JP2009531020A - Method for inhibiting glucocorticoid-induced gastric acid secretion - Google Patents

Method for inhibiting glucocorticoid-induced gastric acid secretion Download PDF

Info

Publication number
JP2009531020A
JP2009531020A JP2008552709A JP2008552709A JP2009531020A JP 2009531020 A JP2009531020 A JP 2009531020A JP 2008552709 A JP2008552709 A JP 2008552709A JP 2008552709 A JP2008552709 A JP 2008552709A JP 2009531020 A JP2009531020 A JP 2009531020A
Authority
JP
Japan
Prior art keywords
phenyl
acid
hydrazide
pyrido
pyrimidin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008552709A
Other languages
Japanese (ja)
Inventor
フロリアン ランク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of JP2009531020A publication Critical patent/JP2009531020A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • C12Q1/485Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving kinase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/06Gastro-intestinal diseases
    • G01N2800/062Gastritis or peptic ulcer disease

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

グルココルチコイド誘導性胃酸分泌を変化させる方法であって、血清グルココルチコイド誘導性キナーゼ(SGK)を発現する細胞と、前記グルココルチコイド誘導性キナーゼを調節する物質とを接触させることを含む、前記方法。更に、本発明は、診断及び、病理学的胃酸分泌の治療に潜在的に有効であるアゴニスト、アンタゴニストであり得る化合物の同定に関する。
【選択図】図1
A method for altering glucocorticoid-induced gastric acid secretion, comprising contacting a cell expressing serum glucocorticoid-inducible kinase (SGK) with a substance that modulates said glucocorticoid-inducible kinase. The invention further relates to the identification of compounds that can be agonists and antagonists that are potentially effective in the diagnosis and treatment of pathological gastric acid secretion.
[Selection] Figure 1

Description

胃酸は、胃における壁細胞によって生成される。壁細胞は、胃酸が胃内腔に分泌される広範囲な分泌のネットワークを有する。これらの細胞は、胃の粘膜における上皮胃底腺の一部である。胃酸のpHは、胃内腔において2-3であり、酸性は、プロトンポンプのH+/K+ ATPアーゼによって維持されている。
通常、胃と小腸の内層は、胃において生成される刺激性の酸に対して保護されている。種々の理由のために、保護のメカニズムが不完全になることがあり、内層の損傷につながる。これにより、炎症(胃炎)又は潰瘍が生じる。潰瘍は、炎症性、感染性、又は悪性の条件によって引き起こされる胃の皮膚又は粘膜又は小腸の上部にクレーター状の病巣を生じる。
消化性潰瘍疾患は、胃遠位部又は十二指腸近位部における酸生成ゾーンの粘膜潰瘍である。正常な胃は、充分な粘液とアルカリ性分泌液を生成して、胃と十二指腸の粘膜をHClから保護する。十二指腸において、膵臓の重炭酸塩が粘膜の管腔膜でpH7.5を生じさせる。
消化性潰瘍疾患を誘発し得る危険因子は、ASA、NSAID、皮質ホルモンのような薬剤、高レベルのCa2+が胃酸分泌を促進する副甲状腺機能亢進症、膵臓のガストリン産生腫瘍及び胃のヘリコバクターピロリ感染である。他の寄与因子は、主細胞からペプシノーゲンの増加、壁細胞量の増加、幽門部のD細胞からソマトスタチン分泌の減少、及び粘膜の損傷である。アセチルサリチル酸やステロイド系又は非ステロイド系抗炎症剤は、プロスタグランジンのための胃粘膜を減少させ、粘膜損傷につながる。
遺伝因子が考慮されなければならない。例えば、唾液や胃液に血液型0抗原を分泌しない人は、十二指腸潰瘍を生じるリスクが増加する。
診断には、異常を調べるために、胃と十二指腸の胃鏡検査法が必要となることがある。H.ピロリ菌の細菌と炎症性係数を検査するために組織試料を得ることができる。
潰瘍の治療は、細菌を死滅させ、酸のレベルを低下させ、且つ胃腸管を保護する薬剤の併用をしばしば含む。薬剤は、以下の一つ以上を含むのがよい: シメチジン、ニザチジン、ラニチジン、又はファモチジンのような酸遮断薬。オメプラゾールのようなプロトンポンプインヒビター又はスクラルフェートのような組織内層を保護する薬剤。ビスマスは、内層を保護し細菌を死滅させ、更に、クラリスロマイシンのような抗生物質は、ピロリ菌を死滅させるために用いられる。
プロスタグランジンE1類似体、例えば、ミソプロストールは、壁細胞や他の所において第二メッセンジャー、cAMPの非特異的阻害によって胃酸分泌を阻害し、それによって、潰瘍治癒が促進される。
Gastric acid is produced by mural cells in the stomach. Mural cells have an extensive secretory network in which gastric acid is secreted into the gastric lumen. These cells are part of the epithelial fundus gland in the gastric mucosa. The pH of the gastric acid is 2-3 in the gastric lumen and the acidity is maintained by the proton pump H + / K + ATPase.
Normally, the lining of the stomach and small intestine is protected against irritating acids produced in the stomach. For various reasons, the protection mechanism can be incomplete, leading to damage to the inner layer. This causes inflammation (gastritis) or ulcers. Ulcers produce crater-like lesions in the stomach skin or mucous membranes or the upper part of the small intestine caused by inflammatory, infectious, or malignant conditions.
Peptic ulcer disease is a mucosal ulcer in the acid producing zone in the distal stomach or proximal duodenum. A normal stomach produces sufficient mucus and alkaline secretions to protect the stomach and duodenal mucosa from HCl. In the duodenum, pancreatic bicarbonate causes pH 7.5 in the luminal membrane of the mucosa.
Risk factors that can induce peptic ulcer disease include: ASA, NSAIDs, drugs such as cortical hormones, high levels of Ca 2+ promote gastric acid secretion, hyperparathyroidism, pancreatic gastrin-producing tumors, and gastric Helicobacter H. pylori infection. Other contributing factors are increased pepsinogen from main cells, increased mural cell mass, decreased somatostatin secretion from pyloric D cells, and mucosal damage. Acetylsalicylic acid and steroidal or non-steroidal anti-inflammatory agents reduce gastric mucosa due to prostaglandins, leading to mucosal damage.
Genetic factors must be considered. For example, people who do not secrete blood group 0 antigens into saliva or gastric juice have an increased risk of developing duodenal ulcers.
Diagnosis may require gastroscopy of the stomach and duodenum to check for abnormalities. Tissue samples can be obtained to examine H. pylori bacteria and inflammatory factors.
Treatment of ulcers often involves a combination of agents that kill bacteria, reduce acid levels, and protect the gastrointestinal tract. The drug may include one or more of the following: acid blockers such as cimetidine, nizatidine, ranitidine, or famotidine. Agents that protect the tissue lining such as proton pump inhibitors such as omeprazole or sucralfate. Bismuth protects the inner layer and kills bacteria, and antibiotics such as clarithromycin are used to kill H. pylori.
Prostaglandin E1 analogs, such as misoprostol, inhibit gastric acid secretion by nonspecific inhibition of the second messenger, cAMP, in parietal cells and elsewhere, thereby promoting ulcer healing.

胃酸分泌の阻害によって作用する全ての治療手順は、共通の欠点を有する。胃酸分泌が減少する限りにおいて、幽門部のG細胞からのガストリン放出の阻害は起こらない。従って、血液ガストリンが増加し、患者の治療の間、この濃度は絶えず増加する。高ガストリンレベルは、酸生産に対して期待される効果を妨げる。ガストリンは胃粘膜のための栄養性ホルモンであるので、酸抑制による長期間治療により粘膜肥大が生じ、酸生産も細胞修飾も更に増大することになる。このような複雑性は、おそらくほとんどの治療手順のむしろ高い潰瘍再発率に関連しているのであろう。胃酸の平衡異常を妨害する手段としてSGK阻害を用いる本発明において、消化性潰瘍疾患の原因を排除するための新たな合理的な戦略を提供する。
グルココルチコイドは、胃潰瘍の発症[Ahamed et al., 1983; Zamora et al., 1975]、高H+分泌 [Cooke et al., 1966; Raptis et al., 1976]及びプロスタグランジン放出のような防衛機序障害[Bandyopadhyay et al., 1999; Nobuhara et al., 1985] によるとみなされる作用を支持することが周知である。しかしながら、酸分泌にグルココルチコイド受容体の刺激を関連づける機序は不明である。
All therapeutic procedures that work by inhibiting gastric acid secretion have common drawbacks. As long as gastric acid secretion decreases, inhibition of gastrin release from pyloric G cells does not occur. Thus, blood gastrin is increased and this concentration continually increases during patient treatment. High gastrin levels hinder the expected effects on acid production. Since gastrin is a trophic hormone for the gastric mucosa, long-term treatment with acid suppression results in mucosal hypertrophy, further increasing acid production and cell modification. Such complexity is probably related to the rather high ulcer recurrence rate of most treatment procedures. In the present invention using SGK inhibition as a means to prevent gastric acid imbalance, we provide a new rational strategy to eliminate the cause of peptic ulcer disease.
Glucocorticoids such as gastric ulcer development [Ahamed et al., 1983; Zamora et al., 1975], high H + secretion [Cooke et al., 1966; Raptis et al., 1976] and prostaglandin release It is well known to support actions considered to be due to defense mechanism disorders [Bandyopadhyay et al., 1999; Nobuhara et al., 1985]. However, the mechanism that links glucocorticoid receptor stimulation to acid secretion remains unclear.

グルココルチコイド作用に関与するシグナル伝達分子には、血清グルココルチコイド誘導性キナーゼSGK1が含まれ、これは胃の組織において高度に発現される[Waldegger et al., 1997]。SGK1は、種々の輸送タンパク質を調節することがわかった[Lang et al., 2003]。アフリカツメガエル卵母細胞におけるSGK1の共発現は、上皮Na+チャネルENaC [Alvarez de la Rosa et al., 1999; Boehmer et al., 2000; Chen et al., 1999; Faletti et al., 2002; Lang et al., 2000; Naray-Fejes-Toth et al., 1999; Pearce 2003; Verrey et al., 2003; Wagner et al., 2001; Wang et al., 2001]、腎の髄質外部K+チャネルROMK1 [Palmada et al., 2003b; Palmada et al., 2003a; Yun et al., 2002b]、電位依存性Na+チャネルSCN5A [Boehmer et al., 2003c]、電位依存性K+チャネル複合体KCNE1/KCNQ1 [Embark et al., 2003]、及び電位依存性K+チャネルKv1.2、Kv1.3、Kv1.4及びKv1.5 [Gamper et al., 2002b; Gamper et al., 2002a; Henke et al., 2004; Waerntges et al., 2002]をアップレギュレートする。チャネルに加えて、SGK1は、Na+/H+交換体NHE3 [Yun et al., 2002a; Yun 2003]、グルタミン輸送体SN1 [Boehmer et al., 2003b]、グルタミン酸輸送体EAAT1 [Boehmer et al., 2003a]、腎臓と腸のグルコース輸送体SGLT1 [Dieter et al., 2004]及びNa+/K+-ATPアーゼ[Henke et al., 2002; Setiawan et al., 2002; Verrey et al., 2003; Zecevic et al., 2004]を調節する。
一般的な(〜5%の率)SGK1遺伝子変種は、高血圧と体重増加と関連している(Vallon et al., 2005) Jan;14(1): 59-66。従って、SGK1は、メタボリックシンドロームに寄与するものである。SGK1は、更に、腫瘍成長、神経変性、線維症、及び虚血の後遺症に関与する。SGK3は、充分な育毛及び腸の栄養素輸送の維持に必要であり、自発運動行動に影響する。結論として、SGKは、種々の生理機能に関連し、多くの病態生理学的条件の活性役割を果たすことができる。
本研究は、胃酸分泌の調節がSGK1活性の発現及びアップレギュレーションに依存するという予想外の知見を提供する。
Signaling molecules involved in glucocorticoid action include the serum glucocorticoid-inducible kinase SGK1, which is highly expressed in stomach tissue [Waldegger et al., 1997]. SGK1 has been found to regulate various transport proteins [Lang et al., 2003]. SGK1 co-expression in Xenopus oocytes is the epithelial Na + channel ENaC [Alvarez de la Rosa et al., 1999; Boehmer et al., 2000; Chen et al., 1999; Faletti et al., 2002; Lang et al., 2000; Naray-Fejes-Toth et al., 1999; Pearce 2003; Verrey et al., 2003; Wagner et al., 2001; Wang et al., 2001], renal extramedullary K + channel ROMK1 [Palmada et al., 2003b; Palmada et al., 2003a; Yun et al., 2002b], voltage-gated Na + channel SCN5A [Boehmer et al., 2003c], voltage-gated K + channel complex KCNE1 / KCNQ1 [Embark et al., 2003] and voltage-gated K + channels Kv1.2, Kv1.3, Kv1.4 and Kv1.5 [Gamper et al., 2002b; Gamper et al., 2002a; Henke et al. , 2004; Waerntges et al., 2002]. In addition to channels, SGK1 is Na + / H + exchanger NHE3 [Yun et al., 2002a; Yun 2003], glutamine transporter SN1 [Boehmer et al., 2003b], glutamate transporter EAAT1 [Boehmer et al. , 2003a], renal and intestinal glucose transporter SGLT1 [Dieter et al., 2004] and Na + / K + -ATPase [Henke et al., 2002; Setiawan et al., 2002; Verrey et al., 2003 ; Zecevic et al., 2004].
A common (~ 5% rate) SGK1 gene variant is associated with hypertension and weight gain (Vallon et al., 2005) Jan; 14 (1): 59-66. Therefore, SGK1 contributes to the metabolic syndrome. SGK1 is further involved in tumor growth, neurodegeneration, fibrosis, and ischemic sequelae. SGK3 is necessary for sufficient hair growth and maintenance of intestinal nutrient transport and affects locomotor behavior. In conclusion, SGK is associated with a variety of physiological functions and can play an active role in many pathophysiological conditions.
This study provides the unexpected finding that the regulation of gastric acid secretion depends on the expression and upregulation of SGK1 activity.

本発明は、SGK1が胃酸分泌の調節において関与するという証拠を提供する。SGK1は、K+/H+ ATPアーゼ活性を増大させることによってH+分泌を刺激し、或いは、SGK1は、胃H+分泌に重要で[Vallon et al., 2006]SGK1によってアップレギュレーションされることが知られているKCNQ1チャネルを刺激することによってH+分泌を増強する。KCNE1/KCNQ1の調節には、酵素のその標的タンパク質に対する親和性を低下させるユビキチンリガーゼNedd4-2が関与する[Abriel et al., 2000; Debonneville et al., 2001; Snyder et al., 2002; Verrey et al., 2003]。
これらの結果は、更に、SGK1は、一般に胃のH+分泌には必要でないが、主に疾患に関連した胃のH+分泌の刺激に或いはグルココルチコイド治療には関与する高度に特異的なタンパク質標的であることを証明している。
この予想外の知見は、血清グルココルチコイド誘導性キナーゼ1、SGK-1活性の調節因子、特にSGK-1活性のアンタゴニストを胃のH+分泌誘発性疾患疾患、例えば、消化性潰瘍疾患の治療のために重要にするものである。
The present invention provides evidence that SGK1 is involved in the regulation of gastric acid secretion. SGK1 stimulates H + secretion by increasing K + / H + ATPase activity, or SGK1 is important for gastric H + secretion and is up-regulated by [Vallon et al., 2006] SGK1 Enhances H + secretion by stimulating the known KCNQ1 channel. Regulation of KCNE1 / KCNQ1 involves the ubiquitin ligase Nedd4-2, which reduces the affinity of the enzyme for its target protein [Abriel et al., 2000; Debonneville et al., 2001; Snyder et al., 2002; Verrey et al., 2003].
These results further, SGK1 is generally not required for H + secretion in the stomach, mainly highly specific proteins involved in stimulation or in glucocorticoid treatment of H + secretion in the stomach associated with disease Prove that you are a target.
This unexpected finding shows that serum glucocorticoid-inducible kinase 1, a modulator of SGK-1 activity, especially an antagonist of SGK-1 activity, for the treatment of gastric H + secretion-induced disease diseases, such as peptic ulcer disease That's what makes it important.

本発明において、胃酸分泌の阻害に適した血清グルココルチコイド誘導性キナーゼ(SGK)阻害因子をスクリーニングする方法は、(i)事前活性化リン酸化組換えSGKタンパク質を提供する工程、(ii)SGK基質ポリペプチドをATP又は他のリン酸供給源と共に提供する工程、(iii)グルココルチコイド誘導性キナーゼ阻害因子を提供する工程、及び(iv)基質のリン酸化を測定することによってSGK活性を評価する工程を含む。本発明の好ましい実施態様は、血清グルココルチコイド誘導性キナーゼ阻害因子をスクリーニングするためのSGK1の使用に関する。特許請求されたスクリーニング法によって利用可能なSGK1阻害因子の例は、本発明の実施例4に記載され、化合物及びその医薬的に有効な誘導体、塩、溶液及び立体異性体及び混合物が胃酸分泌誘発性疾患疾患、例えば、消化性潰瘍の治療に有効な薬剤であることを専門家は認識する。
本発明の好ましい実施態様は、SGK1、SGK1に対する阻害因子、およびSGK1機能および診断であることを専門家は更に理解するが、特許請求された方法、使用及び阻害性化合物がSGK2およびSGK3のような疾患に関連した他のタンパク質イソ型およびこれらの3つのイソ型について記載された単一ヌクレオチド多型変種に適用し得ることは専門家にとって明らかである。本発明は、SGKの機能を阻害する化合物を提供し特許請求する。この機能的阻害は、SGK酵素のキナーゼ活性と直接干渉することを特徴とし、それ故、その機序は、他の既知のリン酸化阻害因子に対して独特のものである。
In the present invention, a method for screening a serum glucocorticoid-inducible kinase (SGK) inhibitor suitable for inhibition of gastric acid secretion comprises the steps of (i) providing a preactivated phosphorylated recombinant SGK protein, (ii) an SGK substrate Providing a polypeptide with an ATP or other phosphate source, (iii) providing a glucocorticoid-inducible kinase inhibitor, and (iv) assessing SGK activity by measuring phosphorylation of the substrate. including. A preferred embodiment of the invention relates to the use of SGK1 for screening serum glucocorticoid-inducible kinase inhibitors. Examples of SGK1 inhibitors that can be utilized by the claimed screening method are described in Example 4 of the present invention, where the compound and its pharmaceutically effective derivatives, salts, solutions and stereoisomers and mixtures induce gastric acid secretion. Experts recognize that they are effective drugs for the treatment of endemic diseases such as peptic ulcers.
The expert will further understand that the preferred embodiments of the present invention are SGK1, inhibitors to SGK1, and SGK1 function and diagnosis, but the claimed methods, uses and inhibitory compounds are such as SGK2 and SGK3. It will be clear to the expert that other protein isoforms associated with the disease and single nucleotide polymorphic variants described for these three isoforms can be applied. The present invention provides and claims for compounds that inhibit the function of SGK. This functional inhibition is characterized by directly interfering with the kinase activity of the SGK enzyme, and therefore the mechanism is unique to other known phosphorylation inhibitors.

胃酸分泌の過剰を特徴とする疾患の治療のためのSGKの特許請求された治療の使用のほかに、本発明の他の側面は、消化性潰瘍のような疾患の診断のためにSGKの機能をモニターすることである。
胃酸分泌誘発性疾患疾患の進行、退行又は発症の決定は、患者から採取された臓器又は単離されたヒト組織試料及び検体においてSGK1、SGK2又はSGK3のアップレギュレートされた発現及び/又は機能活性をモニタすることによって測定され得ることを専門家は直ちに認識する。
更に、本発明は、多型表現型を胃酸分泌誘発性疾患疾患の存在、重篤度又は体質と相関させるために、単一ヌクレオチド多型変種、例えばSGK1について単一ヌクレオチド多型変種を分析することによって疾患を診断する可能性を開示する。SGKのための診断法は、SGK1に制限されず、SGK2及び又はSGK3の同時分析を必要とすることもある。
In addition to the use of SGK's claimed treatment for the treatment of diseases characterized by excessive gastric acid secretion, another aspect of the present invention is the function of SGK for the diagnosis of diseases such as peptic ulcer. Is to monitor.
Determination of gastric acid secretion-induced disease disease progression, regression or onset depends on up-regulated expression and / or functional activity of SGK1, SGK2 or SGK3 in organs taken from patients or isolated human tissue samples and specimens The expert immediately recognizes that it can be measured by monitoring.
Furthermore, the present invention analyzes single nucleotide polymorphic variants, eg, single nucleotide polymorphic variants for SGK1, in order to correlate the polymorphic phenotype with the presence, severity or constitution of gastric acid secretion-induced disease The possibility of diagnosing a disease is disclosed. Diagnostic methods for SGK are not limited to SGK1, and may require simultaneous analysis of SGK2 and / or SGK3.

発明の詳細な記載
胃のH+輸送に対するグルココルチコイドの作用は、SGK1を欠く(sgk1-/-)遺伝子ターゲッティングマウスとそれらの野生型同腹子(sgk1+/+)において研究されてきた。SGK1転写物レベルをリアルタイムPCRによって決定し、BCECF蛍光をH+分泌(ΔpH)の決定に用いた。
野生型マウスの胃組織において、10μg/g BW/日デキサメタゾン(DEX)による4日間の処理によって胃のSGK1転写物レベルが著しくアップレギュレートすることがわかった。それらのマウスのデキサメタゾン処理後、msgk1/mGAPDH*1000の比率は胃組織において20.7±10.1(n = 3)から46.2±16.0(n = 6)に増大した。msgk1転写物はSGK1ノックアウトマウスにおいて全く検出されなかった(SGK1/GAPDH比率0.0、n=4)。
プロトンポンプ活性を決定するために細胞質ゾルpHの詳細な測定値を用いた。開始時細胞質ゾルpHは、未処理sgk1+/+(7.16±0.01、n = 6)及びsgk1-/-(7.18±0.01、n = 6)において同様であった。デキサメタゾン処理は、sgk1+/+マウス(7.15±0.01、n =8)において又はsgk1-/-マウス(7.17±0.01、n =10)において細胞質ゾルpHを顕著に変化させなかった。
アンモニウムパルスを用いて細胞にH+を装荷した[Roos and Boron 1981]。20mM NH4Clによる表面灌流とNa+の同時除去(NMDGとの置換)に続いてわずかなアルカリ化を行った(図3)。引き続きNa+非存在下におけるNH4ClのNMDG Cl-による置換により、NH3の排出と細胞内のH+の保持のために鋭い酸性化が生じた。酸性化は見かけの緩衝能の計算を可能にしたが、未処理sgk1+/+マウス(47.51±5.79mM/pH、n =6)とsgk1-/-マウス(48.2±3.18mM/pH、n =6)において同様であった(方法を参照)。デキサメタゾンは、sgk1+/+マウス(46.38±3.12mM/pH、n =8)においてもsgk1-/-マウス(46.44±2.42mM/pH、n =10)においても緩衝能を顕著に変化させなかった。
DETAILED DESCRIPTION OF THE INVENTION The effects of glucocorticoids on gastric H + transport have been studied in SGK1-deficient (sgk1 − / − ) gene targeting mice and their wild-type littermates (sgk1 + / + ). SGK1 transcript levels were determined by real-time PCR and BCECF fluorescence was used to determine H + secretion (ΔpH).
In gastric tissue of wild-type mice, treatment with 10 μg / g BW / day dexamethasone (DEX) for 4 days was found to significantly upregulate gastric SGK1 transcript levels. After dexamethasone treatment of these mice, the ratio of msgk1 / mGAPDH * 1000 increased from 20.7 ± 10.1 (n = 3) to 46.2 ± 16.0 (n = 6) in gastric tissue. No msgk1 transcript was detected in SGK1 knockout mice (SGK1 / GAPDH ratio 0.0, n = 4).
Detailed measurements of cytosolic pH were used to determine proton pump activity. The starting cytosolic pH was similar in untreated sgk1 + / + (7.16 ± 0.01, n = 6) and sgk1 − / − (7.18 ± 0.01, n = 6). Dexamethasone treatment did not significantly change cytosolic pH in sgk1 + / + mice (7.15 ± 0.01, n = 8) or in sgk1 − / − mice (7.17 ± 0.01, n = 10).
Cells were loaded with H + using an ammonium pulse [Roos and Boron 1981]. Surface perfusion with 20 mM NH 4 Cl and simultaneous removal of Na + (substitution with NMDG) were followed by slight alkalinization (FIG. 3). Subsequent replacement of NH 4 Cl with NMDG Cl in the absence of Na + resulted in sharp acidification due to NH3 excretion and intracellular H + retention. Acidification allowed calculation of apparent buffer capacity, but untreated sgk1 + / + mice (47.51 ± 5.79 mM / pH, n = 6) and sgk1 − / − mice (48.2 ± 3.18 mM / pH, n = Similar in 6) (see method). Dexamethasone did not significantly alter buffer capacity in sgk1 + / + mice (46.38 ± 3.12 mM / pH, n = 8) nor in sgk1 − / − mice (46.44 ± 2.42 mM / pH, n = 10) .

デキサメタゾン処理前は、Na+非存在下におけるpH回復は未処理sgk1+/+マウス(0.028±0.008ΔpH/分、n = 6)とsgk1-/-マウス(0.029±0.010ΔpH/分、n = 6)において同様であった。デキサメタゾンによる処理によって、sgk1+/+マウス(0.133±0.022ΔpH/分、n = 8)においてNa+非依存性再アルカリ化が〜4倍増加し、sgk1-/-マウス(0.071±0.012ΔpH/分、n = 10)において〜2倍増加した。デキサメタゾン処理後、Na+非存在下のpH回復は、sgk1+/+マウスにおけるよりsgk1-/-においてかなり(p<0.05)小さくなった。
50μMオメプラゾールを添加すると、Na+非依存性pH回復がデキサメタゾン処理sgk1+/+マウスにおいて0.009±0.003ΔpH/分、n = 5に、デキサメタゾン処理sgk1-/-において0.007±0.002ΔpH/分、n = 5に低下した。デキサメタゾン処理後、オメプラゾール感受性再アルカリ化は、更にまた、sgk1+/+マウスにおけるよりsgk1-/-においてかなり(p<0.05)小さくなった。
Prior to dexamethasone treatment, pH recovery in the absence of Na + was observed in untreated sgk1 + / + mice (0.028 ± 0.008ΔpH / min, n = 6) and sgk1 − / − mice (0.029 ± 0.010ΔpH / min, n = 6). ). Treatment with dexamethasone increased Na + -independent realkalization in sgk1 + / + mice (0.133 ± 0.022ΔpH / min, n = 8) by a 4-fold increase, and sgk1 − / − mice (0.071 ± 0.012ΔpH / min). , N = 10) increased by a factor of ~ 2. After dexamethasone treatment, pH recovery in the absence of Na + was significantly (p <0.05) less in sgk1 − / − than in sgk1 + / + mice.
Upon addition of 50 μM omeprazole, Na + -independent pH recovery was 0.009 ± 0.003 ΔpH / min in dexamethasone-treated sgk1 + / + mice, n = 5, 0.007 ± 0.002 ΔpH / min in dexamethasone-treated sgk1 − / − , n = Dropped to 5. After dexamethasone treatment, omeprazole-sensitive realkalization was also considerably smaller (p <0.05) in sgk1 − / − than in sgk1 + / + mice.

本実験の結果は、SGK1を欠損することは未処理動物におけるH+分泌に影響しないが、胃のH+分泌に対するグルココルチコイドの刺激作用を選択的に無効にすることを示すので、予想外のことである。未処理sgk1-/-マウスにおける明らかに正常なH+分泌は、グルココルチコイド刺激が存在しないときにSGK1を置き換える機序を必要とする。相同性スクリーニングからクローン化されたSGK1イソ型SGK2とSGK3は、当該技術において既知であり[Kobayashi et al., 1999]、いくつかのチャネルと輸送体のタンパク質存在量及び/又は活性を増強するSGK1の能力を共有する[Lang et al., 2003]。実際、アフリカツメガエル卵母細胞における実験は、KCNE1/KCNQ1をアップレギュレートするSGK3の能力を開示した[Embark et al., 2003]。
グルココルチコイドが存在しない場合、胃のH+分泌についてsgk1-/-マウスとsgk1+/+マウスとの間にほとんど差は認められない。従って、基礎H+分泌はSGK1に依存しない。しかしながら、H+分泌のグルココルチコイド刺激はSGK1に高度に依存する。
SGK1は、グルココルチコイドの作用に関連するだけではなく、更に、SGK1は、同様にミネラルコルチコイドによってもアップレギュレートされ[Chen et al., 1999; Naray-Fejes-Toth et al., 1999; Shigaev et al., 2000]、腎臓のNa+とK+排出のミネラルコルチコイド調節に関与する。
The results of this experiment indicate that SGK1 deficiency does not affect H + secretion in untreated animals, but selectively negates the stimulatory effect of glucocorticoids on gastric H + secretion. That is. Clearly normal H + secretion in untreated sgk1 − / − mice requires a mechanism to replace SGK1 in the absence of glucocorticoid stimulation. SGK1 isoforms SGK2 and SGK3 cloned from homology screening are known in the art [Kobayashi et al., 1999] and SGK1 enhances protein abundance and / or activity of several channels and transporters Share their abilities [Lang et al., 2003]. Indeed, experiments in Xenopus oocytes disclosed the ability of SGK3 to up-regulate KCNE1 / KCNQ1 [Embark et al., 2003].
In the absence of glucocorticoids, there is little difference between sgk1 − / − and sgk1 + / + mice in gastric H + secretion. Basal H + secretion is therefore independent of SGK1. However, glucocorticoid stimulation of H + secretion is highly dependent on SGK1.
SGK1 is not only related to the action of glucocorticoids, but SGK1 is also up-regulated by mineralcorticoids [Chen et al., 1999; Naray-Fejes-Toth et al., 1999; Shigaev et al. al., 2000], involved in mineralocorticoid regulation of renal Na + and K + excretion.

本発明の血清グルココルチコイド誘導性キナーゼは、関連する遺伝子における突然変異(SNP)を検出することによって、診断用薬として用いることができる。cDNA又はゲノム配列において、本出願の実施例5に開示され且つ機能不全と関連しているポリヌクレオチド多型によって確認される遺伝子の変異形の検出は、遺伝子の過小発現、過剰発現又は空間的又は時間的発現の変化から生じる疾患又は疾患に対する感受性を診断することのできる、または診断に付加することができる診断ツールを提供する。遺伝子の突然変異をもつ個体は、当該技術において周知の種々の技術によってDNAレベルで検出することができる。
しかしながら、好ましくは、分子診断は、潰瘍を直接試験することを可能にする上部腸管の内視鏡検査法によっても常に確認しなければならない。内視鏡検査法によって、生検材料を試験のために身体から取り出すことができる。組織は免疫染色を用いて顕微鏡下で調べられて、診断を援助するため血清グルココルチコイド誘導性キナーゼ発現の分子診断が用いられるであろう。それ故、極めて小さい試料しか必要としない。或いは又は更に、被検者の細胞から、例えば、血液、尿、唾液、組織生検又は剖検材料から診断のための核酸を得ることもできる。
The serum glucocorticoid-inducible kinase of the present invention can be used as a diagnostic agent by detecting a mutation (SNP) in a related gene. Detection of gene variants identified in the cDNA or genomic sequence by the polynucleotide polymorphism disclosed in Example 5 of the present application and associated with dysfunction is under-expression, over-expression or spatial or Provided are diagnostic tools that can diagnose or add to the diagnosis of a disease or susceptibility to a disease resulting from a change in temporal expression. Individuals with gene mutations can be detected at the DNA level by various techniques well known in the art.
Preferably, however, the molecular diagnosis should always be confirmed also by upper intestinal endoscopy, which makes it possible to directly test for ulcers. Endoscopy allows biopsy material to be removed from the body for testing. The tissue will be examined under a microscope using immunostaining and a molecular diagnosis of serum glucocorticoid-induced kinase expression will be used to aid diagnosis. Therefore, only a very small sample is required. Alternatively or additionally, nucleic acids for diagnosis can be obtained from a subject's cells, eg, from blood, urine, saliva, tissue biopsy or autopsy material.

検出のためにゲノムDNAを直接用いることができ、又は分析の前にPCR、好ましくはRT-PCRによって酵素的に、又は他の増幅技術を用いることによりゲノムDNAを増幅することができる。RNA又はcDNAも同様にして用いることができる。正常な遺伝子型と比較して増幅された産物のサイズの変化によって欠失及び挿入を検出することができる。点突然変異は、標識SGK1、SGK2、又はSGK3ヌクレオチド配列に対して増幅されたDNAをハイブリダイズさせることによって同定することができる。完全にマッチする配列は、RNase消化によって又は融解温度の差によってミスマッチ二重らせんから区別され得る。DNA配列差は、変性剤を含む又は含まないゲルにおけるDNA断片の電気泳動移動度の変化によって、又は直接のDNAシークエンシングによって検出することができる(例えば、Myers et al., Science (1985) 230:1242を参照)。特定位置の配列変化は、ヌクレアーゼ保護分析、例えば、RNase及びS1保護又は化学開裂法によって示すことができる(Cotton et al., Proc Natl Acad Sci USA (1985) 85: 4397-4401を参照)。
SGK1、SGK2又はSGK3ポリヌクレオチド配列又はそれらの断片を含むオリゴヌクレオチドプローブのアレイは、例えば、遺伝子突然変異の効率的なスクリーニングを行うように構築することができる。このようなアレイは好ましくは高密度アレイ又はグリッドである。アレイ技術法は周知であり、一般的適用性を有し、遺伝子発現、遺伝子の連鎖、及び遺伝的変異性が含まれる分子遺伝学における種々の問題に取り組むために使用し得る(例えば、M. Chee et al., Science, 274, 610-613 (1996)及びその中に引用される他の文献を参照)。
異常に低下又は上昇したレベルのポリペプチド又はmRNA発現の検出を用いて、本発明の疾患に対する被検者の感受性を診断するか又は決定することができる。発現の低下又は上昇は、ポリヌクレオチドの定量化、例えば、核酸増幅、例えば、PCR、RT-PCR、RNase保護、ノーザンブロット法及び他のハイブリダイゼーション法のために当該技術における周知の方法のいずれを用いてもRNAレベルで測定され得る。
Genomic DNA can be used directly for detection, or genomic DNA can be amplified prior to analysis enzymatically by PCR, preferably RT-PCR, or by using other amplification techniques. RNA or cDNA can be used in the same manner. Deletions and insertions can be detected by a change in the size of the amplified product compared to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to labeled SGK1, SGK2, or SGK3 nucleotide sequences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence differences can be detected by changes in the electrophoretic mobility of DNA fragments in gels with or without denaturing agents, or by direct DNA sequencing (eg, Myers et al., Science (1985) 230 : 1242). Sequence changes at specific positions can be shown by nuclease protection analysis, such as RNase and S1 protection or chemical cleavage methods (see Cotton et al., Proc Natl Acad Sci USA (1985) 85: 4397-4401).
An array of oligonucleotide probes comprising SGK1, SGK2 or SGK3 polynucleotide sequences or fragments thereof can be constructed, for example, for efficient screening of gene mutations. Such an array is preferably a high density array or grid. Array technology methods are well known and have general applicability and can be used to address various problems in molecular genetics, including gene expression, gene linkage, and genetic variability (e.g., M. Chee et al., Science, 274, 610-613 (1996) and other references cited therein).
Detection of abnormally reduced or elevated levels of polypeptide or mRNA expression can be used to diagnose or determine a subject's susceptibility to a disease of the invention. Decreased or elevated expression can be achieved by any of the methods well known in the art for polynucleotide quantification, e.g., nucleic acid amplification, e.g., PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods. It can also be measured at the RNA level.

例えば、本発明のポリヌクレオチド配列は、また、組織発現研究に有益なツールである。このような研究は、本発明のポリヌクレオチドの発現パターンの決定をそれらをコードしているmRNAを検出することによって可能にし、組織におけるコードされたポリペプチドの発現パターンに関する指標を示すことができる。用いられる技術は、当該技術において周知であり、グリッド上に配列されたクローンに対するin situハイブリダイゼーション技術、例えば、cDNAマイクロアレイハイブリダイゼーション(Schena et al, Science, 270, 467-470, 1995 and Shalon et al, Genome Res, 6, 639-645, 1996)及びヌクレオチド増幅技術、例えば、PCRが含まれる。好ましい方法は、Perkin Elmerから入手しえるTAQMAN(商標)技術を用いる。これらの研究からの結果は、生物体におけるポリペプチドの正常機能を示すことができる。更に、mRNAの正常な発現パターンと同一遺伝子の代替形によってコードされるmRNA(例えば、ポリペプチドコーディング能の改変又は調節変異を有する)の発現パターンとの比較研究は、本発明のポリペプチドの役割、又は疾患におけるその不適切な発現の役割に有益な洞察を与えることができる。このような不適切な発現は、一時的、空間的又は単に定量的な性質を有し得る。   For example, the polynucleotide sequences of the present invention are also useful tools for tissue expression studies. Such studies allow the determination of the expression pattern of the polynucleotides of the invention by detecting the mRNA that encodes them and can provide an indication of the expression pattern of the encoded polypeptide in the tissue. The techniques used are well known in the art and include in situ hybridization techniques, such as cDNA microarray hybridization (Schena et al, Science, 270, 467-470, 1995 and Shalon et al Genome Res, 6, 639-645, 1996) and nucleotide amplification techniques such as PCR. A preferred method uses TAQMAN ™ technology available from Perkin Elmer. Results from these studies can indicate the normal function of the polypeptide in the organism. Furthermore, a comparative study of the normal expression pattern of mRNA and the expression pattern of mRNA encoded by alternative forms of the same gene (e.g., having altered or regulated mutations in the polypeptide coding ability) is a role for the polypeptides of the present invention. Or can provide valuable insight into the role of its inappropriate expression in disease. Such inappropriate expression may have temporal, spatial or simply quantitative properties.

抗体ベースの分析技術は、本発明のSGK1、SGK2又はSGK3のレベルを決定するために使用し得る他の可能性である。市販の供給業者、例えば、Sigma又はCell Signalling TechnologiesからいくつかのSGK抗体が利用可能であり、又は他者によって発表されてきた。本発明の選択したポリペプチドに対する追加の抗体も、通常のプロトコールを用いてポリペプチド又はエピトープ保持断片、又は細胞を動物、好ましくは非ヒト動物に投与することによって得ることができる。モノクローナル抗体の調製のために、連続細胞系培養によって産生される抗体を与えるいかなる技術も使用し得る。例としては、ハイブリドーマ技法(Kohler, G. and Milstein, C., Nature (1975) 256:495-497)、トリオーマ技法、ヒトB-細胞ハイブリドーマ技法(Kozbor et al., Immunology Today (1983) 4:72)及びEBV-ハイブリドーマ技法(Cole et al., Monoclonal Antibodies and Cancer Therapy, 77-96, Alan R. Liss, Inc., 1985)が含まれる。
抗体は、ラジオイムノアッセイ、競合結合分析、ウェスタンブロット分析及びELISA分析を含む分析において有効である。
Antibody-based analytical techniques are other possibilities that can be used to determine the level of SGK1, SGK2 or SGK3 of the present invention. Several SGK antibodies are available from commercial suppliers, such as Sigma or Cell Signaling Technologies, or have been published by others. Additional antibodies against selected polypeptides of the invention can also be obtained by administering the polypeptide or epitope-bearing fragment, or cell, to an animal, preferably a non-human animal, using conventional protocols. Any technique that provides antibodies produced by continuous cell line cultures can be used for the preparation of monoclonal antibodies. Examples include hybridoma technology (Kohler, G. and Milstein, C., Nature (1975) 256: 495-497), trioma technology, human B-cell hybridoma technology (Kozbor et al., Immunology Today (1983) 4: 72) and EBV-hybridoma technology (Cole et al., Monoclonal Antibodies and Cancer Therapy, 77-96, Alan R. Liss, Inc., 1985).
The antibodies are effective in analyzes including radioimmunoassay, competitive binding analysis, Western blot analysis and ELISA analysis.

従って、他の態様においては、本発明は、以下を含む診断キットに関する:
(a)本発明のポリヌクレオチド、好ましくは配列番号: 1のヌクレオチド配列、又はその断片又はRNA転写物;
(b)(a)に相補的なヌクレオチド配列;
(c)本発明のポリペプチド、好ましくは配列番号: 2のポリペプチド又はその断片; 又は
(d)本発明のポリペプチドに対する、好ましくは配列番号: 2のポリペプチドに対する抗体。
このようないずれのキットにおいても、(a)、(b)、(c)又は(d)は実質的な成分を含むことができることが理解される。このようなキットは、疾患又は疾患に対する感受性、特に、数ある中でも本発明の疾患を診断するのに有用である。
上記の抗体は、単離物を診断するために又はポリペプチドを発現するクローンを同定するために又はアフィニティークロマトグラフィによってポリペプチドを精製するために使うことができる。本発明のポリペプチドに対する抗体は、また、とりわけ、本発明の疾患を治療するために使うことができる。
Accordingly, in another aspect, the invention relates to a diagnostic kit comprising:
(a) a polynucleotide of the invention, preferably the nucleotide sequence of SEQ ID NO: 1, or a fragment or RNA transcript thereof;
(b) a nucleotide sequence complementary to (a);
(c) the polypeptide of the present invention, preferably the polypeptide of SEQ ID NO: 2 or a fragment thereof; or
(d) an antibody against the polypeptide of the present invention, preferably against the polypeptide of SEQ ID NO: 2.
It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise substantial components. Such kits are useful for diagnosing a disease or susceptibility to a disease, particularly the disease of the present invention, among others.
The above antibodies can be used to diagnose isolates or to identify clones that express the polypeptide or to purify the polypeptide by affinity chromatography. Antibodies against the polypeptides of the invention can also be used, inter alia, to treat the diseases of the invention.

実施例
実施例1: マウスのデキサメタゾン処理
以前に記載されたように[Wulff et al., 2002]、SGK1を欠くマウス(sgk1-/-)を作製した。12のエキソン上に全転写領域を包含する7kbの断片からコンディショナルターゲッティングベクターを作成した。ネオマイシン耐性カセットは二つのloxP部位に挟まれており、これをイントロン11に挿入した。第三のloxP部位をイントロン3に挿入することによってSgk1キナーゼドメインをコードするエキソン4-11を“loxP部位で挟み込ん(floxed)”だ。標的R1 ES細胞にCreリコンビナーゼを一過性にトランスフェクトした。第一loxP部位と第三loxP部位との間に組換えを生じた(I型組換え)クローンをC57BL/6未分化胚芽細胞に注入した。雄キメラを129/SvJ雌に交配した。ヘテロ接合体sgk1欠損マウスを、129/SvJ野生型マウスに二世代にわたって戻し交配し、その後、異系交配して同型接合体sgk1-/-とSgk1+/+同腹子を作製した。動物を、標準法を用いてPCRによって遺伝子タイピングした。
デキサメタゾン効果の分析のため、sgk1+/+マウスおよびsgk1-/-マウスにリン酸デキサメタゾン二ナトリウム塩(Sigma、Taufkirchen、ドイツ; 0.9%食塩水に溶解した)を10μg/g BWの用量で4日間連続で午後8時に注射した。0.9%食塩水だけを注射したsgk1-/-マウスとsgk1+/+マウスを対照とした。マウスは標準マウス食餌(Altromin diet 1310、Heidenau、ドイツ)と水道水を自由に摂取させた。デキサメタゾン処理の4日目に、動物を、水道水を自由に摂取させながら実験の前にワイアグリッド上で16時間絶食させた。
Examples Example 1: Treatment of mice with dexamethasone Mice lacking SGK1 (sgk1 -/- ) were generated as previously described [Wulff et al., 2002]. A conditional targeting vector was constructed from a 7 kb fragment encompassing the entire transcription region on 12 exons. The neomycin resistance cassette is sandwiched between two loxP sites and inserted into intron 11. By inserting a third loxP site into intron 3, exon 4-11 encoding the Sgk1 kinase domain is “floxed” at the loxP site. Target R1 ES cells were transiently transfected with Cre recombinase. Clones that had undergone recombination between the first and third loxP sites (type I recombination) were injected into C57BL / 6 undifferentiated germ cells. Male chimeras were bred to 129 / SvJ females. Heterozygous sgk1-deficient mice were backcrossed to 129 / SvJ wild-type mice for two generations, and then crossbred to produce homozygous sgk1 − / − and Sgk1 + / + littermates. Animals were genotyped by PCR using standard methods.
For analysis of dexamethasone effects, sgk1 + / + and sgk1 − / − mice were treated with dexamethasone phosphate disodium salt (Sigma, Taufkirchen, Germany; dissolved in 0.9% saline) at a dose of 10 μg / g BW for 4 days Injected continuously at 8pm. Controls were sgk1 − / − mice and sgk1 + / + mice injected with 0.9% saline alone. Mice were allowed free access to standard mouse diet (Altromin diet 1310, Heidenau, Germany) and tap water. On the fourth day of dexamethasone treatment, the animals were fasted on the wire grid for 16 hours prior to the experiment with free access to tap water.

実施例2: 定量的リアルタイムPCRを用いて、SGK1転写物レベルに対するグルココルチコイドの効果を決定した。胃組織を迅速に取り出し、液体窒素中で凍結した。MagNa Lyser InstrumentTM(Roche Diagnostics、マンハイム、ドイツ)を用いて凍結した組織の自動化破壊とホモゲナイズを行った。各試料について一方通行の特別なチューブにセラミックビーズ、20-30mgの凍結した組織及び600μlのRLT-緩衝液(Qiagen、ヒルデン、ドイツ)を充填した。清澄化した細胞溶解物を更にRNA精製プロセス(RNAeasy Mini Kit、Qiagen、ヒルデン、ドイツ)に移した。続いて1μgの全RNAを、製造業者のプロトコールに従ってオリゴ(dT)プライマーと逆転写システム(Bioscience、米国)を用いてcDNAに逆転写した。mSGK1 mRNAレベルを決定するために、LightCycler SystemTM(Roche Diagnostics、マンハイム、ドイツ)において定量的リアルタイムPCRを設定した。2μlのcDNA、2.4μlのMgCl2(3μM)、1μlのプライマーミックス(どちらのプライマーも0.5μM)、2μlのcDNA Master SybrGreen Iミックス(Roche Molecular Biochemicals、マンハイム、ドイツ)及び12.6μlのDEPC処理水を含有する20μlの最終体積中でmSGK1についてPCR反応を行った。市販のプライマーキット(Search LC、ハイデルベルク、ドイツ)を用いて各試料においてハウスキーピング遺伝子mGAPDHの転写物レベルを決定した。GAPDHについてのPCR反応は、2μlのcDNA、2μlのプライマーミックス(Search LC、ハイデルベルク、ドイツ)、2μlのcDNA Master Sybr Green Iミックス(Roche Molecular Biochemicals、マンハイム、ドイツ)及び14μlのDEPC処理水を含有する20μlの最終体積中で行った。 Example 2: Quantitative real-time PCR was used to determine the effect of glucocorticoids on SGK1 transcript levels. Gastric tissue was quickly removed and frozen in liquid nitrogen. Automated destruction and homogenization of frozen tissue was performed using MagNa Lyser Instrument (Roche Diagnostics, Mannheim, Germany). One-way special tubes for each sample were filled with ceramic beads, 20-30 mg of frozen tissue and 600 μl of RLT-buffer (Qiagen, Hilden, Germany). Clarified cell lysates were further transferred to the RNA purification process (RNAeasy Mini Kit, Qiagen, Hilden, Germany). Subsequently, 1 μg of total RNA was reverse transcribed into cDNA using oligo (dT) primers and reverse transcription system (Bioscience, USA) according to the manufacturer's protocol. To determine mSGK1 mRNA levels, quantitative real-time PCR was set up in the LightCycler System (Roche Diagnostics, Mannheim, Germany). 2 μl cDNA, 2.4 μl MgCl 2 (3 μM), 1 μl primer mix (both primers 0.5 μM), 2 μl cDNA Master SybrGreen I mix (Roche Molecular Biochemicals, Mannheim, Germany) and 12.6 μl DEPC-treated water PCR reactions were performed on mSGK1 in a final volume of 20 μl containing. The transcript level of the housekeeping gene mGAPDH was determined in each sample using a commercially available primer kit (Search LC, Heidelberg, Germany). The PCR reaction for GAPDH contains 2 μl cDNA, 2 μl primer mix (Search LC, Heidelberg, Germany), 2 μl cDNA Master Sybr Green I mix (Roche Molecular Biochemicals, Mannheim, Germany) and 14 μl DEPC treated water. Performed in a final volume of 20 μl.

標的DNAの増幅は、95℃10秒間、68℃10秒間及び72℃16秒間の35サイクルで行い、それぞれ20℃/sの温度遷移速度及び0.5℃のステップ幅による58℃の二次ターゲット温度を含む。融解曲線分析を95℃0秒、58℃10秒、95℃0秒で行い、プライマー二量体及び特異的PCR産物の融解温度を決定した。融解曲線分析により増幅産物が確認され、その後、増幅産物を1.5%アガロースゲルにより分離して予想されたサイズ(406bp)を確認した。最後に、標的とハウスキーピング遺伝子転写物との比として結果を算出した。
mSGK1(Genebank No.: NM_011361)について以下のプライマーを用いた:
mSGK1センス: 5' TGT CTT GGG GCT GTC CTG TAT G 3'
mSGK1アンチセンス: 5' GCT TCT GCT GCT TCC TTC ACA C 3'
Target DNA amplification was performed in 35 cycles of 95 ° C for 10 seconds, 68 ° C for 10 seconds and 72 ° C for 16 seconds, with a secondary target temperature of 58 ° C with a temperature transition rate of 20 ° C / s and a step width of 0.5 ° C respectively Including. Melting curve analysis was performed at 95 ° C. for 0 seconds, 58 ° C. for 10 seconds, and 95 ° C. for 0 seconds to determine the melting temperature of the primer dimer and specific PCR product. The amplification product was confirmed by melting curve analysis, and then the amplification product was separated on a 1.5% agarose gel to confirm the expected size (406 bp). Finally, the results were calculated as the ratio of target to housekeeping gene transcript.
The following primers were used for mSGK1 (Genebank No .: NM_011361):
mSGK1 Sense: 5 'TGT CTT GGG GCT GTC CTG TAT G 3'
mSGK1 Antisense: 5 'GCT TCT GCT GCT TCC TTC ACA C 3'

実施例3: 胃のH+分泌
胃腺の単離のため、動物を水道水を自由に摂取させながらワイアグリッド上で実験の前16時間絶食させた。犠牲にした後、胃を取り出し、縦に切断した。標準Hepes溶液で洗浄した後、胃の基底部を0.3 cm2切片にスライスした。組織を解剖顕微鏡の冷却された試料台に移し、個々の腺を鋭くした顕微手術ピンセットを用いて組織を摘みとることによって胃壁から外した。腺の先端部に触れないように注意した。腺をCell-Tak接着剤(BD Biosciences)で予めコーティングしたガラスのカバースリップに取り付けた。細胞質ゾルpHiのデジタル画像処理のために、単離された個々の腺を10μM BCECF-AM (Molecular Probes、ライデン、オランダ)を含有するHEPES緩衝リンゲル液中で37℃で15分間インキューベートした。装填後、チャンバをリンゲル液で5分間洗い流して、腺の外側にくっついているいかなる脱エステル化色素も除去した。灌流チャンバを倒立顕微鏡(Zeiss Axiovert 135)の試料台に取り付け、その倒立顕微鏡を40×油浸対物レンズ(Zeiss Neoplan、ドイツ)を用いて落射蛍光方式で使用した。BCECFを490/10nmと440/10nmで連続して励起し、得られた蛍光シグナルを増感電荷結合素子カメラ(Proxitronic、ドイツ)と専用のコンピュータソフトウェア(Metafluor、米国)を用いて535/10nmでモニタした。壁細胞を輪郭化し、測定の間モニターした。強度比データ(490/440)を、高K+/ナイジェリシン較正技術を用いてpH値に変換した[Ganz et al., 1989]。
Example 3: Gastric H + secretion For isolation of gastric glands, animals were fasted on a wire grid for 16 hours prior to the experiment with free access to tap water. After sacrifice, the stomach was removed and cut longitudinally. After washing with standard Hepes solution, the base of the stomach was sliced into 0.3 cm 2 sections. The tissue was removed from the stomach wall by transferring to a cooled sample stage of a dissecting microscope and picking the tissue using microsurgical tweezers with sharpened individual glands. Care was taken not to touch the tip of the gland. The glands were attached to glass coverslips pre-coated with Cell-Tak adhesive (BD Biosciences). For digital imaging of cytosolic pH i , isolated individual glands were incubated for 15 minutes at 37 ° C. in HEPES buffered Ringer's solution containing 10 μM BCECF-AM (Molecular Probes, Leiden, The Netherlands). After loading, the chamber was flushed with Ringer's solution for 5 minutes to remove any de-esterified dye attached to the outside of the gland. The perfusion chamber was attached to the sample stage of an inverted microscope (Zeiss Axiovert 135), and the inverted microscope was used in the epifluorescence mode with a 40 × oil immersion objective (Zeiss Neoplan, Germany). BCECF is excited sequentially at 490/10 nm and 440/10 nm, and the resulting fluorescence signal is obtained at 535/10 nm using a sensitized charge coupled device camera (Proxitronic, Germany) and dedicated computer software (Metafluor, USA). Monitored. Wall cells were contoured and monitored during the measurement. Intensity ratio data (490/440) was converted to pH values using a high K + / Nigericin calibration technique [Ganz et al., 1989].

示してある場合、50μMオメプラゾール(Astra-Zeneca スウェーデン)をBCECFインキュベーション培地および標準Hepes溶液に添加した。
溶液、フローライン及び灌流チャンバを、サーモスタット制御の加熱システムによって37℃に維持した。灌流チャンバの容積は600μlであり、流量は全溶液について4ml/分とした。酸負荷のために、細胞を20mMのNH4Clを含有する溶液に一時的にさらし、NH3が流入しH+が結合してNH4 +を形成するために細胞質ゾルpH(pHi)の最初の著しいアルカリ化を生じさせた[Roos and Boron 1981]。アンモニアの除去による細胞質ゾルpHの酸性化により、NH4 +とNH3が細胞質ゾルと細胞外液において平衡にあり且つアンモニアがNH3として細胞から遊離すると仮定して、細胞の平均固有緩衝能を算出することが可能となる[Roos and Boron 1981]、:
β= Δ[NH4 +]i/ΔpHi
ここで、ΔpHiは、アンモニア除去後の細胞質ゾルpH(pHi)の低下であり、Δ[NH4 +]iは細胞質ゾルNH4 +濃度の低下である(細胞質ゾルNH4 +濃度はアンモニアの除去直前のNH4 +の濃度と同一である)。NH4 +/NH3のpKが8.9[Boyarsky et al., 1988]とすると、細胞外pH(pH0)7.4で細胞外液のNH4 +濃度([NH4 +]0)19.37 [20/(1+10pHo-pK)]: [NH4]i = 19.37・10pHo-pHiである。
溶液は、以下から構成される(mM濃度): 標準Hepes 115 NaCl、5 KCl、1 CaCl2、1.2 MgSO4、2 NaH2PO4 10 グルコース、32.2 Hepes; ナトリウムを含まないHepes 132.8 NMDG、3 KCl、1 CaCl2、1.2 MgSO4、2 KH2PO4、32 Hepes、10 マンニトール、10 グルコース; ナトリウムを含まない塩化アンモニウム 10 mM NMDGおよびマンニトールを20mM NH4Clで置き換えた; 検定用高K+ 105 KCl、1 CaCl2、1.2 MgSO4、32.2 Hepes、10 マンニトール 5μMナイジェリシン。溶液のpHを、37℃にてHCl/NaOH、HCl/NMDG及びHCl/KOHでそれぞれ7.4又は7.0に滴定した。
Where indicated, 50 μM omeprazole (Astra-Zeneca Sweden) was added to BCECF incubation medium and standard Hepes solution.
The solution, flow line and perfusion chamber were maintained at 37 ° C. by a thermostatically controlled heating system. The volume of the perfusion chamber was 600 μl and the flow rate was 4 ml / min for all solutions. Due to acid loading, the cells are temporarily exposed to a solution containing 20 mM NH 4 Cl, and the cytosolic pH (pH i ) of NH 3 + flows into and binds H + to form NH 4 + . The first significant alkalinization occurred [Roos and Boron 1981]. Acidification of the cytosolic pH by removal of ammonia assumes that the NH 4 + and NH 3 are equilibrated in the cytosol and extracellular fluid and that the ammonia is released from the cell as NH 3 , thereby increasing the average intrinsic buffer capacity of the cell. [Roos and Boron 1981], which can be calculated:
β = Δ [NH 4 + ] i / ΔpH i ,
Here, delta pH i is the reduction of cytosolic pH after ammonia removal (pH i), Δ [NH 4 +] i is the reduction of cytosolic NH 4 + concentration (cytosolic NH 4 + concentration is ammonia Is the same as the NH 4 + concentration just before the removal of. NH 4 + / pK of NH 3 is 8.9 [Boyarsky et al., 1988 ] When, NH 4 + concentration in the extracellular fluid in extracellular pH (pH 0) 7.4 ([ NH 4 +] 0) 19.37 [20 / (1 + 10 pHo-pK )]: [NH 4 ] i = 19.37 · 10 pHo-pHi .
The solution consists of (mM concentration): Standard Hepes 115 NaCl, 5 KCl, 1 CaCl 2 , 1.2 MgSO 4 , 2 NaH 2 PO 4 10 Glucose, 32.2 Hepes; Sodium-free Hepes 132.8 NMDG, 3 KCl , 1 CaCl 2, 1.2 MgSO 4 , 2 KH 2 PO 4, 32 Hepes, 10 mannitol, 10 glucose; replacing the ammonium chloride 10 mM NMDG and mannitol that do not contain sodium in 20 mM NH 4 Cl; for test high K + 105 KCl, 1 CaCl 2 , 1.2 MgSO 4 , 32.2 Hepes, 10 mannitol 5 μM nigericin. The pH of the solution was titrated to 7.4 or 7.0 with HCl / NaOH, HCl / NMDG and HCl / KOH, respectively, at 37 ° C.

実施例4: SGK1を調節する化合物
4.1.一般式Iの化合物及びその医薬的に有効な誘導体、塩、溶液及び立体異性体、及びそれらの混合物。
Example 4: Compound modulating SGK1
4.1. Compounds of general formula I and their pharmaceutically effective derivatives, salts, solutions and stereoisomers, and mixtures thereof.


Figure 2009531020

Figure 2009531020

(式中、R1、R5は、H、OH、OA、OAc又はメチルであり、
R2、R3、R4、R6、R7、R8、R9、R10は、H、OH、OA、OAc、OCF3、Hal、NO2、CF3、A、CN、OSO2CH3、SO2CH3、NH2又はCOOHであり、
R11は、H又はCH3であり、
Aは、C原子1、2、3又は4個を有するアルキルであり、
Xは、CH2、CH2CH2、OCH2又は-CH(OH)-であり、
Halは、F、Cl、Br又はIである。)
Wherein R 1 and R 5 are H, OH, OA, OAc or methyl,
R 2, R 3, R 4 , R 6, R 7, R 8, R 9, R 10 is, H, OH, OA, OAc , OCF 3, Hal, NO 2, CF 3, A, CN, OSO 2 CH 3 , SO 2 CH 3 , NH 2 or COOH,
R 11 is H or CH 3
A is alkyl having 1, 2, 3 or 4 C atoms;
X is CH 2 , CH 2 CH 2 , OCH 2 or —CH (OH) —,
Hal is F, Cl, Br or I. )

以下の化合物群より選ばれる式Iの化合物:
(3-ヒドロキシフェニル)-酸性酸(acidic acid)-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-ヒドロキシフェニル)-酸性酸-[1-(4-ヒドロキシ-2-メトキシフェニル)エチリデン]ヒドラジド、
(3-メトキシフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
フェニル酸性酸-(3-フルオル-4-ヒドロキシベンジリデン)ヒドラジド、
(4-ヒドロキシフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3,4-ジクロルフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
m-トリル-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
o-トリル-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(2-クロルフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-クロルフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(4-フルオルフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(2-クロル-4-フルオルフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-フルオルフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-(4-ヒドロキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-(4-ヒドロキシ-2,6-ジメチルベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-(3-フルオル-4-ヒドロキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-[1-(4-ヒドロキシ-2-メトキシフェニル)エチリデン]ヒドラジド、
(3-メチルスルホニルオキシフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3,5-ジヒドロキシフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-フルオルフェニル)-酸性酸-(3-フルオル-4-ヒドロキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-(4-アセトキシ-2-メトキシベンジリデン)ヒドラジド、
(3-トリフルオロメチルフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
3-(3-メトキシフェニル)-プロピオン酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-(2,4-ジヒドロキシベンジリデン)ヒドラジド、
(3-メトキシフェノキシ)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-ニトロフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-(5-クロル-2-ヒドロキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-(2-ヒドロキシ-5-ニトロベンジリデン)ヒドラジド、
2-ヒドロキシ-2-フェニル-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸(2-エトキシ-4-ヒドロキシベンジリデン)ヒドラジド、
(3-ブロムフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-[1-(4-ヒドロキシフェニル)エチリデン]ヒドラジド、
(3,5-ジフルオルフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-ヒドロキシフェニル)-酸性酸-(4-ヒドロキシ-2-メチルベンジリデン)ヒドラジド、
(3-ヒドロキシフェニル)-酸性酸-(2-エトキシ-4-ヒドロキシベンジリデン)ヒドラジド、
(3-ヒドロキシフェニル)-酸性酸(2-メトキシ-4-ヒドロキシ-6-メチルベンジリデン)ヒドラジド、
(2-フルオルフェニル)-酸性酸-(2-メトキシ-4-ヒドロキシベンジリデン)ヒドラジド。
A compound of formula I selected from the following group of compounds:
(3-hydroxyphenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-hydroxyphenyl) -acidic acid- [1- (4-hydroxy-2-methoxyphenyl) ethylidene] hydrazide,
(3-methoxyphenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
Phenyl acid- (3-fluoro-4-hydroxybenzylidene) hydrazide,
(4-hydroxyphenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3,4-dichlorophenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
m-tolyl-acid-acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
o-Tolyl-acid-acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(2-chlorophenyl) -acid-acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-chlorophenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(4-fluorophenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(2-chloro-4-fluorophenyl) -acid-acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-Fluorophenyl) -acid acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-methoxyphenyl) -acidic acid- (4-hydroxybenzylidene) hydrazide,
(3-methoxyphenyl) -acidic acid- (4-hydroxy-2,6-dimethylbenzylidene) hydrazide,
(3-methoxyphenyl) -acid-acid- (3-fluor-4-hydroxybenzylidene) hydrazide,
(3-methoxyphenyl) -acidic acid- [1- (4-hydroxy-2-methoxyphenyl) ethylidene] hydrazide,
(3-methylsulfonyloxyphenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3,5-dihydroxyphenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-Fluorophenyl) -acidic acid- (3-Fluoro-4-hydroxybenzylidene) hydrazide,
(3-methoxyphenyl) -acidic acid- (4-acetoxy-2-methoxybenzylidene) hydrazide,
(3-trifluoromethylphenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
3- (3-methoxyphenyl) -propionic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-methoxyphenyl) -acidic acid- (2,4-dihydroxybenzylidene) hydrazide,
(3-methoxyphenoxy) -acid-acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-nitrophenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-methoxyphenyl) -acid-acid- (5-chloro-2-hydroxybenzylidene) hydrazide,
(3-methoxyphenyl) -acidic acid- (2-hydroxy-5-nitrobenzylidene) hydrazide,
2-hydroxy-2-phenyl-acid-acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-methoxyphenyl) -acid (2-ethoxy-4-hydroxybenzylidene) hydrazide,
(3-bromophenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-methoxyphenyl) -acidic acid- [1- (4-hydroxyphenyl) ethylidene] hydrazide,
(3,5-difluorophenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-hydroxyphenyl) -acidic acid- (4-hydroxy-2-methylbenzylidene) hydrazide,
(3-hydroxyphenyl) -acidic acid- (2-ethoxy-4-hydroxybenzylidene) hydrazide,
(3-hydroxyphenyl) -acid acid (2-methoxy-4-hydroxy-6-methylbenzylidene) hydrazide,
(2-Fluorophenyl) -acid-acid- (2-methoxy-4-hydroxybenzylidene) hydrazide.

4.2.一般式IIの化合物及びその医薬的に有効な誘導体、塩、溶液及び立体異性体、及びそれらの混合物。 4.2. Compounds of general formula II and their pharmaceutically effective derivatives, salts, solutions and stereoisomers, and mixtures thereof.


Figure 2009531020

Figure 2009531020

(式中、R1、R2、R3、R4、R5は、H、A、OH、OA、アルケニル、アルキニル、NO2、NH2、NHA、NA2、Hal、CN、COOH、COOA、-OHet、-O-アルキレン-Het、-O-アルキレン-NR8R9又はCONR8R9、R1、R2、R3、R4、R5より選ばれる二つの基、又は-O-CH2-CH2-、-O-CH2-O-又は-O-CH2-CH2-O-であり、
R6、R7は、H、A、Hal、OH、OA又はCNであり、
R8、R9は、H又はAであり、
Hetは、一つ以上のHal、A、OA、COOA、CN又はカルボニル酸素(=O)によって置換された、N-、O-及び/又はS-原子1〜4個を有する飽和又は不飽和素環であり、
Aは、C原子1〜10個を有するアルキルであり、ここで、H原子1-7個は、F及び/又は塩素によって置換されてもよく、
X、X'は、NHであるか又は存在せず、
Halは、F、Cl、Br又はIである。)
(Where R 1 , R 2 , R 3 , R 4 , R 5 are H, A, OH, OA, alkenyl, alkynyl, NO 2 , NH 2 , NHA, NA 2 , Hal, CN, COOH, COOA , -OHet, -O-alkylene-Het, -O-alkylene-NR 8 R 9 or CONR 8 R 9 , two groups selected from R 1 , R 2 , R 3 , R 4 , R 5 , or -O -CH 2 -CH 2 -, - O -CH 2 -O- or -O-CH 2 is -CH 2 -O-,
R 6 and R 7 are H, A, Hal, OH, OA or CN,
R 8 and R 9 are H or A,
Het is a saturated or unsaturated element having 1 to 4 N-, O- and / or S-atoms substituted by one or more of Hal, A, OA, COOA, CN or carbonyl oxygen (= O). A ring,
A is an alkyl having 1 to 10 C atoms, wherein 1-7 H atoms may be substituted by F and / or chlorine;
X, X ′ is NH or absent,
Hal is F, Cl, Br or I. )

以下の化合物の群より選ばれる式IIの化合物:
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2-フルオル-5-トリフルオルメチルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(4-クロル-5-トリフルオルメチルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2,4-ジフルオルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2,6-ジフルオルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(3-フルオル-5-トリフルオルメチルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(4-フルオル-5-トリフルオルメチルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(4-メチル-5-トリフルオルメチルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2,3,4,5,6-ペンタフルオルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2,4-ジブロム-6-フルオルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2-フルオル-6-トリフルオルメチルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2-フルオル-5-メチルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2,3,4-トリフルオルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(4-ブロム-2,6-ジフルオルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2-フルオル-3-トリフルオルメチル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[2-(1-tert-ブチルオキシカルボニルピペリジン-4-イル)フェニル]尿素、
N-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-2,4-ジクロルベンズアミド、
N-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-4-クロル-5-トリフルオルメチルベンズアミド、
N-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-2-フルオル-5-トリフルオルメチルベンズアミド、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[3-クロル-5-トリフルオルメチル-2-(ピペリジン-4-イルオキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[(2-フルオル-5-(2-ジメチルアミノエトキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[5-フルオル-2-(ピペリジン-4-イルオキシ)フェニル]尿素、
A compound of formula II selected from the group of the following compounds:
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2-fluoro-5-trifluoromethylphenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (4-chloro-5-trifluoromethylphenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2,4-difluorophenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2,6-difluorophenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (3-fluoro-5-trifluoromethylphenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (4-fluoro-5-trifluoromethylphenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (4-methyl-5-trifluoromethylphenyl) urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2,3,4,5,6-pentafluorophenyl )urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2,4-dibromo-6-fluorophenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2-fluoro-6-trifluoromethylphenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2-fluoro-5-methylphenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2,3,4-trifluorophenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (4-bromo-2,6-difluorophenyl) urea
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2-fluoro-3-trifluoromethyl) urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [2- (1-tert-butyloxycarbonylpiperidine-4- Yl) phenyl] urea,
N- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -2,4-dichlorobenzamide,
N- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -4-chloro-5-trifluoromethylbenzamide,
N- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -2-fluoro-5-trifluoromethylbenzamide,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [3-chloro-5-trifluoromethyl-2- (piperidine -4-yloxy) phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3-[(2-fluor-5- (2-dimethylaminoethoxy) Phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [5-fluor-2- (piperidin-4-yloxy) phenyl ]urea,

1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[4-クロル-5-トリフルオルメチル-2-(ピペリジン-4-イルオキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[2-(ピペリジン-4-イルオキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[2-フルオル-5-(2-ジエチルアミノエトキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[2-フルオル-5-[2-(ピペリジン-1-イル)エトキシ]フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[4-フルオル-2-(2-ジメチルアミノエトキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[4-フルオル-2-(2-ジエチルアミノエトキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[3-クロル-4-[2-(モルホリン-4-イル)エトキシ]フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[4-フルオル-2-[2-(モルホリン-4-イル)エトキシ]フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[3-クロル-4-(2-ジメチルアミノエトキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[3-クロル-4-(2-ジエチルアミノエトキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[4-クロル-2-(2-ジメチルアミノエトキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[2-クロル-5-(2-ジエチルアミノエトキシ)フェニル]尿素。
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [4-chloro-5-trifluoromethyl-2- (piperidine -4-yloxy) phenyl] urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [2- (piperidin-4-yloxy) phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [2-fluoro-5- (2-diethylaminoethoxy) phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [2-fluoro-5- [2- (piperidine-1- Yl) ethoxy] phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [4-fluor-2- (2-dimethylaminoethoxy) phenyl ]urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [4-fluoro-2- (2-diethylaminoethoxy) phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [3-chloro-4- [2- (morpholine-4- Yl) ethoxy] phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [4-fluoro-2- [2- (morpholine-4- Yl) ethoxy] phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [3-chloro-4- (2-dimethylaminoethoxy) phenyl ]urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [3-chloro-4- (2-diethylaminoethoxy) phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [4-chloro-2- (2-dimethylaminoethoxy) phenyl ]urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [2-chloro-5- (2-diethylaminoethoxy) phenyl] urea.

実施例5: SGK1ヌクレオチド多型
SGK1ヌクレオチド多型は、配列...aattacattgCgcaacccag..によって示されるが、他の集団を示すヌクレオチド配列は....aattacattgTgcaacccag...である。いずれの配列も受託番号GI 2463200 Position 2071によって利用可能である。条件的胃酸過剰生産患者のエキソン8配列は、ホモ接合体..tactgaCttcggact..又は....tactgaTttcggact....か又はヘテロ接合体.tactgaCttcggact...と...tactgaTttcggact ..である。配列は、受託番号NM _005627.2, Position 777によって利用可能である。
Example 5: SGK1 nucleotide polymorphism
The SGK1 nucleotide polymorphism is represented by the sequence ... aattacattg C gcaacccag .., but the nucleotide sequence representing the other population is .... aattacattg T gcaacccag ... Either sequence is available under accession number GI 2463200 Position 2071. Exon 8 sequences in patients with conditional gastric overproduction are homozygous..tactga C ttcggact .. or ... tactgaTttcggact .... or heterozygous.tactga C ttcggact ... and ... tactgaTttcggact. . The sequence is available under accession number NM_005627.2, Position 777.

更なる実施例
化学的化合物をスクリーニングするためのSGK1分析
SGK1分析を、活性化/リン酸化SGK1において行った。短縮したSGK1ペプチド(Δ(1-60)hSGK1 S422D)をPDK1-誘導体とATPと共にインキューベートすることにより活性化SGK1を作成した。
この事前活性化/リン酸化SGK1を、試験すべき化合物の存在下又は非存在下でビオチン化Crosstideペプチド(ビオチン-KGSGSGRPRTSSFAEG)および5μM[33P-ATP](50-1000cpm/ピコモル)と共に室温で60分間インキューベートした。
分析緩衝液は、20mM MOPS pH 7.2、5mM EGTA、0.5μM基質ペプチド、15mM MgCl2、25mM グリセロリン酸、1mM Na3VO4、1mM DTT、0.01%Brij-35とした。
ATPを含まない200μlの分析緩衝液を添加することによって反応を停止し、反応混合物のアリコートを96ウェルストレプトアビジン被覆FLASH-プレートに移し、20分間インキューベートした。その後、溶液を除去し、プレートをPBS緩衝液で三回洗浄した。結合した放射能を測定するために、FLASH-プレートをTOPCOUNTマイクロタイタープレートシンチレーションカウンタに入れた。
SGK-1、SGK2-及びSGK3-イソ型の検査のための分析フォーマットは同一とした。ヒトSGK2はStressgen(No # PPK-455)から購入し、hSGK3はΔ(1-60)hSGK3 S422D-誘導体を用いた。
Further examples SGK1 analysis for screening chemical compounds
SGK1 analysis was performed on activated / phosphorylated SGK1. Activated SGK1 was prepared by incubating a shortened SGK1 peptide (Δ (1-60) hSGK1 S422D) with PDK1-derivative and ATP.
This pre-activated / phosphorylated SGK1 was incubated at room temperature with biotinylated Crosstide peptide (Biotin-KGSGSGRPRTSSFAEG) and 5 μM [ 33 P-ATP] (50-1000 cpm / pimol) in the presence or absence of the compound to be tested. Incubated for a minute.
The analysis buffer was 20 mM MOPS pH 7.2, 5 mM EGTA, 0.5 μM substrate peptide, 15 mM MgCl 2 , 25 mM glycerophosphate, 1 mM Na 3 VO 4 , 1 mM DTT, 0.01% Brij-35.
The reaction was stopped by adding 200 μl of analysis buffer without ATP, and an aliquot of the reaction mixture was transferred to a 96-well streptavidin-coated FLASH-plate and incubated for 20 minutes. The solution was then removed and the plate was washed 3 times with PBS buffer. To measure the bound radioactivity, the FLASH-plate was placed in a TOPCOUNT microtiter plate scintillation counter.
The analysis format for testing SGK-1, SGK2- and SGK3-isoforms was the same. Human SGK2 was purchased from Stressgen (No # PPK-455), and Δ (1-60) hSGK3 S422D-derivative was used for hSGK3.

選ばれたSGK1阻害因子をスクリーニングするためのELISA分析
SGK阻害因子を生理的ATP-濃度で試験するために、現行のELISAプロトコールを選択化合物に使った。
96-ウェルマイクロタイタープレートを、0.2M炭酸緩衝液中の0.5μM GSK-3融合タンパク質溶液(Cell Signalling; No. 9278) 50μlを添加することによってコーティングした。MTPを、37℃で60分間インキューベートした。その後、MTP-ウェルを100μl/ウェルの140mM NaCl、10mM NaH2PO4(洗浄緩衝液)で3回洗浄した。
100μlのブロッキング緩衝液(洗浄緩衝液+ 3%(w/v)ウシ血清アルブミン)を各ウェルに添加し、37℃で60分間インキュベートして遊離面のブロッキングを行った。洗浄後、キナーゼ反応を、ADBI-緩衝液(ADBI-緩衝液: 20mM MOPS pH 7.2、5mM EGTA、15mM MgCl2、25mM グリセロリン酸、1mM Na3VO4、1mM DTT、0.01%Brij-35)中30-300μM ATP中、漸次増加させた濃度の試験化合物の存在下に10ngのhSGK(Δ(1-60)hSGK1 S422D-誘導体)をインキュベートすることによって総容量50μlにおいて行った。インキュベーションは室温にて120分間行った。
反応を停止した後、ウェルを三回洗浄し、続いて50μlの蛍光体(phosophor)-GSK3-抗体溶液(Ser21/9抗体の1:1000希釈液、Cell Signaling #9331L)を各ウェルに添加した。MTPを37℃で30分間インキューベートし、その後三回洗浄した。
次に、50μlのヤギ-抗ウサギホースラディッシュペルオキシダーゼ(POD)複合抗体溶液(阻止緩衝液中1:15,000希釈液; Sigma #A-0545)を各ウェルに添加した。更にインキュベートし、洗浄した後、分析物をABTS(2,2'-アジノビス-3-エチルベンズチアゾリン-6-スルホン酸)(Calbiochem # 194434)とH2O2で発色させた。読み出しは、405nmでSpectraFluor-MTP-リーダー(TECAN)によって行った。対照インキュベーションと比較したODの低下によって本出願で特許請求するSGK1の阻害因子を同定した。
ELISA analysis to screen selected SGK1 inhibitors
To test SGK inhibitors at physiological ATP-concentrations, current ELISA protocols were used for selected compounds.
96-well microtiter plates were coated by adding 50 μl of 0.5 μM GSK-3 fusion protein solution (Cell Signaling; No. 9278) in 0.2 M carbonate buffer. MTP was incubated at 37 ° C. for 60 minutes. Thereafter, MTP-wells were washed 3 times with 100 μl / well of 140 mM NaCl, 10 mM NaH 2 PO 4 (wash buffer).
100 μl blocking buffer (wash buffer + 3% (w / v) bovine serum albumin) was added to each well and incubated at 37 ° C. for 60 minutes to block the free surface. After washing, the kinase reaction was performed in ADBI-buffer (ADBI-buffer: 20 mM MOPS pH 7.2, 5 mM EGTA, 15 mM MgCl 2 , 25 mM glycerophosphate, 1 mM Na 3 VO 4 , 1 mM DTT, 0.01% Brij-35) 30 This was done in a total volume of 50 μl by incubating 10 ng hSGK (Δ (1-60) hSGK1 S422D-derivative) in the presence of increasing concentrations of the test compound in −300 μM ATP. Incubation was for 120 minutes at room temperature.
After stopping the reaction, the wells were washed three times, and then 50 μl of phosophor-GSK3-antibody solution (1: 1000 dilution of Ser21 / 9 antibody, Cell Signaling # 9331L) was added to each well . MTP was incubated at 37 ° C. for 30 minutes and then washed three times.
Next, 50 μl of goat-anti-rabbit horseradish peroxidase (POD) conjugate antibody solution (1: 15,000 dilution in blocking buffer; Sigma # A-0545) was added to each well. After further incubation and washing, the analyte was developed with ABTS (2,2′-azinobis-3-ethylbenzthiazoline-6-sulfonic acid) (Calbiochem # 194194) and H 2 O 2 . Reading was performed with a SpectraFluor-MTP-reader (TECAN) at 405 nm. Inhibitors of SGK1 claimed in this application were identified by a decrease in OD compared to control incubation.

選ばれたSGK1阻害因子のHeLa細胞におけるスクリーニング
NDRG1-タンパク質は、HeLa細胞において発現されたSGK1の特異的基質として記載されている(Murray JT, et al. Biochem. J. 2004, 384:477-88を参照)。本出願において、HeLa細胞は、SGK1-阻害因子の特徴解析のための細胞試験システムとして用いられている。
HeLa細胞を、10%ウシ胎児血清(FCS)、2mMグルタミン及び1mMピルビン酸ナトリウムを添加したDMEM培地中10-20×103細胞/cm2の密度で6ウェルMTP(Costar Corning、# 3506)にプレーティングし、37℃にて24時間、5%CO2中でインキューベートした。その後、化合物の連続希釈物を添加し、1%DMSO濃度で予想されたSGK1-阻害因子濃度が得られた。細胞を更に24時間インキューベートした。
その後、上清を除去し、細胞をBPSで洗浄した。各ウェルに、250μlの氷***解緩衝液(50mMトリス/HCl、1mM EDTA、1mM EGTA、0.5mM活性化Na3VO4、10mMグリセロリン酸、50mM NaF、5mM Na-ピロリン酸、1%トリトンX100、1mM DTT、0.1mM PMSF、及び1μM マイクロクリスチン及びそれぞれ1μg/mlのアプロチニン、ペプスタチン及びロイペプチン)を添加した。細胞をこすり取り、ピペットで懸濁した後、細胞をホモジェナイズし、溶解した。細胞溶解物を-24℃で保存した。
細胞溶解物の16μlアリコートを1μlβ-メルカプトエタノールを添加した6μlの4×NuPage(登録商標)LDS-試料緩衝液に移し、加熱する。試料を、NDRG1-及びP-NDRG1-抗血清を用いてSDS-PAGEとウエスタンブロットの分析によって更に調べた。P-NDRG1-抗体を用いてウエスタンブロットのバンドの強度の低下を決定し、それを用いて本出願において特許請求したSGK1-阻害因子の細胞内阻害能を評価した。
Screening of selected SGK1 inhibitors in HeLa cells
NDRG1-protein has been described as a specific substrate for SGK1 expressed in HeLa cells (see Murray JT, et al. Biochem. J. 2004, 384: 477-88). In this application, HeLa cells are used as a cell test system for characterization of SGK1-inhibitors.
HeLa cells in 6-well MTP (Costar Corning, # 3506) at a density of 10-20 × 10 3 cells / cm 2 in DMEM medium supplemented with 10% fetal calf serum (FCS), 2 mM glutamine and 1 mM sodium pyruvate Plated and incubated at 37 ° C. for 24 hours in 5% CO 2 . Subsequently, serial dilutions of the compounds were added to obtain the expected SGK1-inhibitor concentration at 1% DMSO concentration. Cells were incubated for an additional 24 hours.
Thereafter, the supernatant was removed, and the cells were washed with BPS. In each well, 250 μl ice cold lysis buffer (50 mM Tris / HCl, 1 mM EDTA, 1 mM EGTA, 0.5 mM activated Na 3 VO 4 , 10 mM glycerophosphate, 50 mM NaF, 5 mM Na-pyrophosphate, 1% Triton X100, 1 mM DTT, 0.1 mM PMSF, and 1 μM microcristin and 1 μg / ml aprotinin, pepstatin and leupeptin, respectively) were added. After scraping the cells and suspending them with a pipette, the cells were homogenized and lysed. Cell lysates were stored at -24 ° C.
Transfer 16 μl aliquots of cell lysate to 6 μl 4 × NuPage® LDS-sample buffer supplemented with 1 μl β-mercaptoethanol and heat. Samples were further examined by SDS-PAGE and Western blot analysis using NDRG1- and P-NDRG1-antisera. The P-NDRG1-antibody was used to determine the reduction in the intensity of the Western blot band and was used to evaluate the intracellular inhibitory capacity of the SGK1-inhibitor claimed in this application.

参考文献
Abriel H, Kamynina E, Horisberger JD, Staub O: Regulation of the cardiac voltage-gated Na+ channel (H1) by the ubiquitin-protein ligase Nedd4. FEBS Lett 2000;466:377-380.

Ahamed RN, Mummigatti UG, Samuel CS: Effect of adrenalectomy and administration of prednisolone on gastric ulcer formation in forestomachectomized Shay albino rats. Indian J Physiol Pharmacol 1983;27:298-304.

Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA: Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 1996;15:6541-6551.

Alessi DR, Cohen P: Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 1998;8:55-62.

Alliston TN, Gonzalez-Robayna IJ, Buse P, Firestone GL, Richards JS: Expression and localization of serum/glucocorticoid-induced kinase in the rat ovary: relation to follicular growth and differentiation. Endocrinology 2000;141:385-395.

Alliston TN, Maiyar AC, Buse P, Firestone GL, Richards JS: Follicle stimulating hormone-regulated expression of serum/glucocorticoid-inducible kinase in rat ovarian granulosa cells: a functional role for the Sp1 family in promoter activity. Mol Endocrinol 1997;11:1934-1949.

Alvarez de la Rosa D, Zhang P, Naray-Fejes-Toth A, Fejes-Toth G, Canessa CM: The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J Biol Chem 1999;274:37834-37839.

Bandyopadhyay U, Biswas K, Bandyopadhyay D, Ganguly CK, Banerjee RK: Dexamethasone makes the gastric mucosa susceptible to ulceration by inhibiting prostaglandin synthetase and peroxidase--two important gastroprotective enzymes. Mol Cell Biochem 1999;202:31-36.

Barker PM, Nguyen MS, Gatzy JT, Grubb B, Norman H, Hummler E, Rossier B, Boucher RC, Koller B: Role of gammaENaC subunit in lung liquid clearance and electrolyte balance in newborn mice. Insights into perinatal adaptation and pseudohypoaldosteronism. J Clin Invest 1998;102:1634-1640.

Berger S, Bleich M, Schmid W, Cole TJ, Peters J, Watanabe H, Kriz W, Warth R, Greger R, Schutz G: Mineralocorticoid receptor knockout mice: pathophysiology of Na+ metabolism. Proc Natl Acad Sci U S A 1998;95:9424-9429.

Boehmer C, Henke G, Schniepp R, Palmada M, Rothstein JD, Broer S, Lang F: Regulation of the glutamate transporter EAAT1 by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid-inducible kinase isoforms SGK1/3 and protein kinase B. J Neurochem 2003a;86:1181-1188.

Boehmer C, Okur F, Setiawan I, Broer S, Lang F: Properties and regulation of glutamine transporter SN1 by protein kinases SGK and PKB. Biochem Biophys Res Commun 2003b;306:156-162.

Boehmer C, Wilhelm V, Palmada M, Wallisch S, Henke G, Brinkmeier H, Cohen P, Pieske B, Lang F: Serum and glucocorticoid inducible kinases in the regulation of the cardiac sodium channel SCN5A. Cardiovasc Res 2003c;57:1079-1084.

Bohmer C, Wagner CA, Beck S, Moschen I, Melzig J, Werner A, Lin JT, Lang F, Wehner F: The shrinkage-activated Na(+) conductance of rat hepatocytes and its possible correlation to rENaC. Cell Physiol Biochem 2000;10:187-194.

Boyarsky G, Ganz MB, Sterzel RB, Boron WF: pH regulation in single glomerular mesangial cells. I. Acid extrusion in absence and presence of HCO3-. Am J Physiol 1988;255:C844-C856.

Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D: Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci U S A 1999;96:2514-2519.

Cooke AR, Preshaw RM, Grossman ML: Effect of adrenalectomy and glucocorticoids on the secretion and absorption of hydrogen ion. Gastroenterology 1966;50:761-767.

Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Munster C, Chraibi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O: Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na(+) channel cell surface expression. EMBO J 2001;20:7052-7059.

Dieter M, Palmada M, Rajamanickam J, Aydin A, Busjahn A, Boehmer C, Luft FC, Lang F: Regulation of glucose transporter SGLT1 by ubiquitin ligase Nedd4-2 and kinases SGK1, SGK3, and PKB. Obes Res 2004;12:862-870.

Divecha N, Banfic H, Irvine RF: The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J 1991;10:3207-3214.

Embark HM, Bohmer C, Vallon V, Luft F, Lang F: Regulation of KCNE1-dependent K(+) current by the serum and glucocorticoid-inducible kinase (SGK) isoforms. Pflugers Arch 2003;445:601-606.

Faletti CJ, Perrotti N, Taylor SI, Blazer-Yost BL: sgk: an essential convergence point for peptide and steroid hormone regulation of ENaC-mediated Na+ transport. Am J Physiol Cell Physiol 2002;282:C494-C500.

Gamper N, Fillon S, Feng Y, Friedrich B, Lang PA, Henke G, Huber SM, Kobayashi T, Cohen P, Lang F: K(+) channel activation by all three isoforms of serum- and glucocorticoid-dependent protein kinase SGK. Pflugers Arch 2002a;445:60-66.

Gamper N, Fillon S, Huber SM, Feng Y, Kobayashi T, Cohen P, Lang F: IGF-1 up-regulates K+ channels via PI3-kinase, PDK1 and SGK1. Pflugers Arch 2002b;443:625-634.

Ganz MB, Boyarsky G, Sterzel RB, Boron WF: Arginine vasopressin enhances pHi regulation in the presence of HCO3- by stimulating three acid-base transport systems. Nature 1989;337:648-651.

Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS: Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-lnduced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol 2000;14:1283-1300.

Henke G, Maier G, Wallisch S, Boehmer C, Lang F: Regulation of the voltage gated K+ channel Kv1.3 by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid inducible kinase SGK1. J Cell Physiol 2004;199:194-199.

Henke G, Setiawan I, Bohmer C, Lang F: Activation of Na(+)/K(+)-ATPase by the Serum and Glucocorticoid-Dependent Kinase Isoforms. Kidney Blood Press Res 2002;25:370-374.

Huang DY, Wulff P, Volkl H, Loffing J, Richter K, Kuhl D, Lang F, Vallon V: Impaired regulation of renal K+ elimination in the sgk1-knockout mouse. J Am Soc Nephrol 2004;15:885-891.

Hummler E, Barker P, Gatzy J, Beermann F, Verdumo C, Schmidt A, Boucher R, Rossier BC: Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet 1996;12:325-328.

Hummler E, Barker P, Talbot C, Wang Q, Verdumo C, Grubb B, Gatzy J, Burnier M, Horisberger JD, Beermann F, Boucher R, Rossier BC: A mouse model for the renal salt-wasting syndrome pseudohypoaldosteronism. Proc Natl Acad Sci U S A 1997;94:11710-11715.

Kobayashi T, Cohen P: Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem J 1999;339:319-328.

Kobayashi T, Deak M, Morrice N, Cohen P: Characterization of the structure and regulation of two novel isoforms of serum- and glucocorticoid-induced protein kinase. Biochem J 1999;344:189-197.

Kotani K, Yonezawa K, Hara K, Ueda H, Kitamura Y, Sakaue H, Ando A, Chavanieu A, Calas B, Grigorescu F, .: Involvement of phosphoinositide 3-kinase in insulin- or IGF-1-induced membrane ruffling. EMBO J 1994;13:2313-2321.

Lang F, Cohen P: Regulation and physiological roles of serum- and glucocorticoid-induced protein kinase isoforms. Sci STKE 2001;2001:RE17.

Lang F, Henke G, Embark HM, Waldegger S, Palmada M, Bohmer C, Vallon V: Regulation of channels by the serum and glucocorticoid-inducible kinase - implications for transport, excitability and cell proliferation. Cell Physiol Biochem 2003;13:41-50.

Lang F, Klingel K, Wagner CA, Stegen C, Warntges S, Friedrich B, Lanzendorfer M, Melzig J, Moschen I, Steuer S, Waldegger S, Sauter M, Paulmichl M, Gerke V, Risler T, Gamba G, Capasso G, Kandolf R, Hebert SC, Massry SG, Broer S: Deranged transcriptional regulation of cell-volume-sensitive kinase hSGK in diabetic nephropathy. Proc Natl Acad Sci U S A 2000;97:8157-8162.

Loffing J, Zecevic M, Feraille E, Kaissling B, Asher C, Rossier BC, Firestone GL, Pearce D, Verrey F: Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. Am J Physiol Renal Physiol 2001;280:F675-F682.

McDonald FJ, Yang B, Hrstka RF, Drummond HA, Tarr DE, McCray PB, Jr., Stokes JB, Welsh MJ, Williamson RA: Disruption of the beta subunit of the epithelial Na+ channel in mice: hyperkalemia and neonatal death associated with a pseudohypoaldosteronism phenotype. Proc Natl Acad Sci U S A 1999;96:1727-1731.

Naray-Fejes-Toth A, Canessa C, Cleaveland ES, Aldrich G, Fejes-Toth G: Sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial Na+ channels. J Biol Chem 1999;274:16973-16978.

Nobuhara Y, Ueki S, Takeuchi K: Influence of prednisolone on gastric alkaline response in rat stomach. A possible explanation for steroid-induced gastric lesion. Dig Dis Sci 1985;30:1166-1173.

Palmada M, Embark HM, Wyatt AW, Bohmer C, Lang F: Negative charge at the consensus sequence for the serum- and glucocorticoid-inducible kinase, SGK1, determines pH sensitivity of the renal outer medullary K+ channel, ROMK1. Biochem Biophys Res Commun 2003a;307:967-972.

Palmada M, Embark HM, Yun C, Bohmer C, Lang F: Molecular requirements for the regulation of the renal outer medullary K+ channel ROMK1 by the serum- and glucocorticoid-inducible kinase SGK1. Biochem Biophys Res Commun 2003b;311:629-634.

Park J, Leong ML, Buse P, Maiyar AC, Firestone GL, Hemmings BA: Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway. EMBO J 1999;18:3024-3033.

Pearce D: SGK1 Regulation of Epithelial Sodium Transport. Cell Physiol Biochem 2003;13:013-020.

Raptis S, von Berger L, Dollinger HC, Fazekas AA, Pfeiffer EF: Hypergastrinemia induced by glucocorticoid and corticotropin treatment in man. Am J Dig Dis 1976;21:376-380.

Richards JS, Fitzpatrick SL, Clemens JW, Morris JK, Alliston T, Sirois J: Ovarian cell differentiation: a cascade of multiple hormones, cellular signals, and regulated genes. Recent Prog Horm Res 1995;50:223-254.

Roos A, Boron WF: Intracellular pH. Physiol Rev 1981;61:296-434.

Setiawan I, Henke G, Feng Y, Bohmer C, Vasilets LA, Schwarz W, Lang F: Stimulation of Xenopus oocyte Na(+),K(+)ATPase by the serum and glucocorticoid-dependent kinase sgk1. Pflugers Arch 2002;444:426-431.

Shigaev A, Asher C, Latter H, Garty H, Reuveny E: Regulation of sgk by aldosterone and its effects on the epithelial Na(+) channel. Am J Physiol Renal Physiol 2000;278:F613-F619.

Snyder PM, Olson DR, Thomas BC: Serum and glucocorticoid-regulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na+ channel. J Biol Chem 2002;277:5-8.

Vallon V, Grahammer F, Sandulache D, Rexhepaj R, Sandu C, Lang F: Epithelial Function in kcnq1 knock-out mice. Proc Natl Acad Sci USA 2006;

Verrey F, Loffing J, Zecevic M, Heitzmann D, Staub O: SGK1: aldosterone-induced relay of Na+ transport regulation in distal kidney nephron cells. Cell Physiol Biochem 2003;13:021-028.

Wagner CA, Ott M, Klingel K, Beck S, Melzig J, Friedrich B, Wild KN, Broer S, Moschen I, Albers A, Waldegger S, Tummler B, Egan ME, Geibel JP, Kandolf R, Lang F: Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR: implications for cystic fibrosis. Cell Physiol Biochem 2001;11:209-218.

Waldegger S, Barth P, Raber G, Lang F: Cloning and characterization of a putative human serine/threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume. Proc Natl Acad Sci U S A 1997;94:4440-4445.

Waldegger S, Klingel K, Barth P, Sauter M, Rfer ML, Kandolf R, Lang F: h-sgk serine-threonine protein kinase gene as transcriptional target of transforming growth factor beta in human intestine. Gastroenterology 1999;116:1081-1088.

Wang J, Barbry P, Maiyar AC, Rozansky DJ, Bhargava A, Leong M, Firestone GL, Pearce D: SGK integrates insulin and mineralocorticoid regulation of epithelial sodium transport. Am J Physiol Renal Physiol 2001;280:F303-F313.

Warntges S, Klingel K, Weigert C, Fillon S, Buck M, Schleicher E, Rodemann HP, Knabbe C, Kandolf R, Lang F: Excessive transcription of the human serum and glucocorticoid dependent kinase hSGK1 in lung fibrosis. Cell Physiol Biochem 2002;12:135-142.

Wulff P, Vallon V, Huang DY, Volkl H, Yu F, Richter K, Jansen M, Schlunz M, Klingel K, Loffing J, Kauselmann G, Bosl MR, Lang F, Kuhl D: Impaired renal Na(+) retention in the sgk1-knockout mouse. J Clin Invest 2002;110:1263-1268.

Yun CC: Concerted Roles of SGK1 and the Na+/H+ Exchanger Regulatory Factor 2 (NHERF2) in Regulation of NHE3. Cell Physiol Biochem 2003;13:029-040.

Yun CC, Chen Y, Lang F: Glucocorticoid activation of Na(+)/H(+) exchanger isoform 3 revisited. The roles of SGK1 and NHERF2. J Biol Chem 2002a;277:7676-7683.

Yun CC, Palmada M, Embark HM, Fedorenko O, Feng Y, Henke G, Setiawan I, Boehmer C, Weinman EJ, Sandrasagra S, Korbmacher C, Cohen P, Pearce D, Lang F: The Serum and Glucocorticoid-Inducible Kinase SGK1 and the Na(+)/H(+) Exchange Regulating Factor NHERF2 Synergize to Stimulate the Renal Outer Medullary K(+) Channel ROMK1. J Am Soc Nephrol 2002b;13:2823-2830.

Zamora CS, Kowalczyk T, Hoekstra WG, Grummer RH, Will JA: Effects of prednisone on gastric secretion and development of stomach lesions in swine. Am J Vet Res 1975;36:33-39.

Zecevic M, Heitzmann D, Camargo SM, Verrey F: SGK1 increases Na,K-ATP cell-surface expression and function in Xenopus laevis oocytes. Pflugers Arch 2004;448:29-35.
References
Abriel H, Kamynina E, Horisberger JD, Staub O: Regulation of the cardiac voltage-gated Na + channel (H1) by the ubiquitin-protein ligase Nedd4.FEBS Lett 2000; 466: 377-380.

Ahamed RN, Mummigatti UG, Samuel CS: Effect of adrenalectomy and administration of prednisolone on gastric ulcer formation in forestomachectomized Shay albino rats.Indian J Physiol Pharmacol 1983; 27: 298-304.

Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA: Mechanism of activation of protein kinase B by insulin and IGF-1.EMBO J 1996; 15: 6541-6551.

Alessi DR, Cohen P: Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 1998; 8: 55-62.

Alliston TN, Gonzalez-Robayna IJ, Buse P, Firestone GL, Richards JS: Expression and localization of serum / glucocorticoid-induced kinase in the rat ovary: relation to follicular growth and differentiation.Endocrinology 2000; 141: 385-395.

Alliston TN, Maiyar AC, Buse P, Firestone GL, Richards JS: Follicle stimulating hormone-regulated expression of serum / glucocorticoid-inducible kinase in rat ovarian granulosa cells: a functional role for the Sp1 family in promoter activity.Mole Endocrinol 1997; 11 : 1934-1949.

Alvarez de la Rosa D, Zhang P, Naray-Fejes-Toth A, Fejes-Toth G, Canessa CM: The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes.J Biol Chem 1999; 274: 37834-37839.

Bandyopadhyay U, Biswas K, Bandyopadhyay D, Ganguly CK, Banerjee RK: Dexamethasone makes the gastric mucosa susceptible to ulceration by inhibiting prostaglandin synthetase and peroxidase--two important gastroprotective enzymes.Mole Cell Biochem 1999; 202: 31-36.

Barker PM, Nguyen MS, Gatzy JT, Grubb B, Norman H, Hummler E, Rossier B, Boucher RC, Koller B: Role of gammaENaC subunit in lung liquid clearance and electrolyte balance in newborn mice.Insights into perinatal adaptation and pseudohypoaldosteronism. Clin Invest 1998; 102: 1634-1640.

Berger S, Bleich M, Schmid W, Cole TJ, Peters J, Watanabe H, Kriz W, Warth R, Greger R, Schutz G: Mineralocorticoid receptor knockout mice: pathophysiology of Na + metabolism.Proc Natl Acad Sci USA 1998; 95: 9424 -9429.

Boehmer C, Henke G, Schniepp R, Palmada M, Rothstein JD, Broer S, Lang F: Regulation of the glutamate transporter EAAT1 by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid-inducible kinase isoforms SGK1 / 3 and protein kinase B J Neurochem 2003a; 86: 1181-1188.

Boehmer C, Okur F, Setiawan I, Broer S, Lang F: Properties and regulation of glutamine transporter SN1 by protein kinases SGK and PKB.Biochem Biophys Res Commun 2003b; 306: 156-162.

Boehmer C, Wilhelm V, Palmada M, Wallisch S, Henke G, Brinkmeier H, Cohen P, Pieske B, Lang F: Serum and glucocorticoid inducible kinases in the regulation of the cardiac sodium channel SCN5A. Cardiovasc Res 2003c; 57: 1079- 1084.

Bohmer C, Wagner CA, Beck S, Moschen I, Melzig J, Werner A, Lin JT, Lang F, Wehner F: The shrinkage-activated Na (+) conductance of rat hepatocytes and its possible correlation to rENaC.Cell Physiol Biochem 2000 ; 10: 187-194.

Boyarsky G, Ganz MB, Sterzel RB, Boron WF: pH regulation in single glomerular mesangial cells.I. Acid extrusion in absence and presence of HCO3-. Am J Physiol 1988; 255: C844-C856.

Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D: Epithelial sodium channel regulated by aldosterone-induced protein sgk.Proc Natl Acad Sci USA 1999; 96: 2514-2519 .

Cooke AR, Preshaw RM, Grossman ML: Effect of adrenalectomy and glucocorticoids on the secretion and absorption of hydrogen ion.Gastroenterology 1966; 50: 761-767.

Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Munster C, Chraibi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O: Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na ( +) channel cell surface expression.EMBO J 2001; 20: 7052-7059.

Dieter M, Palmada M, Rajamanickam J, Aydin A, Busjahn A, Boehmer C, Luft FC, Lang F: Regulation of glucose transporter SGLT1 by ubiquitin ligase Nedd4-2 and kinases SGK1, SGK3, and PKB. Obes Res 2004; 12: 862-870.

Divecha N, Banfic H, Irvine RF: The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus.EMBO J 1991; 10: 3207-3214.

Embark HM, Bohmer C, Vallon V, Luft F, Lang F: Regulation of KCNE1-dependent K (+) current by the serum and glucocorticoid-inducible kinase (SGK) isoforms.Pflugers Arch 2003; 445: 601-606.

Faletti CJ, Perrotti N, Taylor SI, Blazer-Yost BL: sgk: an essential convergence point for peptide and steroid hormone regulation of ENaC-mediated Na + transport. Am J Physiol Cell Physiol 2002; 282: C494-C500.

Gamper N, Fillon S, Feng Y, Friedrich B, Lang PA, Henke G, Huber SM, Kobayashi T, Cohen P, Lang F: K (+) channel activation by all three isoforms of serum- and glucocorticoid-dependent protein kinase SGK Pflugers Arch 2002a; 445: 60-66.

Gamper N, Fillon S, Huber SM, Feng Y, Kobayashi T, Cohen P, Lang F: IGF-1 up-regulates K + channels via PI3-kinase, PDK1 and SGK1.Pflugers Arch 2002b; 443: 625-634.

Ganz MB, Boyarsky G, Sterzel RB, Boron WF: Arginine vasopressin enhances pHi regulation in the presence of HCO3- by stimulating three acid-base transport systems.Nature 1989; 337: 648-651.

Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS: Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB / Akt) and serum and glucocorticoid-lnduced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol 2000; 14: 1283-1300.

Henke G, Maier G, Wallisch S, Boehmer C, Lang F: Regulation of the voltage gated K + channel Kv1.3 by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid inducible kinase SGK1.J Cell Physiol 2004; 199: 194- 199.

Henke G, Setiawan I, Bohmer C, Lang F: Activation of Na (+) / K (+)-ATPase by the Serum and Glucocorticoid-Dependent Kinase Isoforms.Kidney Blood Press Res 2002; 25: 370-374.

Huang DY, Wulff P, Volkl H, Loffing J, Richter K, Kuhl D, Lang F, Vallon V: Impaired regulation of renal K + elimination in the sgk1-knockout mouse.J Am Soc Nephrol 2004; 15: 885-891.

Hummler E, Barker P, Gatzy J, Beermann F, Verdumo C, Schmidt A, Boucher R, Rossier BC: Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet 1996; 12: 325-328 .

Hummler E, Barker P, Talbot C, Wang Q, Verdumo C, Grubb B, Gatzy J, Burnier M, Horisberger JD, Beermann F, Boucher R, Rossier BC: A mouse model for the renal salt-wasting syndrome pseudohypoaldosteronism.Proc Natl Acad Sci USA 1997; 94: 11710-11715.

Kobayashi T, Cohen P: Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem J 1999; 339: 319- 328.

Kobayashi T, Deak M, Morrice N, Cohen P: Characterization of the structure and regulation of two novel isoforms of serum- and glucocorticoid-induced protein kinase. Biochem J 1999; 344: 189-197.

Kotani K, Yonezawa K, Hara K, Ueda H, Kitamura Y, Sakaue H, Ando A, Chavanieu A, Calas B, Grigorescu F,.: Involvement of phosphoinositide 3-kinase in insulin- or IGF-1-induced membrane ruffling. EMBO J 1994; 13: 2313-2321.

Lang F, Cohen P: Regulation and physiological roles of serum- and glucocorticoid-induced protein kinase isoforms.Sci STKE 2001; 2001: RE17.

Lang F, Henke G, Embark HM, Waldegger S, Palmada M, Bohmer C, Vallon V: Regulation of channels by the serum and glucocorticoid-inducible kinase-implications for transport, excitability and cell proliferation.Cell Physiol Biochem 2003; 13: 41 -50.

Lang F, Klingel K, Wagner CA, Stegen C, Warntges S, Friedrich B, Lanzendorfer M, Melzig J, Moschen I, Steuer S, Waldegger S, Sauter M, Paulmichl M, Gerke V, Risler T, Gamba G, Capasso G , Kandolf R, Hebert SC, Massry SG, Broer S: Deranged transcriptional regulation of cell-volume-sensitive kinase hSGK in diabetic nephropathy.Proc Natl Acad Sci USA 2000; 97: 8157-8162.

Loffing J, Zecevic M, Feraille E, Kaissling B, Asher C, Rossier BC, Firestone GL, Pearce D, Verrey F: Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. Am J Physiol Renal Physiol 2001; 280: F675-F682.

McDonald FJ, Yang B, Hrstka RF, Drummond HA, Tarr DE, McCray PB, Jr., Stokes JB, Welsh MJ, Williamson RA: Disruption of the beta subunit of the epithelial Na + channel in mice: hyperkalemia and neonatal death associated with a pseudohypoaldosteronism phenotype. Proc Natl Acad Sci USA 1999; 96: 1727-1731.

Naray-Fejes-Toth A, Canessa C, Cleaveland ES, Aldrich G, Fejes-Toth G: Sgk is an aldosterone-induced kinase in the renal collecting duct.Effects on epithelial Na + channels.J Biol Chem 1999; 274: 16973-16978 .

Nobuhara Y, Ueki S, Takeuchi K: Influence of prednisolone on gastric alkaline response in rat stomach.A possible explanation for steroid-induced gastric lesion.Dig Dis Sci 1985; 30: 1166-1173.

Palmada M, Embark HM, Wyatt AW, Bohmer C, Lang F: Negative charge at the consensus sequence for the serum- and glucocorticoid-inducible kinase, SGK1, determines pH sensitivity of the renal outer medullary K + channel, ROMK1.Biochem Biophys Res Commun 2003a; 307: 967-972.

Palmada M, Embark HM, Yun C, Bohmer C, Lang F: Molecular requirements for the regulation of the renal outer medullary K + channel ROMK1 by the serum- and glucocorticoid-inducible kinase SGK1. Biochem Biophys Res Commun 2003b; 311: 629-634 .

Park J, Leong ML, Buse P, Maiyar AC, Firestone GL, Hemmings BA: Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway.EMBO J 1999; 18: 3024-3033 .

Pearce D: SGK1 Regulation of Epithelial Sodium Transport.Cell Physiol Biochem 2003; 13: 013-020.

Raptis S, von Berger L, Dollinger HC, Fazekas AA, Pfeiffer EF: Hypergastrinemia induced by glucocorticoid and corticotropin treatment in man.Am J Dig Dis 1976; 21: 376-380.

Richards JS, Fitzpatrick SL, Clemens JW, Morris JK, Alliston T, Sirois J: Ovarian cell differentiation: a cascade of multiple hormones, cellular signals, and regulated genes.Recent Prog Horm Res 1995; 50: 223-254.

Roos A, Boron WF: Intracellular pH.Physiol Rev 1981; 61: 296-434.

Setiawan I, Henke G, Feng Y, Bohmer C, Vasilets LA, Schwarz W, Lang F: Stimulation of Xenopus oocyte Na (+), K (+) ATPase by the serum and glucocorticoid-dependent kinase sgk1. Pflugers Arch 2002; 444 : 426-431.

Shigaev A, Asher C, Latter H, Garty H, Reuveny E: Regulation of sgk by aldosterone and its effects on the epithelial Na (+) channel.Am J Physiol Renal Physiol 2000; 278: F613-F619.

Snyder PM, Olson DR, Thomas BC: Serum and glucocorticoid-regulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na + channel.J Biol Chem 2002; 277: 5-8.

Vallon V, Grahammer F, Sandulache D, Rexhepaj R, Sandu C, Lang F: Epithelial Function in kcnq1 knock-out mice.Proc Natl Acad Sci USA 2006;

Verrey F, Loffing J, Zecevic M, Heitzmann D, Staub O: SGK1: aldosterone-induced relay of Na + transport regulation in distal kidney nephron cells.Cell Physiol Biochem 2003; 13: 021-028.

Wagner CA, Ott M, Klingel K, Beck S, Melzig J, Friedrich B, Wild KN, Broer S, Moschen I, Albers A, Waldegger S, Tummler B, Egan ME, Geibel JP, Kandolf R, Lang F: Effects of the serine / threonine kinase SGK1 on the epithelial Na (+) channel (ENaC) and CFTR: implications for cystic fibrosis.Cell Physiol Biochem 2001; 11: 209-218.

Waldegger S, Barth P, Raber G, Lang F: Cloning and characterization of a putative human serine / threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume.Proc Natl Acad Sci USA 1997; 94: 4440-4445.

Waldegger S, Klingel K, Barth P, Sauter M, Rfer ML, Kandolf R, Lang F: h-sgk serine-threonine protein kinase gene as transcriptional target of transforming growth factor beta in human intestine.Gastroenterology 1999; 116: 1081-1088 .

Wang J, Barbry P, Maiyar AC, Rozansky DJ, Bhargava A, Leong M, Firestone GL, Pearce D: SGK integrates insulin and mineralocorticoid regulation of epithelial sodium transport.Am J Physiol Renal Physiol 2001; 280: F303-F313.

Warntges S, Klingel K, Weigert C, Fillon S, Buck M, Schleicher E, Rodemann HP, Knabbe C, Kandolf R, Lang F: Excessive transcription of the human serum and glucocorticoid dependent kinase hSGK1 in lung fibrosis.Cell Physiol Biochem 2002; 12: 135-142.

Wulff P, Vallon V, Huang DY, Volkl H, Yu F, Richter K, Jansen M, Schlunz M, Klingel K, Loffing J, Kauselmann G, Bosl MR, Lang F, Kuhl D: Impaired renal Na (+) retention in the sgk1-knockout mouse. J Clin Invest 2002; 110: 1263-1268.

Yun CC: Concerted Roles of SGK1 and the Na + / H + Exchanger Regulatory Factor 2 (NHERF2) in Regulation of NHE3.Cell Physiol Biochem 2003; 13: 029-040.

Yun CC, Chen Y, Lang F: Glucocorticoid activation of Na (+) / H (+) exchanger isoform 3 revisited.The roles of SGK1 and NHERF2.J Biol Chem 2002a; 277: 7676-7683.

Yun CC, Palmada M, Embark HM, Fedorenko O, Feng Y, Henke G, Setiawan I, Boehmer C, Weinman EJ, Sandrasagra S, Korbmacher C, Cohen P, Pearce D, Lang F: The Serum and Glucocorticoid-Inducible Kinase SGK1 and the Na (+) / H (+) Exchange Regulating Factor NHERF2 Synergize to Stimulate the Renal Outer Medullary K (+) Channel ROMK1. J Am Soc Nephrol 2002b; 13: 2823-2830.

Zamora CS, Kowalczyk T, Hoekstra WG, Grummer RH, Will JA: Effects of prednisone on gastric secretion and development of stomach lesions in swine.Am J Vet Res 1975; 36: 33-39.

Zecevic M, Heitzmann D, Camargo SM, Verrey F: SGK1 increases Na, K-ATP cell-surface expression and function in Xenopus laevis oocytes. Pflugers Arch 2004; 448: 29-35.

胃の組織におけるSGK1転写物レベル 胃の組織におけるGAPDHに対するmsgk1写物レベル(対照、白い棒)とデキサメタゾン処理後(dexa、黒い棒)における転写物レベルの比率。算術平均±SEM(n = 3-7)。SGK1 transcript level in stomach tissue Ratio of transcript level to msgk1 transcript level (control, white bar) and after dexamethasone treatment (dexa, black bar) to GAPDH in stomach tissue. Arithmetic mean ± SEM (n = 3-7). アンモニウムパルス後の壁細胞におけるpH回復 アンモニウムパルス後の回腸における細胞質ゾルpH(ΔpH)の変化。細胞にH+を装荷するために、第一段階で20mM NH4Clを添加し、Na+を除去し(NMDGによって置き換える)(それぞれの原記録グラフの下のバーを参照)、第二段階でNH4Clを除去し、第三段階でNa+を添加し、第四段階でナイジェリシン(Nig.)を適用して、個々の各実験の測定を行った。A: 未処理マウスにおけるsgk1+/+(左のパネル)とsgk1-/-(右のパネル)の典型的な実験においてpHの変化を示す原記録グラフ。B: デキサメタゾン処理マウスにおけるsgk1+/+(左のパネル)とsgk1-/-(右のパネル)の典型的な実験においてpHの変化を示す原記録グラフ。C: 50μMオメプラゾールの存在下のデキサメタゾン処理マウスにおけるsgk1+/+(左のパネル)とsgk1-/-(右のパネル)の典型的な実験においてpHの変化を示す原記録グラフ。D: デキサメサゾン(+Dex)処理又は左の未処理(-Dex)のsgk1+/+(白い棒)及びsgk1-/-(黒い棒)マウスの壁細胞におけるNa+非依存性ΔpHの算術平均±SEM。デキサメタゾン処理sgk1+/+及びsgk1-/-マウスからの壁細胞におけるNa+非依存性ΔpHのオメプラゾール阻害。PH recovery in mural cells after ammonium pulse Change in cytosolic pH (ΔpH) in the ileum after ammonium pulse. For loading the H + in cells, the addition of 20 mM NH 4 Cl in the first step to remove the Na + (replaced by NMDG) (see bar below the respective original recording graph), in a second stage NH 4 Cl was removed, Na + was added in the third stage, and Nigericin (Nig.) Was applied in the fourth stage to measure each individual experiment. A: Original recording graph showing the change in pH in a typical experiment of sgk1 + / + (left panel) and sgk1 − / − (right panel) in untreated mice. B: Original record graph showing pH change in a typical experiment of sgk1 + / + (left panel) and sgk1 − / − (right panel) in dexamethasone-treated mice. C: Original recording graph showing changes in pH in a typical experiment of sgk1 + / + (left panel) and sgk1 − / − (right panel) in dexamethasone-treated mice in the presence of 50 μM omeprazole. D: Arithmetic mean of Na + independent ΔpH in mural cells of dexamethasone (+ Dex) treated or left untreated (-Dex) sgk1 + / + (white bar) and sgk1 − / − (black bar) mice ± SEM. Omeprazole inhibition of Na + -independent ΔpH in mural cells from dexamethasone-treated sgk1 + / + and sgk1 − / − mice.

Claims (13)

胃酸分泌阻害に適した血清グルココルチコイド誘導性キナーゼ(SGK)の阻害因子をスクリーニングする方法であって:
(i)事前活性化リン酸化S組換えGKタンパク質を提供する工程、
(ii)SGK基質ポリペプチドをATPと共に提供する工程、
(iii)グルココルチコイド誘導性キナーゼの阻害因子を提供する工程、及び
(iv)基質のリン酸化を測定することによりSGK活性を評価する工程
を含む、前記方法。
A method of screening for inhibitors of serum glucocorticoid-induced kinase (SGK) suitable for gastric acid secretion inhibition:
(i) providing a pre-activated phosphorylated S recombinant GK protein;
(ii) providing an SGK substrate polypeptide with ATP;
(iii) providing an inhibitor of a glucocorticoid-inducible kinase; and
(iv) The method comprising the step of evaluating SGK activity by measuring phosphorylation of a substrate.
SGKタンパク質が、SGK1、SGK2およびSGK3からなる群より選ばれる、請求項1に記載の方法。   The method according to claim 1, wherein the SGK protein is selected from the group consisting of SGK1, SGK2 and SGK3. SGK1、SGK2又はSGK3が、選ばれた単一ヌクレオチド多型変種である、請求項2に記載の方法。   3. The method of claim 2, wherein SGK1, SGK2 or SGK3 is a selected single nucleotide polymorphic variant. SGK阻害因子が、下記一般式:

Figure 2009531020

(式中、R1、R5は、H、OH、OA、OAc又はメチルであり、
R2、R3、R4、R6、R7、R8、R9、R10は、H、OH、OA、OAc、OCF3、Hal、NO2、CF3、A、CN、OSO2CH3、SO2CH3、NH2又はCOOHであり、
R11は、H又はCH3であり、
Aは、C原子1、2、3又は4個を有するアルキルであり、
Xは、CH2、CH2CH2、OCH2又は-CH(OH)-であり、
Halは、F、Cl、Br又はIである。)
を有する化合物又はその医薬的に有効な誘導体、塩、溶液又は立体異性体、又はそれらの混合物である、請求項1-3のいずれか1項に記載の方法。
SGK inhibitor has the following general formula:

Figure 2009531020

Wherein R 1 and R 5 are H, OH, OA, OAc or methyl,
R 2, R 3, R 4 , R 6, R 7, R 8, R 9, R 10 is, H, OH, OA, OAc , OCF 3, Hal, NO 2, CF 3, A, CN, OSO 2 CH 3 , SO 2 CH 3 , NH 2 or COOH,
R 11 is H or CH 3
A is alkyl having 1, 2, 3 or 4 C atoms;
X is CH 2 , CH 2 CH 2 , OCH 2 or —CH (OH) —,
Hal is F, Cl, Br or I. )
The method according to any one of claims 1 to 3, wherein the compound is a compound having the formula: or a pharmaceutically effective derivative, salt, solution or stereoisomer thereof, or a mixture thereof.
SGK阻害因子が、以下の化合物群:
(3-ヒドロキシフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-ヒドロキシフェニル)-酸性酸-[1-(4-ヒドロキシ-2-メトキシフェニル)エチリデン]ヒドラジド、
(3-メトキシフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
フェニル酸性酸-(3-フルオル-4-ヒドロキシベンジリデン)ヒドラジド、
(4-ヒドロキシフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3,4-ジクロルフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
m-トリル-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
o-トリル-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(2-クロルフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-クロルフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(4-フルオルフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(2-クロル-4-フルオルフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-フルオルフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-(4-ヒドロキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-(4-ヒドロキシ-2,6-ジメチルベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-(3-フルオル-4-ヒドロキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-[1-(4-ヒドロキシ-2-メトキシフェニル)エチリデン]ヒドラジド、
(3-メチルスルホニルオキシフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3,5-ジヒドロキシフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-フルオルフェニル)-酸性酸-(3-フルオル-4-ヒドロキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-(4-アセトキシ-2-メトキシベンジリデン)ヒドラジド、
(3-トリフルオロメチルフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
3-(3-メトキシフェニル)-プロピオン酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-(2,4-ジヒドロキシベンジリデン)ヒドラジド、
(3-メトキシフェノキシ)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-ニトロフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-(5-クロル-2-ヒドロキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-(2-ヒドロキシ-5-ニトロベンジリデン)ヒドラジド、
2-ヒドロキシ-2-フェニル-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-(2-エトキシ-4-ヒドロキシベンジリデン)ヒドラジド、
(3-ブロムフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-メトキシフェニル)-酸性酸-[1-(4-ヒドロキシフェニル)エチリデン]ヒドラジド、
(3,5-ジフルオルフェニル)-酸性酸-(4-ヒドロキシ-2-メトキシベンジリデン)ヒドラジド、
(3-ヒドロキシフェニル)-酸性酸-(4-ヒドロキシ-2-メチルベンジリデン)ヒドラジド、
(3-ヒドロキシフェニル)-酸性酸-(2-エトキシ-4-ヒドロキシベンジリデン)ヒドラジド、
(3-ヒドロキシフェニル)-酸性酸(2-メトキシ-4-ヒドロキシ-6-メチルベンジリデン)ヒドラジド、
(2-フルオルフェニル)-酸性酸-(2-メトキシ-4-ヒドロキシベンジリデン)ヒドラジド
より選ばれる、請求項5に記載の方法。
SGK inhibitor is a group of the following compounds:
(3-hydroxyphenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-hydroxyphenyl) -acidic acid- [1- (4-hydroxy-2-methoxyphenyl) ethylidene] hydrazide,
(3-methoxyphenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
Phenyl acid- (3-fluoro-4-hydroxybenzylidene) hydrazide,
(4-hydroxyphenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3,4-dichlorophenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
m-tolyl-acid-acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
o-Tolyl-acid-acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(2-chlorophenyl) -acid-acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-chlorophenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(4-fluorophenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(2-chloro-4-fluorophenyl) -acid-acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-Fluorophenyl) -acid acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-methoxyphenyl) -acidic acid- (4-hydroxybenzylidene) hydrazide,
(3-methoxyphenyl) -acidic acid- (4-hydroxy-2,6-dimethylbenzylidene) hydrazide,
(3-methoxyphenyl) -acid-acid- (3-fluor-4-hydroxybenzylidene) hydrazide,
(3-methoxyphenyl) -acidic acid- [1- (4-hydroxy-2-methoxyphenyl) ethylidene] hydrazide,
(3-methylsulfonyloxyphenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3,5-dihydroxyphenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-Fluorophenyl) -acidic acid- (3-Fluoro-4-hydroxybenzylidene) hydrazide,
(3-methoxyphenyl) -acidic acid- (4-acetoxy-2-methoxybenzylidene) hydrazide,
(3-trifluoromethylphenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
3- (3-methoxyphenyl) -propionic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-methoxyphenyl) -acidic acid- (2,4-dihydroxybenzylidene) hydrazide,
(3-methoxyphenoxy) -acid-acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-nitrophenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-methoxyphenyl) -acid-acid- (5-chloro-2-hydroxybenzylidene) hydrazide,
(3-methoxyphenyl) -acidic acid- (2-hydroxy-5-nitrobenzylidene) hydrazide,
2-hydroxy-2-phenyl-acid-acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-methoxyphenyl) -acidic acid- (2-ethoxy-4-hydroxybenzylidene) hydrazide,
(3-bromophenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-methoxyphenyl) -acidic acid- [1- (4-hydroxyphenyl) ethylidene] hydrazide,
(3,5-difluorophenyl) -acidic acid- (4-hydroxy-2-methoxybenzylidene) hydrazide,
(3-hydroxyphenyl) -acidic acid- (4-hydroxy-2-methylbenzylidene) hydrazide,
(3-hydroxyphenyl) -acidic acid- (2-ethoxy-4-hydroxybenzylidene) hydrazide,
(3-hydroxyphenyl) -acid acid (2-methoxy-4-hydroxy-6-methylbenzylidene) hydrazide,
6. Process according to claim 5, wherein the process is selected from (2-fluorophenyl) -acidic acid- (2-methoxy-4-hydroxybenzylidene) hydrazide.
SGK阻害因子が、下記一般式:

Figure 2009531020

(式中、R1、R2、R3、R4、R5は、H、A、OH、OA、アルケニル、アルキニル、NO2、NH2、NHA、NA2、Hal、CN、COOH、COOA、-OHet、-O-アルキレン-Het、-O-アルキレン-NR8R9又はCONR8R9、R1、R2、R3、R4、R5より選ばれる二つの基、又は-O-CH2-CH2-、-O-CH2-O-又は-O-CH2-CH2-O-であり、
R6、R7は、H、A、Hal、OH、OA又はCNであり、
R8、R9は、H又はAであり、
Hetは、一つ以上のHal、A、OA、COOA、CN又はカルボニル酸素(=O)によって置換された、N-、O-及び/又はS-原子1〜4個を有する飽和又は不飽和素環であり、
Aは、C原子1〜10個を有するアルキルであり、H原子1-7個は、F及び/又は塩素によって置換されてもよく、
X、X'は、NHであるか又は存在せず、
Halは、F、Cl、Br又はIである。)
を有する化合物又はその医薬的に有効な誘導体、塩、溶液又は立体異性体、又はそれらの混合物である、請求項1-3のいずれか1項に記載の方法。
SGK inhibitor has the following general formula:

Figure 2009531020

(Where R 1 , R 2 , R 3 , R 4 , R 5 are H, A, OH, OA, alkenyl, alkynyl, NO 2 , NH 2 , NHA, NA 2 , Hal, CN, COOH, COOA , -OHet, -O-alkylene-Het, -O-alkylene-NR 8 R 9 or CONR 8 R 9 , two groups selected from R 1 , R 2 , R 3 , R 4 , R 5 , or -O -CH 2 -CH 2 -, - O -CH 2 -O- or -O-CH 2 is -CH 2 -O-,
R 6 and R 7 are H, A, Hal, OH, OA or CN,
R 8 and R 9 are H or A,
Het is a saturated or unsaturated element having 1 to 4 N-, O- and / or S-atoms substituted by one or more of Hal, A, OA, COOA, CN or carbonyl oxygen (= O). A ring,
A is an alkyl having 1 to 10 C atoms, 1-7 H atoms may be substituted by F and / or chlorine,
X, X ′ is NH or absent,
Hal is F, Cl, Br or I. )
The method according to any one of claims 1 to 3, wherein the compound is a compound having the formula: or a pharmaceutically effective derivative, salt, solution or stereoisomer thereof, or a mixture thereof.
SGK阻害因子が、以下の化合物群:
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2-フルオル-5-トリフルオルメチルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(4-クロル-5-トリフルオルメチルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2,4-ジフルオルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2,6-ジフルオルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(3-フルオル-5-トリフルオルメチルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(4-フルオル-5-トリフルオルメチルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(4-メチル-5-トリフルオルメチルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2,3,4,5,6-ペンタフルオルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2,4-ジブロム-6-フルオルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2-フルオル-6-トリフルオルメチルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2-フルオル-5-メチルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2,3,4-トリフルオルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(4-ブロム-2,6-ジフルオルフェニル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-(2-フルオル-3-トリフルオルメチル)尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[2-(1-tert-ブチルオキシカルボニルピペリジン-4-イル)フェニル]尿素、
N-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-2,4-ジクロルベンズアミド、
N-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-4-クロル-5-トリフルオルメチルベンズアミド、
N-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-2-フルオル-5-トリフルオルメチルベンズアミド、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[3-クロル-5-トリフルオルメチル-2-(ピペリジン-4-イルオキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[(2-フルオル-5-(2-ジメチルアミノエトキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[5-フルオル-2-(ピペリジン-4-イルオキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[4-クロル-5-トリフルオルメチル-2-(ピペリジン-4-イルオキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[2-(ピペリジン-4-イルオキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[2-フルオル-5-(2-ジエチルアミノエトキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[2-フルオル-5-[2-(ピペリジン-1-イル)エトキシ]フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[4-フルオル-2-(2-ジメチルアミノエトキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[4-フルオル-2-(2-ジエチルアミノエトキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[3-クロル-4-[2-(モルホリン-4-イル)エトキシ]フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[4-フルオル-2-[2-(モルホリン-4-イル)エトキシ]フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[3-クロル-4-(2-ジメチルアミノエトキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[3-クロル-4-(2-ジエチルアミノエトキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[4-クロル-2-(2-ジメチルアミノエトキシ)フェニル]尿素、
1-[4-(4-アミノ-5-オキソ-5H-ピリド[2,3-d]ピリミジン-8-イル)フェニル]-3-[2-クロル-5-(2-ジエチルアミノエトキシ)フェニル]尿素
より選ばれる、請求項6に記載の方法。
SGK inhibitor is a group of the following compounds:
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2-fluoro-5-trifluoromethylphenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (4-chloro-5-trifluoromethylphenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2,4-difluorophenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2,6-difluorophenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (3-fluoro-5-trifluoromethylphenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (4-fluoro-5-trifluoromethylphenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (4-methyl-5-trifluoromethylphenyl) urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2,3,4,5,6-pentafluorophenyl )urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2,4-dibromo-6-fluorophenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2-fluoro-6-trifluoromethylphenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2-fluoro-5-methylphenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2,3,4-trifluorophenyl) urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (4-bromo-2,6-difluorophenyl) urea
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- (2-fluoro-3-trifluoromethyl) urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [2- (1-tert-butyloxycarbonylpiperidine-4- Yl) phenyl] urea,
N- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -2,4-dichlorobenzamide,
N- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -4-chloro-5-trifluoromethylbenzamide,
N- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -2-fluoro-5-trifluoromethylbenzamide,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [3-chloro-5-trifluoromethyl-2- (piperidine -4-yloxy) phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3-[(2-fluor-5- (2-dimethylaminoethoxy) Phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [5-fluor-2- (piperidin-4-yloxy) phenyl ]urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [4-chloro-5-trifluoromethyl-2- (piperidine -4-yloxy) phenyl] urea,
1- [4- (4-amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [2- (piperidin-4-yloxy) phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [2-fluoro-5- (2-diethylaminoethoxy) phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [2-fluoro-5- [2- (piperidine-1- Yl) ethoxy] phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [4-fluor-2- (2-dimethylaminoethoxy) phenyl ]urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [4-fluoro-2- (2-diethylaminoethoxy) phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [3-chloro-4- [2- (morpholine-4- Yl) ethoxy] phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [4-fluoro-2- [2- (morpholine-4- Yl) ethoxy] phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [3-chloro-4- (2-dimethylaminoethoxy) phenyl ]urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [3-chloro-4- (2-diethylaminoethoxy) phenyl] urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [4-chloro-2- (2-dimethylaminoethoxy) phenyl ]urea,
1- [4- (4-Amino-5-oxo-5H-pyrido [2,3-d] pyrimidin-8-yl) phenyl] -3- [2-chloro-5- (2-diethylaminoethoxy) phenyl] 7. A method according to claim 6, selected from urea.
単離されたヒト組織試料及び検体においてSGK1、SGK2又はSGK3のアップレギュレートされた発現と活性を測定することによって胃酸分泌誘発性疾患疾患の進行、退行又は発症を決定する方法。   A method for determining progression, regression or onset of gastric acid secretion-induced disease by measuring up-regulated expression and activity of SGK1, SGK2 or SGK3 in isolated human tissue samples and specimens. SGK1、SGK2又はSGK3が、選ばれた単一ヌクレオチド多型変種である、請求項8に記載の方法。   9. The method of claim 8, wherein SGK1, SGK2 or SGK3 is a selected single nucleotide polymorphic variant. 疾患診断のための請求項9に記載の方法であって、前記疾患が消化性潰瘍である、前記方法。   10. The method of claim 9 for disease diagnosis, wherein the disease is peptic ulcer. SGK1、SGK2又はSGK3が選ばれた単一ヌクレオチド多型変種である、請求項10に記載の方法。   11. The method of claim 10, wherein SGK1, SGK2 or SGK3 is a selected single nucleotide polymorphic variant. SGK1、SGK2又はSGK3の阻害用薬剤の製造のための請求項4-7のいずれか1項に記載の化合物の使用。   Use of the compound according to any one of claims 4 to 7 for the manufacture of a drug for inhibiting SGK1, SGK2 or SGK3. 血清グルココルチコイド誘導胃酸分泌によって引き起こされた疾患の治療用薬剤の製造のための請求項12に記載の化合物の使用。   Use of a compound according to claim 12 for the manufacture of a medicament for the treatment of diseases caused by serum glucocorticoid-induced gastric acid secretion.
JP2008552709A 2006-01-31 2007-01-17 Method for inhibiting glucocorticoid-induced gastric acid secretion Pending JP2009531020A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06001934 2006-01-31
PCT/EP2007/000350 WO2007087985A1 (en) 2006-01-31 2007-01-17 Methods for interfering with glucocorticoid induced gastric acid secretion

Publications (1)

Publication Number Publication Date
JP2009531020A true JP2009531020A (en) 2009-09-03

Family

ID=38006823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008552709A Pending JP2009531020A (en) 2006-01-31 2007-01-17 Method for inhibiting glucocorticoid-induced gastric acid secretion

Country Status (7)

Country Link
EP (1) EP1979747A1 (en)
JP (1) JP2009531020A (en)
AR (1) AR059258A1 (en)
AU (1) AU2007211655A1 (en)
CA (1) CA2641325A1 (en)
IL (1) IL193081A0 (en)
WO (1) WO2007087985A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210008193A (en) * 2019-07-10 2021-01-21 한양대학교 산학협력단 Use of Sgk1 inhibitor for treating inflammatory neurologic disorders
WO2022093780A1 (en) * 2020-10-26 2022-05-05 University Of North Dakota Use of small molecule fak activators to promote mucosal healing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10346913A1 (en) * 2003-10-09 2005-05-04 Merck Patent Gmbh acylhydrazone
CN1929831A (en) * 2004-03-08 2007-03-14 默克专利有限公司 Methods for altering insulin secretion
CN1929846A (en) * 2004-03-11 2007-03-14 默克专利有限公司 Methods for modulating glutamate receptors for treating neuropsychiatric disorders comprising the use of modulators of serum and glucocorticoid inducible kinases
JP2007527875A (en) * 2004-03-11 2007-10-04 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Methods for inhibiting fibrosis
WO2005106491A2 (en) * 2004-04-30 2005-11-10 Bayer Healthcare Ag Diagnostics and therapeutics for diseases associated with serum/glucocorticoid regulated kinase 1 (sgk1)

Also Published As

Publication number Publication date
WO2007087985A1 (en) 2007-08-09
AU2007211655A1 (en) 2007-08-09
EP1979747A1 (en) 2008-10-15
CA2641325A1 (en) 2007-08-09
IL193081A0 (en) 2009-02-11
AR059258A1 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
Huang et al. Blunted hypertensive effect of combined fructose and high-salt diet in gene-targeted mice lacking functional serum-and glucocorticoid-inducible kinase SGK1
Jiang et al. Expression and localization of P1 promoter-driven hepatocyte nuclear factor-4α (HNF4α) isoforms in human and rats
Nakae et al. The forkhead transcription factor Foxo1 regulates adipocyte differentiation
US8986935B2 (en) Methods for treating spinal muscular atrophy
Dahlman et al. Obesity and polymorphisms in genes regulating human adipose tissue
JP2017226670A (en) Methods for inhibiting muscle atrophy
EP2344671B1 (en) Ngal as biomarker for mineralocorticoid receptor activation
Abou Ziki et al. The interplay of canonical and noncanonical Wnt signaling in metabolic syndrome
Kosfeld et al. Whole-exome sequencing identifies mutations of TBC1D1 encoding a Rab-GTPase-activating protein in patients with congenital anomalies of the kidneys and urinary tract (CAKUT)
US20030157573A1 (en) Use of Axl receptor for diagnosis and treatment of renal disease
Krempler et al. Plasma leptin levels: interaction of obesity with a common variant of insulin receptor substrate-1
JP2009531020A (en) Method for inhibiting glucocorticoid-induced gastric acid secretion
Volinic et al. Overexpression of the coactivator bridge-1 results in insulin deficiency and diabetes
JP2005528113A (en) Sgk and Nedd as diagnostic and therapeutic targets
JP2007527876A (en) Method for modifying insulin secretion
US8067158B2 (en) Methods and compositions for the diagnosis and treatment of schizophrenia
JP4997547B2 (en) Determination method of inflammatory diseases
JP2007515940A (en) Protein kinase C zeta as a drug target for arthritis and other inflammatory diseases
ES2288330B1 (en) PROCEDURE FOR IDENTIFICATION OF POTENTIAL COMPOUNDS MODULATING THE ACTIVITY OF NOR-1, NEW DIAGNOSTIC AND THERAPEUTIC DIANA OF CARDIOVASCULAR DISEASES.
US8110348B2 (en) Methods and compositions for the diagnosis and treatment of schizophrenia
WO2006007375A2 (en) Use of bridge-1 and activators and inhibitors thereof in the treatment of insulin deficiency and diabetes
Beernink et al. Secreted Frizzled-Related Proteins 4 and 5: What They Are and Can They Be Used as a Biomarker in Gestational Diabetes Mellitus
Laurien The role of RIPK1 auto-phosphorylation at S166 in cell death and inflammatory signaling
Wang et al. The glycolytic enzyme PFKFB3 drives kidney fibrosis through promoting histone lactylation-mediated NF-κB family activation
Kington Exploring Fibrosis in Bovine Growth Hormone (bGH) Transgenic Mice