyst A before the deterioration (Experiment 1) (Experiment 5). From these results, according to the hydrogen storage method according to the present invention, it is clear that a hydrogenation reaction can be continuously performed over a long period of time by switching a plurality of reactors and using them for hydrogenation or regeneration. became.

本発明の水素製造方法の一態様を示す模式図である。It is a schematic diagram which shows one aspect | mode of the hydrogen manufacturing method of this invention.

符号の説明Explanation of symbols

1 水素貯蔵装置
1a,1b 水素化反応器
2a,2b 流路切り替え弁
3a,3b 流路切り替え弁
4 原料供給ライン
5 生成物ライン
6 再生ガス供給ライン
7 再生排ガス排出ライン
DESCRIPTION OF SYMBOLS 1 Hydrogen storage apparatus 1a, 1b Hydrogenation reactor 2a, 2b Channel switching valve 3a, 3b Channel switching valve 4 Raw material supply line 5 Product line 6 Regeneration gas supply line 7 Regeneration exhaust gas discharge line

Claims (2)

水素化反応触媒を内部に有する反応器を少なくとも2つ備える、水素を貯蔵するための装置であって、
前記反応器が、
該反応器内で芳香族炭化水素を水素化するための、芳香族炭化水素供給ライン、水素供給ライン、および生成物排出ラインと、
該反応器内で前記水素化反応触媒を再生するための、酸素供給ライン、塩素化合物供給ライン、および再生排ガス排出ラインと、
前記芳香族炭化水素の水素化を行う際には前記芳香族炭化水素供給ライン、前記水素供給ライン、および前記生成物排出ラインを流通可能とし、前記水素化反応触媒の再生を行う際には前記酸素供給ライン、前記塩素化合物供給ライン、および前記再生排ガス排出ラインを流通可能とする流路切り替え手段と、
を備えることを特徴とする、水素貯蔵装置。
An apparatus for storing hydrogen comprising at least two reactors having hydrogenation reaction catalysts therein,
The reactor is
An aromatic hydrocarbon feed line, a hydrogen feed line, and a product discharge line for hydrogenating aromatic hydrocarbons in the reactor;
An oxygen supply line, a chlorine compound supply line, and a regeneration exhaust gas discharge line for regenerating the hydrogenation reaction catalyst in the reactor;
When performing hydrogenation of the aromatic hydrocarbon, the aromatic hydrocarbon supply line, the hydrogen supply line, and the product discharge line are allowed to flow, and when the hydrogenation reaction catalyst is regenerated, A flow path switching means for allowing the oxygen supply line, the chlorine compound supply line, and the regenerated exhaust gas discharge line to circulate;
A hydrogen storage device comprising:
請求項1に記載の水素貯蔵装置を用いた水素の貯蔵方法であって、
少なくとも一つの反応器で芳香族炭化水素を水素化して水素を貯蔵し、
他の少なくとも一つの反応器で、水素化反応触媒に酸素と塩素化合物とを接触させて、水素化反応触媒を再生することを特徴とする、水素貯蔵方法。
A hydrogen storage method using the hydrogen storage device according to claim 1,
Hydrogenation of aromatic hydrocarbons in at least one reactor to store hydrogen;
A hydrogen storage method comprising regenerating a hydrogenation reaction catalyst by bringing oxygen and a chlorine compound into contact with the hydrogenation reaction catalyst in at least one other reactor.
JP2008169523A 2008-06-27 2008-06-27 Hydrogen storage device and hydrogen storage method Active JP5243861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008169523A JP5243861B2 (en) 2008-06-27 2008-06-27 Hydrogen storage device and hydrogen storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008169523A JP5243861B2 (en) 2008-06-27 2008-06-27 Hydrogen storage device and hydrogen storage method

Publications (2)

Publication Number Publication Date
JP2010006660A true JP2010006660A (en) 2010-01-14
JP5243861B2 JP5243861B2 (en) 2013-07-24

Family

ID=41587578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008169523A Active JP5243861B2 (en) 2008-06-27 2008-06-27 Hydrogen storage device and hydrogen storage method

Country Status (1)

Country Link
JP (1) JP5243861B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084733A1 (en) * 2011-12-06 2013-06-13 コニカミノルタ株式会社 Fuel generator and secondary battery-type fuel cell system equipped with same
WO2014157133A1 (en) * 2013-03-25 2014-10-02 Jx日鉱日石エネルギー株式会社 Method for operating hydrogen supply system, hydrogen supply equipment, and hydrogen supply system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120478B1 (en) * 1962-04-04 1976-06-25
JPS52120277A (en) * 1976-04-02 1977-10-08 Matsushita Electric Ind Co Ltd Apparatus for decomposing organic matter
JPS5520745B1 (en) * 1970-01-30 1980-06-04
JPH07188078A (en) * 1993-12-02 1995-07-25 Eastman Chem Co Production of cyclohexane dimethanol
JP2001198469A (en) * 1999-11-05 2001-07-24 Sekisui Chem Co Ltd Metal carrying catalyst for storing/supplying hydrogen and hydrogen storage/supply system using the catalyst
JP2002274801A (en) * 2001-03-13 2002-09-25 Sekisui Chem Co Ltd Hydrogen storage and supply system
JP2007309302A (en) * 2006-05-22 2007-11-29 Toyota Motor Corp Hydrogen generating device and internal combustion engine utilizing hydrogen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120478B1 (en) * 1962-04-04 1976-06-25
JPS5520745B1 (en) * 1970-01-30 1980-06-04
JPS52120277A (en) * 1976-04-02 1977-10-08 Matsushita Electric Ind Co Ltd Apparatus for decomposing organic matter
JPH07188078A (en) * 1993-12-02 1995-07-25 Eastman Chem Co Production of cyclohexane dimethanol
JP2001198469A (en) * 1999-11-05 2001-07-24 Sekisui Chem Co Ltd Metal carrying catalyst for storing/supplying hydrogen and hydrogen storage/supply system using the catalyst
JP2002274801A (en) * 2001-03-13 2002-09-25 Sekisui Chem Co Ltd Hydrogen storage and supply system
JP2007309302A (en) * 2006-05-22 2007-11-29 Toyota Motor Corp Hydrogen generating device and internal combustion engine utilizing hydrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084733A1 (en) * 2011-12-06 2013-06-13 コニカミノルタ株式会社 Fuel generator and secondary battery-type fuel cell system equipped with same
WO2014157133A1 (en) * 2013-03-25 2014-10-02 Jx日鉱日石エネルギー株式会社 Method for operating hydrogen supply system, hydrogen supply equipment, and hydrogen supply system

Also Published As

Publication number Publication date
JP5243861B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP4684069B2 (en) Production method of high purity hydrogen
JP5215057B2 (en) Hydrogen production method
JP4907210B2 (en) Hydrogen storage and transport system
JP4801359B2 (en) Hydrogen production method
JP5288840B2 (en) Hydrogen production system
JP4849775B2 (en) Hydrogen supply system for fuel cell operating chassis
JP2006502959A (en) Hydrogen generator for removing sulfur compounds and process thereof
JPH0513882B2 (en)
JP5243861B2 (en) Hydrogen storage device and hydrogen storage method
JP2004256336A (en) System and method for hydrogen generation
JP4041636B2 (en) Desulfurization apparatus for fuel cell and operation method thereof
JP2006225169A (en) Hydrogen production apparatus and method
JP5243859B2 (en) Hydrogen production apparatus and hydrogen production method
JP4749589B2 (en) Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method
JP5614533B2 (en) Aromatic hydrocarbon hydrogenation catalyst and hydrogenation method using the same
JP2016040218A (en) Dehydrogenation system and operation method of dehydrogenation system
JP2004059336A (en) Process for producing hydrogen gas
JP2002322482A (en) Method for desulfurization of liquid oil containing organic sulfur compound
JP2001279271A (en) Method for producing fuel oil for fuel cell and hydrogen for fuel cell
JP7122042B1 (en) Purge method and system
JP5065952B2 (en) Hydrogen-containing gas utilization system
IL26615A (en) Desulphurisation and hydrogenation of aromatic hydrocarbons
JP2006143507A (en) Method for selectively recovering hydrogen from hydrogen-containing mixed gas
JP4580071B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP4210069B2 (en) Method for producing decalin and hydrogen

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5243861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250