JP2009531655A5 - - Google Patents

Download PDF

Info

Publication number
JP2009531655A5
JP2009531655A5 JP2008558981A JP2008558981A JP2009531655A5 JP 2009531655 A5 JP2009531655 A5 JP 2009531655A5 JP 2008558981 A JP2008558981 A JP 2008558981A JP 2008558981 A JP2008558981 A JP 2008558981A JP 2009531655 A5 JP2009531655 A5 JP 2009531655A5
Authority
JP
Japan
Prior art keywords
image
speckle pattern
light source
subject
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008558981A
Other languages
English (en)
Other versions
JP2009531655A (ja
JP5174684B2 (ja
Filing date
Publication date
Priority claimed from PCT/IL2006/000335 external-priority patent/WO2007043036A1/en
Application filed filed Critical
Priority claimed from PCT/IL2007/000306 external-priority patent/WO2007105205A2/en
Publication of JP2009531655A publication Critical patent/JP2009531655A/ja
Publication of JP2009531655A5 publication Critical patent/JP2009531655A5/ja
Application granted granted Critical
Publication of JP5174684B2 publication Critical patent/JP5174684B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

スペックル・パターンを用いた三次元検出
関連出願への相互参照
本出願は、2006年3月24日出願の米国仮特許出願60/785,187号の恩典を申し立てる。本出願は、2006年3月14日出願のPCT特許出願PCT/IL2006/000335号の一部継続出願であり、これは、2005年10月11日出願の米国仮特許出願60/724,903号の恩典を申し立てる。これら全ての関連出願は、本特許出願の譲渡人に譲渡され、これらの開示は、本願中に参照することにより盛り込まれている。
(技術分野)
本発明は、全般として、三次元(3D)被写体をマッピングする方法およびシステムに関し、特にスペックル・パターンを用いた三次元光学撮像に関する。
コヒーレントな光ビームが拡散板を通過し、1つの表面に投影されると、その表面上に第1次スペックル・パターンが観察されうる。この第1次スペックルは、拡散されたビームの異なる成分干渉により引き起こされる。本特許出願および請求項中では、「第1次スペックル」とはこの意味で用いられ、被写体の粗い表面からのコヒーレント光の拡散反射により引き起こされる第2次スペックルとは区別されている。
Hartは、特許文献1および特許文献2(これらの開示は、本願中に参照することにより盛り込まれている)中で、高速三次元撮像システムにおけるスペックル・パターンの使用について説明している。このシステムは、能動撮像素子およびCCD素子を備えた単レンズカメラのサブシステムと、相関処理サブシステムとを有する。この能動撮像素子は回転絞りでありえ、これにより、被写界深度をより大きくし、画素未満の変位精度を高めるために、デフォーカス画像間で調節可能な非等辺間隔が可能になる。スペックル・パターンは被写体上に投影され、結果として得られるパターンの画像は、複数の角度から得られる。これらの画像は、画像相関技術を用いて、局所的に相互相関され、局所的に相関された各領域の三次元座標を計算するために、その表面は、相対的なカメラの位置情報を用いて解像される。
Hunter他による特許文献3(この開示は、本願中に参照することにより盛り込まれている)には、別のスペックルに基づく三次元撮像技術が記載されている。無作為のスペックル・パターンが、1つの三次元面に投影され、複数のカメラにより撮像され、複数の二次元デジタル画像が得られる。二次元画像は処理され、その表面の1つの三次元特徴が得られる。
台湾特許TW527528 B号 米国特許出願09/616,606号 米国特許6,101,269号
(発明の要約)
本発明の実施形態は、第1次スペックル・パターンを用いて正確でリアルタイムな、三次元被写体のマッピングを行う。上記PCT特許出願および下記の実施形態中に記載された方法とシステムでは、単一のコヒーレント光源と、静止しかつこの光源に対して固定角度で保持された単一の画像センサとを用いてこのような三次元マッピングを行うことができる。
本発明の1つの観点は、スペックル・パターンの1つの参照画像が、最初に既知の輪郭の1つの参照面上で獲得されるという点である。次に、被写体上に投影されたスペックル・パターンの画像を獲得し、この画像と参照画像とを比較することにより、被写体の三次元輪郭が決められる。
本発明の別の観点は、被写体が動くと共に、被写体上のスペックル・パターンの連続画像が獲得されるという点である。三次元で被写体の動きを追跡するために、各画像は、先行する画像の1つまたは複数と比較される。以下で説明する1つの実施形態では、光源と画像センサは、1つの直線上に配され、連続する画像間1次元の相関係数を演算することにより、迅速でかつ精確に動きを追跡することができる。
ある実施形態では、精度、被写界深度および三次元マッピング・システムの演算速度を高めるために、新規の照明および画像処理構成を用いている。
したがって、本発明の1実施形態によれば、被写体上に第1次スペックル・パターンを投影するよう配されたコヒーレント光源と拡散板とを有する照明装置と、照明装置に対して相対的に、単一かつ固定の位置および角度から、被写体上の第1次スペックル・パターン画像を獲得するように配された単一の画像獲得装置と、被写体の三次元マップを導き出すために、単一かつ固定角度で獲得された第1次スペックル・パターンの画像を処理するために接続されたプロセッサとを有する被写体の三次元マッピング装置が提供されている。
ある実施形態では、装置は、照明装置に対して画像獲得装置を空間的に固定させるために、照明装置および画像獲得装置に取り付けられているを有する。ある実施形態では、画像獲得装置は、第1および第2の互いに直交する軸を規定する直線パターン中に配された、検出素子アレイと、対物光学系とを有し、この対物光学系は、入射瞳を有し、画像をアレイ上にフォーカシングするために配され、ここで、第1軸に平行である装置の軸であって、かつ、入射瞳とコヒーレント光源により生成されるビームが拡散板を通過するスポットとを通る装置の軸を規定するように、照明装置と画像獲得装置とがによって配されている。このように、第1軸上のみで、1つまたは複数の画像中で獲得された第1次スペックル・パターンと、第1次スペックル・パターンの参照画像との間での偏移値を見つけることにより、三次元マップを導き出すために、プロセッサが配されている。
1つまたは複数の画像中で獲得された被写体上の複数領域の第1次スペックル・パターンと、第1次スペックル・パターンの参照画像との間で、各偏移値を見つけることにより三次元マップを導き出すために、プロセッサが配されており、各偏移が、領域と画像獲得装置との間の各距離を示している実施形態もある。通常、画像獲得装置は照明装置から所定の間隔を隔てて位置づけられ、各オフセットは、この間隔により決められる割合で、各距離に比例している。開示された実施形態では、照明装置により投影される第1次スペックル・パターンは、特徴的な寸法のスペックルを有し、画像中のスペックルの寸法は、間隔に依存する許容誤差により像全域で変動し、間隔は、許容誤差が所定の範囲内に収まるように選択される。
追加的に、または、これに代えて、画像獲得装置中の歪曲の係数モデルを用いて、各偏移を三次元マップの各座標に関連付けるように、プロセッサが配されている。さらに追加的に、または、これに代えて被写体の第1領域中の第1次スペックル・パターンと、第1領域に対して相対的に第1偏移値における参照画像のこれに対応する領域との間で、最初の適合を見つけることにより、各偏移を見つけ、かつ第1の領域に隣接する画素の各偏移値を見つけるために、第1偏移に基づいて範囲拡張法を用いるように、プロセッサが配されている。
開示されたある実施形態では、被写体の三次元の動きのマッピングを行うために、被写体が動いている間に連続する獲得画像を処理するように、プロセッサが配されており、被写体は、人間の体の一部分であり、三次元の動きは、人間の体の一部分により行われる動作であり、動作に応答して、コンピュータ・アプリケーションに入力を提供するために、プロセッサが接続されている。
照明装置が、ビーム形成装置を有し、これは、装置の検出ボリュームの全域で、拡散板により作られるスペックル・パターンのコントラストの変動を減らすように配されている実施形態もある。ある実施形態では、ビーム形成装置は、回折光学素子(DOE)と、拡散板のフーリエ面を規定するように配されたレンズとを有し、DOEは、フーリエ面中に位置づけられている。ビーム形成装置は、拡散板から発せられる光の発散を減らすために配されてもよく、あるいは、拡散板から発せられる光の強度を、照明装置の光軸に横断する面全面で等しくするために配されてもよい。
ある実施形態では、プロセッサは、光学相関器を有し、この光学相関器は、参照スペックル・パターンを含む回折光学素子(DOE)を有し、また、画像獲得装置は、被写体の複数のサブ画像をDOE上に投影し、被写体の三次元座標を示す各相関ピークを発生させるように配された小型レンズ・アレイを有する。
コヒーレント光源のコヒーレンス長が、1cm未満である実施形態もある。追加的に、または、これに代えて第1次スペックル・パターンは、特徴的な寸法を有するスペックルを有し、コヒーレント光源と拡散板との間の距離を変えることにより、スペックルの特徴的な寸法を調節することができるように、照明装置が構成されている。
本発明の1実施形態によれば、被写体上に第1次スペックル・パターンを投影するようために、光源から拡散されたコヒーレント光のビームで、被写体を照明するステップと、光源に対して相対的に、単一かつ固定の位置および角度から、被写体上の第1次スペックル・パターンの画像を獲得するステップと、被写体の三次元マップを導き出すために、単一かつ固定角度で獲得された第1次スペックル・パターンの画像を処理するステップとを有する被写体の三次元マッピング方法が提供される。
さらに追加して、本発明の1実施形態によれば、コヒーレンス長が1cm未満であるコヒーレント光源と拡散板とを有し、これらが被写体上に第1次スペックル・パターンを投影するよう配された、照明装置と、被写体上の第1次スペックル・パターン画像を獲得するように配された画像獲得装置と、被写体の三次元マップを導き出すために、第1次スペックル・パターンの画像を処理するために接続されたプロセッサとを有する被写体の三次元マッピング装置が提供される。
ある実施形態では、コヒーレント光源のコヒーレンス長は0.5mm未満である。追加的に、または、これに代えて、コヒーレント光源の発散は5°より大きい。
本発明は、以下の本発明の実施形態の詳細な説明を図面と共に参照すると、より完全に理解されるであろう。
(図面の簡単な説明)
図1は、本発明の1実施形態による三次元マッピング・システムを絵で示した概略図である。
図2は、本発明の1実施形態によるスペックル撮像装置の概略上面図である。
図3は、本発明の1実施形態による三次元マッピングの1つの方法を概略的に示したフローチャートである。
図4は、本発明の別の実施形態による、三次元マッピング・システムで用いられる照明装置の概略側面図である。
図5は、本発明の1実施形態によるビーム形成装置の概略側面図である。
図6は、本発明のさらに別の実施形態によるビーム形成装置の概略側面図である。
図7は、本発明のさらに別の1実施形態による、三次元マッピング・システムで用いられる光学相関器の概略側面図である。
図1は、本発明の1実施形態による三次元マッピング・システム20を絵で示した概略図である。システム20は、スペックル撮像装置22を有し、この装置は、第1次スペックル・パターンを生成し、被写体28に投影し、この被写体上に現れた第1次スペックル・パターンの像を獲得する。装置22の詳細な設計および作用は以下の図面に示し、これに関連して以下に説明する。
画像プロセッサ24は、被写体28の1つの三次元マップを得るために、装置22により生成された画像データを処理する。本特許出願および請求項で用いられる「三次元マップ」という用語は、被写体の表面を表す1組の三次元座標群を指す。画像データに基づいてこのようなマップを導き出すことは、「三次元再構成」と呼ぶこともできる。このような再構成を行う画像プロセッサ24は、汎用コンピュータプロセッサからなってもよく、以下に説明する機能を実施するためのソフトウェにプログラされている。このソフトウェアは、例えばネットワークを介して電子的な形態で、プロセッサ24にダウンロードされてもよいし、あるいは、光学、磁力または電子メモリ媒体などの有形メディア上で提供されてもよい。あるいはまたはこれに加えて、この画像プロセッサのいくつかのまたは全ての機能は、特注または半特注の集積回路またはプログラム可能なデジタル信号プロセッサ(DSP)などの、専用ハードウェア中に実装されてもよい。プロセッサ24は、図1には、例として撮像装置22とは別のユニットとして示すが、プロセッサ24のいくつかのまたは全ての処理機能は、撮像装置の筐体内で適切な専用の回路によって、また撮像装置に付属して実装されてもよい。
プロセッサ24により生成された三次元マップは、広範囲の様々な目的に用いられることができる。例えば、このマップは、被写体の擬似三次元像を示すディスプレイ26のような出力装置に送ることができる。図1の例では、被写体28は、題材となる体の全部分またはその一部(例えば、手)からなる。この場合、システム20は、仕草に基づくユーザインタフェースを提供するために用いられることができ、装置22により検出されたユーザの動きが、マウス、ジョイスティックやその他の付属品などの触知型インタフェース部材に代わって、ゲームなどの対話型のコンピュータアプリケーションを制御する。あるいは、システム20、三次元座標の輪郭が必要とされる実質的にいかなるアプリケーションに、他の種類の被写体の三次元マップを生成するように使用されてもよい。
図2は、本発明の1実施形態による1つの装置22の概略上面図である。1つの照明装置30は、1つのコヒーレント光源32を有する。これは通常1つのレーザおよび1つの拡散板33からなる。(本特許出願の脈中では、「光」という用語は、いかなる種類の光学的放射をも意味し、例えば、赤外線、紫外線および可視光線を含む。)光源32より発せられた光のビームは、半径w1つのスポット34で拡散板33を通過し、1つの発散ビーム36を生成する。上述のPCT特許出願PCT/IL2006/000335号で説明したように、拡散板34によりZobj1およびZobj2の距離に作られた第1次スペックル・パターンは、
被写体距離Zobjにおけるスペックル・パターンの軸上寸法ΔZが、
ΔZ=(Zobj/w・λ
により与えられ距離の範囲にZobj1およびZobj2 が、ある場合は、良い近似の程度まで互い線型に縮尺増大されたである。
1つの画像獲得装置38は、被写体28上に投影されたスペックル・パターンの1つの画像を獲得する。装置38は、画像を1つの画像センサ40上に焦点を結ばせる対物光学系39からなる。通常、センサ40は、CCDまたはCMOSベースの画像センサレイなどの、検出素子41の直線アレイからなる。対物光学系39は、画像センサの寸法と共に画像獲得装置1つの視野44を規定する1つの入射瞳42を有する。この装置22の検出領域は、ビーム36と視野44との間の1つの重複領域46からなる
objの距離において照明装置30により投影された特徴的な横断方向のスペックル寸法(これは、スペックル・パターンの二次的な統計により規定される)は、
ΔX=(Zobj/W)・λ
である。発明者らは、光学像処理の性能の最適化のためには、センサ40上に結像されるスペックル寸法は、範囲および解像度要求に応じて、1〜10画素であるべきで、すなわち、光学系39によりセンサ40上に結像される各スペックルは、水平方向に1〜10検出素子41数だけ拡がるべきであると見出した。典型的用途では、2〜3画素スペックル寸法がよい結果をもたらす。
上のΔXに関する式から、スペックル寸法は、光源32と拡散板33との間の距離を変えることにより調節可能であることがわかるが、これはスポット34の半径wが、光源からの距離が長くなるにつれ、大きくなるからである。このように、照明装置30のスペックル係数は、レンズやその他の光学系を用いずとも、単に光源を横方向に移動させることによって、制御可能である。照明装置30は、このように、異なる寸法と解像度の画像センサおよび異なる倍率の対物光学系と共に使用されるように調節可能である。上述の係数により強制された小さなスペックル寸法を前提として、発散大き(5°以上)かつコヒーレンス長の短い(1cm未満、および場合によっては、0.5mm未満)、レーザダイオードのような安価な光源を、システム20中で用いてよい効果を出すことができる。
照明装置30および画像獲得装置38は、43により固定された位置に保持されている。図2に図示する実施形態では、このは、これらの装置を保持する筐体を有する。あるいは、これ以外の適切な機械的なを用いて、照明装置と画像獲得装置との間の所望の位置関係を維持することができる。装置22の構成および以下に示す処理技術により、照明装置と画像獲得装置との間を相対的に動かさずとも、また、部材を動かさずとも、単一の画像獲得装置を用いて三次元マッピングを行うことができる。画像獲得装置38は、このように、照明装置30に対して相対的に単一かつ固定的な角度において、画像を獲得することができる。
三次元マップ被写体28の移動によるマップの変化の演算を単純化するために、以下に示すように、入射瞳42スポット34の中心を通る軸が、センサ40の軸のうちの1つに対して平行になるように、43が2つの装置3038を保持することが好ましい。すなわち、(対物光学系3の光軸に原点を置く)互いに直交するX軸とY軸を規定するために、検出素子41のアレイの列および行を取ると、瞳42とスポット34を通る軸は、アレイの軸のうちの1つ(便宜上、X軸とする)と平行であるべきである。この配置の利点は、以下にさらに説明する。
装置30、38の各光軸(スポット34と瞳42の中心をそれぞれ通る)は、距離Sだけ離れている。これゆえに、Zobjが変わると、画像獲得装置38により獲得された被写体画像中に、スペックル・パターンの歪曲が生じる。特に、三角測距により、図2からわかるように、被写体上の1つのZ軸方向偏移δZ、画像中に観察されるスペックル・パターン中に付随的な横断方向の偏移δXを、
Figure 2009531655
で示される値をとるように生じる。
被写体上の点のZ座標および時間経過によるZ座標の偏移は、画像獲得装置38により獲得された像中のスペックルのX座標の、既知の距離Zで得られた1つの参照画像に対する偏移を測定することにより算出可能である。すなわち、参照画像中で最も適合するスペックル群を見つけるために、獲得された画像の各領域におけるスペックル群は、参照画像と比較される。画像中のスペックルの適合する群相対的な偏移は、参照画像に対する獲得された画像の領域のZ方向の偏移を示す。スペックル・パターンの偏移は、画像相関法またはこれ以外の当該技術分野で公知である画像適合演算方法を用いて測定されうる。この方法のいくつかは、上述のPCT特許出願に記載されている。装置22と共に適用される特に有用な別の方法は、2006年3月24日出願の米国仮特許出願60/785,202号(本件特許出願の譲渡人に譲渡され、その開示は本願中に参照として盛り込まれている。)に記載されている。
さらに、図2に図示したような、瞳42とスポット34とを通るX軸が、センサ40のX軸に平行である配置では、スペックル・パターンの偏移δZが、(光学系39による歪曲が無視できる限り)、厳密にX方向に限られ、偏移のY成分は存在しない。したがって、画像適合演算は、単純化され、X偏移によるスペックルの最も近い適合群を探す必要があるだけである。すなわち、現在の画像の領域の参照画像(スペックル・パターンの従前の画像であればなんでもよい)に対する偏移δZを算出するために、参照画像に最もよく適合する偏移δXの値を見つけるため、参照画像に対してX軸方向に偏移した現在の画像の領域のコピーをチェックするだけでよい
あるいは、装置22の部材の幾何学的配置が、上述の基準からずれている場合、またはレンズ歪曲が有意である場合は、プロセッサは、このずれを補償するために1つの係数モデルを用いることができる。すなわち、既知のずれを測定し、またモデルし、プロセッサは、被写体面の実際の三次元座標を見つけるために、ずれの係数モデルに従って、参照画像に対する適切な(X,Y)方向偏移だけ偏移した現在の画像の領域のコピーをチェックすることができる。
通常、構成および演算の便宜のため、システム20の作動係数は、S<<Zobjになるように選択される。(一方、システム20のZ方向の解像度は、比率S/Zobjに依存するので、所望の解像度を得るためにSはシステムの意図する作動距離に対して相対的に十分大きくなくてはならない)S<<Zobjである限り、照明装置および画像獲得装置から、各被写体点までの各距離の値は、近い値となるが、しかし一般的には完全に等しくはならない。したがって、画像獲得装置38により獲得されたスペックル・パターンの像中のスペックルの寸法は、エリア46全域で、いくらかの許容誤差γを持って変動する。当該分野で公知の演算方法のいくつかを上述のPCT特許出願中で記載したが、これらを用いて、現在の画像の適合領域中のこれらの寸法変化を、参照画像の対応する領域に対して補償することができる。
しかし、一般的には、プロセッサ24に過剰な演算負荷をかけないようにするため、適合させる寸法に応じて、および、特徴的なスペックル寸法に応じて、γをある所定の範囲内に維持することが望まれる。発明者らは、全般的に、特徴的な寸法の変動が、1つのスペックル寸法の30%を上回らない範囲に、γを限定すべきであると見出した。画像獲得装置38の視野の対角θを用いると、
Figure 2009531655
である。したがって、寸法Nのの局所的なスペックル・パターンの実質的な寸法不変性は、
(S・sin(θ)・N/2・Zobj)<0.3(λ・Zobj/w・psize(Zobj))
の条件が成り立つときであり、ここで、psize(Zobj)は、Zobjにおける画素の寸法である。これらの条件の下で、装置38により獲得された連続する像フレーム中での被写体のZ軸方向の偏移は、一般に、スペックル寸法の変化を考慮することなく演算されうる。
図3は、システム20を用いた、本発明の1実施形態による三次元マッピング方法を概略的に示したフローチャートである。この方法は、とりわけ、照明装置30により投影されたスペックル・パターンが、時間の経過と共に実質的に変化しないという認識に基づいている。これゆえに、画像獲得装置38により装置に対して固定位置かつ固定角度獲得された、被写体上に投影されたスペックル・パターンの各像を用いて、被写体の三次元マップを正確に演算することができる。
被写体をマッピングする前に、較正ステップ50において、既知の空間形状を有しかつ装置22から既知の距離だけ離れたある被写体へ、装置30からスペックル・パターンを投影することにより、装置22の較正を行う。通常、このために、既知の距離Zobjにおいて、領域46全域に渡る平坦な被写体を、較正目標として用いる。画像獲得装置38は、被写体の参照画像を獲得しプロセッサ24のメモリ中に保存る。この較正ステップは、製造時に行われてもよく、メモリ中に保存された参照画像は、装置22の異なる間での相対的な移動が制御なしに行われない限り、この領域において用いることができる。メモリを節約し、続く演算を単純化するために、参照画像は、用いる適合アルゴリズムにとって適切な、閾値に基づく二値の画像などの、データ量を減らした形式で保存することもできる。
システム20が使用可能な状態になると、最初の画像獲得ステップ52において、システム20は起動され、装置22を用いて対象被写体(この場合、被写体28)の画像を獲得する。プロセッサ24は、マップ演算ステップ54において、この画像を、保存された較正画像中のスペックル・パターンと比較する。画素値が、所定の閾値未満である(あるいは、重要なスペックル情報を含まない)画像の暗い領域は、通常、影領域として分類され、ここからは深さ(Z)情報は、取り出されない。画像のこれ以外の部分は、参照画像に対する効率的適合のため、おそらくは当該分野において公知の1つの適応的閾値を用いて、2値化されか、またはデータ量を減少される
プロセッサ24は、画像の非影部分内に1つの枠を選択し、この内のサブ画像を、参照画像の部分と比較し、このサブ画像が最もよく適合する参照画像の部分が見つかるまでこれを続ける。上述し、図2に図示したように、装置3038が、X軸に沿って配されている場合、プロセッサは、サブ画像を、サブ画像に対して相対的にX方向変位し参照画像の部分(上述のように、倍率γまでの倍率でスペックル・パターンの寸法変化がされている)と比較すれば十分である。プロセッサは、参照画像の適合部分に対して、サブ画像の横断方向での偏移を用いて、上述の三角測距の原理に基づいて、サブ画像内の被写体28の表面領域のZ座標を決める。被写体面のこの領域がX−Y面方向にあるのではなく、傾いていたら、サブ画像内のスペックル・パターンは、歪曲を示す。プロセッサ24は、選択肢として、スペックル歪曲を分析し、傾斜角度を見積り、これにより三次元マッピングの精度を改善することもできる。
プロセッサ24は、この第1のマップ座標を出発点として用いて、画像の隣接する領域の座標を算出してもよい。とりわけ、プロセッサが、画像内のある領域と、参照画像内の対応する領域との間に高い相関を見つけると、この領域の参照画像に対する偏移は、画像内の隣接する画素の偏移を予測するのに役立ちうる。プロセッサは、これらの隣接する画素を、初めに適合した領域の偏移に等しい偏移、またはこれに近い範囲内での偏移より、参照画像に適合させようとする。このようにして、プロセッサは、適合領域の範囲を拡大し、この範囲が端に達するまで、これを続ける。プロセッサは、このようにして、被写体28の三次元輪郭が完成するまで、像の非影領域のZ座標を算出する。この手法は、小さいおよび信号雑音比が悪い画像を用いても、迅速にかつ頑健な適合ができるという利点がある。この目的のために使用可能な演算方法の詳細は、上述のPCT特許出願中に記載されている。
上述のステップの結果、プロセッサ24は、最初の画像中で見ることができる被写体面の部分の完全な三次元マップを演算した。しかし、次の画像ステップ56において、被写体の三次元の動きを追跡するために、この方法を拡張し、連続画像を獲得し、分析することも容易に可能である。装置22は、所定のフレーム速度で連続画像を獲得し、プロセッサ24は、各連続画像に基づいて三次元マップを更新する。三次元マップは、望ましい場合、保存されかつ較正された参照画像に対して演算されてもよい。あるいは、被写体は、通常1つの画像フレームから次の画像フレームへとそれほど移動しないので、各連続画像を次のフレーム用の参照画像として用いるのが、しばしばより効率的である。
このようにして、プロセッサ24は、偏移演算ステップ58において、サブ画像のスペックルの、先行する画像中の同じスペックルに対するX方向の相対的な偏移を演算するために、各連続画像を先行する画像比較することができる。通常、この偏移は数画素以上にはならないので、演算を迅速に、かつ効率的に行うことができる。各新しい画像がこのように処理された後、プロセッサ24は、新しいマップ出力ステップ60において、更新した三次元マップを出力する。この画像獲得および更新のプロセスは、このようにして無限に行われうる。連続三次元マップの演算が容易であるので、システム20は、単純で、低コストの画像ハードウェアおよび処理ハードウェアを使用しつつ、30フレーム/秒程度あるいはより速いリアルタイム・ビデオ速度で、マップ座標を操作し、出力することができる。さらに、上述したような効率的な画像適合演算と範囲拡張法とにより、先行する画像から局所的な偏移が演算できない場合にも、ビデオ速度でシステム20を作動させることができる。
システム20のこのような能力のゆえに、広範囲の応用分野において、システム20を適切に使用することができ、特に人間の動作に基づくマシン・インタフェースにこれを実装することができる。このようなインタフェースでは、(プロセッサ24を有し、またはプロセッサにより三次元マップ出力を受け取ることができる)コンピュータが、ユーザの体の部分(例えば、腕、手および/または指、そしておそらく、頭、胴体およびこれ以外の四肢部分など)に対応する三次元マップ中の、1つまたは複数の数量を特定する。このコンピュータは、これらの体の部分のある動きに対応する動作を特定し、これらの動作に応答して、コンピュータ・アプリケーションを制御するようにプログラムされている。このような動作およびアプリケーションの一例には、以下のようなものがある。
・マウス解釈およびクリック−コンピュータは、ユーザがテーブル上でマウスを動かし、マウスボタンをクリックしているように、ユーザの手と指の動きを解釈する。
・コンピュータ画面上で、フリーハンドで被写体を指差し、選択し、解釈する。
・ユーザの動作により、ゲームで用いられる実際のまたは仮想の被写体を打ち、つかみ、動かし、開放するようなコンピュータゲーム。
・ユーザが行うことができる限定された動きを検知することに基づいた、障害者ユーザ用のコンピュータ・インタフェース。
・バーチャル・キーボード上でのタイプ
これ以外のアプリケーションも、当業者には自明であろう。
図2に戻って、ビーム36が、レイリー距離を越えて広がると、被写体28上に落とされる照明の強度は、Zにほぼ比例して低下する。被写体上に投影されるスペックル・パターンのコントラストも、これに応じて低下する。これは特に、光源32の波長と同一波長の強い周辺光があるときに低下する。したがって、システム20が有用な結果を出すことができる深さ(Z座標)の範囲は、Zが大きくて照明が弱いために限定されうる。この点は、当該技術分野で公知であり、適応制および画像制により緩和されうる。この種の適切な方法の数例は、上述のPCT特許出願PCT/IL2006/000335号に記載されている。あるいは、または、これに加えて、以下に説明するように、光学ビーム形成により、照明の輪郭を改善することができる。
図4は、本発明の1実施形態による、システムの有用な深さ範囲を広くするためにシステム20で用いられる照明装置70の概略側面図である。装置70は、光源32と拡散板33と共に、1つのビーム形成装置72を有する。このビーム形成装置は、中間領域76の間で発散を減少し、この領域で軸上距離Zのスペックル・パターンの線型寸法を維持するビーム74を生成するように設計されている。その結果、領域76全体に渡って被写体28の画像中で、高いスペックルコントラストが維持され、その結果、三次元マッピング・システムにより網羅される深さ範囲が広くなる。領域76中での性能を向上させるために用いられうる光学設計を、以下にいくつか説明する。
図5は、本発明の1実施形態によるビーム形成装置72の概略側面図である。このビーム形成装置は、1つの回折光学素子(DOE)80と、1つの円錐レンズ82とからなる。DOE80は、拡散板33に当接していてもよいし、あるいは拡散板の表面上でのエッチング層または堆積層として組み込まれてもよい。領域76中でのビーム発散を減らすために、様々な回折設計を用いることができる。例えば、DOE80は、光源32の光軸上に中心を有する同心円あって、かつ円の半径がランダムに分布しているパターンを有しても良い。円錐レンズ82は、光軸上に中心を置く円錐形の輪郭を有し、すなわち、一種の回転対称プリズムである。DOE80も円錐レンズ82も、光軸に沿って長い焦点領域を作る効果を有し、その結果、これらの部材のいずれか1つを用いて、ビーム発散を減らした領域を作ることができる。この発散の減少は、2つの部材を共に用いることにより、さらに強化される。
図6は、本発明の別の実施形態によるビーム形成装置90の概略側面図である。ビーム形成装置90は、1つのDOE92と、焦点距離がFであるレンズ94、96とを有する。図示したように、これらのレンズは、拡散板33とDOE92とから、焦点距離に等しい距離だけ離れ、したがってDOEは、拡散板のフーリエ平面に位置づけられている。したがって、DOEの透過機能により、拡散板のフーリエ変換は、乗算される。遠い領域では、スペックル・パターンは、DOE上のパターンのフーリエ変換により乗算される。
図4に示すように、DOEパターンは、フーリエ変換が発散を減らすように、および/または、照明ビームに渡ってより均一な照明を提供するように選択されうる。後者の課題は、(中央では明るく、かつ光軸から角度が増えるにつれ低下する傾向にある拡散板33からのビームの角度による強度分布とは逆に)中央領域において周辺領域よりも透過を低下させるように回折光学素子DOE)92を設計することにより達成されうる。対象となる光強度に対して、より均一なスペックルの光強度対比を与えるためのDOE92またはDOE80(図5)の他の設計も、当業者には自明であり、本発明の枠内にあると考えられる。
図7は、本発明のさらに別の1実施形態による、システム20で用いられうる、被写体28領域のZ座標を決めるための1つの光学相関器110の概略側面図である。すなわち、相関器110は、上述したプロセッサ24の機能の一部分を実行する光学技術を使用する。相関器は、非常に高速で、ほぼ同時に、平行して被写体の複数の領域の座標を決めることができる。したがって、迅速に被写体が動くことが特徴的である応用分野には、非常に有用である。
1つの小型レンズ・アレイ116は、装置30によるスペックル照明の下、被写体28の複数のサブ画像を形成する。1つの絞りアレイ118が、小型レンズ・アレイ116の視野を限定し、その結果各サブ画像は、狭い角度領域からの光のみを含む。第2の1つの小型レンズ・アレイ120は、サブ画像1つのDOE122上に投影する。小型レンズ・アレイ120は、アレイ中の小型レンズの焦点距離に等しい距離分だけ、サブ画像の面からはなれ、また、等しい距離分だけDOE122面から離れている。後方の1つの小型レンズ・アレイ124は、DOE122とセンサ40との間に位置し、その小型レンズの焦点距離に等しい距離だけこの各々から離れている。
DOE122は、被写体128のスペックル像が比較される参照スペックル・パターンの空間フーリエ変換である、1つの参照回折パターンを有している。例えば、この参照回折パターンは、光源から既知の距離を隔てた平面を使用して、ステップ50で形成された較正スペックル像のフーリエ変換でありうる。この場合、参照回折パターンは、DOE表面上にエッチングまたは堆積されうる。あるいは、DOE122は、参照回折パターンを動的に投影するように駆動される、1つの空間変調器(SLM)からなってもよい。
いずれの場合も、相関器110は(小型レンズ・アレイ116中の小型レンズにより形成される)被写体のサブ画像を、フーリエ空間中の参照スペックル・パターンで乗算する。したがって、小型レンズ・アレイ124によりセンサ40上に投影された強度分布は、参照スペックル・パターンと各サブ画像の相互相関に一致している。一般に、センサ上の強度分布は、複数の相関ピークを有し、各ピークは、サブ画像の1つに対応している。(絞りアレイ118中の対応する絞りで規定された)対応するサブ画像の軸に対する各ピークの横断方向での偏移値は、被写体28の対応する領域上のスペックル・パターンの横断方向の変位に比例している。この変位は、さらに、上述のように、参照スペックル・パターンの面に対するその領域のZ方向の変位に比例している。このように、センサ40の出力、各サブ画像の領域のZ座標を決めるために、そして、被写体の三次元マップを演算するために、処理されうる
上述の実施形態は、上述した特定の、システム20の構成と装置22の設計に関連するが、本発明の原理は、これ以外の種類のスペックルに基づく三次元マッピングのシステムおよび装置にも同様に応用可能である。例えば、上述の実施形態の観点は、複数の画像獲得装置を用いたシステムに応用してもよいし、あるいは画像獲得装置と照明装置とが互いに相対的に可動であるシステムに応用してもよい。
上述の実施形態は例として示したが、本発明は、本願中上で特定的に示し説明した内容に限定されないと理解される。むしろ、本発明の範囲は、上述の記載を読んだ当業者が思いつくであろう、かつ先行技術に開示されていない、本願中の上述の様々な特徴の組み合わせや、一部組み合わせや、これらの変更や修正をも含む。
本発明の1実施形態による三次元マッピング・システムを絵で示した概略図である。 本発明の1実施形態によるスペックル撮像装置の概略上面図である。 本発明の1実施形態による三次元マッピングの1つの方法を概略的に示したフローチャートである。 本発明の別の実施形態による、三次元マッピング・システムで用いられる照明装置の概略側面図である。 本発明の1実施形態によるビーム形成装置の概略側面図である。 本発明のさらに別の実施形態によるビーム形成装置の概略側面図である。 本発明のさらに別の1実施形態による、三次元マッピング・システムで用いられる光学相関器の概略側面図である。
20 三次元マッピング・システム
22 スペックル撮像装置
24 画像プロセッサ
28 被写体
30 照明装置
32 コヒーレント光源
33 拡散板
38 画像獲得装置
39 対物光学系
40 画像センサ

Claims (44)

  1. 1つの被写体上に1つの第1次スペックル・パターンを投影するよう配された1つのコヒーレント光源と1つの拡散板とを有する1つの照明装置と、
    前記照明装置に対して単一かつ固定の位置および角度から、前記被写体上の前記第1次スペックル・パターン画像を獲得するように配された単一の画像獲得装置と、
    前記被写体の1つの三次元マップを導出するため、前記単一かつ固定角度で獲得された前記第1次スペックル・パターンの前記画像を処理するように接続された1つのプロセッサと
    を有することを特徴とする被写体の三次元マッピング装置。
  2. 前記画像獲得装置を前記照明装置に対し1つの固定した位置関係に保持するために、前記照明装置および前記画像獲得装置に取り付けられている1つの台を有することを特徴とする、請求項1に記載の装置。
  3. 前記画像獲得装置は、
    第1および第2の互いに直交する軸を規定する1つの直線パターン中に配された、1つの検出素子アレイと、
    1つの入射瞳を有し、かつ、前記画像を前記検出素子アレイ上に焦点を結ぶように配された対物光学系と
    を有し、
    前記第1軸に平であって、かつ、前記入射瞳と前記コヒーレント光源により射出された1つのビームが前記拡散板を通過する1つのスポットと、を通る1つの装置の軸を規定するように、前記照明装置と前記画像獲得装置とが前記台により配列させられていることを特徴とする、請求項2に記載の装置。
  4. 前記第1軸上のみにおいて、1つまたは複数の前記画像中で獲得された前記第1次スペックル・パターンと、前記第1次スペックル・パターンの1つの参照画像との間の1つの偏移を見つけることにより、三次元マップを導出するように、前記プロセッサが配されていることを特徴とする、請求項3に記載の装置。
  5. 1つまたは複数の前記画像中で獲得された前記被写体上の複数領域の前記第1次スペックル・パターンと、前記第1次スペックル・パターンの1つの参照画像との間で、各偏移を見つけることにより前記三次元マップを導き出すように、前記プロセッサが配されており、ここにおいてそれぞれの偏移が、前記領域と前記画像獲得装置との間のそれぞれの距離を示していることを特徴とする、請求項1に記載の装置。
  6. 前記画像獲得装置は前記照明装置から1つの既定空間を隔てて配置され、ここにおいて前記それぞれの偏移は、前記空間により決定される割合で、前記それぞれの距離に比例していることを特徴とする、請求項5に記載の装置。
  7. 前記照明装置により投影される前記第1次スペックル・パターンは、1つの特徴的な寸法を有するスペックルからなりここにおいて前記画像中の前記スペックルの前記寸法は、前記空間に依存する1つの許容誤差だけ像全域に渡って変化し、また前記空間は、前記許容誤差を1つの既定の範囲内に維持するように選択されることを特徴とする、請求項6に記載の装置。
  8. 前記プロセッサは、前記画像獲得装置中の歪曲の1つの係数モデルを用いて、前記それぞれの偏移前記三次元マップのそれぞれの座標に関連付けるように設定されることを特徴とする、請求項5に記載の装置。
  9. 前記プロセッサは、第1の1つの領域に対する第1の1つの偏移において、前記被写体の前記第1の領域と前記参照画像の対応する1つの領域における前記第1次スペックル・パターンの間で、最初の1つの適合発見することにより前記それぞれの偏移を発見し、また、前記第1の偏移に基づいて、前記第1の領域に隣接する画素の前記それぞれの偏移を見出すため1つの範囲拡張手続を適用するように設定されることを特徴とする、請求項5に記載の装置。
  10. 前記プロセッサは、前記被写体の三次元の1つの動きマッピングするため、前記被写体が動いている間に獲得された一連の画像を処理するように設定されることを特徴とする、請求項1〜9のいずれかに記載の装置。
  11. 前記被写体は、人間の体の一部分であり、前記三次元の動きは、前記人間の体の一部分により行われる1つの動作であり、ここにおいて前記プロセッサは、前記動作に応答して、1つのコンピュータ・アプリケーションに1つの入力を提供するために接続されることを特徴とする、請求項10に記載の装置。
  12. 前記照明装置は、前記三次元マッピング装置の1つの検出領域の全域で、前記拡散板により作られるスペックル・パターンの光強度対比の変動を減らすように配されている、1つのビーム形成装置からなることを特徴とする、請求項1〜9のいずれかに記載の装置。
  13. 前記ビーム形成装置は、1つの回折光学素子(DOE)からなることを特徴とする請求項12に記載の装置。
  14. 前記ビーム形成装置は、前記拡散板の1つのフーリエ面を形成するように配された1つのレンズからなりここにおいて前記回折光学素子(DOEは、前記フーリエ配置されることを特徴とする、請求項13に記載の装置。
  15. 前記ビーム形成装置は、前記拡散板から発せられる光の発散を減らすために配されていることを特徴とする、請求項12に記載の装置。
  16. 前記ビーム形成装置は、前記拡散板から発せられ、前記照明装置1つの光軸に直交する1つのを横切る光の強度を均一にするために配されていることを特徴とする、請求項12に記載の装置。
  17. 前記プロセッサは、1つの光相関器をからなることを特徴とする請求項1〜9のいずれかに記載の装置。
  18. 前記光相関器は、1つの参照スペックル・パターンを含む1つの回折光学素子(DOE)からなりここにおいて前記画像獲得装置は、前記被写体の三次元座標を示すそれぞれの相関ピークを発生させるため、前記被写体の複数のサブ画像前記DOE上に投影する1つの小型レンズ・アレイからなることを特徴とする請求項17に記載の装置。
  19. 前記コヒーレント光源は、1cm未満のコヒーレンス長を有することを特徴とする請求項1〜9のいずれかに記載の装置。
  20. 前記第1次スペックル・パターンは、特徴的な1つの寸法を有するスペックルからなりここにおいて前記照明装置は、前記コヒーレント光源と前記拡散板との間の距離を変えることにより、前記スペックルの前記特徴的な寸法を調節することができるように構成されていることを特徴とする請求項1〜9のいずれかに記載の装置。
  21. 1つの被写体上に1つの第1次スペックル・パターンを投影すために、1つの光源から拡散されたコヒーレント光の1つのビームで、前記被写体を照明するステップと、
    前記光源に対し、単一かつ固定の位置および角度から、前記被写体上の前記第1次スペックル・パターンの画像を獲得するステップと、
    前記被写体の1つの三次元マップを導き出すために、前記単一かつ固定角度で獲得された前記第1次スペックル・パターンの前記画像を処理するステップ
    からなることを特徴とする被写体の三次元マッピング方法。
  22. 前記画像を獲得するステップは、前記画像を獲得している間、前記光源に対して1つの固定した位置関係に支持される1つの画像獲得装置を用いて前記画像を獲得するステップからなることを特徴とする、請求項21に記載の方法。
  23. 前記画像獲得装置は、
    第1および第2の互いに直交する軸を規定する1つの直線パターン中に配された、1つの検出素子アレイを有し、
    ここにおいて前記光源は、1つの拡散板からなり
    前記画像を獲得するステップは、前記画像獲得装置1つの入射瞳と1つのスポットとを一直線に並べるステップからなりここにおいて前記スポットは1つのビームが前記第1軸に平行な1つの装置軸に沿って前記拡散板を通過する場所であることを特徴とする、請求項22に記載の方法。
  24. 前記画像を処理するステップは、前記第1軸上のみにおいて、1つまたは複数の画像中で獲得された前記第1次スペックル・パターンと、前記第1次スペックル・パターンの1つの参照画像との間の1つの偏移を見つけるステップからなることを特徴とする、請求項23に記載の方法。
  25. 前記画像を処理するステップは、1つまたは複数の画像中で獲得された前記被写体の複数領域上の前記第1次スペックル・パターンと、前記第1次スペックル・パターンの1つの参照画像との間で、それぞれの偏移を見つけるステップからなり、ここで、前記それぞれの偏移が、前記領域と前記画像獲得装置との間のそれぞれの距離を示していることを特徴とする、請求項21に記載の方法。
  26. 前記それぞれの偏移は、前記光源から固定的な位置にある1つの空間により決定される1つの割合で、前記それぞれの距離に比例していることを特徴とする、請求項25に記載の方法。
  27. 前記第1次スペックル・パターンは、特徴的な1つの寸法を有するスペックルからなりここにおいて前記画像中の前記スペックルの前記寸法は、前記空間に依存する1つの許容誤差だけ像全域に渡って変化し、
    前記画像を獲得するステップは、前記許容誤差が既定1つの範囲内に収まるように前記空間を選択するステップからなることを特徴とする、請求項26に記載の方法。
  28. 前記それぞれの偏移を見つけるステップは、前記画像獲得装置中の歪曲の1つの係数モデルを用いて、それぞれの偏移前記三次元マップのそれぞれの座標に関連付けるステップからなることを特徴とする、請求項25に記載の方法。
  29. 前記それぞれの偏移を見つけるステップは、
    第1の1つの領域に対する第1の1つの偏移において、前記被写体の前記第1の領域と前記参照画像の対応する1つの領域とにおける前記第1次スペックル・パターンの間で、最初の1つの適合発見することにより前記それぞれの偏移を発見するステップと、
    前記第1の偏移に基づいて、前記第1の領域に隣接する画素の前記それぞれの偏移を見出すため1つの範囲拡張手続を適用するステップと、からなることを特徴とする、請求項25に記載の方法
  30. 前記画像を処理するステップは、前記被写体の三次元の1つの動きマッピングするため、前記被写体が動いている間に獲得された一連の画像を処理するステップからなることを特徴とする、請求項21〜29のいずれかに記載の方法。
  31. 前記被写体は、人間の体の一部分であり、前記三次元の動きは、前記人間の体の一部分により行われる1つの動作であり、ここにおいて前記画像を処理するステップは、前記動作に応答して、1つのコンピュータ・アプリケーションに1つの入力を提供するステップからなることを特徴とする、請求項30に記載の方法。
  32. 前記被写体を照明するステップは、前記三次元マッピング装置の検出領域の全域で、前記光源により作られる前記スペックル・パターンの光強度対比の変動を減らすように前記ビームを形成するステップからなることを特徴とする、請求項21〜29のいずれかに記載の方法。
  33. 前記ビームを形成するステップは、前記ビームを1つの回折光学素子(DOE)を通過させステップからなることを特徴とする、請求項32に記載の方法。
  34. 前記光源は、1つの拡散板からなりここにおいて前記ビームを通過させるステップは、前記回折光学素子(DOE前記拡散板の1つのフーリエ面に配するステップからなることを特徴とする、請求項33に記載の方法。
  35. 前記ビームを形成するステップは、前記ビームの発散を減らすステップからなることを特徴とする、請求項32に記載の方法。
  36. 前記ビームを形成するステップは、前記光源の1つの光軸に直交する面を横切る前記ビームの強度を均一にするステップからなることを特徴とする、請求項32に記載の方法。
  37. 前記画像を処理するステップは、前記画像を1つの光相関器に適用すステップからなることを特徴とする、請求項21〜29のいずれかに記載の方法。
  38. 前記相関器は、1つの参照スペックル・パターンを含む1つの回折光学素子(DOE)からなりここにおいて前記画像を獲得するステップは、前記被写体の三次元座標を示すそれぞれの相関ピークを発生させるために、前記被写体の複数のサブ画像前記回折光学素子(DOE上に投影するステップからなることを特徴とする、請求項37に記載の方法。
  39. 前記コヒーレント光源は、1cm未満のコヒーレンス長を有することを特徴とする請求項21〜29のいずれかに記載の方法。
  40. 前記被写体を照明するステップは、前記第1次スペックル・パターンを生成するために、前記コヒーレント光源から前記1つの拡散板を通って前記光を通過させるステップからなりここにおいて前記第1次スペックル・パターンは、1つの特徴的な寸法を有するスペックルからなりまた前記方法は、前記コヒーレント光源と前記拡散板との間の距離を変えることにより、前記スペックルの前記特徴的な寸法を調節するステップからなることを特徴とする、請求項21〜29のいずれかに記載の方法。
  41. 1つの被写体上に1つの第1次スペックル・パターンを投影するよう配された1cm未満のコヒーレンス長を有する1つのコヒーレント光源と1つの拡散板とからなる1つの照明装置と、
    前記被写体上の前記第1次スペックル・パターン画像を獲得するように配された1つの画像獲得装置と、
    前記被写体の1つの三次元マップを導出するため、前記第1次スペックル・パターンの前記画像を処理するように接続された1つのプロセッサと
    を有することを特徴とする被写体の三次元マッピング装置。
  42. 前記コヒーレント光源の前記コヒーレンス長は0.5mm未満であることを特徴とする請求項41に記載の装置。
  43. 前記コヒーレント光源は、5°より大きい1つの発散を有することを特徴とする請求項41または42のいずれかに記載の装置。
  44. 前記第1次スペックル・パターンは、特徴的な1つの寸法を有するスペックルからなりここにおいて前記照明装置は、前記コヒーレント光源と前記拡散板との間の距離を変えることにより、前記スペックルの前記特徴的な寸法を調節することができるように構成されていることを特徴とする、請求項41または42のいずれかに記載の装置。
JP2008558981A 2006-03-14 2007-03-08 スペックル・パターンを用いた三次元検出 Active JP5174684B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
ILPCT/IL2006/000335 2006-03-14
PCT/IL2006/000335 WO2007043036A1 (en) 2005-10-11 2006-03-14 Method and system for object reconstruction
US78518706P 2006-03-24 2006-03-24
US60/785,187 2006-03-24
PCT/IL2007/000306 WO2007105205A2 (en) 2006-03-14 2007-03-08 Three-dimensional sensing using speckle patterns

Publications (3)

Publication Number Publication Date
JP2009531655A JP2009531655A (ja) 2009-09-03
JP2009531655A5 true JP2009531655A5 (ja) 2010-03-04
JP5174684B2 JP5174684B2 (ja) 2013-04-03

Family

ID=38509871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008558981A Active JP5174684B2 (ja) 2006-03-14 2007-03-08 スペックル・パターンを用いた三次元検出

Country Status (5)

Country Link
US (2) US8390821B2 (ja)
JP (1) JP5174684B2 (ja)
KR (1) KR101331543B1 (ja)
CN (1) CN101496033B (ja)
WO (1) WO2007105205A2 (ja)

Families Citing this family (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9330324B2 (en) * 2005-10-11 2016-05-03 Apple Inc. Error compensation in three-dimensional mapping
US20110096182A1 (en) * 2009-10-25 2011-04-28 Prime Sense Ltd Error Compensation in Three-Dimensional Mapping
US8390821B2 (en) 2005-10-11 2013-03-05 Primesense Ltd. Three-dimensional sensing using speckle patterns
EP1934945A4 (en) 2005-10-11 2016-01-20 Apple Inc METHOD AND SYSTEM FOR RECONSTRUCTING AN OBJECT
KR101408959B1 (ko) 2006-03-14 2014-07-02 프라임센스 엘티디. 삼차원 감지를 위한 깊이 가변 광 필드
CN101501442B (zh) * 2006-03-14 2014-03-19 普莱姆传感有限公司 三维传感的深度变化光场
CN101657825B (zh) * 2006-05-11 2014-02-19 普莱姆传感有限公司 根据深度图对人形进行建模
US8350847B2 (en) * 2007-01-21 2013-01-08 Primesense Ltd Depth mapping using multi-beam illumination
US8265793B2 (en) 2007-03-20 2012-09-11 Irobot Corporation Mobile robot for telecommunication
TWI433052B (zh) 2007-04-02 2014-04-01 Primesense Ltd 使用投影圖案之深度製圖
US8150142B2 (en) 2007-04-02 2012-04-03 Prime Sense Ltd. Depth mapping using projected patterns
US8494252B2 (en) 2007-06-19 2013-07-23 Primesense Ltd. Depth mapping using optical elements having non-uniform focal characteristics
FR2921719B1 (fr) * 2007-09-28 2010-03-12 Noomeo Procede de construction d'une image de synthese d'une surface tridimensionnelle d'un objet physique
DE102007058590B4 (de) * 2007-12-04 2010-09-16 Sirona Dental Systems Gmbh Aufnahmeverfahren für ein Bild eines Aufnahmeobjekts und Aufnahmevorrichtung
US8933876B2 (en) 2010-12-13 2015-01-13 Apple Inc. Three dimensional user interface session control
US8166421B2 (en) 2008-01-14 2012-04-24 Primesense Ltd. Three-dimensional user interface
US9035876B2 (en) * 2008-01-14 2015-05-19 Apple Inc. Three-dimensional user interface session control
US8384997B2 (en) * 2008-01-21 2013-02-26 Primesense Ltd Optical pattern projection
CN101984767B (zh) 2008-01-21 2014-01-29 普莱姆森斯有限公司 用于使零级减少的光学设计
US8456517B2 (en) 2008-07-09 2013-06-04 Primesense Ltd. Integrated processor for 3D mapping
GB2463724B (en) * 2008-09-26 2011-05-04 Cybula Ltd Forming 3D images
FR2940423B1 (fr) * 2008-12-22 2011-05-27 Noomeo Dispositif de numerisation tridimensionnelle a reconstruction dense
US8462207B2 (en) 2009-02-12 2013-06-11 Primesense Ltd. Depth ranging with Moiré patterns
US8786682B2 (en) 2009-03-05 2014-07-22 Primesense Ltd. Reference image techniques for three-dimensional sensing
US8717417B2 (en) 2009-04-16 2014-05-06 Primesense Ltd. Three-dimensional mapping and imaging
DK2442720T3 (en) 2009-06-17 2016-12-19 3Shape As Focus scan devices
US9582889B2 (en) 2009-07-30 2017-02-28 Apple Inc. Depth mapping based on pattern matching and stereoscopic information
US8565479B2 (en) * 2009-08-13 2013-10-22 Primesense Ltd. Extraction of skeletons from 3D maps
CN102022979A (zh) 2009-09-21 2011-04-20 鸿富锦精密工业(深圳)有限公司 三维光学感测***
US8867820B2 (en) * 2009-10-07 2014-10-21 Microsoft Corporation Systems and methods for removing a background of an image
US8564534B2 (en) 2009-10-07 2013-10-22 Microsoft Corporation Human tracking system
US7961910B2 (en) 2009-10-07 2011-06-14 Microsoft Corporation Systems and methods for tracking a model
US8963829B2 (en) 2009-10-07 2015-02-24 Microsoft Corporation Methods and systems for determining and tracking extremities of a target
JP5588310B2 (ja) 2009-11-15 2014-09-10 プライムセンス リミテッド ビームモニタ付き光学プロジェクタ
US8830227B2 (en) 2009-12-06 2014-09-09 Primesense Ltd. Depth-based gain control
JP4783456B2 (ja) * 2009-12-22 2011-09-28 株式会社東芝 映像再生装置及び映像再生方法
US20110188054A1 (en) * 2010-02-02 2011-08-04 Primesense Ltd Integrated photonics module for optical projection
US20110187878A1 (en) * 2010-02-02 2011-08-04 Primesense Ltd. Synchronization of projected illumination with rolling shutter of image sensor
US8786757B2 (en) 2010-02-23 2014-07-22 Primesense Ltd. Wideband ambient light rejection
US8787663B2 (en) 2010-03-01 2014-07-22 Primesense Ltd. Tracking body parts by combined color image and depth processing
US8982182B2 (en) * 2010-03-01 2015-03-17 Apple Inc. Non-uniform spatial resource allocation for depth mapping
US9535493B2 (en) * 2010-04-13 2017-01-03 Nokia Technologies Oy Apparatus, method, computer program and user interface
US8918213B2 (en) 2010-05-20 2014-12-23 Irobot Corporation Mobile human interface robot
WO2011146259A2 (en) 2010-05-20 2011-11-24 Irobot Corporation Mobile human interface robot
US9014848B2 (en) 2010-05-20 2015-04-21 Irobot Corporation Mobile robot system
US8935005B2 (en) 2010-05-20 2015-01-13 Irobot Corporation Operating a mobile robot
US9400503B2 (en) 2010-05-20 2016-07-26 Irobot Corporation Mobile human interface robot
US8594425B2 (en) 2010-05-31 2013-11-26 Primesense Ltd. Analysis of three-dimensional scenes
US8670029B2 (en) * 2010-06-16 2014-03-11 Microsoft Corporation Depth camera illuminator with superluminescent light-emitting diode
JP5791131B2 (ja) 2010-07-20 2015-10-07 アップル インコーポレイテッド 自然な相互作用のための相互作用的現実拡張
US9201501B2 (en) 2010-07-20 2015-12-01 Apple Inc. Adaptive projector
CN103097925B (zh) 2010-08-06 2016-04-13 旭硝子株式会社 衍射光学元件和计测装置
JP5834602B2 (ja) 2010-08-10 2015-12-24 旭硝子株式会社 回折光学素子及び計測装置
US9036158B2 (en) 2010-08-11 2015-05-19 Apple Inc. Pattern projector
US9098931B2 (en) 2010-08-11 2015-08-04 Apple Inc. Scanning projectors and image capture modules for 3D mapping
US9348111B2 (en) 2010-08-24 2016-05-24 Apple Inc. Automatic detection of lens deviations
US8582867B2 (en) 2010-09-16 2013-11-12 Primesense Ltd Learning-based pose estimation from depth maps
US8959013B2 (en) 2010-09-27 2015-02-17 Apple Inc. Virtual keyboard for a non-tactile three dimensional user interface
IL208568B (en) * 2010-10-07 2018-06-28 Elbit Systems Ltd Mapping, discovering and tracking objects in an external arena by using active vision
JP5760391B2 (ja) 2010-11-02 2015-08-12 旭硝子株式会社 回折光学素子及び計測装置
KR20120046973A (ko) * 2010-11-03 2012-05-11 삼성전자주식회사 움직임 정보 생성 방법 및 장치
US9066087B2 (en) 2010-11-19 2015-06-23 Apple Inc. Depth mapping using time-coded illumination
US9167138B2 (en) 2010-12-06 2015-10-20 Apple Inc. Pattern projection and imaging using lens arrays
US8872762B2 (en) 2010-12-08 2014-10-28 Primesense Ltd. Three dimensional user interface cursor control
EP2466560A1 (en) 2010-12-20 2012-06-20 Axis AB Method and system for monitoring the accessibility of an emergency exit
DE112011104645T5 (de) 2010-12-30 2013-10-10 Irobot Corp. Mobiler Mensch-Schnittstellen-Roboter
US8930019B2 (en) 2010-12-30 2015-01-06 Irobot Corporation Mobile human interface robot
US8717488B2 (en) 2011-01-18 2014-05-06 Primesense Ltd. Objective optics with interference filter
CN106125921B (zh) 2011-02-09 2019-01-15 苹果公司 3d映射环境中的凝视检测
US9052512B2 (en) 2011-03-03 2015-06-09 Asahi Glass Company, Limited Diffractive optical element and measuring apparatus
JP5948948B2 (ja) * 2011-03-03 2016-07-06 旭硝子株式会社 回折光学素子及び計測装置
JP5948949B2 (ja) * 2011-06-28 2016-07-06 旭硝子株式会社 回折光学素子及び計測装置
US9030528B2 (en) 2011-04-04 2015-05-12 Apple Inc. Multi-zone imaging sensor and lens array
CN102760234B (zh) 2011-04-14 2014-08-20 财团法人工业技术研究院 深度图像采集装置、***及其方法
US9024872B2 (en) 2011-04-28 2015-05-05 Sharp Kabushiki Kaisha Head-mounted display
WO2012147495A1 (ja) * 2011-04-28 2012-11-01 三洋電機株式会社 情報取得装置および物体検出装置
EP2530442A1 (en) 2011-05-30 2012-12-05 Axis AB Methods and apparatus for thermographic measurements.
JP5926500B2 (ja) * 2011-06-07 2016-05-25 ソニー株式会社 情報処理装置、情報処理方法およびプログラム
JP5298161B2 (ja) * 2011-06-13 2013-09-25 シャープ株式会社 操作装置及び画像形成装置
US8881051B2 (en) 2011-07-05 2014-11-04 Primesense Ltd Zoom-based gesture user interface
US9377865B2 (en) 2011-07-05 2016-06-28 Apple Inc. Zoom-based gesture user interface
US9459758B2 (en) 2011-07-05 2016-10-04 Apple Inc. Gesture-based interface with enhanced features
US8869073B2 (en) * 2011-07-28 2014-10-21 Hewlett-Packard Development Company, L.P. Hand pose interaction
US8749796B2 (en) 2011-08-09 2014-06-10 Primesense Ltd. Projectors of structured light
US8908277B2 (en) 2011-08-09 2014-12-09 Apple Inc Lens array projector
US8971572B1 (en) 2011-08-12 2015-03-03 The Research Foundation For The State University Of New York Hand pointing estimation for human computer interaction
US9030498B2 (en) 2011-08-15 2015-05-12 Apple Inc. Combining explicit select gestures and timeclick in a non-tactile three dimensional user interface
US9218063B2 (en) 2011-08-24 2015-12-22 Apple Inc. Sessionless pointing user interface
US9122311B2 (en) 2011-08-24 2015-09-01 Apple Inc. Visual feedback for tactile and non-tactile user interfaces
US9002099B2 (en) 2011-09-11 2015-04-07 Apple Inc. Learning-based estimation of hand and finger pose
FR2980292B1 (fr) 2011-09-16 2013-10-11 Prynel Procede et systeme d'acquisition et de traitement d'images pour la detection du mouvement
US9462210B2 (en) 2011-11-04 2016-10-04 Remote TelePointer, LLC Method and system for user interface for interactive devices using a mobile device
DE102011121696A1 (de) * 2011-12-16 2013-06-20 Friedrich-Schiller-Universität Jena Verfahren zur 3D-Messung von tiefenlimitierten Objekten
EP2611169A1 (fr) 2011-12-27 2013-07-03 Thomson Licensing Dispositif d'acquisition d'images stereoscopiques
EP2618316B1 (de) 2012-01-23 2018-08-15 Novomatic AG Glücksrad mit Gestensteuerung
JP5985661B2 (ja) 2012-02-15 2016-09-06 アップル インコーポレイテッド 走査深度エンジン
US10600235B2 (en) 2012-02-23 2020-03-24 Charles D. Huston System and method for capturing and sharing a location based experience
US10937239B2 (en) 2012-02-23 2021-03-02 Charles D. Huston System and method for creating an environment and for sharing an event
EP2817785B1 (en) * 2012-02-23 2019-05-15 Charles D. Huston System and method for creating an environment and for sharing a location based experience in an environment
US9229534B2 (en) 2012-02-28 2016-01-05 Apple Inc. Asymmetric mapping for tactile and non-tactile user interfaces
US8958911B2 (en) 2012-02-29 2015-02-17 Irobot Corporation Mobile robot
KR101898490B1 (ko) * 2012-02-29 2018-09-13 엘지전자 주식회사 홀로그래픽 디스플레이 장치 및 3차원 동영상의 중복성을 이용한 홀로그램 생성 방법
US9201237B2 (en) 2012-03-22 2015-12-01 Apple Inc. Diffraction-based sensing of mirror position
US9377863B2 (en) 2012-03-26 2016-06-28 Apple Inc. Gaze-enhanced virtual touchscreen
US9047507B2 (en) 2012-05-02 2015-06-02 Apple Inc. Upper-body skeleton extraction from depth maps
CN103424077A (zh) * 2012-05-23 2013-12-04 联想(北京)有限公司 运动检测装置、检测方法和电子设备
CN102681183B (zh) * 2012-05-25 2015-01-07 合肥鼎臣光电科技有限责任公司 基于透镜阵列的双向三维成像和裸眼三维显示***
US8896594B2 (en) * 2012-06-30 2014-11-25 Microsoft Corporation Depth sensing with depth-adaptive illumination
WO2014003796A1 (en) * 2012-06-30 2014-01-03 Hewlett-Packard Development Company, L.P. Virtual hand based on combined data
CN104602608B (zh) 2012-08-27 2019-01-01 皇家飞利浦有限公司 基于光学3d场景检测与解释的患者特异性且自动的x射线***调节
US9019267B2 (en) 2012-10-30 2015-04-28 Apple Inc. Depth mapping with enhanced resolution
US9661304B2 (en) * 2012-10-31 2017-05-23 Ricoh Company, Ltd. Pre-calculation of sine waves for pixel values
DE102012110460A1 (de) * 2012-10-31 2014-04-30 Audi Ag Verfahren zum Eingeben eines Steuerbefehls für eine Komponente eines Kraftwagens
KR102065687B1 (ko) 2012-11-01 2020-02-11 아이캠, 엘엘씨 무선 손목 컴퓨팅과 3d 영상화, 매핑, 네트워킹 및 인터페이스를 위한 제어 장치 및 방법
US9152234B2 (en) 2012-12-02 2015-10-06 Apple Inc. Detecting user intent to remove a pluggable peripheral device
NL2010213C2 (en) 2013-01-31 2014-08-04 Lely Patent Nv Camera system, animal related system therewith, and method to create 3d camera images.
US9217665B2 (en) 2013-01-31 2015-12-22 Hewlett Packard Enterprise Development Lp Viewing-angle imaging using lenslet array
JP6044403B2 (ja) * 2013-03-18 2016-12-14 富士通株式会社 撮像装置、撮像方法、および撮像プログラム
US10268885B2 (en) 2013-04-15 2019-04-23 Microsoft Technology Licensing, Llc Extracting true color from a color and infrared sensor
CN103268608B (zh) * 2013-05-17 2015-12-02 清华大学 基于近红外激光散斑的深度估计方法及装置
CN105705962B (zh) * 2013-06-06 2019-02-01 新加坡恒立私人有限公司 具有主动照明的传感器***
CN105358063B (zh) 2013-06-19 2018-11-30 皇家飞利浦有限公司 具有动态射束整形器的成像器的校准
CN109755859B (zh) 2013-06-19 2021-12-17 苹果公司 集成结构化光投影仪
US9208566B2 (en) 2013-08-09 2015-12-08 Microsoft Technology Licensing, Llc Speckle sensing for motion tracking
WO2015030127A1 (ja) 2013-09-02 2015-03-05 旭硝子株式会社 回折光学素子、投影装置及び計測装置
TWI485361B (zh) * 2013-09-11 2015-05-21 Univ Nat Taiwan 三維形貌輪廓量測裝置及其方法
KR102159996B1 (ko) * 2013-12-16 2020-09-25 삼성전자주식회사 이벤트 필터링 장치 및 이를 이용한 동작 인식 장치
US9528906B1 (en) 2013-12-19 2016-12-27 Apple Inc. Monitoring DOE performance using total internal reflection
US9523771B2 (en) * 2014-01-13 2016-12-20 Facebook, Inc. Sub-resolution optical detection
WO2015118120A1 (en) 2014-02-07 2015-08-13 3Shape A/S Detecting tooth shade
WO2015148604A1 (en) 2014-03-25 2015-10-01 Massachusetts Institute Of Technology Space-time modulated active 3d imager
WO2015152829A1 (en) 2014-04-03 2015-10-08 Heptagon Micro Optics Pte. Ltd. Structured-stereo imaging assembly including separate imagers for different wavelengths
US10455212B1 (en) * 2014-08-25 2019-10-22 X Development Llc Projected pattern motion/vibration for depth sensing
USD733141S1 (en) 2014-09-10 2015-06-30 Faro Technologies, Inc. Laser scanner
US9841496B2 (en) 2014-11-21 2017-12-12 Microsoft Technology Licensing, Llc Multiple pattern illumination optics for time of flight system
US9881235B1 (en) 2014-11-21 2018-01-30 Mahmoud Narimanzadeh System, apparatus, and method for determining physical dimensions in digital images
TWI564754B (zh) * 2014-11-24 2017-01-01 圓剛科技股份有限公司 空間運動感測器與空間運動感測方法
EP3234685B1 (en) * 2014-12-18 2021-02-03 Facebook Technologies, LLC System, device and method for providing user interface for a virtual reality environment
WO2016103271A2 (en) 2014-12-27 2016-06-30 Guardian Optical Technologies Ltd. System and method for detecting surface vibrations
FI126498B (en) * 2014-12-29 2017-01-13 Helmee Imaging Oy Optical measurement system
US10186034B2 (en) 2015-01-20 2019-01-22 Ricoh Company, Ltd. Image processing apparatus, system, image processing method, calibration method, and computer-readable recording medium
US9958758B2 (en) * 2015-01-21 2018-05-01 Microsoft Technology Licensing, Llc Multiple exposure structured light pattern
US10509147B2 (en) 2015-01-29 2019-12-17 ams Sensors Singapore Pte. Ltd Apparatus for producing patterned illumination using arrays of light sources and lenses
US9817159B2 (en) 2015-01-31 2017-11-14 Microsoft Technology Licensing, Llc Structured light pattern generation
JP6575795B2 (ja) 2015-03-11 2019-09-18 パナソニックIpマネジメント株式会社 人感検知システム
US9530215B2 (en) * 2015-03-20 2016-12-27 Qualcomm Incorporated Systems and methods for enhanced depth map retrieval for moving objects using active sensing technology
US10001583B2 (en) 2015-04-06 2018-06-19 Heptagon Micro Optics Pte. Ltd. Structured light projection using a compound patterned mask
US9525863B2 (en) 2015-04-29 2016-12-20 Apple Inc. Time-of-flight depth mapping with flexible scan pattern
KR101892168B1 (ko) * 2015-05-13 2018-08-27 페이스북, 인크. 반사도 맵 표현을 이용한 깊이 맵 표현의 증강
US10722200B2 (en) * 2015-06-04 2020-07-28 Siemens Healthcare Gmbh Apparatus and methods for a projection display device on X-ray imaging devices
JP6566768B2 (ja) * 2015-07-30 2019-08-28 キヤノン株式会社 情報処理装置、情報処理方法、プログラム
US10012831B2 (en) 2015-08-03 2018-07-03 Apple Inc. Optical monitoring of scan parameters
US10043279B1 (en) 2015-12-07 2018-08-07 Apple Inc. Robust detection and classification of body parts in a depth map
US11057608B2 (en) 2016-01-04 2021-07-06 Qualcomm Incorporated Depth map generation in structured light system
JP6668763B2 (ja) 2016-01-13 2020-03-18 セイコーエプソン株式会社 画像認識装置、画像認識方法および画像認識ユニット
JP6668764B2 (ja) 2016-01-13 2020-03-18 セイコーエプソン株式会社 画像認識装置、画像認識方法および画像認識ユニット
JP6631261B2 (ja) 2016-01-14 2020-01-15 セイコーエプソン株式会社 画像認識装置、画像認識方法および画像認識ユニット
US10154234B2 (en) * 2016-03-16 2018-12-11 Omnivision Technologies, Inc. Image sensor with peripheral 3A-control sensors and associated imaging system
KR101745651B1 (ko) * 2016-03-29 2017-06-09 전자부품연구원 손 제스처 인식 시스템 및 방법
US10489924B2 (en) 2016-03-30 2019-11-26 Samsung Electronics Co., Ltd. Structured light generator and object recognition apparatus including the same
JP6607121B2 (ja) 2016-03-30 2019-11-20 セイコーエプソン株式会社 画像認識装置、画像認識方法および画像認識ユニット
US10474297B2 (en) 2016-07-20 2019-11-12 Ams Sensors Singapore Pte. Ltd. Projecting a structured light pattern onto a surface and detecting and responding to interactions with the same
US10241244B2 (en) 2016-07-29 2019-03-26 Lumentum Operations Llc Thin film total internal reflection diffraction grating for single polarization or dual polarization
US10481740B2 (en) 2016-08-01 2019-11-19 Ams Sensors Singapore Pte. Ltd. Projecting a structured light pattern onto a surface and detecting and responding to interactions with the same
US10775508B1 (en) * 2016-08-19 2020-09-15 Apple Inc. Remote sensing device
US10073004B2 (en) 2016-09-19 2018-09-11 Apple Inc. DOE defect monitoring utilizing total internal reflection
US10366278B2 (en) 2016-09-20 2019-07-30 Apple Inc. Curvature-based face detector
TWI587206B (zh) * 2016-11-24 2017-06-11 財團法人工業技術研究院 互動顯示裝置及系統
US10499039B2 (en) 2016-12-15 2019-12-03 Egismos Technology Corporation Path detection system and path detection method generating laser pattern by diffractive optical element
US10158845B2 (en) 2017-01-18 2018-12-18 Facebook Technologies, Llc Tileable structured light projection for wide field-of-view depth sensing
US10620447B2 (en) 2017-01-19 2020-04-14 Cognex Corporation System and method for reduced-speckle laser line generation
CN110573917B (zh) * 2017-04-24 2022-08-23 奇跃公司 跟踪反向散射的激光斑点图案的光流
WO2018216575A1 (ja) 2017-05-26 2018-11-29 Agc株式会社 回折光学素子、投影装置及び計測装置
US11494897B2 (en) 2017-07-07 2022-11-08 William F. WILEY Application to determine reading/working distance
US10527711B2 (en) 2017-07-10 2020-01-07 Aurora Flight Sciences Corporation Laser speckle system and method for an aircraft
JP6856784B2 (ja) * 2017-08-31 2021-04-14 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 固体光検出及び測距(lidar)システム、固体光検出及び測距(lidar)分解能を改善するためのシステム及び方法
WO2019041274A1 (en) 2017-08-31 2019-03-07 Sz Dji Technology Co. , Ltd. SEMICONDUCTOR LIGHT DISTANCE LIDAR DETECTION AND ESTIMATING SYSTEM SYSTEM AND METHOD FOR IMPROVING SEMICONDUCTOR LIGHT DISTANCE DETECTION AND LODAR ESTIMATION ESTIMATION
WO2019079790A1 (en) 2017-10-21 2019-04-25 Eyecam, Inc ADAPTIVE GRAPHIC USER INTERFACE SYSTEM
JP6970376B2 (ja) 2017-12-01 2021-11-24 オムロン株式会社 画像処理システム、及び画像処理方法
US10310281B1 (en) 2017-12-05 2019-06-04 K Laser Technology, Inc. Optical projector with off-axis diffractive element
US10545457B2 (en) 2017-12-05 2020-01-28 K Laser Technology, Inc. Optical projector with off-axis diffractive element and conjugate images
US10317684B1 (en) 2018-01-24 2019-06-11 K Laser Technology, Inc. Optical projector with on axis hologram and multiple beam splitter
CN110161786B (zh) 2018-02-12 2021-08-31 深圳富泰宏精密工业有限公司 光投射模块、三维影像感测装置及其感测方法
CN108663800B (zh) * 2018-04-16 2021-03-19 华东交通大学 光学加密与解密方法、装置及***
US11422292B1 (en) 2018-06-10 2022-08-23 Apple Inc. Super-blazed diffractive optical elements with sub-wavelength structures
CN115390173A (zh) 2018-06-11 2022-11-25 Agc株式会社 衍射光学元件、投影装置及计测装置
CN110619996B (zh) * 2018-06-20 2022-07-08 株式会社村田制作所 电感器及其制造方法
US11675114B2 (en) 2018-07-23 2023-06-13 Ii-Vi Delaware, Inc. Monolithic structured light projector
DE102018129143B4 (de) * 2018-11-20 2021-06-17 Carl Zeiss Industrielle Messtechnik Gmbh Variabler messobjektabhängiger Kameraaufbau und Kalibrierung davon
CN109541875B (zh) * 2018-11-24 2024-02-13 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
WO2020136658A1 (en) * 2018-12-28 2020-07-02 Guardian Optical Technologies Ltd Systems, devices and methods for vehicle post-crash support
US11508181B2 (en) * 2019-02-18 2022-11-22 Fingerprint Cards Anacatum Ip Ab Optical biometric imaging device and method of operating an optical biometric imaging device
US11029408B2 (en) * 2019-04-03 2021-06-08 Varjo Technologies Oy Distance-imaging system and method of distance imaging
US10509128B1 (en) 2019-04-12 2019-12-17 K Laser Technology, Inc. Programmable pattern optical projector for depth detection
US11681019B2 (en) 2019-09-18 2023-06-20 Apple Inc. Optical module with stray light baffle
US11506762B1 (en) 2019-09-24 2022-11-22 Apple Inc. Optical module comprising an optical waveguide with reference light path
GB2589121A (en) * 2019-11-21 2021-05-26 Bae Systems Plc Imaging apparatus
CN111650759A (zh) * 2019-12-31 2020-09-11 北京大学 近红外光斑投影的多焦距微透镜阵列遥感光场成像***
EP4090244A4 (en) * 2020-01-17 2024-01-17 Antishock Tech Ltd SYSTEM AND METHOD FOR MONITORING FLUID MANAGEMENT IN A PATIENT
US11754767B1 (en) 2020-03-05 2023-09-12 Apple Inc. Display with overlaid waveguide
US11843221B2 (en) * 2020-03-30 2023-12-12 Namuga, Co., Ltd. Light source module for emitting high density beam and method for controlling the same
EP4171379A1 (en) * 2020-06-30 2023-05-03 Kneedly AB Solution for determination of supraphysiological body joint movements
EP3993385A1 (en) 2020-10-29 2022-05-04 Universitat de València A multiperspective photography camera device
CN114255233B (zh) * 2022-03-01 2022-05-31 合肥的卢深视科技有限公司 散斑图的质量评价方法、装置、电子设备和存储介质

Family Cites Families (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2951207A1 (de) * 1978-12-26 1980-07-10 Canon Kk Verfahren zur optischen herstellung einer streuplatte
US4542376A (en) * 1983-11-03 1985-09-17 Burroughs Corporation System for electronically displaying portions of several different images on a CRT screen through respective prioritized viewports
JPS6079108U (ja) * 1983-11-08 1985-06-01 オムロン株式会社 スペツクル距離計
JPH0762869B2 (ja) 1986-03-07 1995-07-05 日本電信電話株式会社 パタ−ン投影による位置形状計測方法
US4843568A (en) * 1986-04-11 1989-06-27 Krueger Myron W Real time perception of and response to the actions of an unencumbered participant/user
JPH0615968B2 (ja) * 1986-08-11 1994-03-02 伍良 松本 立体形状測定装置
JP2714152B2 (ja) * 1989-06-28 1998-02-16 古野電気株式会社 物体形状測定方法
US5075562A (en) * 1990-09-20 1991-12-24 Eastman Kodak Company Method and apparatus for absolute Moire distance measurements using a grating printed on or attached to a surface
GB9116151D0 (en) 1991-07-26 1991-09-11 Isis Innovation Three-dimensional vision system
US5483261A (en) * 1992-02-14 1996-01-09 Itu Research, Inc. Graphical input controller and method with rear screen image detection
EP0559978B1 (en) * 1992-03-12 1998-08-05 International Business Machines Corporation Image processing method
US5636025A (en) * 1992-04-23 1997-06-03 Medar, Inc. System for optically measuring the surface contour of a part using more fringe techniques
JP3353365B2 (ja) * 1993-03-18 2002-12-03 静岡大学長 変位および変位速度測定装置
US5856871A (en) * 1993-08-18 1999-01-05 Applied Spectral Imaging Ltd. Film thickness mapping using interferometric spectral imaging
WO1996007939A1 (en) * 1994-09-05 1996-03-14 Mikoh Technology Limited Diffraction surfaces and methods for the manufacture thereof
US6041140A (en) * 1994-10-04 2000-03-21 Synthonics, Incorporated Apparatus for interactive image correlation for three dimensional image production
JPH08186845A (ja) 1994-12-27 1996-07-16 Nobuaki Yanagisawa 焦点距離制御式立体テレビ
US5630043A (en) * 1995-05-11 1997-05-13 Cirrus Logic, Inc. Animated texture map apparatus and method for 3-D image displays
IL114278A (en) * 1995-06-22 2010-06-16 Microsoft Internat Holdings B Camera and method
CA2227183A1 (en) * 1995-07-18 1997-02-06 Kevin G. Harding Moire interferometry system and method with extended imaging depth
JPH09261535A (ja) * 1996-03-25 1997-10-03 Sharp Corp 撮像装置
DE19638727A1 (de) 1996-09-12 1998-03-19 Ruedger Dipl Ing Rubbert Verfahren zur Erhöhung der Signifikanz der dreidimensionalen Vermessung von Objekten
JP3402138B2 (ja) * 1996-09-27 2003-04-28 株式会社日立製作所 液晶表示装置
IL119341A (en) * 1996-10-02 1999-09-22 Univ Ramot Phase-only filter for generating an arbitrary illumination pattern
IL119831A (en) 1996-12-15 2002-12-01 Cognitens Ltd A device and method for three-dimensional reconstruction of the surface geometry of an object
JP2001507133A (ja) * 1996-12-20 2001-05-29 ライフェフ/エックス・ネットワークス・インク 高速3dイメージパラメータ表示装置および方法
US5838428A (en) * 1997-02-28 1998-11-17 United States Of America As Represented By The Secretary Of The Navy System and method for high resolution range imaging with split light source and pattern mask
JPH10327433A (ja) 1997-05-23 1998-12-08 Minolta Co Ltd 合成画像の表示装置
US6008813A (en) * 1997-08-01 1999-12-28 Mitsubishi Electric Information Technology Center America, Inc. (Ita) Real-time PC based volume rendering system
DE19736169A1 (de) 1997-08-20 1999-04-15 Fhu Hochschule Fuer Technik Verfahren zur Verformungs- oder Schwingungsmessung mittels elektronischer Speckle-Pattern-Interferometrie
US6101269A (en) * 1997-12-19 2000-08-08 Lifef/X Networks, Inc. Apparatus and method for rapid 3D image parametrization
US6438272B1 (en) 1997-12-31 2002-08-20 The Research Foundation Of State University Of Ny Method and apparatus for three dimensional surface contouring using a digital video projection system
DE19815201A1 (de) * 1998-04-04 1999-10-07 Link Johann & Ernst Gmbh & Co Meßanordnung zur Erfassung von Dimensionen von Prüflingen, vorzugsweise von Hohlkörpern, insbesondere von Bohrungen in Werkstücken, sowie Verfahren zur Messung solcher Dimensionen
US6731391B1 (en) * 1998-05-13 2004-05-04 The Research Foundation Of State University Of New York Shadow moire surface measurement using Talbot effect
DE19821611A1 (de) * 1998-05-14 1999-11-18 Syrinx Med Tech Gmbh Verfahren zur Erfassung der räumlichen Struktur einer dreidimensionalen Oberfläche
GB2352901A (en) 1999-05-12 2001-02-07 Tricorder Technology Plc Rendering three dimensional representations utilising projected light patterns
US6377700B1 (en) 1998-06-30 2002-04-23 Intel Corporation Method and apparatus for capturing stereoscopic images using image sensors
JP3678022B2 (ja) 1998-10-23 2005-08-03 コニカミノルタセンシング株式会社 3次元入力装置
US6084712A (en) * 1998-11-03 2000-07-04 Dynamic Measurement And Inspection,Llc Three dimensional imaging using a refractive optic design
US8965898B2 (en) 1998-11-20 2015-02-24 Intheplay, Inc. Optimizations for live event, real-time, 3D object tracking
US6759646B1 (en) * 1998-11-24 2004-07-06 Intel Corporation Color interpolation for a four color mosaic pattern
JP2001166810A (ja) * 1999-02-19 2001-06-22 Sanyo Electric Co Ltd 立体モデル提供装置及び方法
CN2364507Y (zh) * 1999-03-18 2000-02-16 香港生产力促进局 小型非接触对称输入式三维外形扫描头
US6259561B1 (en) * 1999-03-26 2001-07-10 The University Of Rochester Optical system for diffusing light
CN1159566C (zh) * 1999-05-14 2004-07-28 北京三维世界科技有限公司 三维成像***
US6751344B1 (en) * 1999-05-28 2004-06-15 Champion Orthotic Investments, Inc. Enhanced projector system for machine vision
US6512385B1 (en) * 1999-07-26 2003-01-28 Paul Pfaff Method for testing a device under test including the interference of two beams
US6268923B1 (en) * 1999-10-07 2001-07-31 Integral Vision, Inc. Optical method and system for measuring three-dimensional surface topography of an object having a surface contour
JP2001141430A (ja) 1999-11-16 2001-05-25 Fuji Photo Film Co Ltd 画像撮像装置及び画像処理装置
LT4842B (lt) * 1999-12-10 2001-09-25 Uab "Geola" Hologramų spausdinimo būdas ir įrenginys
US6301059B1 (en) * 2000-01-07 2001-10-09 Lucent Technologies Inc. Astigmatic compensation for an anamorphic optical system
US6937348B2 (en) * 2000-01-28 2005-08-30 Genex Technologies, Inc. Method and apparatus for generating structural pattern illumination
US6700669B1 (en) 2000-01-28 2004-03-02 Zheng J. Geng Method and system for three-dimensional imaging using light pattern having multiple sub-patterns
JP4560869B2 (ja) * 2000-02-07 2010-10-13 ソニー株式会社 メガネなし表示システムおよびバックライトシステム
JP4265076B2 (ja) * 2000-03-31 2009-05-20 沖電気工業株式会社 多画角カメラ、及び自動撮影装置
KR100355718B1 (ko) * 2000-06-10 2002-10-11 주식회사 메디슨 스티어링이 가능한 프로브를 사용한 3차원 초음파 영상시스템 및 영상 형성 방법
US6810135B1 (en) * 2000-06-29 2004-10-26 Trw Inc. Optimized human presence detection through elimination of background interference
TW527518B (en) * 2000-07-14 2003-04-11 Massachusetts Inst Technology Method and system for high resolution, ultra fast, 3-D imaging
US7227526B2 (en) * 2000-07-24 2007-06-05 Gesturetek, Inc. Video-based image control system
US6686921B1 (en) * 2000-08-01 2004-02-03 International Business Machines Corporation Method and apparatus for acquiring a set of consistent image maps to represent the color of the surface of an object
US6754370B1 (en) * 2000-08-14 2004-06-22 The Board Of Trustees Of The Leland Stanford Junior University Real-time structured light range scanning of moving scenes
US6639684B1 (en) 2000-09-13 2003-10-28 Nextengine, Inc. Digitizer using intensity gradient to image features of three-dimensional objects
US6813440B1 (en) * 2000-10-10 2004-11-02 The Hong Kong Polytechnic University Body scanner
JP3689720B2 (ja) 2000-10-16 2005-08-31 住友大阪セメント株式会社 三次元形状測定装置
JP2002152776A (ja) 2000-11-09 2002-05-24 Nippon Telegr & Teleph Corp <Ntt> 距離画像符号化方法及び装置、並びに、距離画像復号化方法及び装置
JP2002191058A (ja) * 2000-12-20 2002-07-05 Olympus Optical Co Ltd 3次元画像取得装置および3次元画像取得方法
JP2002213931A (ja) 2001-01-17 2002-07-31 Fuji Xerox Co Ltd 3次元形状計測装置および3次元形状計測方法
US6841780B2 (en) * 2001-01-19 2005-01-11 Honeywell International Inc. Method and apparatus for detecting objects
JP2002365023A (ja) * 2001-06-08 2002-12-18 Koji Okamoto 液面計測装置及び方法
WO2003007053A2 (en) * 2001-07-13 2003-01-23 Mems Optical, Inc. Autosteroscopic display with rotated microlens-array and method of displaying multidimensional images, especially color images
US6741251B2 (en) * 2001-08-16 2004-05-25 Hewlett-Packard Development Company, L.P. Method and apparatus for varying focus in a scene
US7340077B2 (en) * 2002-02-15 2008-03-04 Canesta, Inc. Gesture recognition system using depth perceptive sensors
US7369685B2 (en) * 2002-04-05 2008-05-06 Identix Corporation Vision-based operating method and system
US7811825B2 (en) 2002-04-19 2010-10-12 University Of Washington System and method for processing specimens and images for optical tomography
US7385708B2 (en) * 2002-06-07 2008-06-10 The University Of North Carolina At Chapel Hill Methods and systems for laser based real-time structured light depth extraction
US7006709B2 (en) * 2002-06-15 2006-02-28 Microsoft Corporation System and method deghosting mosaics using multiperspective plane sweep
US20040001145A1 (en) * 2002-06-27 2004-01-01 Abbate Jeffrey A. Method and apparatus for multifield image generation and processing
US6859326B2 (en) * 2002-09-20 2005-02-22 Corning Incorporated Random microlens array for optical beam shaping and homogenization
KR100624405B1 (ko) 2002-10-01 2006-09-18 삼성전자주식회사 광부품 실장용 기판 및 그 제조방법
US7194105B2 (en) * 2002-10-16 2007-03-20 Hersch Roger D Authentication of documents and articles by moiré patterns
WO2004046645A2 (en) * 2002-11-21 2004-06-03 Solvision Fast 3d height measurement method and system
US7103212B2 (en) * 2002-11-22 2006-09-05 Strider Labs, Inc. Acquisition of three-dimensional images by an active stereo technique using locally unique patterns
US20040174770A1 (en) * 2002-11-27 2004-09-09 Rees Frank L. Gauss-Rees parametric ultrawideband system
US7639419B2 (en) * 2003-02-21 2009-12-29 Kla-Tencor Technologies, Inc. Inspection system using small catadioptric objective
US7127101B2 (en) * 2003-03-10 2006-10-24 Cranul Technologies, Inc. Automatic selection of cranial remodeling device trim lines
US20040213463A1 (en) * 2003-04-22 2004-10-28 Morrison Rick Lee Multiplexed, spatially encoded illumination system for determining imaging and range estimation
US7539340B2 (en) 2003-04-25 2009-05-26 Topcon Corporation Apparatus and method for three-dimensional coordinate measurement
EP1649423B1 (en) * 2003-07-24 2008-08-13 Cognitens Ltd. Method and sytem for the three-dimensional surface reconstruction of an object
CA2435935A1 (en) 2003-07-24 2005-01-24 Guylain Lemelin Optical 3d digitizer with enlarged non-ambiguity zone
US20050111705A1 (en) * 2003-08-26 2005-05-26 Roman Waupotitsch Passive stereo sensing for 3D facial shape biometrics
US7187437B2 (en) * 2003-09-10 2007-03-06 Shearographics, Llc Plurality of light sources for inspection apparatus and method
US6934018B2 (en) * 2003-09-10 2005-08-23 Shearographics, Llc Tire inspection apparatus and method
US7874917B2 (en) * 2003-09-15 2011-01-25 Sony Computer Entertainment Inc. Methods and systems for enabling depth and direction detection when interfacing with a computer program
US7112774B2 (en) * 2003-10-09 2006-09-26 Avago Technologies Sensor Ip (Singapore) Pte. Ltd CMOS stereo imaging system and method
US7250949B2 (en) 2003-12-23 2007-07-31 General Electric Company Method and system for visualizing three-dimensional data
US20050135555A1 (en) 2003-12-23 2005-06-23 Claus Bernhard Erich H. Method and system for simultaneously viewing rendered volumes
US8134637B2 (en) 2004-01-28 2012-03-13 Microsoft Corporation Method and system to increase X-Y resolution in a depth (Z) camera using red, blue, green (RGB) sensing
US7961909B2 (en) * 2006-03-08 2011-06-14 Electronic Scripting Products, Inc. Computer interface employing a manipulated object with absolute pose detection component and a display
KR100764419B1 (ko) * 2004-02-09 2007-10-05 강철권 불규칙패턴을 이용한 3차원형상 측정장치 및 측정방법
US7427981B2 (en) * 2004-04-15 2008-09-23 Avago Technologies General Ip (Singapore) Pte. Ltd. Optical device that measures distance between the device and a surface
US7308112B2 (en) * 2004-05-14 2007-12-11 Honda Motor Co., Ltd. Sign based human-machine interaction
AU2005264061B2 (en) * 2004-07-23 2009-05-21 Ge Healthcare Niagara, Inc. Method and apparatus for fluorescent confocal microscopy
US20060017656A1 (en) * 2004-07-26 2006-01-26 Visteon Global Technologies, Inc. Image intensity control in overland night vision systems
US8114172B2 (en) 2004-07-30 2012-02-14 Extreme Reality Ltd. System and method for 3D space-dimension based image processing
US7120228B2 (en) * 2004-09-21 2006-10-10 Jordan Valley Applied Radiation Ltd. Combined X-ray reflectometer and diffractometer
JP2006128818A (ja) 2004-10-26 2006-05-18 Victor Co Of Japan Ltd 立体映像・立体音響対応記録プログラム、再生プログラム、記録装置、再生装置及び記録メディア
IL165212A (en) 2004-11-15 2012-05-31 Elbit Systems Electro Optics Elop Ltd Device for scanning light
US7076024B2 (en) * 2004-12-01 2006-07-11 Jordan Valley Applied Radiation, Ltd. X-ray apparatus with dual monochromators
US20060156756A1 (en) * 2005-01-20 2006-07-20 Becke Paul E Phase change and insulating properties container and method of use
US20060221218A1 (en) * 2005-04-05 2006-10-05 Doron Adler Image sensor with improved color filter
EP2657761A3 (en) 2005-04-06 2013-12-25 Dimensional Photonics International, Inc. Multiple channel interferometric surface contour measurement system
US7560679B1 (en) 2005-05-10 2009-07-14 Siimpel, Inc. 3D camera
US7609875B2 (en) * 2005-05-27 2009-10-27 Orametrix, Inc. Scanner system and method for mapping surface of three-dimensional object
US8390821B2 (en) 2005-10-11 2013-03-05 Primesense Ltd. Three-dimensional sensing using speckle patterns
EP1934945A4 (en) 2005-10-11 2016-01-20 Apple Inc METHOD AND SYSTEM FOR RECONSTRUCTING AN OBJECT
US20110096182A1 (en) 2009-10-25 2011-04-28 Prime Sense Ltd Error Compensation in Three-Dimensional Mapping
US8018579B1 (en) 2005-10-21 2011-09-13 Apple Inc. Three-dimensional imaging and display system
CA2628611A1 (en) 2005-11-04 2007-05-18 Clean Earth Technologies, Llc Tracking using an elastic cluster of trackers
US7856125B2 (en) 2006-01-31 2010-12-21 University Of Southern California 3D face reconstruction from 2D images
WO2007096893A2 (en) 2006-02-27 2007-08-30 Prime Sense Ltd. Range mapping using speckle decorrelation
CN101501442B (zh) 2006-03-14 2014-03-19 普莱姆传感有限公司 三维传感的深度变化光场
KR101408959B1 (ko) * 2006-03-14 2014-07-02 프라임센스 엘티디. 삼차원 감지를 위한 깊이 가변 광 필드
US7869649B2 (en) 2006-05-08 2011-01-11 Panasonic Corporation Image processing device, image processing method, program, storage medium and integrated circuit
US8488895B2 (en) 2006-05-31 2013-07-16 Indiana University Research And Technology Corp. Laser scanning digital camera with pupil periphery illumination and potential for multiply scattered light imaging
US8139142B2 (en) 2006-06-01 2012-03-20 Microsoft Corporation Video manipulation of red, green, blue, distance (RGB-Z) data including segmentation, up-sampling, and background substitution techniques
EP2584494A3 (en) 2006-08-03 2015-02-11 Alterface S.A. Method and device for identifying and extracting images of multiple users, and for recognizing user gestures
US7737394B2 (en) 2006-08-31 2010-06-15 Micron Technology, Inc. Ambient infrared detection in solid state sensors
CN101512601B (zh) 2006-09-04 2013-07-31 皇家飞利浦电子股份有限公司 从图像中确定深度图的方法以及确定深度图的设备
US7256899B1 (en) * 2006-10-04 2007-08-14 Ivan Faul Wireless methods and systems for three-dimensional non-contact shape sensing
US8542421B2 (en) 2006-11-17 2013-09-24 Celloptic, Inc. System, apparatus and method for extracting three-dimensional information of an object from received electromagnetic radiation
US8090194B2 (en) 2006-11-21 2012-01-03 Mantis Vision Ltd. 3D geometric modeling and motion capture using both single and dual imaging
US7990545B2 (en) * 2006-12-27 2011-08-02 Cambridge Research & Instrumentation, Inc. Surface measurement of in-vivo subjects using spot projector
US7840031B2 (en) 2007-01-12 2010-11-23 International Business Machines Corporation Tracking a range of body movement based on 3D captured image streams of a user
US8350847B2 (en) 2007-01-21 2013-01-08 Primesense Ltd Depth mapping using multi-beam illumination
US20080212835A1 (en) * 2007-03-01 2008-09-04 Amon Tavor Object Tracking by 3-Dimensional Modeling
TWI433052B (zh) 2007-04-02 2014-04-01 Primesense Ltd 使用投影圖案之深度製圖
US8150142B2 (en) * 2007-04-02 2012-04-03 Prime Sense Ltd. Depth mapping using projected patterns
CA2627999C (en) * 2007-04-03 2011-11-15 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry Through The Communications Research Centre Canada Generation of a depth map from a monoscopic color image for rendering stereoscopic still and video images
WO2008133957A1 (en) * 2007-04-23 2008-11-06 California Institute Of Technology Single-lens, single-sensor 3-d imaging device with a central aperture for obtaining camera position
US7835561B2 (en) 2007-05-18 2010-11-16 Visiongate, Inc. Method for image processing and reconstruction of images for optical tomography
US8494252B2 (en) 2007-06-19 2013-07-23 Primesense Ltd. Depth mapping using optical elements having non-uniform focal characteristics
US20100182406A1 (en) 2007-07-12 2010-07-22 Benitez Ana B System and method for three-dimensional object reconstruction from two-dimensional images
JP4412362B2 (ja) 2007-07-18 2010-02-10 船井電機株式会社 複眼撮像装置
US20090060307A1 (en) 2007-08-27 2009-03-05 Siemens Medical Solutions Usa, Inc. Tensor Voting System and Method
DE102007045332B4 (de) 2007-09-17 2019-01-17 Seereal Technologies S.A. Holographisches Display zum Rekonstruieren einer Szene
KR100858034B1 (ko) 2007-10-18 2008-09-10 (주)실리콘화일 단일 칩 활력 이미지 센서
US8166421B2 (en) * 2008-01-14 2012-04-24 Primesense Ltd. Three-dimensional user interface
US8176497B2 (en) * 2008-01-16 2012-05-08 Dell Products, Lp Method to dynamically provision additional computer resources to handle peak database workloads
CN101984767B (zh) * 2008-01-21 2014-01-29 普莱姆森斯有限公司 用于使零级减少的光学设计
US8384997B2 (en) 2008-01-21 2013-02-26 Primesense Ltd Optical pattern projection
DE102008011350A1 (de) 2008-02-27 2009-09-03 Loeffler Technology Gmbh Vorrichtung und Verfahren zur Echtzeiterfassung von elektromagnetischer THz-Strahlung
US8121351B2 (en) 2008-03-09 2012-02-21 Microsoft International Holdings B.V. Identification of objects in a 3D video using non/over reflective clothing
US8035806B2 (en) 2008-05-13 2011-10-11 Samsung Electronics Co., Ltd. Distance measuring sensor including double transfer gate and three dimensional color image sensor including the distance measuring sensor
US8456517B2 (en) * 2008-07-09 2013-06-04 Primesense Ltd. Integrated processor for 3D mapping
US8462207B2 (en) 2009-02-12 2013-06-11 Primesense Ltd. Depth ranging with Moiré patterns
US8786682B2 (en) 2009-03-05 2014-07-22 Primesense Ltd. Reference image techniques for three-dimensional sensing
US8717417B2 (en) 2009-04-16 2014-05-06 Primesense Ltd. Three-dimensional mapping and imaging
US8503720B2 (en) 2009-05-01 2013-08-06 Microsoft Corporation Human body pose estimation
US8744121B2 (en) * 2009-05-29 2014-06-03 Microsoft Corporation Device for identifying and tracking multiple humans over time
EP2275990B1 (de) 2009-07-06 2012-09-26 Sick Ag 3D-Sensor
US9582889B2 (en) 2009-07-30 2017-02-28 Apple Inc. Depth mapping based on pattern matching and stereoscopic information
WO2011031538A2 (en) 2009-08-27 2011-03-17 California Institute Of Technology Accurate 3d object reconstruction using a handheld device with a projected light pattern
US8830227B2 (en) 2009-12-06 2014-09-09 Primesense Ltd. Depth-based gain control
US8320621B2 (en) 2009-12-21 2012-11-27 Microsoft Corporation Depth projector system with integrated VCSEL array
US8982182B2 (en) 2010-03-01 2015-03-17 Apple Inc. Non-uniform spatial resource allocation for depth mapping
US8330804B2 (en) 2010-05-12 2012-12-11 Microsoft Corporation Scanned-beam depth mapping to 2D image
US8654152B2 (en) 2010-06-21 2014-02-18 Microsoft Corporation Compartmentalizing focus area within field of view

Similar Documents

Publication Publication Date Title
JP5174684B2 (ja) スペックル・パターンを用いた三次元検出
JP2009531655A5 (ja)
CN101496032B (zh) 使用斑纹解相关的距离映射的方法及设备
JP6990220B2 (ja) オプティカル・フローを用いる眼球追跡
JP5592070B2 (ja) 三次元検知のために深度変化させる光照射野
TWI585436B (zh) 深度資訊量測方法及裝置
KR102027184B1 (ko) 동적 구조화 광을 사용하는 3차원 깊이 맵핑
US7675020B2 (en) Input apparatus and methods having diffuse and specular tracking modes
KR20090006825A (ko) 삼차원 감지를 위한 깊이 가변 광 필드
CN110162167A (zh) 用于校准可穿戴装置中的图像传感器的***和方法
TW200919271A (en) System and method for performing optical navigation using scattered light
US10957059B1 (en) Multi-pattern depth camera assembly
TW200825874A (en) Programmable resolution for optical pointing device
TW200847061A (en) Depth mapping using projected patterns
JP6735615B2 (ja) 情報処理装置、情報処理装置の制御方法およびプログラム
JP2019129327A (ja) 画像表示装置および画像表示方法
US10574938B1 (en) Variable frame rate depth camera assembly
TWI454653B (zh) 三維絕對座標偵測系統、互動三維顯示系統以及辨識物體之三維座標的方法
TWI661233B (zh) 點陣投影器結構,以及利用點陣投影器結構擷取圖像的方法
Munkelt et al. Large-volume NIR pattern projection sensor for continuous low-latency 3D measurements
JP2014211305A (ja) 物体検出装置および情報取得装置
JP2023135357A (ja) 変位量測定装置、変位量測定システム、非接触入力装置、および生体微動測定装置
JP6794638B2 (ja) 検出装置、検出システム、検出方法、及び検出プログラム
KR20180065896A (ko) 3차원 정보 생성 장치
JP2016173766A (ja) 物体検出装置、入力操作検出装置、画像表示装置、物体検出方法