JP2010001558A - Valve member of cylinder for charging halogen gas and halogen compound gas - Google Patents

Valve member of cylinder for charging halogen gas and halogen compound gas Download PDF

Info

Publication number
JP2010001558A
JP2010001558A JP2008259563A JP2008259563A JP2010001558A JP 2010001558 A JP2010001558 A JP 2010001558A JP 2008259563 A JP2008259563 A JP 2008259563A JP 2008259563 A JP2008259563 A JP 2008259563A JP 2010001558 A JP2010001558 A JP 2010001558A
Authority
JP
Japan
Prior art keywords
cylinder
gas
halogen
less
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008259563A
Other languages
Japanese (ja)
Other versions
JP5305078B2 (en
Inventor
Takeshi Narita
健 成田
Katsuo Sugawara
克生 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008259563A priority Critical patent/JP5305078B2/en
Publication of JP2010001558A publication Critical patent/JP2010001558A/en
Application granted granted Critical
Publication of JP5305078B2 publication Critical patent/JP5305078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member for producing a valve fitted to a cylinder for charging, storing and carrying halogen compound gas having strong corrosiveness such as HCl, HF, HBr and NF<SB>3</SB>and halogen gas such as chlorine, fluorine and bromine. <P>SOLUTION: The member has a component composition comprising 14.5 to 24% Cr, 12 to 23% Mo, 0.01 to 6% Fe, 0.001 to 0.05% Mg, 0.001 to 0.04% N, 0.05 to 0.5% Mn, 0.01 to 0.1% Si, 0.01 to 0.5% Al, 0.001 to 0.5% Ti, 0.01 to 1.8% Cu, 0.01 to 0.5% V and 5 to 50 ppm B, if required, further comprising >1 to 3.4% Ta, 2 to 5% W, 0.01 to 5% Co or the like, and the balance Ni with inevitable impurities, and in which, regarding C, S and P included as the inevitable impurities, the content of C is controlled to <0.05%, S to <0.01% and P to <0.01%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、HCl、HF、HBrなどの強い腐食性を有するハロゲン化合物ガス、さらに塩素、フッ素、臭素などのハロゲンガスなどを充填し貯蔵および運搬するためのボンベに取り付けるバルブを製造するための部材に関するものである。   The present invention relates to a member for manufacturing a valve attached to a cylinder for filling, storing and transporting a halogen compound gas having strong corrosive properties such as HCl, HF and HBr, and a halogen gas such as chlorine, fluorine and bromine. It is about.

半導体製造プロセスガスとして、HCl、HF、HBr、NFなどの強い腐食性を有する高純度のハロゲン化合物ガスおよび塩素、フッ素、臭素などの高純度ハロゲンガスなどが使用されることは知られており、半導体製造プロセス用超高純度ガス製造装置および半導体製造装置に使用される超高純度ガス制御用バルブのベローズには、インコネル625(質量%で、Ni:58%以上、Cr:20〜23%、Fe:5.0%以上、Mo:8.0〜10.0%、Nb(+Ta):3.15〜4.15%、低炭素、低シリコンからなるNi基合金)、
Ni:50%以上、Cr:14.5〜16.5%、Mo:15.0〜17.0%、W:3.0〜4.5%、Fe:4.0〜7.0%、低炭素、低シリコンからなるNi基合金、
Ni:50%以上、Cr:20〜22.5%、Mo:12.5〜14.5%、W:2.5〜3.5%、Fe:2.0〜6.0%、低炭素、低シリコンからなるNi基合金、などのNi基合金が使用されることが知られている(特許文献1参照)。
As semiconductor manufacturing process gases, it is known that high-purity halogen compound gases having strong corrosive properties such as HCl, HF, HBr, and NF 3 and high-purity halogen gases such as chlorine, fluorine, and bromine are used. Inconel 625 (mass%, Ni: 58% or more, Cr: 20-23%) for the bellows of the ultra high purity gas manufacturing apparatus for semiconductor manufacturing process and the ultra high purity gas control valve used in the semiconductor manufacturing apparatus Fe: 5.0% or more, Mo: 8.0 to 10.0%, Nb (+ Ta): 3.15 to 4.15%, Ni-based alloy composed of low carbon and low silicon)
Ni: 50% or more, Cr: 14.5 to 16.5%, Mo: 15.0 to 17.0%, W: 3.0 to 4.5%, Fe: 4.0 to 7.0%, Ni-based alloy consisting of low carbon and low silicon,
Ni: 50% or more, Cr: 20-22.5%, Mo: 12.5-14.5%, W: 2.5-3.5%, Fe: 2.0-6.0%, low carbon It is known that Ni-based alloys such as Ni-based alloys made of low silicon are used (see Patent Document 1).

この半導体製造プロセスガスとして使用されるハロゲン化合物ガスは液化されて図1の一部断面説明図に示されるボンベ1に充填し貯蔵または運搬している。液化されたハロゲン化合物ガスをボンベに充填するには、通常、ボンベのバルブにおける導入口5に配管ライン(図示せず)を接続して充填し、さらに充填された液化されたハロゲン化合物ガスを半導体製造プロセス用超高純度ガス製造装置および半導体製造装置に供給する時もバルブにおける導入口5に配管ライン(図示せず)を接続して半導体製造プロセス用超高純度ガス製造装置および半導体製造装置に供給している。
このボンベ1にはボンベ用バルブ2が図1に示されているように一般にねじ込み式で取り付けられている。このボンベ1に取付けられたボンベ用バルブ2のキャップ3を取り外し、導入口5に配管ライン(図示せず)を接続し、ハンドル4をまわして液化されたハロゲン化合物ガスをボンベに充填し、液化されたハロゲン化合物ガスをボンベに充填し終わったらハンドル4をまわしてボンベへの通路を遮断し、キャップ3を締めて出荷される。
このボンベ1に取付けられているバルブ2はボンベ1個に対して1個取り付けられており、ボンベと同数出荷されるが、大量に使用されることから一般に価格の安いステンレス鋼(たとえばSUS316)で作製されている。そして、この本体6は丸棒などの素材を型鍛造することにより本体と同じ概観を有する鍛造中間体(図示せず)を作製し、この鍛造中間体から内部を削り出し、ねじ穴を形成するなどして作製されている。
特開平6−201064号公報
The halogen compound gas used as the semiconductor manufacturing process gas is liquefied and filled into a cylinder 1 shown in the partial cross-sectional explanatory view of FIG. 1 and stored or transported. In order to fill the cylinder with the liquefied halogen compound gas, the cylinder is usually filled by connecting a piping line (not shown) to the inlet 5 of the cylinder valve, and the liquefied halogen compound gas is further filled into the semiconductor. A pipe line (not shown) is connected to the inlet 5 of the valve when supplying the ultra-high purity gas manufacturing apparatus and semiconductor manufacturing apparatus for the manufacturing process to the ultra-high purity gas manufacturing apparatus and semiconductor manufacturing apparatus for the semiconductor manufacturing process. Supply.
A cylinder valve 2 is generally attached to the cylinder 1 by screwing as shown in FIG. The cap 3 of the cylinder valve 2 attached to the cylinder 1 is removed, a piping line (not shown) is connected to the introduction port 5, and the cylinder 4 is filled with liquefied halogen compound gas by turning the handle 4 to be liquefied. When the cylinder is filled with the halogen compound gas, the handle 4 is turned to block the passage to the cylinder, and the cap 3 is tightened before shipment.
One valve 2 attached to this cylinder 1 is attached to one cylinder and is shipped in the same number as the cylinder, but since it is used in large quantities, it is generally made of stainless steel (for example, SUS316), which is inexpensive. Have been made. And this main body 6 produces the forge intermediate body (not shown) which has the same general appearance as a main body by die-forging materials, such as a round bar, and cuts out an inside from this forge intermediate body, and forms a screw hole. Etc. are produced.
JP-A-6-201064

特に、近年、半導体チップの配線幅が微細になるに従い、コンタミの管理が格段に厳しく問われるようになり、ステンレス鋼を部材として作製した従来のバルブを再利用することは不可能となってきた。そのために、ボンベ用バルブの部材として先に述べたNi基合金の使用も考えられるが、先に述べたNi基合金はステンレス鋼に比べて型鍛造性が悪く、変形抵抗が大きく、変形能が小さいために型鍛造中に割れが発生することが多く、さらに割れが無く型鍛造できたとしても寸法精度が悪く、量産することが難しいなどの欠点があった。
さらに、半導体製造プロセスガスとして塩素、フッ素、臭素などのハロゲンガスも使用されており、これらハロゲンガスは液化されてボンベに充填して貯蔵および運搬する。このボンベ内の液化されたハロゲンガス自身は腐食性は少ないものの、ボンベ内の液化されたハロゲンガスを半導体製造プロセス用超高純度ガス製造装置および半導体製造装置に供給する操作はいずれも大気中で行われるために、大気中に含まれる水分と液化された塩素、フッ素、臭素などのハロゲンガスが水和しイオン化することから、腐食性の高いHCl、HF、HBrなどのハロゲン化水素酸となって特にバルブの導入口に付着してバルブが腐食し、腐食されたバルブを構成する金属がコンタミまたはパーティクルとなってハロゲンガスに入り込むので好ましくなく、液化された塩素、フッ素、臭素などのハロゲンガスを充填して貯蔵および運搬するためのボンベに取付けられる従来のステンレス鋼製バルブについても再利用することは不可能となってきた。
この発明は、これら課題を解決するために、HCl、HF、HBrなどのハロゲン化水素酸などのハロゲン化合物ガスに対する耐食性に一層優れかつ型鍛造性に一層優れた、ハロゲンガスおよびハロゲン化合物ガスを貯蔵および運搬するためのボンベに取り付けるバルブを構成する部材を提供することを目的とするものである。
In particular, as the wiring width of semiconductor chips has become finer in recent years, the management of contamination has become increasingly severe, and it has become impossible to reuse conventional valves made of stainless steel as members. . Therefore, the use of the Ni-based alloy described above as a cylinder valve member is also conceivable, but the Ni-based alloy described above has a lower die forgeability, higher deformation resistance, and higher deformability than stainless steel. Since it is small, cracks often occur during die forging, and even if die forging can be performed without cracks, the dimensional accuracy is poor and mass production is difficult.
Further, halogen gases such as chlorine, fluorine and bromine are also used as semiconductor manufacturing process gases. These halogen gases are liquefied and filled in a cylinder for storage and transportation. Although the liquefied halogen gas in the cylinder itself is less corrosive, the operation of supplying the liquefied halogen gas in the cylinder to the ultra-high purity gas manufacturing apparatus for semiconductor manufacturing process and the semiconductor manufacturing apparatus is in the atmosphere. Since the water contained in the atmosphere and liquefied halogen gas such as chlorine, fluorine and bromine are hydrated and ionized, it becomes highly corrosive hydrohalic acid such as HCl, HF and HBr. Especially, it adheres to the inlet of the valve and the valve corrodes, and the metal constituting the corroded valve enters into the halogen gas as contamination or particles, which is not preferable. Halogen gas such as liquefied chlorine, fluorine, bromine, etc. Reuse of conventional stainless steel valves mounted on cylinders for filling and storing and transporting It has become impossible.
In order to solve these problems, the present invention stores a halogen gas and a halogen compound gas that are more excellent in corrosion resistance to halogen compound gases such as hydrohalic acids such as HCl, HF, and HBr, and that have better mold forgeability. And it aims at providing the member which comprises the valve | bulb attached to the cylinder for conveyance.

そこで、本発明者らは、型鍛造性に優れ、さらにHCl、HF、HBrなどのハロゲン化水素酸に対する耐食性に一層優れたハロゲンガスおよびハロゲン化合物ガス用ボンベのバルブ部材を開発すべく研究を行った。その結果、
(イ)質量%で(以下、%は質量%を示す)、Cr:14.5〜24%、Mo:12〜23%、Fe:0.01〜6%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、Si:0.01〜0.1%、Al:0.01〜0.5、Ti:0.001〜0.5%、Cu:0.01〜1.8%、V:0.01〜0.5%、B:5〜50ppmを含有し、残部がNiおよび不可避不純物からなり、前記不可避不純物として含まれるC、SおよびPをC:0.05%未満、S:0.01%未満およびP:0.01%未満に調整した成分組成を有するNi基合金は、従来のNi基合金に比べて型鍛造性に優れ、さらにHCl、HF、HBrなどのハロゲン化水素酸に対する耐食性が優れており、これらNi基合金を用いて作製したバルブは、従来のNi基合金で作製したバルブに比べてハロゲンガスおよびハロゲン化合物ガス用ボンベのバルブ部材として優れた特性を示す、
(ロ)前記(イ)記載のNi基合金にさらにTa:1超〜3.4%を添加した成分組成を有するNi基合金は、還元性酸・酸化性酸での耐食性や孔食や隙間腐食に対する耐食性が一層改善される、
(ハ)前記(イ)記載のNi基合金にさらにW:2〜5%を添加した成分組成を有するNi基合金は、還元性酸に対する耐食性を一層向上させ同時に高温で急激に強度が低下するのを抑制することにより型鍛造の最適温度範囲を高温側に一層広げることができる、
(ニ)前記(イ)記載のNi基合金にさらにCo:0.01〜5%を添加した成分組成を有するNi基合金は、高温で急激に強度が低下するのを抑制することにより型鍛造の最適温度範囲を高温側に一層広げる効果がある、
(ホ)前記WとCoは共存しても良い、
などの研究結果が得られたのである。
Therefore, the present inventors conducted research to develop a valve member for a cylinder for a halogen gas and a halogen compound gas that has excellent die forgeability and further excellent corrosion resistance against hydrohalic acid such as HCl, HF, and HBr. It was. as a result,
(B) By mass% (hereinafter,% represents mass%), Cr: 14.5-24%, Mo: 12-23%, Fe: 0.01-6%, Mg: 0.001-0. 05%, N: 0.001 to 0.04%, Mn: 0.05 to 0.5%, Si: 0.01 to 0.1%, Al: 0.01 to 0.5, Ti: 0.00. 001 to 0.5%, Cu: 0.01 to 1.8%, V: 0.01 to 0.5%, B: 5 to 50 ppm, the balance is made of Ni and inevitable impurities, the inevitable impurities The Ni-based alloy having a component composition in which C, S and P contained in the composition are adjusted to C: less than 0.05%, S: less than 0.01% and P: less than 0.01% is a conventional Ni-based alloy. Excellent mold forgeability and corrosion resistance to hydrohalic acids such as HCl, HF, HBr, etc. The bulb produced using the present invention exhibits excellent characteristics as a bulb member for a halogen gas and halogen compound gas cylinder as compared with a bulb produced using a conventional Ni-based alloy.
(B) The Ni-based alloy having a component composition in which more than Ta: 3.4% is added to the Ni-based alloy described in (a) above, is resistant to corrosion and pitting corrosion and gaps with reducing acids and oxidizing acids. Corrosion resistance against corrosion is further improved.
(C) A Ni-based alloy having a component composition in which W: 2 to 5% is further added to the Ni-based alloy described in (a) further improves the corrosion resistance against reducing acids, and at the same time, the strength rapidly decreases at high temperatures. By suppressing this, the optimum temperature range of die forging can be further expanded to the high temperature side,
(D) A Ni-based alloy having a component composition in which Co: 0.01 to 5% is further added to the Ni-based alloy described in (a) described above is die-forged by suppressing a sudden decrease in strength at high temperatures. Has the effect of further expanding the optimum temperature range to the high temperature side,
(E) W and Co may coexist.
The research results were obtained.

この発明は、かかる結果に基づいてなされたものであって、
(1)Cr:14.5〜24%、Mo:12〜23%、Fe:0.01〜6%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、Si:0.01〜0.1%、Al:0.01〜0.5、Ti:0.001〜0.5%、Cu:0.01〜1.8%、V:0.01〜0.5%、B:5〜50ppmを含有し、残部がNiおよび不可避不純物からなり、前記不可避不純物として含まれるC、SおよびPをC:0.05%未満、S:0.01%未満およびP:0.01%未満に調整した成分組成を有するNi基合金からなるハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材、
(2)Cr:14.5〜24%、Mo:12〜23%、Fe:0.01〜6%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、Si:0.01〜0.1%、Al:0.01〜0.5、Ti:0.001〜0.5%、Cu:0.01〜1.8%、V:0.01〜0.5%、B:5〜50ppmを含有し、さらにTa:1超〜3.4%を含有し、残部がNiおよび不可避不純物からなり、前記不可避不純物として含まれるC、SおよびPをC:0.05%未満、S:0.01%未満およびP:0.01%未満に調整した成分組成を有するNi基合金からなるハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材、
(3)Cr:14.5〜24%、Mo:12〜23%、Fe:0.01〜6%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、Si:0.01〜0.1%、Al:0.01〜0.5、Ti:0.001〜0.5%、Cu:0.01〜1.8%、V:0.01〜0.5%、B:5〜50ppmを含有し、さらにW:2〜5%を含有し、残部がNiおよび不可避不純物からなり、前記不可避不純物として含まれるC、SおよびPをC:0.05%未満、S:0.01%未満およびP:0.01%未満に調整した成分組成を有するNi基合金からなるハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材、
(4)Cr:14.5〜24%、Mo:12〜23%、Fe:0.01〜6%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、Si:0.01〜0.1%、Al:0.01〜0.5、Ti:0.001〜0.5%、Cu:0.01〜1.8%、V:0.01〜0.5%、B:5〜50ppmを含有し、さらにCo:0.01〜5%を含有し、残部がNiおよび不可避不純物からなり、前記不可避不純物として含まれるC、SおよびPをC:0.05%未満、S:0.01%未満およびP:0.01%未満に調整した成分組成を有するNi基合金からなるハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材、
(5)Cr:14.5〜24%、Mo:12〜23%、Fe:0.01〜6%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、Si:0.01〜0.1%、Al:0.01〜0.5、Ti:0.001〜0.5%、Cu:0.01〜1.8%、V:0.01〜0.5%、B:5〜50ppmを含有し、さらにW:2〜5%、Co:0.01〜5%を含有し、残部がNiおよび不可避不純物からなり、前記不可避不純物として含まれるC、SおよびPをC:0.05%未満、S:0.01%未満およびP:0.01%未満に調整した成分組成を有するNi基合金からなるハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材、に特徴を有するものである。
The present invention has been made based on such results,
(1) Cr: 14.5-24%, Mo: 12-23%, Fe: 0.01-6%, Mg: 0.001-0.05%, N: 0.001-0.04%, Mn: 0.05 to 0.5%, Si: 0.01 to 0.1%, Al: 0.01 to 0.5, Ti: 0.001 to 0.5%, Cu: 0.01 to 1 8%, V: 0.01 to 0.5%, B: 5 to 50 ppm, the balance is made of Ni and inevitable impurities, and C, S, and P contained as the inevitable impurities are C: 0.05 %, S: less than 0.01% and P: a valve member of a cylinder for filling a halogen gas and a halogen compound gas made of a Ni-based alloy having a component composition adjusted to less than 0.01%,
(2) Cr: 14.5-24%, Mo: 12-23%, Fe: 0.01-6%, Mg: 0.001-0.05%, N: 0.001-0.04%, Mn: 0.05 to 0.5%, Si: 0.01 to 0.1%, Al: 0.01 to 0.5, Ti: 0.001 to 0.5%, Cu: 0.01 to 1 0.8%, V: 0.01 to 0.5%, B: 5 to 50 ppm, further Ta: more than 3.4 to 3.4%, the balance consisting of Ni and inevitable impurities, the inevitable impurities Halogen gas and halogen compound gas comprising a Ni-based alloy having a component composition in which C, S, and P contained as C are adjusted to less than 0.05%, S: less than 0.01%, and P: less than 0.01% Valve member for filling cylinder,
(3) Cr: 14.5-24%, Mo: 12-23%, Fe: 0.01-6%, Mg: 0.001-0.05%, N: 0.001-0.04%, Mn: 0.05 to 0.5%, Si: 0.01 to 0.1%, Al: 0.01 to 0.5, Ti: 0.001 to 0.5%, Cu: 0.01 to 1 0.8%, V: 0.01 to 0.5%, B: 5 to 50 ppm, further W: 2 to 5%, the balance is made of Ni and inevitable impurities, and is included as the inevitable impurities Cylinder for filling halogen gas and halogen compound gas comprising Ni-based alloy having a component composition in which C, S and P are adjusted to C: less than 0.05%, S: less than 0.01% and P: less than 0.01% Valve members,
(4) Cr: 14.5-24%, Mo: 12-23%, Fe: 0.01-6%, Mg: 0.001-0.05%, N: 0.001-0.04%, Mn: 0.05 to 0.5%, Si: 0.01 to 0.1%, Al: 0.01 to 0.5, Ti: 0.001 to 0.5%, Cu: 0.01 to 1 0.8%, V: 0.01 to 0.5%, B: 5 to 50 ppm, Co: 0.01 to 5% further, the balance consisting of Ni and inevitable impurities, the inevitable impurities Filled with halogen gas and halogen compound gas comprising Ni-based alloy having a component composition in which C, S and P contained are adjusted to C: less than 0.05%, S: less than 0.01% and P: less than 0.01% Cylinder member for cylinder,
(5) Cr: 14.5-24%, Mo: 12-23%, Fe: 0.01-6%, Mg: 0.001-0.05%, N: 0.001-0.04%, Mn: 0.05 to 0.5%, Si: 0.01 to 0.1%, Al: 0.01 to 0.5, Ti: 0.001 to 0.5%, Cu: 0.01 to 1 0.8%, V: 0.01 to 0.5%, B: 5 to 50 ppm, W: 2 to 5%, Co: 0.01 to 5%, the balance being Ni and inevitable impurities And a Ni-based alloy having a component composition in which C, S and P contained as the inevitable impurities are adjusted to C: less than 0.05%, S: less than 0.01% and P: less than 0.01%. The valve member of the cylinder for filling halogen gas and halogen compound gas is characterized.

この発明の前記(1)〜(5)記載のバルブ部材を使用して作製したバルブは、耐食性に優れているところから、ボンベからバルブを取り外し、これを別のボンベにねじ込んで繰り返し使用することができる。一方、ボンベは用途に応じて各種の鋼を使用して作製されており、ボンベを構成する鋼の種類によって硬度が異なる。ボンベとバルブの硬度差が小さいとねじ込んだり外したりする際にバルブとボンベとのカジリが発生し、バルブをボンベから簡単に外せなくなって、バルブとボンベの両方とも再利用できなくなることがある。例えば、Mn:15質量%前後を含む安価な低マンガン鋼が使用されることがある。この低マンガン鋼製ボンベにこの発明のバルブ部材を使用して作製したバルブをねじ込んで取付けると、ボンベとバルブの硬度差が小さいために、ねじ込んだり外したりする際にバルブとボンベとのカジリが発生し、バルブをボンベから簡単に外せなくなって、バルブとボンベの両方とも再利用できなくなることがある。かかる事態を避けるには、前記(1)〜(5)記載のバルブ部材からなるバルブを温度:550〜650℃、10〜100時間保持の時効処理を施すか、または溶体化熱処理後、冷間加工し、その後温度:550〜650℃、10〜100時間保持の時効処理を施すことにより、素地中にAB型金属間化合物を分散させ、耐食性を劣化させることなくバルブの硬度を上昇させ、バルブとボンベの硬度差を大きくしてバルブとボンベのカジリを防止することができる。 Since the valve manufactured using the valve member according to the above (1) to (5) of the present invention has excellent corrosion resistance, the valve is removed from the cylinder, and this is screwed into another cylinder and repeatedly used. Can do. On the other hand, the cylinder is manufactured using various types of steel depending on the application, and the hardness varies depending on the type of steel constituting the cylinder. If the hardness difference between the cylinder and the valve is small, the valve and the cylinder may become galling when screwed or removed, and the valve cannot be easily removed from the cylinder, and both the valve and the cylinder may not be reused. For example, an inexpensive low manganese steel containing about 15% by mass of Mn may be used. When a valve manufactured using the valve member of the present invention is screwed into this low manganese steel cylinder and attached, the hardness difference between the cylinder and the valve is small, so there is no galling between the valve and cylinder when screwing in or out. Occasionally, the valve cannot be easily removed from the cylinder, and both the valve and cylinder cannot be reused. In order to avoid such a situation, the valve comprising the valve member described in the above (1) to (5) is subjected to aging treatment at a temperature of 550 to 650 ° C. for 10 to 100 hours, or after solution heat treatment, By processing, and then aging treatment at a temperature of 550 to 650 ° C. and holding for 10 to 100 hours, the A 2 B type intermetallic compound is dispersed in the substrate, and the hardness of the valve is increased without deteriorating the corrosion resistance. The hardness difference between the valve and the cylinder can be increased to prevent the valve and the cylinder from galling.

次に、この発明のハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材の成分組成における各元素の限定理由について詳述する。
Cr:
Crは、HCl、HF、HBrなどのハロゲン化水素酸に対して比較的低濃度領域での耐食性を向上させる効果があり、その場合、その含有量が14.5%以上含有することが必要であるが、その含有量が24%を超えて含有するとMoとの組み合わせにおいて相安定性を損なって単一相維持が困難となり、粗大なμ相(NiMo型)を形成してしまい、耐食性劣化をもたらすので好ましくない。従って、この発明のハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材に含まれるCrは14.5〜24%に定めた。一層好ましくは、18.5〜20.5%である。
Next, the reason for limitation of each element in the component composition of the valve member of the halogen gas and halogen compound gas filling cylinder of the present invention will be described in detail.
Cr:
Cr has the effect of improving the corrosion resistance in a relatively low concentration region with respect to hydrohalic acids such as HCl, HF, and HBr, and in that case, the content must be 14.5% or more. However, if the content exceeds 24%, phase stability is impaired in combination with Mo and it is difficult to maintain a single phase, and a coarse μ phase (Ni 7 Mo 6 type) is formed. Since corrosion resistance deterioration is brought about, it is not preferable. Therefore, Cr contained in the valve member of the cylinder for filling halogen gas and halogen compound gas of the present invention is set to 14.5 to 24%. More preferably, it is 18.5 to 20.5%.

Mo:
Moは、HCl、HF、HBrなどのハロゲン化水素酸に対して中〜高濃度領域での耐食性を向上させる効果がある。その場合、12%以上含有することが必要であるが、23%を超えて含有するとCrとの組み合わせにおいて相安定性を損ない、単一相維持が困難となり、粗大なμ相(NiMo型)を形成してしまい、耐食性劣化をもたらすので好ましくない。したがって、Mo含有量は12〜23%に定めた。一層好ましくは18.5〜20.5%である。
Mo:
Mo has an effect of improving the corrosion resistance in a medium to high concentration region against hydrohalic acid such as HCl, HF, and HBr. In that case, it is necessary to contain 12% or more, but if it exceeds 23%, the phase stability is impaired in combination with Cr, it becomes difficult to maintain a single phase, and coarse μ phase (Ni 7 Mo 6 Mold), resulting in deterioration of corrosion resistance. Therefore, the Mo content is set to 12 to 23%. More preferably, it is 18.5 to 20.5%.

Fe:
Feは高温での変形能を向上させ、これにより型鍛造における寸法精度の向上を図る効果がある。その場合、Feは0.01%以上含有することが必要であるが、Feを6%を越えて含有するとハロゲン化水素酸中での耐食性劣化をもたらすのでFeの含有量を0.01〜6%に定めた。一層好ましい範囲は0.01〜1%である。
Fe:
Fe has the effect of improving the deformability at high temperatures, thereby improving the dimensional accuracy in die forging. In that case, Fe must be contained in an amount of 0.01% or more. However, if Fe is contained in excess of 6%, the corrosion resistance in hydrohalic acid is deteriorated. %. A more preferable range is 0.01 to 1%.

N、MnおよびMg:
N、MnおよびMgを共存させることにより、高温鍛造における割れの原因となる粗大なμ相(NiMo型)の生成を抑制することができる。すなわち、N、MnおよびMgは母相であるNi−fcc相を安定化させ、CrおよびMoの固溶化を促進し、μ相を析出しにくくする効果があり、その結果として高温鍛造可能な温度領域を低温側に広げることが可能となり、高温での型鍛造をしやすくして生産性の向上に繋げる効果がある。
しかし、Nの含有量が0.001%未満ではμ相生成を抑制する効果は無く、したがって、高温鍛造時により過剰なμ相生成を許し、その結果として鍛造割れが発生しやすくなるので好ましくなく、一方、N含有量が0.04%を越えて含有すると、窒化物を形成し、高温加工性が劣化し、部材への加工が困難となるため、Nの含有量を0.001〜0.04%に定めた。一層好ましい範囲は0.005〜0.03%である。
同様に、Mnの含有量が0.05%未満ではμ相生成を抑制する効果は無く、したがって、鍛造割れが発生しやすくなるので好ましくなく、一方、Mn含有量が0.5%を越えて含有すると、逆にμ相生成を促進するようになり、鍛造割れをもたらしてしまうために好ましくない。したがって、Mnの含有量を0.05〜0.5%(一層好ましくは、0.1%〜0.4%)とした。
同様に、Mgの含有量が0.001%未満ではμ相生成を抑制する効果は無く、したがって、高温鍛造時により過剰なμ相生成を許し、結果として鍛造割れが発生しやすくなるので好ましくなく、一方、0.05%を超えて含有すると逆にμ相生成を促進するようになり、鍛造割れをもたらしてしまうために好ましくない。したがって、Mgの含有量を0.001〜0.05%(一層好ましくは、0.01〜0.04%)とした。
なお、これら3元素は、3元素が同時に所定の範囲に含有しないと効果がないことを見出している。
N, Mn and Mg:
By coexisting N, Mn and Mg, generation of coarse μ phase (Ni 7 Mo 6 type) which causes cracks in high temperature forging can be suppressed. That is, N, Mn and Mg have the effect of stabilizing the Ni-fcc phase as a parent phase, promoting the solid solution of Cr and Mo, and making it difficult to precipitate the μ phase. It becomes possible to expand the region to the low temperature side, and it has the effect of facilitating die forging at high temperatures and improving productivity.
However, if the N content is less than 0.001%, there is no effect of suppressing μ phase formation, and therefore, excessive μ phase generation is allowed during high temperature forging, and as a result, forging cracks are likely to occur, which is not preferable. On the other hand, if the N content exceeds 0.04%, nitrides are formed, the high-temperature workability deteriorates, and it becomes difficult to process the member, so the N content is 0.001 to 0. .04%. A more preferable range is 0.005 to 0.03%.
Similarly, if the content of Mn is less than 0.05%, there is no effect of suppressing μ phase formation, and therefore forging cracks are likely to occur, which is not preferable, while the Mn content exceeds 0.5%. On the other hand, it is not preferable because the μ phase generation is promoted and forging cracks are caused. Therefore, the Mn content is set to 0.05 to 0.5% (more preferably, 0.1% to 0.4%).
Similarly, if the Mg content is less than 0.001%, there is no effect of suppressing μ phase formation, and therefore, excessive μ phase generation is allowed during high temperature forging, and as a result, forging cracks are likely to occur, which is not preferable. On the other hand, if the content exceeds 0.05%, the μ phase generation is accelerated, and forging cracks are caused. Therefore, the Mg content is set to 0.001 to 0.05% (more preferably 0.01 to 0.04%).
It has been found that these three elements have no effect unless the three elements are simultaneously contained within a predetermined range.

Si、AlおよびTi:
Si、AlおよびTiは、それぞれ脱酸剤として添加することにより、合金内の清浄度を高め、結果的に型鍛造割れを抑制し、型鍛造性を向上させる効果があるので添加する。Siは0.01%以上含有することでその効果を示すが、Siを0.1%を越えて含有すると、逆に型鍛造割れを誘発させるためにSiの含有量を0.01〜0.1%とした。Si含有量の一層好ましい範囲は0.02〜0.06%である。
同様に、Alを0.01%以上含有することで合金内の清浄効果を示すが、0.5%を越えて含有すると、逆に型鍛造割れを誘発させるためにAlの含有量を0.01〜0.5%の範囲内に定めた。Al含有量の一層好ましい範囲は0.01〜0.2%である。
同様に、Tiを0.001%以上含有することで合金内の清浄効果を示すが、0.5%を越えて含有すると、逆に型鍛造割れを誘発させるためにTiの含有量を0.001〜0.5%の範囲内に定めた。Ti含有量の一層好ましい範囲は0.005〜0.2%である。
Si, Al and Ti:
Si, Al, and Ti are added as deoxidizers, respectively, thereby increasing the cleanliness in the alloy and consequently suppressing die forge cracking and improving die forgeability. When Si is contained in an amount of 0.01% or more, the effect is exhibited. However, when Si is contained in an amount exceeding 0.1%, the Si content is 0.01 to 0.00% in order to induce die forging cracks. 1%. A more preferable range of the Si content is 0.02 to 0.06%.
Similarly, when Al is contained in an amount of 0.01% or more, the cleaning effect in the alloy is shown. However, if the content exceeds 0.5%, the content of Al is set to 0.00% in order to induce die forging cracks. It was set within the range of 01 to 0.5%. A more preferable range of the Al content is 0.01 to 0.2%.
Similarly, when Ti is contained in an amount of 0.001% or more, the cleaning effect in the alloy is shown. However, if it exceeds 0.5%, the Ti content is reduced to 0.1% in order to induce die forging cracks. It was set within the range of 001 to 0.5%. A more preferable range of the Ti content is 0.005 to 0.2%.

V:
Vは、高温での結晶粒粗大化を抑制する効果があり、鍛造割れの原因となる結晶粒の粗大化を抑制することにより高温での変形能が向上し、その結果、割れが抑制されかつ寸法精度が向上するなど型鍛造性が良好となるために添加されるが、その含有量が0.01%未満では所望の効果が得られず、一方、Vを0.5%を越えて含有すると、塩酸やフッ酸などハロゲン化水素酸に対する腐食性が劣化するために好ましくない。したがって、Vの含有量を0.01〜0.5%に定めた。V含有量の一層好ましい範囲は0.02〜0.3%である。
V:
V has the effect of suppressing the coarsening of crystal grains at high temperature, and the deformability at high temperature is improved by suppressing the coarsening of crystal grains that cause forging cracks. As a result, cracks are suppressed and It is added to improve die forgeability such as improved dimensional accuracy. However, if its content is less than 0.01%, the desired effect cannot be obtained, while V exceeds 0.5%. Then, the corrosiveness to hydrohalic acid such as hydrochloric acid and hydrofluoric acid deteriorates, which is not preferable. Therefore, the content of V is set to 0.01 to 0.5%. A more preferable range of the V content is 0.02 to 0.3%.

B:
Bは、高温での変形能を向上させ、型鍛造による割れを抑制して寸法精度を向上させる効果があるために添加されるが、その含有量が5ppm未満では所望の効果が得られないので好ましくなく、一方、50ppmを越えて含有するBが結晶粒界に偏析しやすくなって割れが生じやすくなるので好ましくない。したがって、B含有量を5〜50ppmに定めた。B含有量の一層好ましい範囲は5〜40ppmである。
B:
B is added because it has the effect of improving deformability at high temperature and suppressing cracking due to die forging to improve dimensional accuracy, but if its content is less than 5 ppm, the desired effect cannot be obtained. On the other hand, B contained in excess of 50 ppm is not preferred because it tends to segregate at the grain boundaries and cracks easily occur. Therefore, the B content is set to 5 to 50 ppm. A more preferable range of the B content is 5 to 40 ppm.

Cu:
Cuは、HClやHFなどの還元性の腐食環境で耐食性を向上させる効果があるので添加するが、その含有量が0.01%未満では所望の効果が得られず、一方、1.8%を越えて含有するとかえって耐食性が劣化させることから、その含有量を0.01〜1.8%に定めた。一層好ましい範囲は0.02〜0.1%である。
Cu:
Cu is added because it has the effect of improving the corrosion resistance in a reducing corrosive environment such as HCl and HF. However, if its content is less than 0.01%, the desired effect cannot be obtained, while 1.8% If the content exceeds V, the corrosion resistance deteriorates. Therefore, the content is set to 0.01 to 1.8%. A more preferable range is 0.02 to 0.1%.

Ta:
Taは、還元性酸および酸化性酸での耐食性や、孔食や隙間腐食に対する耐食性を改善する効果があるため、必要に応じて添加する。Taは1%を越えて含有することにより耐孔食性を著しく改善する効果が発揮されるが、3.4%を超えて含有すると、高温での変形抵抗が大きくなり、鍛造性が著しく劣化するようになるので好ましくない。したがって、Taの含有量は1%超〜3.4%とした。Ta含有量の一層好ましい範囲は1.1〜2.5%である。
Ta:
Ta has an effect of improving the corrosion resistance with a reducing acid and an oxidizing acid and the corrosion resistance against pitting corrosion and crevice corrosion, and is added as necessary. When Ta exceeds 1%, the effect of remarkably improving the pitting corrosion resistance is exhibited. However, when it exceeds 3.4%, deformation resistance at high temperature increases and forgeability deteriorates remarkably. This is not preferable. Therefore, the content of Ta is set to more than 1% to 3.4%. A more preferable range of the Ta content is 1.1 to 2.5%.

W:
Wは、Moと同様に還元性酸に対する耐食性を向上させる効果があると共に高温で急激に強度が低下するのを抑制することにより型鍛造の最適温度範囲を高温側に広げる効果があることから必要に応じて添加する。その効果を得るには2%以上添加することを必要とするが、しかし、5%を越えて含有すると高温での変形抵抗が大きくなるために型鍛造性が劣化することから、Wの含有量を2〜5%とした。W含有量の一層好ましい範囲は2.1〜4.1%である。
W:
W is necessary because it has the effect of improving the corrosion resistance to reducing acids as well as Mo, and has the effect of expanding the optimum temperature range of die forging to the high temperature side by suppressing the sudden drop in strength at high temperatures. Add as appropriate. In order to obtain the effect, it is necessary to add 2% or more. However, if the content exceeds 5%, the deformation resistance at high temperature increases and the die forgeability deteriorates, so the W content. Was 2 to 5%. A more preferable range of the W content is 2.1 to 4.1%.

Co:
Coは、高温で急激に強度が低下するのを抑制することにより型鍛造の最適温度範囲を高温側に広げる効果があることから必要に応じて添加する。その効果を得るには0.01%以上添加することを必要とするが、しかし、5%を越えて含有すると高温での変形抵抗が大きくなるために型鍛造性が劣化することから、Coの含有量を0.01〜5%とした。Co含有量の一層好ましい範囲は0.1〜3%である。
Co:
Co is added as necessary because it has the effect of expanding the optimum temperature range of die forging to the high temperature side by suppressing the rapid decrease in strength at high temperatures. In order to obtain the effect, it is necessary to add 0.01% or more. However, if the content exceeds 5%, the deformation resistance at high temperature increases and the die forgeability deteriorates. The content was 0.01 to 5%. A more preferable range of the Co content is 0.1 to 3%.

不可避不純物:
不可避不純物としてC、S、Pなどが含まれるが、Cは結晶粒界近傍でCrと炭化物を形成し、耐食性の劣化を増大させるので好ましくないことからCの含有量は少ないほど好ましく、不可避不純物に含まれるCの含有量の上限を0.05%と定めた。また、SやPは粒界に偏析し、高温割れの原因となるため0.01%以下に抑制しなければならない。
Inevitable impurities:
C, S, P, and the like are included as inevitable impurities, but C forms a carbide with Cr in the vicinity of the grain boundary, and is not preferable because it increases corrosion resistance deterioration. The upper limit of the content of C contained in the steel was set to 0.05%. Further, S and P segregate at the grain boundaries and cause hot cracking, so they must be suppressed to 0.01% or less.

この発明のNi基合金からなるバルブ部材を用いて半導体製造に必要なハロゲンガスおよびハロゲン化合物ガスを貯蔵し運搬するためのボンベに取付けるバルブを製造すると、この発明のバルブ部材はHCl、HF、HBrなどのハロゲン化水素酸に対して一層優れた耐食性を有するところから一層優れた耐食性を有するハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブを提供することができ、この発明のNi基合金からなるバルブ部材を用いて作製したバルブは何回も交換して使用することができ、さらに型鍛造に際して割れが発生することがないことから一層寸法精度の優れたハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブを提供することができるなど産業上優れた効果を奏するものである。   When a valve attached to a cylinder for storing and transporting a halogen gas and a halogen compound gas necessary for semiconductor production is manufactured using the valve member made of the Ni-based alloy of the present invention, the valve member of the present invention is HCl, HF, HBr. A valve of a cylinder for filling a halogen gas and a halogen compound gas having a further excellent corrosion resistance can be provided from a portion having a higher corrosion resistance to hydrohalic acid such as, and a valve comprising the Ni-based alloy of the present invention Valves made using components can be used by replacing them many times, and since cracks do not occur during die forging, valves for gas cylinders filled with halogen gas and halogen compound gas with even better dimensional accuracy It is possible to provide an industrially superior effect.

実施例1
通常の真空高周波溶解炉を用いて溶解し鋳造して表1〜8に示される成分組成を有するNi基合金からなり、直径:80mmの寸法を有する円柱状インゴット(約10Kg)からなる本発明ハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材(以下、本発明部材という)1〜38、比較ハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材(以下、比較部材という)1〜24および従来ハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材(以下、従来部材という)1〜2を作製した。
Example 1
Halogen of the present invention consisting of a Ni-based alloy having the composition shown in Tables 1 to 8 and melted and cast using a normal vacuum high-frequency melting furnace, and comprising a cylindrical ingot having a diameter of 80 mm (about 10 kg) Valve members (hereinafter referred to as members of the present invention) 1 to 38 for gas and halogen compound gas filling cylinders, valve members (hereinafter referred to as comparison members) 1 to 24 for comparative halogen gas and halogen compound gas filling cylinders, and conventional halogen gases In addition, valve members (hereinafter referred to as conventional members) 1 and 2 of a cylinder for filling a halogen compound gas were produced.

Figure 2010001558
Figure 2010001558

Figure 2010001558
Figure 2010001558

Figure 2010001558
Figure 2010001558

Figure 2010001558
Figure 2010001558

Figure 2010001558
Figure 2010001558

Figure 2010001558
Figure 2010001558

Figure 2010001558
Figure 2010001558

Figure 2010001558
Figure 2010001558

これら本発明部材1〜38、比較部材1〜24および従来部材1〜2のインゴットを1230℃で10時間均質化熱処理を施し、1000〜1200℃の範囲内に保持しながら、熱間鍛造により直径:40mmの丸棒を作製した。この丸棒を所定の寸法に切り出し、型鍛造素材とした。この型鍛造素材を1200℃に加熱し、上型および下型からなる型鍛造金型を用いて型鍛造することにより図2の斜視図に示される角胴部分7および角胴部分7の左右対称に設けられた理想的には直径:20mmを有する丸胴部分8を有する鍛造体9を作製した。実際に型鍛造して得られた鍛造体9にはバリ10が発生していたのでバリ10を除去し、未だ赤熱を呈する鍛造体9を水冷し、その後、この鍛造体9を60℃に保持した硝フッ酸(17%HNO−3%HF)溶液中で酸洗することにより酸化スケールを除去した。 These ingots 1 to 38 of the present invention, comparative members 1 to 24, and conventional members 1 to 2 were subjected to a homogenization heat treatment at 1230 ° C. for 10 hours and maintained in a range of 1000 to 1200 ° C. : A 40 mm round bar was produced. This round bar was cut into a predetermined size and used as a die forging material. The die forging material is heated to 1200 ° C. and die forged using a die forging die composed of an upper die and a lower die, whereby the rectangular barrel portion 7 and the rectangular barrel portion 7 shown in the perspective view of FIG. A forged body 9 having a round body portion 8 having a diameter of 20 mm, which is ideally provided in, is prepared. Since the burrs 10 were generated in the forged body 9 actually obtained by die forging, the burrs 10 were removed, the forged body 9 still showing red heat was cooled with water, and then the forged body 9 was held at 60 ° C. The oxidized scale was removed by pickling in a nitric hydrofluoric acid (17% HNO 3 -3% HF) solution.

この酸化スケールを除去した鍛造体を用いて、型鍛造試験により割れの評価および寸法精度の評価を行い、さらに腐食試験により耐食性の評価を行った。
(a)型鍛造試験
割れの評価:
酸化スケールを除去した鍛造体を通常の浸透探傷試験により割れの有無を調べ、さらに現像処理後10倍の拡大鏡を用い、細かな割れの有無を調べ、割れが全く見られなかったものを「無」として表9〜12示した。
寸法精度の評価:
型鍛造して得られた鍛造体の内で割れが見られなかった鍛造体をさらに酸洗したのち、イオン交換水で十分に洗浄し、その後乾燥し、ノギスを用いて図2の鍛造体9の丸胴部分8の直径A(バリに対して垂直方向の直径)を実測し、目標寸法の直径(20mm)と実測値の直径Aとの差(A−20mm)を求め、その結果を表9〜12に示した。
(b)腐食試験
型鍛造して得られた鍛造体の内で割れが見られなかった鍛造体をさらに酸洗したのち、イオン交換水で十分に洗浄し鍛造体から縦:30mm、横:30mm、厚さ:3mmの寸法を有する試験片を切り出し、これら試験片を表面を研磨し、最終的に耐水エメリー紙#400仕上げとした。研磨後の試料をアセトン中超音波振動状態に5分間保持し、脱脂した。これら腐食試験片を40℃に保持した35%HCl水溶液、1%HF水溶液、50%HF水溶液および48%HBr水溶液中にそれぞれ1000時間浸漬し、試験前後の質量減少量から腐食速度(g/mh)を算出し、その結果を表9〜12に示し、耐食性を評価した。
Using the forged body from which the oxide scale had been removed, crack evaluation and dimensional accuracy were evaluated by a die forging test, and further, corrosion resistance was evaluated by a corrosion test.
(A) Die forging test crack evaluation:
The forged body from which the oxide scale was removed was examined for the presence of cracks by a normal penetrant flaw detection test, and further examined for the presence or absence of fine cracks using a 10-fold magnifier after development. Tables 9 to 12 are shown as “None”.
Evaluation of dimensional accuracy:
A forged body obtained by die forging, in which no cracks were found, was further pickled, then thoroughly washed with ion-exchanged water, then dried, and the forged body 9 shown in FIG. 2 using calipers. The diameter A (diameter in the direction perpendicular to the burr) of the round cylinder portion 8 was measured, and the difference between the target dimension diameter (20 mm) and the measured diameter A (A-20 mm) was obtained. It was shown in 9-12.
(B) The forged body obtained by forging the corrosion test die was further pickled, and then washed thoroughly with ion-exchanged water and longitudinally: 30 mm, laterally: 30 mm. , Thickness: Test pieces having dimensions of 3 mm were cut out, the surfaces of these test pieces were polished, and finally finished with water-resistant emery paper # 400. The sample after polishing was kept in an ultrasonic vibration state in acetone for 5 minutes and degreased. These corrosion test pieces were immersed in 35% HCl aqueous solution, 1% HF aqueous solution, 50% HF aqueous solution and 48% HBr aqueous solution kept at 40 ° C. for 1000 hours, respectively, and the corrosion rate (g / m 2 h) was calculated, and the results are shown in Tables 9 to 12, and the corrosion resistance was evaluated.

Figure 2010001558
Figure 2010001558

Figure 2010001558
Figure 2010001558

Figure 2010001558
Figure 2010001558

Figure 2010001558
Figure 2010001558

表1〜12に示された結果から、従来部材1〜2はいずれも型鍛造により割れが発生しているが、本発明部材1〜38はいずれも型鍛造によって割れが発生しないことから鍛造性に優れていることが分かる。しかし、この発明の範囲を外れて元素を含む比較部材1〜24は、割れが発生したり、鍛造体の寸法が目標寸法値から大きく外れた寸法となって変形能が極端に悪かったり、さらに腐食速度が大きくなって耐食性が悪くなるなどバルブ部材として好ましくない特性が現れることがわかる。 From the results shown in Tables 1 to 12, the conventional members 1 and 2 are all cracked by die forging, but the present invention members 1 to 38 are not forged by die forging. It turns out that it is excellent in. However, the comparative members 1 to 24 containing elements out of the scope of the present invention are cracked, the forged body has a dimension greatly deviating from the target dimension value, and the deformability is extremely bad. It can be seen that undesirable characteristics appear as a valve member, such as an increase in the corrosion rate and poor corrosion resistance.

実施例2
実施例1で作製した表1〜5に示される成分組成を有する本発明部材1〜38で作製した図2に示される鍛造体9を625℃に30時間保持した後、その丸胴部分8に、M18のねじ山(ピッチ:1.0mm、引っかかり高さ:0.541mm、外径:18.0mm、有効径:17.350mm、谷の径:16.917mm、長さ:15mm)を形成し、一方、Mn:1.5質量%を含有する低マンガン鋼によりM18のナット(ピッチ:1.0mm、谷の径:17.95mm、内径:16.917mm、長さ:10mm)を作製し、ナット側での谷の径を僅かに小さくさせることによりカジリ易い構成にした。得られたナットを丸胴部分8に形成されたねじ山にねじ込み、取り外しを10回繰り返し、ねじ山の損傷度を観察した結果、カジリは見られなかった。
Example 2
After the forged body 9 shown in FIG. 2 made with the present invention members 1 to 38 having the composition shown in Tables 1 to 5 made in Example 1 is held at 625 ° C. for 30 hours, , M18 thread (pitch: 1.0 mm, hook height: 0.541 mm, outer diameter: 18.0 mm, effective diameter: 17.350 mm, valley diameter: 16.917 mm, length: 15 mm) On the other hand, an M18 nut (pitch: 1.0 mm, valley diameter: 17.95 mm, inner diameter: 16.917 mm, length: 10 mm) is made of low manganese steel containing Mn: 1.5% by mass, By making the diameter of the valley on the nut side slightly small, the structure is easily galling. As a result of screwing the obtained nut into the thread formed in the round body portion 8 and repeating the removal 10 times and observing the damage degree of the thread, no galling was found.

ボンベに取り付けられたバルブの一部断面図である。It is a partial cross section figure of the valve | bulb attached to the cylinder. 型鍛造して得られた鍛造体の斜視図である。It is a perspective view of the forging body obtained by die forging.

Claims (6)

質量%で、Cr:14.5〜24%、Mo:12〜23%、Fe:0.01〜6%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、Si:0.01〜0.1%、Al:0.01〜0.5、Ti:0.001〜0.5%、Cu:0.01〜1.8%、V:0.01〜0.5%、B:5〜50ppmを含有し、残部がNiおよび不可避不純物からなり、前記不可避不純物として含まれるC、SおよびPをC:0.05%未満、S:0.01%未満およびP:0.01%未満に調整した成分組成を有するNi基合金からなることを特徴とするハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材。 In mass%, Cr: 14.5-24%, Mo: 12-23%, Fe: 0.01-6%, Mg: 0.001-0.05%, N: 0.001-0.04% , Mn: 0.05 to 0.5%, Si: 0.01 to 0.1%, Al: 0.01 to 0.5, Ti: 0.001 to 0.5%, Cu: 0.01 to 1.8%, V: 0.01 to 0.5%, B: 5 to 50 ppm, the balance is made of Ni and inevitable impurities, and C, S, and P contained as the inevitable impurities are C:. A halogen gas and halogen compound gas filling cylinder valve member comprising a Ni-based alloy having a component composition adjusted to less than 05%, S: less than 0.01%, and P: less than 0.01%. 質量%で、Cr:14.5〜24%、Mo:12〜23%、Fe:0.01〜6%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、Si:0.01〜0.1%、Al:0.01〜0.5、Ti:0.001〜0.5%、Cu:0.01〜1.8%、V:0.01〜0.5%、B:5〜50ppmを含有し、さらにTa:1超〜3.4%を含有し、残部がNiおよび不可避不純物からなり、前記不可避不純物として含まれるC、SおよびPをC:0.05%未満、S:0.01%未満およびP:0.01%未満に調整した成分組成を有するNi基合金からなることを特徴とするハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材。 In mass%, Cr: 14.5-24%, Mo: 12-23%, Fe: 0.01-6%, Mg: 0.001-0.05%, N: 0.001-0.04% , Mn: 0.05 to 0.5%, Si: 0.01 to 0.1%, Al: 0.01 to 0.5, Ti: 0.001 to 0.5%, Cu: 0.01 to 1.8%, V: 0.01 to 0.5%, B: 5 to 50 ppm, Ta: more than 1 to 3.4%, the balance consisting of Ni and inevitable impurities, the above inevitable It is characterized by comprising a Ni-based alloy having a component composition in which C, S and P contained as impurities are adjusted to C: less than 0.05%, S: less than 0.01% and P: less than 0.01%. Valve member for a cylinder for filling halogen gas and halogen compound gas. 質量%で、Cr:14.5〜24%、Mo:12〜23%、Fe:0.01〜6%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、Si:0.01〜0.1%、Al:0.01〜0.5、Ti:0.001〜0.5%、Cu:0.01〜1.8%、V:0.01〜0.5%、B:5〜50ppmを含有し、さらにW:2〜5%を含有し、残部がNiおよび不可避不純物からなり、前記不可避不純物として含まれるC、SおよびPをC:0.05%未満、S:0.01%未満およびP:0.01%未満に調整した成分組成を有するNi基合金からなることを特徴とするハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材。 In mass%, Cr: 14.5-24%, Mo: 12-23%, Fe: 0.01-6%, Mg: 0.001-0.05%, N: 0.001-0.04% , Mn: 0.05 to 0.5%, Si: 0.01 to 0.1%, Al: 0.01 to 0.5, Ti: 0.001 to 0.5%, Cu: 0.01 to Contains 1.8%, V: 0.01 to 0.5%, B: 5 to 50 ppm, further contains W: 2 to 5%, the balance is made of Ni and inevitable impurities, and is included as the inevitable impurities A halogen gas comprising a Ni-based alloy having a component composition in which C, S and P are adjusted to C: less than 0.05%, S: less than 0.01% and P: less than 0.01%, and Valve member for a cylinder filled with a halogen compound gas. 質量%で、Cr:14.5〜24%、Mo:12〜23%、Fe:0.01〜6%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、Si:0.01〜0.1%、Al:0.01〜0.5、Ti:0.001〜0.5%、Cu:0.01〜1.8%、V:0.01〜0.5%、B:5〜50ppmを含有し、さらにCo:0.01〜5%を含有し、残部がNiおよび不可避不純物からなり、前記不可避不純物として含まれるC、SおよびPをC:0.05%未満、S:0.01%未満およびP:0.01%未満に調整した成分組成を有するNi基合金からなることを特徴とするハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材。 In mass%, Cr: 14.5-24%, Mo: 12-23%, Fe: 0.01-6%, Mg: 0.001-0.05%, N: 0.001-0.04% , Mn: 0.05 to 0.5%, Si: 0.01 to 0.1%, Al: 0.01 to 0.5, Ti: 0.001 to 0.5%, Cu: 0.01 to 1.8%, V: 0.01 to 0.5%, B: 5 to 50 ppm, Co: 0.01 to 5% further, the balance consisting of Ni and inevitable impurities, the inevitable impurities Halogen, characterized in that it comprises a Ni-based alloy having a component composition in which C, S and P contained as C are adjusted to C: less than 0.05%, S: less than 0.01% and P: less than 0.01% Valve member for gas and halogen compound gas filling cylinders. 質量%で、Cr:14.5〜24%、Mo:12〜23%、Fe:0.01〜6%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、Si:0.01〜0.1%、Al:0.01〜0.5、Ti:0.001〜0.5%、Cu:0.01〜1.8%、V:0.01〜0.5%、B:5〜50ppmを含有し、さらにW:2〜5%、Co:0.01〜5%を含有し、残部がNiおよび不可避不純物からなり、前記不可避不純物として含まれるC、SおよびPをC:0.05%未満、S:0.01%未満およびP:0.01%未満に調整した成分組成を有するNi基合金からなることを特徴とするハロゲンガスおよびハロゲン化合物ガス充填用ボンベのバルブ部材。 In mass%, Cr: 14.5-24%, Mo: 12-23%, Fe: 0.01-6%, Mg: 0.001-0.05%, N: 0.001-0.04% , Mn: 0.05 to 0.5%, Si: 0.01 to 0.1%, Al: 0.01 to 0.5, Ti: 0.001 to 0.5%, Cu: 0.01 to 1.8%, V: 0.01 to 0.5%, B: 5 to 50 ppm, W: 2 to 5%, Co: 0.01 to 5%, the balance being Ni and inevitable From a Ni-based alloy comprising impurities and having a component composition in which C, S and P contained as the inevitable impurities are adjusted to C: less than 0.05%, S: less than 0.01% and P: less than 0.01% A valve member of a cylinder for filling a halogen gas and a halogen compound gas. 請求項1、2、3、4または5記載のバルブ部材からなることを特徴とするバルブ。 A valve comprising the valve member according to claim 1, 2, 3, 4 or 5.
JP2008259563A 2008-05-22 2008-10-06 Valve member for cylinders filled with halogen gas and halogen compound gas Active JP5305078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259563A JP5305078B2 (en) 2008-05-22 2008-10-06 Valve member for cylinders filled with halogen gas and halogen compound gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008133790 2008-05-22
JP2008133790 2008-05-22
JP2008259563A JP5305078B2 (en) 2008-05-22 2008-10-06 Valve member for cylinders filled with halogen gas and halogen compound gas

Publications (2)

Publication Number Publication Date
JP2010001558A true JP2010001558A (en) 2010-01-07
JP5305078B2 JP5305078B2 (en) 2013-10-02

Family

ID=41583498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259563A Active JP5305078B2 (en) 2008-05-22 2008-10-06 Valve member for cylinders filled with halogen gas and halogen compound gas

Country Status (1)

Country Link
JP (1) JP5305078B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046974A (en) * 2009-08-25 2011-03-10 Mitsubishi Materials Corp VALVE MEMBER OF CYLINDER FOR HALOGEN SERIES GAS MADE OF Ni-BASED ALLOY
CN102994891A (en) * 2012-09-29 2013-03-27 铜陵国方水暖科技有限责任公司 Method for preparing valve rod of plug valve
CN102994906A (en) * 2012-09-29 2013-03-27 铜陵国方水暖科技有限责任公司 Preparation method of ball valve body
CN102994910A (en) * 2012-09-29 2013-03-27 铜陵国方水暖科技有限责任公司 Casting method of gate valve rod
CN102994889A (en) * 2012-09-29 2013-03-27 铜陵国方水暖科技有限责任公司 Preparation method for diaphragm valve body through cast molding
CN102994907A (en) * 2012-09-29 2013-03-27 铜陵国方水暖科技有限责任公司 Casting method of check valve body
JP2014087805A (en) * 2012-10-29 2014-05-15 Mmc Superalloy Corp COMPOSITE MEMBER COMPOSED OF ANTICORROSIVE Ni-BASED ALLOY AND ALUMINUM OR ALUMINUM ALLOY
JP5725630B1 (en) * 2014-02-26 2015-05-27 日立金属Mmcスーパーアロイ株式会社 Ni-base alloy with excellent hot forgeability and corrosion resistance
WO2016020985A1 (en) * 2014-08-05 2016-02-11 国立大学法人東北大学 Corrosion-resistant high-hardness alloy composition and process for producing same
US9810338B2 (en) 2015-01-20 2017-11-07 Luxfer Canada, Ltd. Gas cylinder valve
WO2019049594A1 (en) 2017-09-07 2019-03-14 日立金属株式会社 Ni-BASED CORROSION-RESISTANT ALLOY POWDER FOR DEPOSITION MODELING, MULTILAYER MODEL USING THIS POWDER, AND METHOD FOR PRODUCING MEMBER FOR SEMICONDUCTOR PRODUCTION DEVICES
WO2020179388A1 (en) 2019-03-04 2020-09-10 日立金属株式会社 Ni-base corrosion resistant alloy powder for additive manufacturing, and manufacturing method of additively formed product using said powder
WO2020179766A1 (en) * 2019-03-04 2020-09-10 日立金属株式会社 Ni-based alloy member comprising additively manufactured article, method for manufacturing ni-based alloy member, and product using ni-based alloy member
WO2020179154A1 (en) 2019-03-04 2020-09-10 日立金属株式会社 Ni-based corrosion-resistant alloy powder for use in additive manufacturing and production method for additive manufacturing product using same powder
JP2020529555A (en) * 2017-08-02 2020-10-08 エイエムティ カンパニー リミテッド Automatic switchgear for gas cylinder valve and its method
CN112093306A (en) * 2020-11-09 2020-12-18 山东金宜善新材料有限公司 Bromine storage tank
CN115786773A (en) * 2022-11-25 2023-03-14 北京钢研高纳科技股份有限公司 Nickel-based corrosion-resistant alloy thin strip and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083670A (en) * 1994-06-17 1996-01-09 Mitsubishi Materials Corp Nickel-base alloy excellent in workability and corrosion resistance
JPH0853730A (en) * 1994-07-22 1996-02-27 Haynes Internatl Inc Corrosion-resistant ni-cr-mo-cu alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083670A (en) * 1994-06-17 1996-01-09 Mitsubishi Materials Corp Nickel-base alloy excellent in workability and corrosion resistance
JPH0853730A (en) * 1994-07-22 1996-02-27 Haynes Internatl Inc Corrosion-resistant ni-cr-mo-cu alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013026306; Paul Crook、他2名: 'Corrosion Resistance of a New,Wrought Ni-Cr-Mo Alloy' Materials Performance Vol.36 No.3, 199703, Page.49-52 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046974A (en) * 2009-08-25 2011-03-10 Mitsubishi Materials Corp VALVE MEMBER OF CYLINDER FOR HALOGEN SERIES GAS MADE OF Ni-BASED ALLOY
CN102994891A (en) * 2012-09-29 2013-03-27 铜陵国方水暖科技有限责任公司 Method for preparing valve rod of plug valve
CN102994906A (en) * 2012-09-29 2013-03-27 铜陵国方水暖科技有限责任公司 Preparation method of ball valve body
CN102994910A (en) * 2012-09-29 2013-03-27 铜陵国方水暖科技有限责任公司 Casting method of gate valve rod
CN102994889A (en) * 2012-09-29 2013-03-27 铜陵国方水暖科技有限责任公司 Preparation method for diaphragm valve body through cast molding
CN102994907A (en) * 2012-09-29 2013-03-27 铜陵国方水暖科技有限责任公司 Casting method of check valve body
JP2014087805A (en) * 2012-10-29 2014-05-15 Mmc Superalloy Corp COMPOSITE MEMBER COMPOSED OF ANTICORROSIVE Ni-BASED ALLOY AND ALUMINUM OR ALUMINUM ALLOY
JP5725630B1 (en) * 2014-02-26 2015-05-27 日立金属Mmcスーパーアロイ株式会社 Ni-base alloy with excellent hot forgeability and corrosion resistance
WO2016020985A1 (en) * 2014-08-05 2016-02-11 国立大学法人東北大学 Corrosion-resistant high-hardness alloy composition and process for producing same
CN106715733A (en) * 2014-08-05 2017-05-24 国立大学法人东北大学 Corrosion-resistant high-hardness alloy composition and process for producing same
JPWO2016020985A1 (en) * 2014-08-05 2017-06-15 国立大学法人東北大学 Corrosion-resistant and high-hardness alloy composition and manufacturing method thereof
EP3178950A4 (en) * 2014-08-05 2017-07-12 Tohoku University Corrosion-resistant high-hardness alloy composition and process for producing same
US10513757B2 (en) 2014-08-05 2019-12-24 Tohoku University Corrosion-resistant, high-hardness alloy composition and method for producing same
US9810338B2 (en) 2015-01-20 2017-11-07 Luxfer Canada, Ltd. Gas cylinder valve
JP2020529555A (en) * 2017-08-02 2020-10-08 エイエムティ カンパニー リミテッド Automatic switchgear for gas cylinder valve and its method
EP3680043A4 (en) * 2017-09-07 2020-07-22 Hitachi Metals, Ltd. Ni-BASED CORROSION-RESISTANT ALLOY POWDER FOR DEPOSITION MODELING, MULTILAYER MODEL USING THIS POWDER, AND METHOD FOR PRODUCING MEMBER FOR SEMICONDUCTOR PRODUCTION DEVICES
WO2019049594A1 (en) 2017-09-07 2019-03-14 日立金属株式会社 Ni-BASED CORROSION-RESISTANT ALLOY POWDER FOR DEPOSITION MODELING, MULTILAYER MODEL USING THIS POWDER, AND METHOD FOR PRODUCING MEMBER FOR SEMICONDUCTOR PRODUCTION DEVICES
CN111050957A (en) * 2017-09-07 2020-04-21 日立金属株式会社 Ni-based corrosion-resistant alloy powder for laminated molding, laminated molded article using the same, and method for producing member for semiconductor manufacturing apparatus
CN113490560A (en) * 2019-03-04 2021-10-08 日立金属株式会社 Ni-based corrosion-resistant alloy powder for laminated molding, and method for producing laminated molded article using same
EP3936255A4 (en) * 2019-03-04 2022-12-07 Hitachi Metals, Ltd. Ni-based corrosion-resistant alloy powder for use in additive manufacturing and production method for additive manufacturing product using same powder
WO2020179766A1 (en) * 2019-03-04 2020-09-10 日立金属株式会社 Ni-based alloy member comprising additively manufactured article, method for manufacturing ni-based alloy member, and product using ni-based alloy member
CN113490558B (en) * 2019-03-04 2023-12-22 株式会社博迈立铖 Nickel-based corrosion-resistant alloy powder for laminated molding and method for producing laminated molded article
TWI820307B (en) * 2019-03-04 2023-11-01 日商博邁立鋮股份有限公司 Ni-based alloy member composed of laminated molded body, manufacturing method of Ni-based alloy member, and product using Ni-based alloy member
JPWO2020179388A1 (en) * 2019-03-04 2021-04-30 日立金属株式会社 Ni-based corrosion-resistant alloy powder for laminated molding, manufacturing method of laminated molded products using this powder
WO2020179388A1 (en) 2019-03-04 2020-09-10 日立金属株式会社 Ni-base corrosion resistant alloy powder for additive manufacturing, and manufacturing method of additively formed product using said powder
CN113490558A (en) * 2019-03-04 2021-10-08 日立金属株式会社 Ni-based corrosion-resistant alloy powder for laminated molding, and method for producing laminated molded article using same
JPWO2020179766A1 (en) * 2019-03-04 2021-11-11 日立金属株式会社 Ni-based alloy member made of laminated model, manufacturing method of Ni-based alloy member, and product using Ni-based alloy member
EP3936257A4 (en) * 2019-03-04 2022-04-20 Hitachi Metals, Ltd. Ni-base corrosion resistant alloy powder for additive manufacturing, and manufacturing method of additively formed product using said powder
WO2020179154A1 (en) 2019-03-04 2020-09-10 日立金属株式会社 Ni-based corrosion-resistant alloy powder for use in additive manufacturing and production method for additive manufacturing product using same powder
CN112093306B (en) * 2020-11-09 2021-01-29 山东金宜善新材料有限公司 Bromine storage tank
CN112093306A (en) * 2020-11-09 2020-12-18 山东金宜善新材料有限公司 Bromine storage tank
CN115786773A (en) * 2022-11-25 2023-03-14 北京钢研高纳科技股份有限公司 Nickel-based corrosion-resistant alloy thin strip and preparation method thereof
CN115786773B (en) * 2022-11-25 2024-03-26 北京钢研高纳科技股份有限公司 Nickel-based corrosion-resistant alloy thin strip and preparation method thereof

Also Published As

Publication number Publication date
JP5305078B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5305078B2 (en) Valve member for cylinders filled with halogen gas and halogen compound gas
CN111050957B (en) Ni-based corrosion-resistant alloy powder for laminate molding, laminate molding using same, and method for manufacturing member for semiconductor manufacturing apparatus
JP5357410B2 (en) Composite type corrosion resistant nickel alloy
JP2004520491A (en) High manganese duplex stainless steel having excellent hot workability and method for producing the same
JPS6134498B2 (en)
JP7095811B2 (en) Alloy pipe and its manufacturing method
EP3936257A1 (en) Ni-base corrosion resistant alloy powder for additive manufacturing, and manufacturing method of additively formed product using said powder
JP5725630B1 (en) Ni-base alloy with excellent hot forgeability and corrosion resistance
WO2009078663A1 (en) Austenitic stainless steel for high vacuum and high purity gas tube application
JP4773773B2 (en) Corrosion-resistant material for supercritical ammonia reaction equipment
US20220145427A1 (en) Ni-based corrosion resistant alloy powder for additive manufacturing and manufacturing method of additive manufacturing product using said powder
RU2291215C2 (en) Titanium-alloy material possessing high resistance to hydrogen absorption
JP6954492B1 (en) Stainless steel seamless steel pipe and its manufacturing method
JP4978782B2 (en) Ni-Cr alloy with excellent resistance to nitric-hydrofluoric acid corrosion
JP5391929B2 (en) Ni-based alloy halogen gas cylinder valve member
JPS6077918A (en) Manufacture of corrosion resistant alloy steel
JP6164736B2 (en) Ni-base alloy excellent in hot forgeability, high-temperature oxidation resistance and high-temperature halogen gas corrosion resistance, and member using this Ni-base alloy
JP2003027189A (en) Alloy having excellent corrosion resistance, member for semiconductor production system using the alloy and production method therefor
US10450635B2 (en) High strength and high corrosion-resistance nickle-based alloy with superior hot forgeability
JPS59159957A (en) High-strength cu alloy with superior resistance to corrosion due to sea water and superior hot workability
JP7054078B2 (en) Duplex stainless clad steel and its manufacturing method
JP7054079B2 (en) Duplex stainless clad steel and its manufacturing method
JP5146640B2 (en) Ni-Mo alloy welding wire
JP2007302991A (en) Austenitic stainless steel
Crook et al. The Corrosion Characteristics of a Uniquely Versatile Nickel Alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250