JP2010000430A - Photocatalyst/activated carbon-combined sheet and method for producing the same - Google Patents

Photocatalyst/activated carbon-combined sheet and method for producing the same Download PDF

Info

Publication number
JP2010000430A
JP2010000430A JP2008160264A JP2008160264A JP2010000430A JP 2010000430 A JP2010000430 A JP 2010000430A JP 2008160264 A JP2008160264 A JP 2008160264A JP 2008160264 A JP2008160264 A JP 2008160264A JP 2010000430 A JP2010000430 A JP 2010000430A
Authority
JP
Japan
Prior art keywords
photocatalyst
activated carbon
composite sheet
film
carbon composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008160264A
Other languages
Japanese (ja)
Inventor
Fumihide Shiraishi
文秀 白石
Yasuhiro Oda
康裕 小田
Xiangyu Cao
翔宇 曹
Toshio Kuroki
敏夫 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I-QUARK CORP
QUARK CORP I
Kyushu University NUC
Original Assignee
I-QUARK CORP
QUARK CORP I
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I-QUARK CORP, QUARK CORP I, Kyushu University NUC filed Critical I-QUARK CORP
Priority to JP2008160264A priority Critical patent/JP2010000430A/en
Publication of JP2010000430A publication Critical patent/JP2010000430A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that a film of a photocatalyst is formed all around the periphery of activated carbon according to the conventional method but since light normally reaches from only one direction, it is realized that the photocatalyst does not function practically on the back surface of an activated carbon particle, in other words, since there is the film of the photocatalyst on the back surface thereof, the adsorptivity of the activated carbon is hindered and since the particle size of the photocatalyst is normally so small of around 10-100 nm, the photocatalyst is apt to be buried in the film and the functioning portion of the photocatalyst (the portion of the photocatalyst to be contacted with air or a liquid) becomes smaller. <P>SOLUTION: A photocatalyst/activated carbon-combined sheet is produced by carrying out two or more times the steps of: uniformly applying a silicone-based binder to a base material; scattering granular activated carbon on the binder-applied base material and press-fixing the scattered activated carbon; spraying a hydrogen peroxide aqueous solution of anatase titanium oxide; and drying the sprayed solution. A method for producing the photocatalyst-activated carbon composite sheet is provided. The average particle size of the photocatalyst is ≥0.5 μm and that of the granular activated carbon is ≥0.5 mm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光触媒効果の優れた光触媒・活性炭複合シートおよびその製造方法に関するものである。     The present invention relates to a photocatalyst / activated carbon composite sheet having an excellent photocatalytic effect and a method for producing the same.

脱臭やVOC(揮発性有機化合物)吸着除去などに従来から活性炭がよく利用されているが、欠点として時間とともに吸着性能が低下してくることが挙げられる。この欠点を補うために活性炭表面に光触媒粒子を皮膜状に担持した複合体が提案されている。
特開平6−170220 特開平8−196903 特開2005−162554
Conventionally, activated carbon has been often used for deodorization and VOC (volatile organic compound) adsorption removal, but a disadvantage is that the adsorption performance decreases with time. In order to compensate for this drawback, a composite in which photocatalyst particles are supported in the form of a film on the activated carbon surface has been proposed.
JP-A-6-170220 JP-A-8-196903 JP 2005-162554 A

このような複合体を作る方法として、活性炭粒子に対して光触媒の溶液をコーティング、塗布、スプレー等により皮膜形成する方法が一般に行なわれている。あるいは、活性炭と光触媒にバインダーを加えてよく混合して塗料として基材に塗布するなどの方法がある。     As a method for producing such a composite, a method of forming a film by coating, applying, spraying or the like with a solution of a photocatalyst on activated carbon particles is generally performed. Alternatively, there is a method in which a binder is added to activated carbon and a photocatalyst and mixed well and applied to a substrate as a paint.

しかしながら、多孔質である活性炭の表面に光触媒を主成分とする皮膜を形成することにより活性炭の有効表面のかなりの部分が閉塞状態となり、吸着能力が阻害されることになる。
においては、ポリエチレングリコールまたはポリエチレンオキサイドを添加することで、皮膜を多孔質化する方法が提案されている。
However, by forming a film mainly composed of a photocatalyst on the surface of the porous activated carbon, a considerable part of the effective surface of the activated carbon becomes clogged and the adsorption ability is inhibited.
Has proposed a method of making a film porous by adding polyethylene glycol or polyethylene oxide.

通常使用される光触媒粒子は10nm〜100nm程度とされている。     Normally used photocatalyst particles are about 10 to 100 nm.

従来の方法では、図2に示すように、活性炭の全周囲にわたって光触媒の皮膜4が形成される。実際の使用形態は、同図に示すように光は通常1方向からのみ到達するので、活性炭粒子の光到達側の裏面6では光触媒は機能しないことが判る。それにも拘わらず裏面でも光触媒皮膜4が存在するために活性炭の吸着能力が阻害されるという欠点があるのが大きな課題である。     In the conventional method, as shown in FIG. 2, a photocatalyst film 4 is formed over the entire periphery of the activated carbon. In the actual usage pattern, as shown in the figure, since the light normally reaches only from one direction, it can be seen that the photocatalyst does not function on the back surface 6 on the light arrival side of the activated carbon particles. Nevertheless, since the photocatalyst film 4 is present on the back surface, the problem is that the adsorption ability of activated carbon is hindered.

通常、光触媒粒子径が10nm〜100nm程度と小さいため、皮膜の厚さ(数マイクロメートル)に対して図3のように皮膜厚さの中に光触媒粒子がほぼ埋もれたような状況となり、光触媒として機能できる部分(空気または液体に接触できる部分)がわずかになっている。     Usually, since the photocatalyst particle diameter is as small as about 10 nm to 100 nm, the photocatalyst particles are almost buried in the film thickness as shown in FIG. 3 with respect to the film thickness (several micrometers). There are few functional parts (parts that can come into contact with air or liquid).

本発明は、このような従来の方式における課題を解決しようとするものであり、活性炭の性能低下を低減して長期間使用できる光触媒・活性炭複合シートおよびその製造方法を提供しようとするものである。     The present invention is intended to solve such problems in the conventional system, and to provide a photocatalyst / activated carbon composite sheet that can be used for a long period of time with reduced performance degradation of activated carbon, and a method for producing the same. .

請求項1記載の製造方法は、基材にシリコン系バインダーを均一に塗布し、粒子状活性炭を散布して圧着固定した後に、アナターゼ型酸化チタンの過酸化水素水溶液を噴霧・乾燥させる工程を複数回行なう光触媒・活性炭複合シートの製造方法。     The manufacturing method according to claim 1 includes a plurality of steps of spraying and drying a hydrogen peroxide aqueous solution of anatase-type titanium oxide after uniformly applying a silicon-based binder to a substrate, spraying particulate activated carbon, and fixing by pressure bonding. A method of producing a photocatalyst / activated carbon composite sheet that is rotated once.

請求項2の製造方法は、請求項1において光触媒粒子は平均粒子径0.5マイクロメートル以上であり、かつ粒子状活性炭は平均粒子径0.5mm以上である光触媒・活性炭複合シートの製造方法。     The production method of claim 2 is a method for producing a photocatalyst / activated carbon composite sheet according to claim 1, wherein the photocatalyst particles have an average particle diameter of 0.5 micrometers or more and the particulate activated carbon has an average particle diameter of 0.5 mm or more.

請求項3の製造方法は、基材はPET(ポリエチレンテレフタレート)である請求項2の光触媒・活性炭複合シートの製造方法。     The manufacturing method of Claim 3 is a manufacturing method of the photocatalyst and activated carbon composite sheet of Claim 2 whose base material is PET (polyethylene terephthalate).

請求項4の装置は、本発明による光触媒・活性炭複合シート(請求項1〜3の内のいずれか)を(担持した面を内側にして)円筒状に彎曲配置し、その中央部に棒状の光触媒励起用光源を配し、円筒空間部の上流側もしくは下流側に空気送出用ファンまたは液体送出ポンプを配置した浄化装置。
The apparatus of claim 4 is a photocatalyst / activated carbon composite sheet (any one of claims 1 to 3) according to the present invention, which is bent in a cylindrical shape (with the supported surface on the inside) and has a rod-like shape at the center. A purification device in which a photocatalyst excitation light source is arranged and an air delivery fan or a liquid delivery pump is arranged upstream or downstream of the cylindrical space.

本発明によれば、光触媒と粒子状活性炭との複合効果により空気または液体中の有害成分の吸着・分解性にすぐれた光触媒・活性炭複合シートおよびその製造方法を得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, the photocatalyst and activated carbon composite sheet excellent in the adsorption | suction and decomposability | decomposability of the harmful component in air or a liquid by the composite effect of a photocatalyst and particulate activated carbon, and its manufacturing method can be obtained.

基材としては、金属板、ガラス板、セラミック板、プラスチック板、プラスチックフィルムなどがあるがここではPETフィルムを最良の形態として採用する。       As the substrate, there are a metal plate, a glass plate, a ceramic plate, a plastic plate, a plastic film, and the like. Here, a PET film is adopted as the best mode.

まず、図5のようにPETフィルムにシリコンバインダーを薄く塗布し、乾燥しないうちに比較的大粒の粒子状活性炭3をすき間無く散布する。散布が完了したら、薄紙7等を載せて軽く圧着・固定し、温風にて乾燥・固着させる。     First, as shown in FIG. 5, a silicon binder is thinly applied to a PET film, and relatively large granular activated carbon 3 is sprayed without gaps before drying. When spraying is completed, place thin paper 7 etc., lightly press and fix, and dry and fix with warm air.

次に光触媒(アナターゼ型酸化チタン)の過酸化水素水溶液を図6のPETフィルムの垂直面から少量スプレーし温風で乾燥する。この操作を複数回繰返し行なう。光触媒シートの完成状態を図1に示す。     Next, a small amount of a hydrogen peroxide aqueous solution of a photocatalyst (anatase type titanium oxide) is sprayed from the vertical surface of the PET film in FIG. 6 and dried with warm air. This operation is repeated several times. The completed state of the photocatalyst sheet is shown in FIG.

上記により製造した光触媒・活性炭複合シートを(担持した面を内側にして)円筒状に彎曲配置し、その中央部に棒状の光触媒励起用光源12を配し、円筒空間部の上流側もしくは下流側に空気送出用ファン9または液体送出ポンプを配置した浄化装置。     The photocatalyst / activated carbon composite sheet produced as described above is bent in a cylindrical shape (with the supported surface on the inside), and a rod-shaped photocatalyst excitation light source 12 is arranged at the center, and upstream or downstream of the cylindrical space A purifying device in which an air delivery fan 9 or a liquid delivery pump is arranged.

以下、図1より図10の図面に基づき本発明の第1の実施形態について具体的に説明する。       Hereinafter, the first embodiment of the present invention will be specifically described with reference to FIGS. 1 to 10.

図1は、本発明の実施例としての光触媒・活性炭複合シートの構造を模式化した図面である。       FIG. 1 is a drawing schematically showing the structure of a photocatalyst / activated carbon composite sheet as an example of the present invention.

本発明者は、前記の課題を解決するために思考を重ねた結果、活性炭の光触媒皮膜を光照射側のみに限定して付加すればよいとの考えに至った。
シート状の光触媒部材を製造する場合、図1のように通常光触媒の担持側面の正面・垂直位置から光が照射されるので、活性炭の光照射面のみに光触媒を付加すればよい。
The present inventor has come up with the idea that the activated carbon photocatalyst film may be added only to the light irradiation side as a result of thinking to solve the above problems.
When manufacturing a sheet-like photocatalyst member, light is irradiated from the front / vertical position of the side surface on which the normal photocatalyst is supported as shown in FIG.

以下、光触媒・活性炭複合シートの製造手順について説明する。
まず、基材となるPETフィルム1(板圧0.3mm)にシリコーンバインダー2を20〜50マイクロメートル程度塗布し、乾燥しないうちに平均粒子径1mm前後の活性炭3をすき間無く散布する。散布が完了したら、図5のように薄紙7等を載せて軽く圧着・固定した後、約100度の温風にて乾燥・固着させる。
Hereinafter, the manufacturing procedure of the photocatalyst / activated carbon composite sheet will be described.
First, about 20-50 micrometers of silicone binder 2 is apply | coated to PET film 1 (plate pressure 0.3mm) used as a base material, and activated carbon 3 with an average particle diameter of about 1 mm is spread | dispersed without gap before drying. When spraying is completed, as shown in FIG. 5, a thin paper 7 or the like is placed and lightly pressed and fixed, and then dried and fixed with hot air of about 100 degrees.

次にアモルファス型酸化チタン微粒子0.5gに対し、31%過酸化水素水溶液70mlの割合で調整した溶液をPH4に調整した後、温度90度以上の水浴に10時間保つことにより、酸化チタンをアナターゼ型へと結晶化させる方法で、平均粒子径0.5マイクロメートル以上の水溶液を製造した。詳細は
に紹介された方法である。
Next, a solution prepared by adjusting a ratio of 70 ml of a 31% hydrogen peroxide solution to 0.5 g of amorphous titanium oxide fine particles is adjusted to PH4, and then kept in a water bath at a temperature of 90 ° C. or more for 10 hours, so that titanium oxide is anatase. An aqueous solution having an average particle size of 0.5 micrometers or more was produced by a method of crystallizing into a mold. Detail is
This is the method introduced in.

次にこの光触媒水溶液を基材1の垂直方向から少量スプレーし温度100度で30分乾燥する。この操作を4回繰返し行なう。光触媒シートの完成状態を図1に示す。     Next, a small amount of this photocatalyst aqueous solution is sprayed from the vertical direction of the substrate 1 and dried at a temperature of 100 degrees for 30 minutes. This operation is repeated four times. The completed state of the photocatalyst sheet is shown in FIG.

一般的な光触媒粒子径は10nm〜100nm程度と小さいため光触媒皮膜を拡大すると図3のように、光触媒粒子の大部分が皮膜の中に埋もれた状況になっている。一方、本実施例においては、活性炭3の表面側に付与された光触媒皮膜4は平均粒子径0.5マイクロメートル以上の光触媒を使用したため、皮膜の拡大図は図4のようになり、皮膜表面部が凹凸状態で光触媒粒子が表面に多数露出した状態であり、気体中の有害成分との接触面積が大きくなっている。     Since the general photocatalyst particle diameter is as small as about 10 nm to 100 nm, when the photocatalyst film is enlarged, most of the photocatalyst particles are buried in the film as shown in FIG. On the other hand, in this example, since the photocatalyst film 4 provided on the surface side of the activated carbon 3 used a photocatalyst having an average particle diameter of 0.5 micrometers or more, an enlarged view of the film is as shown in FIG. This is a state in which a large number of photocatalyst particles are exposed on the surface with the portion being uneven, and the contact area with harmful components in the gas is large.

また、活性炭の裏面側では図1の6のように光触媒の皮膜はほとんど付加されていないため、本来の活性炭の多孔質部が損なわれないため、吸着作用が阻害されずに機能している。     In addition, since the photocatalyst film is hardly added as shown in 6 of FIG. 1 on the back surface side of the activated carbon, the porous portion of the original activated carbon is not damaged, and the adsorption function is not hindered.

次にこの光触媒・活性炭複合シートを組み込んだ液体用浄化装置ユニットを図7に示す。円筒状ガラス容器14の内側に、円筒状に加工した上述の光触媒・活性炭複合シート10を配置してあり、円筒の中心部には光触媒励起用の光源12を、また、その外側には筒状の石英ガラス管11を設置している。石英ガラス管11の役割は、光源12を循環液体から隔離するとともに、光は効率よく透過させることである。9は円筒内の液体を循環させるためのポンプである。     Next, FIG. 7 shows a liquid purification device unit incorporating this photocatalyst / activated carbon composite sheet. The above-mentioned photocatalyst / activated carbon composite sheet 10 processed into a cylindrical shape is arranged inside a cylindrical glass container 14, a light source 12 for photocatalyst excitation is provided at the center of the cylinder, and a cylindrical shape is provided outside thereof. The quartz glass tube 11 is installed. The role of the quartz glass tube 11 is to isolate the light source 12 from the circulating liquid and to transmit light efficiently. 9 is a pump for circulating the liquid in a cylinder.

光源12は、近紫外線(波長352nm)のブラックライトであり、光触媒を励起させるための光源である。また、液体循環用ポンプ9は石英ガラス管11と光触媒・活性炭複合シートとの空間の液体を高速で循環させる役割である。     The light source 12 is a near ultraviolet (wavelength 352 nm) black light, and is a light source for exciting the photocatalyst. The liquid circulation pump 9 has a role of circulating the liquid in the space between the quartz glass tube 11 and the photocatalyst / activated carbon composite sheet at high speed.

試験試料水15は、500mlの水中に2,4ジニトロフェノールを初濃度10mg/lに調整したものである。       Test sample water 15 is prepared by adjusting 2,4 dinitrophenol to an initial concentration of 10 mg / l in 500 ml of water.

図9は、図7の装置を使用して、2,4ジニトロフェノールの吸着・分解性能を試験したデータである。
この試験データには、本発明による光触媒・活性炭複合シートaのデータをTiO2.ACで表し、また対比試験のために,光触媒のみのシートbをTiO2、活性炭のみのシートcをACで表示している。
グラフの縦軸は2,4ジニトロフェノール濃度であり、横軸は経過時間(分)である。
FIG. 9 shows data obtained by testing the adsorption / decomposition performance of 2,4 dinitrophenol using the apparatus of FIG.
In this test data, the data of the photocatalyst / activated carbon composite sheet a according to the present invention is included in TiO2. It is represented by AC, and for the comparison test, the sheet b with only the photocatalyst is displayed with TiO 2 and the sheet c with only the activated carbon is displayed with AC.
The vertical axis of the graph is 2,4 dinitrophenol concentration, and the horizontal axis is elapsed time (minutes).

図9左図は、光源をOFF状態にしたときのデータであるが、bにおいては当然ながら時間経過にかかわらず、2,4ジニトロフェノールの濃度変化は出ていない。aとcにおいては、いずれもほぼ同一の曲線でcがわずかに良い特性を示している。本来なら、図1のように光触媒皮膜がある分だけaの性能が低下するはずであるが、その差がわずかであることは特筆に価する。特に図2のような光触媒皮膜であれば、明らかに大きな性能差がでるのは当然である。     The left diagram in FIG. 9 shows data when the light source is turned off. In b, naturally, no change in the concentration of 2,4 dinitrophenol occurs regardless of the passage of time. In both a and c, the curves are almost the same, and c shows slightly better characteristics. Originally, the performance of a should be reduced by the amount of the photocatalytic film as shown in FIG. 1, but it is worth mentioning that the difference is slight. In particular, in the case of the photocatalyst film as shown in FIG.

このようにaとcの差が少ない原因として、二つの要因が考えられる。その1は、図1において活性炭の裏側にはほとんど光触媒皮膜が形成されていないため、活性炭粒子のスキマから裏側に回り込んだ2,4ジニトロフェノールが吸着されたものと考えられる。その2は、図4のように光触媒粒子が大きいために光触媒皮膜部にも凹凸とともに多くの亀裂によるスキマがあり、そこからも2,4ジニトロフェノールが内部に浸透しているものと想定する。     There are two possible causes for the small difference between a and c. The first is considered to be that the photocatalyst film was hardly formed on the back side of the activated carbon in FIG. 1, so that 2,4 dinitrophenol wrapping around from the gap of the activated carbon particles to the back side was adsorbed. As for No. 2, it is assumed that since the photocatalyst particles are large as shown in FIG. 4, the photocatalyst film portion also has unevenness and a lot of cracks due to cracks, and 2,4 dinitrophenol permeates into the inside.

図9右図は、光源をONにしたときの濃度変化を示す。bにおいては、光触媒が活性化するために、2,4ジニトロフェノールの濃度低減が観測された。また、aとcとの比較においては、aの性能が高くなり、cとの差が拡大していることが読み取れる。     The right figure of FIG. 9 shows the density change when the light source is turned on. In b, since the photocatalyst was activated, a decrease in the concentration of 2,4 dinitrophenol was observed. Moreover, in the comparison between a and c, it can be seen that the performance of a increases and the difference from c increases.

図9も図8と同様に縦軸は2,4ジニトロフェノール濃度であり、横軸は経過時間(分)である。
図9は、図8の実験を繰り返し行なったときの経過的な性能変化を表している。
経過時間が長くなるに従って、活性炭のみのシートcは性能が低下しているが、本発明による光触媒・活性炭複合シートaにおいては、性能低下が少ないことが読み取れる。
In FIG. 9, as in FIG. 8, the vertical axis represents 2,4 dinitrophenol concentration, and the horizontal axis represents elapsed time (minutes).
FIG. 9 shows a change in performance over time when the experiment of FIG. 8 is repeated.
As the elapsed time becomes longer, the performance of the activated carbon-only sheet c decreases, but it can be seen that the performance degradation is small in the photocatalyst / activated carbon composite sheet a according to the present invention.

(0026)〜(0033)における実施例は液体の浄化ユニットの事例である。空気の浄化においても例示していないがまったく同様の効果となることを確認している。 The embodiments in (0026) to (0033) are examples of liquid purification units. Although not illustrated in air purification, it has been confirmed that the same effect is obtained.

本発明の光触媒・活性炭複合シートの完成状態および光源の照射状況、空気の流れについて模式化した概略図。Schematic which modeled about the completion state of the photocatalyst and activated carbon composite sheet of this invention, the irradiation condition of a light source, and the flow of air. 一般的な光触媒担持活性炭の担持状況および光源との関係を説明した図。The figure explaining the support condition of a general photocatalyst carrying activated carbon, and the relationship with a light source. 図2における光触媒皮膜部の拡大説明図。Explanatory explanatory drawing of the photocatalyst membrane | film | coat part in FIG. 図1における光触媒皮膜部の拡大説明図。Explanatory explanatory drawing of the photocatalyst membrane | film | coat part in FIG. 本発明の光触媒・活性炭複合シートを製造する第1段階の説明図。Explanatory drawing of the 1st step which manufactures the photocatalyst and activated carbon composite sheet of this invention. 本発明の光触媒・活性炭複合シートを製造する第2段階の説明図。Explanatory drawing of the 2nd step which manufactures the photocatalyst and activated carbon composite sheet of this invention. 本発明の光触媒・活性炭複合シートを組み込んだ液体浄化ユニット図。The liquid purification unit figure incorporating the photocatalyst and activated carbon composite sheet of this invention. 実験データをグラフで示した図。The figure which showed the experimental data with the graph. 活性炭のみのシートと本発明のシートとの吸着・分解性能比較図。Comparison of adsorption / decomposition performance between a sheet of activated carbon only and a sheet of the present invention.

符号の説明Explanation of symbols

1 基材(PETフィルム)
2 シリコンバインダー
3 粒子状活性炭
4 光触媒皮膜
5 光触媒粒子
6 活性炭裏面
7 薄紙
8 スプレー
9 液体循環用ポンプ
10 湾曲加工した光触媒・活性炭複合シート
11 石英ガラス管
12 ブラックライト(光触媒励起用光源)
13 液体循環部
14 円筒状ガラス容器
1 Base material (PET film)
2 Silicon Binder 3 Particulate Activated Carbon 4 Photocatalyst Film 5 Photocatalyst Particle 6 Activated Carbon Back 7 Thin Paper 8 Spray 9 Liquid Circulation Pump 10 Curved Photocatalyst / Activated Carbon Composite Sheet 11 Quartz Glass Tube 12 Black Light (Light Source for Photocatalyst Excitation)
13 Liquid circulation part 14 Cylindrical glass container

Claims (4)

基材にシリコン系バインダーを均一に塗布し、粒子状活性炭を散布して圧着固定した後に、アナターゼ型酸化チタンの過酸化水素水溶液を噴霧・乾燥させる工程を複数回行なう光触媒・活性炭複合シートおよびその製造方法。   A photocatalyst / activated carbon composite sheet in which a silicon-based binder is uniformly applied to a substrate, sprayed with particulate activated carbon and fixed with pressure bonding, and then sprayed and dried with an anatase-type titanium oxide aqueous solution of hydrogen peroxide multiple times and its Production method. 請求項1において、光触媒粒子は平均粒子径0.5マイクロメートル以上であり、かつ粒子状活性炭は平均粒子径0.5mm以上である光触媒・活性炭複合シートおよびその製造方法。   The photocatalyst / active carbon composite sheet according to claim 1, wherein the photocatalyst particles have an average particle diameter of 0.5 micrometers or more, and the particulate activated carbon has an average particle diameter of 0.5 mm or more, and a method for producing the same. 基材はPET(ポリエチレンテレフタレート)である請求項2の光触媒活性炭複合シートおよびその製造方法。   3. The photocatalytic activated carbon composite sheet according to claim 2 and a method for producing the same, wherein the substrate is PET (polyethylene terephthalate). 本発明による光触媒・活性炭複合シート(請求項1〜3の内のいずれか)を(担持した面を内側にして)円筒状に彎曲配置し、その中央部に棒状の光触媒励起用光源を配し、円筒空間部の上流側もしくは下流側に空気送出用ファンまたは液体送出ポンプを配置した浄化装置。

The photocatalyst / activated carbon composite sheet according to the present invention (any one of claims 1 to 3) is arranged in a cylindrical shape (with the supported surface inside), and a rod-shaped photocatalyst excitation light source is arranged at the center. A purification device in which an air delivery fan or a liquid delivery pump is arranged upstream or downstream of the cylindrical space.

JP2008160264A 2008-06-19 2008-06-19 Photocatalyst/activated carbon-combined sheet and method for producing the same Withdrawn JP2010000430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008160264A JP2010000430A (en) 2008-06-19 2008-06-19 Photocatalyst/activated carbon-combined sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008160264A JP2010000430A (en) 2008-06-19 2008-06-19 Photocatalyst/activated carbon-combined sheet and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010000430A true JP2010000430A (en) 2010-01-07

Family

ID=41582581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008160264A Withdrawn JP2010000430A (en) 2008-06-19 2008-06-19 Photocatalyst/activated carbon-combined sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010000430A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025430A (en) * 2013-07-29 2015-02-05 シャープ株式会社 Air blower
CN109603532A (en) * 2019-01-10 2019-04-12 上海滢晶环保科技有限公司 A kind of composite spraying agent and preparation method thereof of decomposing formaldehyde benzene homologues TVOC

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025430A (en) * 2013-07-29 2015-02-05 シャープ株式会社 Air blower
CN109603532A (en) * 2019-01-10 2019-04-12 上海滢晶环保科技有限公司 A kind of composite spraying agent and preparation method thereof of decomposing formaldehyde benzene homologues TVOC

Similar Documents

Publication Publication Date Title
Zhong et al. Modeling and physical interpretation of photocatalytic oxidation efficiency in indoor air applications
EP3643395B1 (en) Aircraft air purification and volatile organic compounds reduction unit comprising a photocatalyst activated by ultraviolet light emitting diodes
JPH09225263A (en) Air pollutant removing filter, air pollutant removing fan and ventilator using the fan
JP2008270763A5 (en)
JP2007144403A (en) Composite type particulate photocatalyst, method for manufacturing the same and coating agent and photocatalytically-active member using the same
JP2008264777A5 (en)
JP2010000430A (en) Photocatalyst/activated carbon-combined sheet and method for producing the same
JP4635185B2 (en) Photocatalytic coating method for polyester fiber
CN109954488B (en) Photocatalyst-carrying substrate, method for producing same, and photocatalytic device
CN204768261U (en) A photocatalytic filter for degrading mist
CN110893342B (en) Photocatalyst composite material, method for producing photocatalyst composite material, and photocatalyst device
US11565246B2 (en) Photocatalytic filter, method for manufacturing the same, and method for reactivating the same
CN205019962U (en) Photocatalytic filter
JPH09135891A (en) Deodorizing device
CN105903351B (en) A kind of ceramic super-filtering film and preparation method thereof with self-cleaning function
JP2002177792A (en) Photocatalyst for cleaning fluid and method of manufacturing the same
JP2008272651A (en) Photocatalytic member and air quality purification apparatus using this photocatalytic member
JP4354938B2 (en) Surface treatment method and surface treatment apparatus
JP2007187795A (en) Reflection sheet and reflection plate
JP7222761B2 (en) Photocatalytic composite material, method for producing photocatalytic composite material, and photocatalyst device
WO2010122654A1 (en) Method for producing photocatalyst layer
JP2000300957A (en) Photocatalytic device for vapor-phase and hazardous material-treating method
JP6701549B2 (en) Photocatalytic member
JP2020044488A (en) Photocatalyst composite material, photocatalyst composite material production method and photocatalyst device
JP2014069118A (en) Deodorization catalyst

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906