JP2010002269A - Container for detecting irradiated food - Google Patents

Container for detecting irradiated food Download PDF

Info

Publication number
JP2010002269A
JP2010002269A JP2008160551A JP2008160551A JP2010002269A JP 2010002269 A JP2010002269 A JP 2010002269A JP 2008160551 A JP2008160551 A JP 2008160551A JP 2008160551 A JP2008160551 A JP 2008160551A JP 2010002269 A JP2010002269 A JP 2010002269A
Authority
JP
Japan
Prior art keywords
sample
sample tube
irradiation
cylinder
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008160551A
Other languages
Japanese (ja)
Other versions
JP4726928B2 (en
Inventor
Masakazu Tanase
正和 棚瀬
Eriko Sugi
恵理子 杉
Takashi Shimizu
隆志 清水
Takahiro Kimura
崇弘 木村
Hiromi Sunaga
博美 須永
Makoto Miyahara
誠 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Radiation Application Development Association
Original Assignee
Radiation Application Development Association
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Radiation Application Development Association filed Critical Radiation Application Development Association
Priority to JP2008160551A priority Critical patent/JP4726928B2/en
Publication of JP2010002269A publication Critical patent/JP2010002269A/en
Application granted granted Critical
Publication of JP4726928B2 publication Critical patent/JP4726928B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the reliability of standard dose irradiation while ensuring the reliability in detection work by providing a container for detecting irradiated food, capable of certainly feeding a very small amount of the mineral sample recovered from target food to be detected by a TL method, easy to handle and capable of being accurately irradiated with radiation. <P>SOLUTION: The container 10 for detecting irradiated food is equipped with a cylinder 1, the upper lid 3 serving as the lid of the cylinder 1, the sample tube 5 housed in the cylinder 1, the sample tray 7 mounted in the sample tube 5 to house a very small amount of a mineral and the spacers 9 positionally fixed from above and below the sample tray 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、食品に対する放射線照射の有無を食品中に含まれる微量鉱物の熱発光測定により検知する手法(TL法)に用いる容器であって、微量鉱物試料の輸送及び放射線照射の双方に用いることができる照射食品検知用容器に関するものである。   The present invention is a container for use in a method (TL method) for detecting the presence or absence of radiation irradiation of food by thermoluminescence measurement of trace minerals contained in food, and is used for both transportation of trace mineral samples and radiation irradiation. The present invention relates to a container for detecting irradiated food.

香辛料、野菜、果実、肉類などには、ガンマ線などの放射線を照射することにより殺菌、殺虫、発芽抑制などが行われる事がある。このような食品照射に関しては、違法な実施を防ぐ点、または照射食品の流通における消費者の利用の選択を可能にする点などから、その食品が照射されたものかどうかを判別するための検知手法が必要不可欠なものとなる。このための検知手法としては、これまで、考古学における年代測定を行う目的等に広く用いられてきた鉱物の熱発光の測定に基づく方法(TL法)が多くの種類の照射食品に適用できるため、国際的にも広く用いられている。   Spices, vegetables, fruits, meats, etc. may be sterilized, insecticidal, germinated, etc. by irradiating with radiation such as gamma rays. With regard to such food irradiation, detection to determine whether the food has been irradiated from the viewpoint of preventing illegal implementation or enabling selection of consumer use in the distribution of irradiated food Techniques are indispensable. As a detection method for this purpose, the method based on the thermoluminescence measurement of minerals (TL method), which has been widely used for the purpose of dating in archeology, can be applied to many types of irradiated foods. Widely used internationally.

TL法においては、まず、食品から抽出した回収した1〜数ミリグラム程度という極微量の鉱物の熱発光をTL測定器で測定し(TL−1)、測定後、取り出して室温まで冷却する。次に、この試料に対してガンマ線や電子線等の放射線による標準線量の照射(例えば1kGy)を行った後、さらにTL測定器で熱発光を測定し(TL−2)、TL−1量とTL−2量の比から照射の有無を判別するのが標準的な方法となっている。   In the TL method, first, the thermoluminescence of a very small amount of mineral extracted from foods of about 1 to several milligrams is measured with a TL measuring instrument (TL-1), and is taken out and cooled to room temperature. Next, after irradiating this sample with a standard dose of radiation such as gamma rays or electron beams (for example, 1 kGy), thermoluminescence was measured with a TL measuring instrument (TL-2). It is a standard method to determine the presence or absence of irradiation from the ratio of TL-2 amounts.

ここで、従来のTL測定では、食品試料から抽出した微量の鉱物をシリコングリースにより測定台に固定していた(例えば、非特許文献1参照)。   Here, in the conventional TL measurement, a small amount of mineral extracted from a food sample is fixed to a measurement table with silicon grease (for example, see Non-Patent Document 1).

しかしながら、上記のシリコングリースで固定する方法では、鉱物が汚染したり、埃が付いたりする場合があった。また、鉱物が脱落して重量が変化する場合もあった。更に、シリコングリースの量によっては、発光特性が変化する場合もあった。   However, in the method of fixing with the above silicon grease, minerals may be contaminated or dust may be attached. In some cases, minerals dropped off and the weight changed. Furthermore, the light emission characteristics may change depending on the amount of silicon grease.

また、微量の鉱物をTL測定(TL−1)した後、この鉱物をアルミ箔に包んだサンプルを照射施設へ輸送し、放射線照射を行う方法もあるが、この方法では、照射施設からサンプルを受領後、TL測定(TL−2)のためにアルミ箔の包みから鉱物を取り出す際に鉱物がこぼれる場合があった。   In addition, there is a method in which a trace amount of mineral is subjected to TL measurement (TL-1), and then a sample wrapped in aluminum foil is transported to an irradiation facility and irradiated with radiation. In this method, the sample is removed from the irradiation facility. After receipt, minerals sometimes spilled when removing the minerals from the aluminum foil wrap for TL measurement (TL-2).

更に、直径6mm、深さ1mm程度の小さなステンレス製の試料皿に載せて行うと共に、このまま放射線照射を行う方法もあるが、一般に、TL測定を行う場所と放射線照射を行う施設は離れているため、試料皿に入った試料を持ち運ぶ際に、風の影響等により試料が散逸する可能性があった。そのため、この試料皿を包含する検知用容器を用いて輸送や放射線照射を行う方法が適切と考えられるが、この容器の材質によっては遮蔽体及び散乱体として作用して、試料の吸収線量評価に影響を与える場合があった。   Furthermore, there is a method of performing radiation irradiation as it is while placing it on a small stainless steel sample dish having a diameter of about 6 mm and a depth of about 1 mm, but in general, the place where TL measurement is performed and the facility where radiation irradiation is performed are separated. When carrying a sample in a sample pan, the sample may be dissipated due to the influence of wind or the like. For this reason, it is considered appropriate to transport or irradiate using a detection container that contains this sample pan.However, depending on the material of this container, it may act as a shield and scatterer to evaluate the absorbed dose of the sample. There was a case to have an influence.

EN 1788, Foodstuffs - Thermoluminescence detection of irradiated food from which silicate minerals can be isolated(2001)EN 1788, Foodstuffs-Thermoluminescence detection of irradiated food from which silicate minerals can be isolated (2001)

上述したように、従来の手法では、いずれも、検知を行う対象の食品から回収した微量の鉱物試料について、測定途中の段階で散逸したり、異物が混入したりする可能性があり、また、検知用容器の材質によっては遮蔽体及び散乱体として作用して、試料の吸収線量評価に影響を与えることがあり、正確な放射線照射による検知作業が出来ないという課題があった。   As described above, in the conventional methods, all of the trace mineral samples collected from the food to be detected may be dissipated in the middle of the measurement, or foreign matter may be mixed, Depending on the material of the detection container, it may act as a shield and a scatterer, which may affect the absorbed dose evaluation of the sample, and there is a problem that the detection work cannot be performed by accurate radiation irradiation.

照射食品の検知は今後さらに必要性が高まることが見込まれる技術であり、食品にかかわることからその高い信頼性が要求される。TL法は多種類の食品に適用できることもあり、欧米では検知法として手順が定められている。しかしながら、この手順の中で、食品試料から回収した鉱物試料に対する標準線量の放射線照射における信頼性を担保するための方策として、搬送中の試料散逸を防ぎ、正確な照射を行うための特殊器具の活用に関する手段についてはこれまで特に定められていない。   Detection of irradiated food is a technology that is expected to become more necessary in the future, and high reliability is required because it is related to food. The TL method can be applied to many kinds of foods, and procedures are defined as detection methods in the West. However, in this procedure, as a measure to ensure the reliability of irradiation of standard doses for mineral samples collected from food samples, it is necessary to use special instruments to prevent sample dissipation during transportation and to perform accurate irradiation. There has been no specific method for utilization.

本発明は上記課題に鑑みてなされたものであり、本発明の目的は、TL法により検知を行う対象の食品から回収した微量の鉱物試料を散逸や異物の混入が無く確実に搬送できると共に、取り扱いが容易で、かつ正確な放射線照射が可能な照射食品検知用容器を提供することにより、標準線量照射の信頼性を高め、検知作業における信頼性を確保することにある。   The present invention has been made in view of the above problems, and the object of the present invention is to reliably transport a trace amount of a mineral sample collected from a target food to be detected by the TL method without dissipation or contamination of foreign matter, By providing an irradiation food detection container that is easy to handle and capable of accurate radiation irradiation, the reliability of standard dose irradiation is improved and the reliability in detection work is ensured.

本発明の照射食品検知用容器は、筒体、前記筒体内に収容される試料管、前記筒体の蓋になると共に前記筒体内で前記試料管を固定する上蓋、前記試料管内に装填され微量の鉱物を入れる試料皿、及び、前記試料管内で前記試料皿の上下からその位置を固定する複数のスペーサを備えていることを特徴とする。   The irradiation food detection container of the present invention is a cylinder, a sample tube accommodated in the cylinder, a lid for the cylinder and an upper lid for fixing the sample tube in the cylinder, and a small amount loaded in the sample tube And a plurality of spacers for fixing the positions of the sample dish from above and below in the sample tube.

前記筒体及び/又は前記試料管は、プラスチックにより形成されていることが好ましく、特に、ポリプロピレンであることがより好ましい。   The cylinder and / or the sample tube is preferably made of plastic, and more preferably polypropylene.

前記スペーサが空隙率30〜40%、融点110〜130℃の発泡ポリエチレンであることが好ましい。   The spacer is preferably a foamed polyethylene having a porosity of 30 to 40% and a melting point of 110 to 130 ° C.

本発明の照射食品検知用容器によれば、TL法による照射食品検知の際に、試料が散逸したり異物が混入したりすることがなく持ち運びや郵送が可能になると共に、この状態で放射線照射が行うことができ、TL法による照射食品検知作業における信頼性を確保することができる。   According to the irradiated food detection container of the present invention, when detecting irradiated food by the TL method, the sample can be carried or mailed without being dissipated or contaminated with foreign matter, and in this state, irradiation with radiation can be performed. The reliability in the irradiated food detection work by the TL method can be ensured.

図1に、本発明の一実施形態に係る照射食品検知用容器を示す。この照射食品検知用容器10は、筒体1、該筒体1の蓋となる上蓋3、筒体1内に収容される試料管5、該試料管5内に装填され、微量の鉱物を入れる試料皿7、及び、該試料皿7の上下からその位置を固定するスペーサ9を備えている。   FIG. 1 shows an irradiated food detection container according to an embodiment of the present invention. This irradiated food detection container 10 is loaded with a cylindrical body 1, an upper lid 3 serving as a lid of the cylindrical body 1, a sample tube 5 accommodated in the cylindrical body 1, and the sample tube 5, and contains a trace amount of minerals. A sample dish 7 and a spacer 9 for fixing the position of the sample dish 7 from above and below are provided.

(筒体1)
筒体1は、照射における設定位置の誤差を少なくすると共に郵送による搬送も容易にするため、直径を20mm以下となるようにし、例えば、外径約15mm、内径13mm、高さ約60mmの寸法として、かつ自立させることができるものとする。また、筒体1の内底には、内部に装填する試料管5が中心に位置してセットできるよう中心に行くに従って内径が小さくなるよう下に尖った形状にされている。
(Cylinder 1)
The cylindrical body 1 has a diameter of 20 mm or less in order to reduce the error of the set position in irradiation and facilitate conveyance by mail. For example, the outer diameter is about 15 mm, the inner diameter is 13 mm, and the height is about 60 mm. And be able to be independent. Further, the inner bottom of the cylindrical body 1 has a shape that is pointed downward so that the inner diameter becomes smaller toward the center so that the sample tube 5 to be loaded therein can be positioned and set at the center.

(上蓋3)
上蓋3は、筒体1の蓋となるだけでなく、試料管5を保持・固定するために、内面がテーパ状に形成され、試料管5の上端を固定できるようになっている。
(Upper lid 3)
The upper lid 3 not only serves as a lid for the cylinder 1, but also has an inner surface tapered to hold and fix the sample tube 5 so that the upper end of the sample tube 5 can be fixed.

(試料管5)
筒体1の内部に収容される試料管5は、試料が入っているTL測定用試料皿7を装填し、試料管5内で、試料皿7から試料が散逸しないよう複数のスペーサ9により上下から固定保持される。試料管5の寸法は、例えば、下端の直径6.7mm、上端の直径9mmとして上部に行くにしたがって径が広くなる形状で、高さを約47mmとし、試料皿7及びスペーサ9の寸法の関係から試料皿7の位置を固定できるようになっている。筒体1とともに試料管5の材質は透明のプラスチックとし、内部の状態が観察できるものとすることが好ましい。
(Sample tube 5)
The sample tube 5 accommodated inside the cylindrical body 1 is loaded with a sample tray 7 for TL measurement containing a sample, and the sample tube 5 is vertically moved by a plurality of spacers 9 so that the sample is not dissipated from the sample plate 7. It is held fixed from. The dimensions of the sample tube 5 are, for example, a shape with a diameter of 6.7 mm at the lower end and a diameter of 9 mm at the upper end, and the diameter increases toward the upper part, the height is about 47 mm, and the relationship between the dimensions of the sample pan 7 and the spacer 9 The position of the sample pan 7 can be fixed. The tube 1 and the sample tube 5 are preferably made of transparent plastic so that the internal state can be observed.

(筒体1、試料管5の材質)
筒体1、試料管5は、放射線の強度減衰を少なくして放射線照射における吸収線量が正確に設定できるようにするため、プラスチック製とするのが好ましい。プラスチックとしては、ポリプロピレン、ポリメチルメタクリレート、ポリスチレン、ビニール、スチロール、ポリカーボネート、シリコン樹脂、テフロン、アクリル等が挙げられるが、後述する実施例からも明らかな通り、ポリプロピレンが特に好ましい。
(Material of cylinder 1 and sample tube 5)
The cylindrical body 1 and the sample tube 5 are preferably made of plastic in order to reduce the attenuation of the intensity of radiation so that the absorbed dose in radiation irradiation can be set accurately. Examples of the plastic include polypropylene, polymethyl methacrylate, polystyrene, vinyl, styrene, polycarbonate, silicon resin, Teflon, acrylic, and the like. As is clear from examples described later, polypropylene is particularly preferable.

電子線やガンマ線照射において、ステンレス等の金属は遮蔽材及び散乱体として作用することにより試料の吸収線量評価に支障をきたすが、これらのプラスチックでは密度及び原子番号がステンレス等の金属に比べて低いことにより遮蔽及び散乱の影響を防ぐことができる。例えば、容器の厚さを1mmとし、予めアラニン線量計等で測定して決定した線量率の位置での照射において、1MeV電子線でポリスチレン容器に照射する場合は、計算により遮蔽及び散乱の影響を無視できるため補正を必要としないが、ステンレスの場合には遮蔽及び散乱の影響が大きすぎて電子線が照射できないことになる。また、食品照射で許可されている最大エネルギーの5MeVの場合には、ステンレス(鉄として計算)ではポリスチレンの約173%の補正が必要となる。さらに放射線の入射方向によってこの値は変化することになる。これでは標準線量照射と称せられるこの照射には適用できない。   In electron beam and gamma ray irradiation, metals such as stainless steel act as shielding materials and scatterers, which hinders the absorbed dose evaluation of samples, but these plastics have lower density and atomic number than metals such as stainless steel. Thus, the influence of shielding and scattering can be prevented. For example, in the case of irradiating a polystyrene container with a 1 MeV electron beam in irradiation at a dose rate position determined by measuring with an alanine dosimeter or the like in advance with a container thickness of 1 mm, the influence of shielding and scattering is calculated. Since it can be ignored, no correction is required. However, in the case of stainless steel, the influence of shielding and scattering is so great that the electron beam cannot be irradiated. In the case of 5 MeV, the maximum energy permitted for food irradiation, stainless steel (calculated as iron) requires a correction of about 173% of polystyrene. Further, this value changes depending on the incident direction of radiation. This is not applicable to this irradiation, which is called standard dose irradiation.

(スペーサ9)
試料管5には試料皿7とともに上下にスペーサ9を入れ、試料管5内での試料皿7の固定を行うと共に、試料皿7から試料が散逸するのを防止する。試料皿7を固定するためのスペーサ9の材質は、通気性、弾力性を有し、かつ試料が表面に触れても付着しにくい点を考慮して、発泡ポリエチレンが好ましい。
(Spacer 9)
A spacer 9 is inserted into the sample tube 5 together with the sample plate 7 to fix the sample plate 7 in the sample tube 5 and prevent the sample from escaping from the sample plate 7. The material of the spacer 9 for fixing the sample pan 7 is preferably foamed polyethylene in consideration of air permeability and elasticity and being difficult to adhere even if the sample touches the surface.

発泡ポリエチレンとしては、融点110℃以上で空隙率が30〜40%の発泡ポリエチレンが特に好ましい。空隙率が30%よりも低い場合には通気性が不十分となり、試料皿を試料管にセットする場合、あるいは試料皿を取り出す場合に管中での気圧の急激な変動が生じ試料が飛散する可能性がある。また空隙率が40%より高い場合には機械的に弱く、スペーサとしての機能を果たし得ない。   As the foamed polyethylene, a foamed polyethylene having a melting point of 110 ° C. or higher and a porosity of 30 to 40% is particularly preferable. When the porosity is lower than 30%, the air permeability becomes insufficient, and when the sample dish is set in the sample tube or when the sample dish is taken out, a rapid fluctuation of the atmospheric pressure in the tube occurs and the sample is scattered. there is a possibility. Further, when the porosity is higher than 40%, it is mechanically weak and cannot function as a spacer.

このように空隙率を30〜40%とすることで、放射線照射における遮蔽の影響を軽減できると共に軽量で弾力性に富み、試料管への試料皿のセットを容易にすることが可能となる。   Thus, by setting the porosity to 30 to 40%, it is possible to reduce the influence of shielding in radiation irradiation, and it is lightweight and rich in elasticity, and it becomes possible to easily set the sample dish on the sample tube.

(試料のセット方法)
試料をセットするには、先ず床面に立てた試料管5にスペーサ9aを入れ、次に試料皿7、スペーサ9b、スペーサ9c、スペーサ9dを順に挿入する。このように上から順次スペーサ9a〜9dや試料皿7を入れていくと、試料管5の直径がスペーサ9の直径と等しくなったところで止まり、試料が一定の位置に固定される。スペーサ9は、スペーサ9aが試料管5の底に達した場合に、スペーサ9dの上端が試料管5の上面より少し短くなるように長さを調整したものとする。試料の取り出しは、突き棒を用いて試料管5の下側からスペーサ9a〜9dを押し上げることにより行うことが出来る。
(Sample setting method)
In order to set the sample, first, the spacer 9a is put in the sample tube 5 standing on the floor, and then the sample pan 7, the spacer 9b, the spacer 9c, and the spacer 9d are inserted in order. When the spacers 9a to 9d and the sample pan 7 are sequentially inserted from above, the sample tube 5 stops when the diameter of the sample tube 5 becomes equal to the diameter of the spacer 9, and the sample is fixed at a fixed position. The spacer 9 is adjusted in length so that the upper end of the spacer 9 d is slightly shorter than the upper surface of the sample tube 5 when the spacer 9 a reaches the bottom of the sample tube 5. The sample can be taken out by pushing up the spacers 9a to 9d from the lower side of the sample tube 5 using a stick.

この照射食品検知用容器を用いて放射線照射を行う場合は、平らな照射台なら自立させるか、または試験管立てのような治具を用いることにより正確な位置を決めて行う。   When performing irradiation using this irradiated food detection container, it is possible to stand by a flat irradiation stand or to determine an accurate position by using a jig such as a test tube stand.

(本実施態様の容器の効果)
(1)試料皿7に入った微量の鉱物を散逸させること無く確実に持ち運び、輸送することができる。
(2)筒体1が小型であるため、コバルト60からのガンマ線や電子線等による標準照射を行う場合の照射位置設定精度が高くできる。
(3)筒体1及び試料管5が軽量なプラスチック材質であるため、線量減衰が少なく、これもまた線量について精度の高い照射ができる。
(4)スペーサ9の空隙率を30〜40%とすることで、放射線照射における遮蔽の影響を軽減できると共に軽量で弾力性に富み、試料管5への試料皿7のセットを容易にすることが可能となる。
(Effect of the container of this embodiment)
(1) It can be carried and transported reliably without dissipating a small amount of mineral in the sample pan 7.
(2) Since the cylindrical body 1 is small, the irradiation position setting accuracy when performing standard irradiation from the cobalt 60 with gamma rays, electron beams, or the like can be increased.
(3) Since the cylindrical body 1 and the sample tube 5 are made of a lightweight plastic material, there is little dose attenuation, and this also enables irradiation with high accuracy for the dose.
(4) By setting the porosity of the spacer 9 to 30 to 40%, it is possible to reduce the influence of shielding in radiation irradiation, and it is lightweight and rich in elasticity, making it easy to set the sample dish 7 on the sample tube 5. Is possible.

試料管5において、プラスチックの材質をポリプロピレン、ビニール、スチロール、ポリカーボネート、シリコン樹脂、テフロン、ポリエチレン、アクリルと変化させて、放射線の透過性、容器の堅牢性、透明性、帯電性、伸び率、電子線・γ線照射の可否について評価した(実施例1〜実施例8)。
なお、放射線の透過性は、(A)コバルト60ガンマ線、(B)3MeV以上の電子線、(C)3MeV未満の電子線の照射を行う場合を考え、A、B、C共に透過し試料中の深さ方向の線量分布についての補正を必要としない場合を◎、A、B、C共に透過はするがCについては線量分布が大きくなるため補正が必要となる場合を○、B及びCの電子線では補正が必要な場合を△、Cではほとんど透過しない場合を×とした。
また、堅牢性は壊れない場合を◎、割れ難い場合を○、割れ易い場合を△、壊れる場合を×とし、透明性は透明な場合を◎、透明〜半透明な場合を○、半透明〜不透明な場合を△、不透明な場合を×とし、帯電性は取り扱い時の除電気の必要性が、常時不要な場合を◎、高湿時不要な場合を○、乾燥時必要な場合を△、常時必要な場合を×とし、伸び率は引張り強さ(MPa)が1070〜1090の場合を◎、1100〜1600の場合を○、2400〜3300の場合を△、3300〜3900の場合を×とした。
更に、電子線、γ線照射の可否については、それぞれ電子線では3MeVの電子線、γ線ではコバルト60からのガンマ線を考え、透過性及び散乱による試料中の線量分布についての観点から、補正を必要としない場合を◎、線量分布があるが補正が小さい場合を○、補正が大きくなる場合を△、適用不能な場合を×とした。
また、従来技術のシリコンスプレーを用いる方法と、金属シャーレとしてアルミニウム、ステンレス、硬質ガラスを用いた場合についても併せて示した(比較例1〜比較例4)。
結果を表1に示す。
In the sample tube 5, the plastic material is changed to polypropylene, vinyl, styrene, polycarbonate, silicon resin, Teflon, polyethylene, acrylic, so that radiation transmission, container robustness, transparency, charging, elongation, electron Evaluation was made on whether or not to allow irradiation of γ-rays (Example 1 to Example 8).
Regarding the radiation transmission, (A) Cobalt 60 gamma ray, (B) Electron beam of 3 MeV or higher, and (C) Electron beam of less than 3 MeV are considered. In the case where no correction is required for the dose distribution in the depth direction of ◎, A, B, and C are both transmitted, but for C, the dose distribution is large and correction is required, so The case where correction is required for electron beams is indicated by Δ, and the case where C is hardly transmitted is indicated by ×.
In addition, the solidity is ◎ when it is not broken, ◯ when it is difficult to break, △ when it is easy to break, × when it is broken, ◎ when the transparency is transparent, ○ when it is transparent to translucent, translucent △ if opaque, x if opaque, chargeability is ◎ if the need for static elimination during handling is not always necessary, ○ if not necessary at high humidity, △ if necessary when drying, The case where it is necessary at all times is x, the elongation is ◎ when the tensile strength (MPa) is 1070 to 1090, ◯ when 1100 to 1600, △ when 2400 to 3300, and x when 3300 to 3900. did.
Furthermore, regarding the possibility of electron beam and γ-ray irradiation, 3MeV electron beam is considered for electron beam and gamma ray from cobalt 60 is considered for γ ray, respectively, and correction is made from the viewpoint of transmittance and dose distribution in the sample due to scattering. The case where it was not necessary was marked as ◎, the case where there was a dose distribution but the correction was small, ◯, the case where the correction was large, Δ, and the case where it was not applicable, x.
Moreover, it showed together about the method of using the silicon spray of a prior art, and the case where aluminum, stainless steel, and hard glass are used as a metal petri dish (Comparative Example 1- Comparative Example 4).
The results are shown in Table 1.

Figure 2010002269
Figure 2010002269

この結果より、試料管5の材質をポリプロピレンとすることにより全体の特性がバランス良く優れたものになることが判明した(実施例1)。   From this result, it was found that the overall characteristics were excellent in a balanced manner by using polypropylene as the material of the sample tube 5 (Example 1).

試験例Test example

高崎市内の放射線利用振興協会実験室において、香辛料ブラックペッパー100gから比重液を用いた抽出法により鉱物約3.09mg(メトラー社製XS−205型マイクロ天秤使用)を回収し、このうち1.03mgを直径6mm、深さ1mmのTL測定用試料皿7に載せ、これを東京都の国立医薬品食品衛生研究所に持参しTL測定器(Thermo Electron社製モデル3500型)を用いたTL測定(TL−1)を行った。   In the laboratory for the promotion of radiation utilization in Takasaki City, about 3.09 mg of mineral (using METTLER XS-205 type microbalance) was recovered from 100 g of spice black pepper by extraction using a specific gravity liquid. 03 mg was placed on a sample dish 7 for TL measurement with a diameter of 6 mm and a depth of 1 mm, and this was brought to the National Institute of Pharmaceutical Health Sciences in Tokyo, and TL measurement was performed using a TL measuring instrument (Model 3500 manufactured by Thermo Electron). TL-1) was performed.

次に、輸送のため、この試料皿7を材質が通気性の発泡ポリエチレンで、空隙率30〜40%、融点110〜130℃であるスペーサ9で固定した。即ち、試料管5内にスペーサ9aを入れた後、この試料皿7を挿入し、さらに、スペーサ9b、スペーサ9c、スペーサ9eを挿入した。この試料皿7及びスペーサ9a〜9eを挿入した試料管5を筒体1に収容し、上蓋3を締めて、筒体1内に試料管5を固定し、照射食品検知用容器10とした。   Next, the sample pan 7 was fixed with a spacer 9 having a porosity of 30 to 40% and a melting point of 110 to 130 ° C. for transportation. That is, after inserting the spacer 9a into the sample tube 5, the sample pan 7 was inserted, and further, the spacer 9b, the spacer 9c, and the spacer 9e were inserted. The sample tube 5 in which the sample pan 7 and the spacers 9a to 9e were inserted was accommodated in the cylinder 1, the upper lid 3 was fastened, the sample tube 5 was fixed in the cylinder 1, and an irradiated food detection container 10 was obtained.

この照射食品検知用容器10を測定者が鉄道を用いて持参した。その後、同じ手段で高崎市に戻り、日本原子力研究機構高崎量子応用研究所のコバルト60ガンマ線照射室において1kGyの吸収線量となる標準照射を実施した。この場合の輸送手段も鉄道を用いて測定者が持参する方法とした。そして、高崎に戻った後、試料の重さを測定したところ1.03mgという、全くロスの無い輸送が行えたことが確認できた。また、標準線量照射については6ヶ月の間に合計26回の照射を行い、本容器に添付したアラニン線量計により測定を行った結果、0.99kGy、標準偏差0.06kGyという極めて再現性の良い照射ができたことを確認できた。   The measurer brought this irradiated food detection container 10 using a railway. After that, we returned to Takasaki City by the same means, and carried out standard irradiation with an absorbed dose of 1 kGy in the cobalt 60 gamma-ray irradiation room of the Japan Atomic Energy Research Institute Takasaki Quantum Application Laboratory. In this case, the measurer also uses a railway to bring the measurer. And after returning to Takasaki, when the weight of the sample was measured, it was confirmed that 1.03 mg could be transported without any loss. In addition, as for standard dose irradiation, a total of 26 irradiations were carried out during 6 months, and measurement was performed with an alanine dosimeter attached to this container. As a result, the reproducibility of 0.99 kGy and standard deviation 0.06 kGy was extremely good. It was confirmed that the irradiation was possible.

本発明の一実施形態に係る照射食品検知用容器を示す概略図である。It is the schematic which shows the container for irradiation food detection which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1 筒体
3 上蓋
5 試料管
7 試料皿
9 スペーサ
10 照射食品検知用容器
DESCRIPTION OF SYMBOLS 1 Tube 3 Upper cover 5 Sample tube 7 Sample pan 9 Spacer 10 Irradiated food detection container

Claims (4)

筒体、
前記筒体内に収容される試料管、
前記筒体の蓋になると共に、前記筒体内で前記試料管を固定する上蓋、
前記試料管内に装填され、微量の鉱物を入れる試料皿、及び、
前記試料管内で前記試料皿の上下からその位置を固定する複数のスペーサ
を備えていることを特徴とする照射食品検知用容器。
Cylinder,
A sample tube housed in the cylinder;
An upper lid for fixing the sample tube in the cylinder, as well as the lid of the cylinder;
A sample dish loaded into the sample tube and containing a trace amount of mineral; and
An irradiation food detection container comprising a plurality of spacers for fixing the position of the sample dish from above and below in the sample tube.
前記筒体及び/又は前記試料管がプラスチックにより形成されていることを特徴とする請求項1記載の照射食品検知用容器。   2. The irradiated food detection container according to claim 1, wherein the cylindrical body and / or the sample tube is made of plastic. 前記プラスチックがポリプロピレンであることを特徴とする請求項2記載の照射食品検知用容器。   3. The irradiated food detection container according to claim 2, wherein the plastic is polypropylene. 前記スペーサが空隙率30〜40%、融点110〜130℃の発泡ポリエチレンであることを特徴とする請求項1記載の照射食品検知用容器。   The irradiated food detection container according to claim 1, wherein the spacer is a foamed polyethylene having a porosity of 30 to 40% and a melting point of 110 to 130 ° C.
JP2008160551A 2008-06-19 2008-06-19 Irradiated food detection container Expired - Fee Related JP4726928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008160551A JP4726928B2 (en) 2008-06-19 2008-06-19 Irradiated food detection container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008160551A JP4726928B2 (en) 2008-06-19 2008-06-19 Irradiated food detection container

Publications (2)

Publication Number Publication Date
JP2010002269A true JP2010002269A (en) 2010-01-07
JP4726928B2 JP4726928B2 (en) 2011-07-20

Family

ID=41584122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008160551A Expired - Fee Related JP4726928B2 (en) 2008-06-19 2008-06-19 Irradiated food detection container

Country Status (1)

Country Link
JP (1) JP4726928B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112432968A (en) * 2020-10-21 2021-03-02 中国核动力研究设计院 Preparation method of irradiated reactor structure material thermal conductivity test sample and test sample box

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023289A (en) * 2004-06-07 2006-01-26 Nissin Food Prod Co Ltd Method for detecting irradiation of radiation to food
JP2007047132A (en) * 2005-08-12 2007-02-22 National Agriculture & Food Research Organization Radiation irradiation determining method and radiation irradiation determining system
JP2008203137A (en) * 2007-02-21 2008-09-04 House Foods Corp Radiation irradiation tool and radiation irradiation detecting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023289A (en) * 2004-06-07 2006-01-26 Nissin Food Prod Co Ltd Method for detecting irradiation of radiation to food
JP2007047132A (en) * 2005-08-12 2007-02-22 National Agriculture & Food Research Organization Radiation irradiation determining method and radiation irradiation determining system
JP2008203137A (en) * 2007-02-21 2008-09-04 House Foods Corp Radiation irradiation tool and radiation irradiation detecting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112432968A (en) * 2020-10-21 2021-03-02 中国核动力研究设计院 Preparation method of irradiated reactor structure material thermal conductivity test sample and test sample box
CN112432968B (en) * 2020-10-21 2022-08-30 中国核动力研究设计院 Preparation method of irradiated reactor structure material thermal conductivity test sample and test sample box

Also Published As

Publication number Publication date
JP4726928B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
Ademola et al. Radiological safety assessment and determination of heavy metals in soil samples from some waste dumpsites in Lagos and Ogun state, south-western, Nigeria
Saegusa et al. Determination of detection efficiency curves of HPGe detectors on radioactivity measurement of volume samples
JP5977608B2 (en) Method for preparing correlation sheet for converting a value measured using a survey meter into a radioactive substance concentration and a simple analysis method for radioactive cesium concentration using the sheet
Bonczyk A determination of the concentration level of Lead 210 PB isotope in solid samples for the assessment of radiation risk occuring in coal mines
García-Toraño et al. Characterization of a CeBr3 detector and application to the measurement of some materials from steelworks
JP4726928B2 (en) Irradiated food detection container
Beck et al. Strontium iodide instrument development for gamma spectroscopy and radioisotope identification
CN102226774B (en) Multifunctional sample disk of X-ray fluorescence energy spectrometer and detection method thereof
Jodłowski et al. Monte Carlo validation of the self-attenuation correction determination with the Cutshall transmission method in 210Pb measurements by gamma-spectrometry
Bergaoui et al. Prompt gamma-ray neutron activation analysis of boron using Deuterium–Deuterium (D–D) neutron generator
JP7061300B1 (en) Inspection method for contamination of powdery waste with radioactive substances
Guguła et al. Fast in situ gamma spectroscopy using hand-held spectrometer with NaI probe
Boson et al. Evaluation of Monte Carlo-based calibrations of HPGe detectors for in situ gamma-ray spectrometry
Mimura et al. Measurements of gamma (γ)-emitting radionuclides with a high-purity germanium detector: the methods and reliability of our environmental assessments on the Fukushima 1 Nuclear Power Plant accident
Jahanbakhsh et al. Industrial scattering densitometry using a mCi gamma-ray source
TW200917282A (en) Drum-type volume source calibration phantom and calibration method thereof
Gromov et al. Reactor antineutrino detector iDREAM.
TWI374289B (en) Structure for a rod radiation source and its calibration phantom
Yeh et al. Measurement and calibration of metal and non-metal wastes produced from decommissioning
Shakhashiro et al. New certified reference materials and proficiency test for environmental radioactivity measurements
Yuan et al. The calibration and evaluation of a radioactive waste drum counting system
JP6136777B2 (en) Nondestructive radioactivity measurement apparatus and radioactivity measurement method thereof
RU205628U1 (en) GAMMA RADIATION SOURCE FOR QUALITY CONTROL OF ACTIVITY MEASUREMENTS BY GAMMA SPECTROMETERS
CN202110151U (en) Multifunctional X-ray fluorescence energy disperse spectroscopy sample disk
JP5635583B2 (en) γ-ray measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees