JP2009518924A - System, apparatus and method for performing spatial multiplexing by symbol diffusion - Google Patents

System, apparatus and method for performing spatial multiplexing by symbol diffusion Download PDF

Info

Publication number
JP2009518924A
JP2009518924A JP2008543974A JP2008543974A JP2009518924A JP 2009518924 A JP2009518924 A JP 2009518924A JP 2008543974 A JP2008543974 A JP 2008543974A JP 2008543974 A JP2008543974 A JP 2008543974A JP 2009518924 A JP2009518924 A JP 2009518924A
Authority
JP
Japan
Prior art keywords
communication system
smx
channels
diversity
spreading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008543974A
Other languages
Japanese (ja)
Inventor
ヤン,ジュヌ
ゴーシュ,モニシャ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2009518924A publication Critical patent/JP2009518924A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本発明は、所定の行列Rを使用するシンボル拡散及び回転と結合した空間多重(SMX)送信方式のシステム(400)、装置(200、300)及び方法(200)を提供する。これは、UWBシステムにおいて高速レイリー平坦フェージングチャネル又は高周波数選択性チャネルの下で更なる帯域又は電力消費を必要とせずに、システム性能をかなり改善し得る。格子型構造のため、近いML性能を維持しつつ、MLデコードの複雑性を低減するために、球面デコードが使用される。他方、送信機のシステム構造のため、ZF及びMMSE受信機も使用され得る。
The present invention provides a system (400), apparatus (200, 300) and method (200) of a spatial multiplexing (SMX) transmission scheme combined with symbol spreading and rotation using a predetermined matrix R. This can significantly improve system performance without requiring additional bandwidth or power consumption under a fast Rayleigh flat fading channel or a high frequency selective channel in a UWB system. Due to the lattice structure, spherical decoding is used to reduce the complexity of ML decoding while maintaining close ML performance. On the other hand, due to the system structure of the transmitter, ZF and MMSE receivers can also be used.

Description

本発明は、スペクトル効率を維持しつつ、MIMOシステムで高度のダイバーシチを実現するシンボル拡散回転(symbol spreading rotation)で空間多重を行うシステム、装置及び方法に関する。   The present invention relates to a system, apparatus, and method for performing spatial multiplexing with symbol spreading rotation that achieves high diversity in a MIMO system while maintaining spectral efficiency.

次世代の無線通信システムでは、空間多重(SMX:spatially multiplexing)(又はMIMO)は、複数の送信及び受信アンテナを使用することにより十分に分散したチャネル環境を利用することができるため、特に関心を引いている。一方で、スペクトル効率でかなりの改善を提供することができる。   In next-generation wireless communication systems, spatial multiplexing (SMX) is of particular interest because it can take advantage of a sufficiently distributed channel environment by using multiple transmit and receive antennas. Pulling. On the other hand, significant improvements in spectral efficiency can be provided.

ダイバーシチは、システム性能を改善するために、無線通信システムで一般的に使用される。空間多重は、高いスペクトル効率を実現することができるが、高いダイバーシチのオーダーを保持するために、受信アンテナの数が増加しなければならない。   Diversity is commonly used in wireless communication systems to improve system performance. Spatial multiplexing can achieve high spectral efficiency, but the number of receive antennas must be increased to maintain a high diversity order.

この種類のシステムを実装することは実用的ではないため、SMXシステムの性能を改善するために異なる種類のダイバーシチを有することが必要になる。   Since it is not practical to implement this type of system, it is necessary to have different types of diversity in order to improve the performance of the SMX system.

本発明のシステム、装置及び方法は、信号空間ダイバーシチに基づく潜在的な対策として考えられ得るシンボル拡散回転を使用してSMXで更なるダイバーシチを実現する技術を提供する。好ましい実施例の単一アンテナシステムの最適な回転は、最小の積距離(minimum product distance)を最大化しつつ、十分な変調ダイバーシチを提供する(J. Boutros and E. Viterbo, “Signal space diversity: a power- and bandwidth-efficient diversity technique for the Rayleigh fading channel,” IEEE Trans. Information Theory, Vol. 44, pp. 1453-1467, JuI. 1998参照)。QAMコンステレーションについては、比較的低い計算上の複雑性を維持しつつ、ダイバーシチのオーダーを増加させるために、実際の回転行列はSMXシステムと結合される。   The system, apparatus and method of the present invention provide a technique for realizing further diversity in SMX using symbol spread rotation which can be considered as a potential countermeasure based on signal space diversity. Optimal rotation of the single antenna system of the preferred embodiment provides sufficient modulation diversity while maximizing the minimum product distance (J. Boutros and E. Viterbo, “Signal space diversity: a power- and bandwidth-efficient diversity technique for the Rayleigh fading channel, ”IEEE Trans. Information Theory, Vol. 44, pp. 1453-1467, JuI. 1998). For QAM constellations, the actual rotation matrix is combined with the SMX system to increase the order of diversity while maintaining a relatively low computational complexity.

以下の説明は、限定ではなく、説明目的で提供されることが当業者によりわかる。当業者は、本発明の要旨及び特許請求の範囲内にある多数の変更形態が存在することを認識する。既知の機能及び構成の不要な詳細は、本発明をあいまいにしないように、この説明から省略されることがある。   Those skilled in the art will appreciate that the following description is provided for purposes of illustration and not limitation. Those skilled in the art will recognize that there are numerous variations that are within the spirit of the invention and scope of the claims. Unnecessary detail of known functions and construction may be omitted from the current description so as not to obscure the present invention.

好ましい実施例は、高速レイリー高速フェージングチャネルでのMIMO(multiple-input multiple-output)シングルキャリアシステムに適用する。代替の好ましい実施例では、同じシステムは、OFDM-UWBシステムのように、コヒーレント帯域(coherent bandwidth)がチャネル帯域よりかなり小さいMIMOマルチキャリアシステムとしても見られる。システムは、Mの送信アンテナとNの受信アンテナとを有する。NxMのチャネル行列はHtにより示され、tは、高速フェージングの場合の時刻又はOFDMの場合のサブキャリアインデックスである。 The preferred embodiment applies to a multiple-input multiple-output (MIMO) single carrier system over a fast Rayleigh fast fading channel. In an alternative preferred embodiment, the same system can also be seen as a MIMO multi-carrier system where the coherent bandwidth is much smaller than the channel bandwidth, such as an OFDM-UWB system. The system has M transmit antennas and N receive antennas. The NxM channel matrix is denoted by H t , where t is the time in the case of fast fading or the subcarrier index in the case of OFDM.

送信シンボルベクトルxt、受信シンボルベクトルyt、雑音ベクトルnt及びNxMのチャネル行列Htをそれぞれ以下のように定義する。 The transmission symbol vector x t , the reception symbol vector y t , the noise vector n t, and the NxM channel matrix H t are respectively defined as follows.

Figure 2009518924
一般的なSMXシステムモデルは以下のように記述され得る。
Figure 2009518924
A general SMX system model can be described as follows:

Figure 2009518924
ただし、Tはブロック数又はサブキャリア数である。目的は、これらのTの連続するシンボルベクトルを結合することにより特定のダイバーシチを提供することである。大きいTは、高いダイバーシチのオーダーを意味する。TxTの拡散回転行列Rは、次のようにTの連続する元のシンボルに適用される。
Figure 2009518924
Here, T is the number of blocks or the number of subcarriers. The goal is to provide specific diversity by combining these T consecutive symbol vectors. A large T means an order of high diversity. The TxT diffusion rotation matrix R is applied to the T original symbols as follows.

Figure 2009518924
新しい送信システムは、容易に以下のように記述され得る。
Figure 2009518924
The new transmission system can easily be described as follows.

Figure 2009518924
しかし、元のシステムは、高度のダイバーシチを実現するために、新しい送信シンボルに線形的に貫かれている(linear-threaded)。例えば、QPSK変調及びT=2を備えた新しい2x2のSMXシステムは次のようになる。
Figure 2009518924
However, the original system is linear-threaded to new transmit symbols to achieve a high degree of diversity. For example, a new 2x2 SMX system with QPSK modulation and T = 2 looks like this:

Figure 2009518924
ただし、拡散回転行列
Figure 2009518924
However, the diffusion rotation matrix

Figure 2009518924
が使用され、I2=2x2の単位行列である。
Figure 2009518924
Is used and is an identity matrix of I 2 = 2x2.

前記の例では、式における4x4の回転行列は、統合された行列に変更可能である。   In the above example, the 4x4 rotation matrix in the equation can be changed to an integrated matrix.

Figure 2009518924
J. Boutros and E. Viterbo, “Signal Space Diversity: A Power- and Bandwidth-Efficient Diversity Technique For The Rayleigh Fading Channel,” IEEE Trans. Information Theory, Vol. 44, pp. 453-1467, JuI. 1998に提示されているように、これは、単一アンテナシステムの信号空間ダイバーシチの側面から生成された最小積のMIMOシンボル距離を実際に最大化し得る。しかし、双方の行列は、簡単な計算の回転DFT(rotated DFT)行列(Wei Zhang; Xiang-Gen Xia; Ching, P.C; Haiquan Wang;“Rate two full-diversity space-frequency code design for MIMO-OFDM”, Signal Processing Advances in Wireless Communications, 2005 IEEE 6th Workshop on June 2-8, 2005 Page(s):303-307を参照)及びコサイン行列(Soo Ki Choi; Seung Young Park; Chung Gu Kang, “Rotated Multidimensional Modulation For Spatial Multiplexing Systems”, Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, 6-9 Oct. 2003 Page(s) 246-250 Vol. 1を参照)を有する。
Figure 2009518924
J. Boutros and E. Viterbo, “Signal Space Diversity: A Power- and Bandwidth-Efficient Diversity Technique For The Rayleigh Fading Channel,” Presented in IEEE Trans. Information Theory, Vol. 44, pp. 453-1467, JuI. 1998 As has been done, this may actually maximize the minimum product MIMO symbol distance generated from the signal space diversity aspect of a single antenna system. However, both matrices are rotated DFT matrix (Wei Zhang; Xiang-Gen Xia; Ching, PC; Haiquan Wang; “Rate two full-diversity space-frequency code design for MIMO-OFDM” , Signal Processing Advances in Wireless Communications, 2005 IEEE 6th Workshop on June 2-8, 2005 Page (s): 303-307) and cosine matrix (Soo Ki Choi; Seung Young Park; Chung Gu Kang, “Rotated Multidimensional Modulation For Spatial Multiplexing Systems ", Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, 6-9 Oct. 2003 Page (s) 246-250 Vol.

ここでは、拡散回転行列は、T=3及びT=4でのQPSKコンステレーション及びT=2での16QAMについて更なるダイバーシチを提供するために使用され得る。例えば、T=2及び16QAMでの新しい3x1のSMXシステムは、次のようになる。   Here, the diffusion rotation matrix can be used to provide further diversity for the QPSK constellation at T = 3 and T = 4 and 16QAM at T = 2. For example, a new 3x1 SMX system with T = 2 and 16QAM looks like this:

Figure 2009518924
ただし、3x3の拡散回転行列
Figure 2009518924
However, 3x3 diffusion rotation matrix

Figure 2009518924
が使用され、I3は3x3の単位行列である。
Figure 2009518924
Are used, and I 3 is a 3 × 3 identity matrix.

この新しいSMX方式のダイバーシチのオーダーはTxNである。図1は、符号化されていないSMXシステムのビット誤り率の性能と、2つの送信アンテナ及び2つの受信アンテナについてシンボル拡散(T=2)を備えた好ましい実施例によるSMXシステムとを比較したものである。QPSKマッピングでは、本発明の性能は、高いSNRで従来のSMXシステムと比較してかなり向上する。1e-4のBERでは、従来のSMX方式より、本発明の信号拡散を使用してほぼ6dBの利得が存在する。4ビット/秒/Hzの同じスペクトル効率では、本発明の好ましい実施例は、1e-5のBERでの16-QAMのAlamouti方式より約2dBだけ良くなる(これも図1に図示される)。   The order for this new SMX diversity is TxN. FIG. 1 compares the bit error rate performance of an uncoded SMX system with the preferred embodiment SMX system with symbol spreading (T = 2) for two transmit and two receive antennas. It is. With QPSK mapping, the performance of the present invention is significantly improved compared to conventional SMX systems at high SNR. With a BER of 1e-4, there is approximately 6 dB gain using the signal spreading of the present invention over the conventional SMX scheme. For the same spectral efficiency of 4 bits / second / Hz, the preferred embodiment of the present invention is about 2 dB better than the 16-QAM Alamouti scheme at 1e-5 BER (also illustrated in FIG. 1).

最尤(ML:maximum-likelihood)検出の複雑性は、ダイバーシチのオーダーTと共に指数関数的に増加する。好ましい実施例では、ML検出の計算上の負荷を低減するために球面デコード(sphere decoding)が使用される。この理由は、球面でコードは、Tの多項式の複雑性でほぼ最尤(ML)の性能を実現し得るからである。本発明は、基本的に格子型コードであるため、球面デコードが可能である。球面デコードは、受信ベクトルで特定の超球の中心にある線形点のみでクローズ・ポイント・サーチ(close-point search)を実行する。球面デコードの説明については、例えばH. Vikalo and B. Hassibi, “Maximum-Likelihood Sequence Detection of Multiple Antenna Systems over dispersive Channels via Sphere Decoding,” EUROSIP Jour. Appl. Sig. Proc 2002:5, pp.525-531を参照のこと。   The complexity of maximum-likelihood (ML) detection increases exponentially with the order T of diversity. In the preferred embodiment, sphere decoding is used to reduce the computational burden of ML detection. This is because the code on the sphere can achieve near maximum likelihood (ML) performance with the complexity of the polynomial in T. Since the present invention is basically a lattice code, spherical decoding is possible. Spherical decoding performs a close-point search only at the linear point at the center of a particular hypersphere in the received vector. For an explanation of spherical decoding, see, for example, H. Vikalo and B. Hassibi, “Maximum-Likelihood Sequence Detection of Multiple Antenna Systems over dispersive Channels via Sphere Decoding,” EUROSIP Jour. Appl. Sig. Proc 2002: 5, pp.525- See 531.

拡散回転行列Rの直交構造のため、MMSE受信機は、Rでのジョイント線形結合(ジョイント線形合成)により最終的に後続されるチャネル毎にTの個々のMMSEデマッパ又はZFデマッパとして容易に導かれ得る。例えば、シンボル拡散を備えた上記のSMXシステムのMMSEデマッパは次のように導かれ得る。   Due to the orthogonal structure of the spreading rotation matrix R, the MMSE receiver is easily guided as T individual MMSE demappers or ZF demappers for each channel ultimately followed by joint linear combination at R (joint linear synthesis). obtain. For example, the MMSE demapper of the above SMX system with symbol spreading can be derived as follows.

Figure 2009518924
同様に、同じシステムのZFデマッパは、次のように導かれる。
Figure 2009518924
Similarly, a ZF demapper for the same system is derived as follows:

Figure 2009518924
ML受信機に比べてMMS及びZF受信機の次善の特性のため、或る程度の性能の損失を有する。この方式は、MMSE又はZF受信機のデコードの複雑性を増加させないことがわかる。図3は、チャネルデコーダ304によりデコードされて推定ビット305として出力されるジョイント線形結合で、Tの異なるMIMOチャネル205でTのブロックを受信し、Tの個々のMMSE空間デマッパ301の出力とR302とを結合(合成)するTの個々のMMSE空間デマッパ301を有する受信機を示している。図4は、SMX通信システムのダイバーシチを増加させるトランシーバシステム400における、図2の送信機200と、図3の受信機300との結合を示している。
Figure 2009518924
Due to the suboptimal characteristics of MMS and ZF receivers compared to ML receivers, it has some performance loss. It can be seen that this scheme does not increase the decoding complexity of the MMSE or ZF receiver. FIG. 3 is a joint linear combination decoded by channel decoder 304 and output as estimated bits 305, receiving T blocks on different T MIMO channels 205, and the output of T individual MMSE spatial demappers 301 and R302 2 shows a receiver having T individual MMSE spatial demappers 301 that combine (synthesize). FIG. 4 illustrates the coupling of the transmitter 200 of FIG. 2 and the receiver 300 of FIG. 3 in a transceiver system 400 that increases diversity in an SMX communication system.

シンボル拡散でSMX方式の好ましい実施例を使用するために、Tのブロックが受信されるまでコード化入力情報ビット201のマッピング後のQAMシンボルベクトル202をバッファするステップ203と、拡散行列でこれらのそれぞれを乗算するステップ204と、異なるTの独立したMIMOチャネル205で出力シンボルベクトルを最終的に送信するステップ205とを実行する。この方法のフローチャートが図2に示されている。   In order to use the preferred embodiment of the SMX scheme with symbol spreading, step 203 buffering the mapped QAM symbol vector 202 of the coded input information bits 201 until T blocks are received, and each of these in the spreading matrix , And step 205 for finally transmitting the output symbol vector on different T independent MIMO channels 205. A flowchart of this method is shown in FIG.

本発明の好ましい実施例により、従来技術のSMXシステムは、同じ伝送レートを維持しつつ、高いダイバーシチを実現することが可能になる。本発明の当面の用途は、次世代(ギガビット)マルチバンド(MB:Multi-Band)OFDM UWBシステムである。本発明の好ましい実施例は、従来技術のシステムと比較して長い距離を有する1Gbpsモードを可能にする。本発明の好ましい実施例はまた、複数のブロックでのコーディング方式として、高速平坦フェージングチャネルに使用され得る。   The preferred embodiment of the present invention allows the prior art SMX system to achieve high diversity while maintaining the same transmission rate. The immediate application of the present invention is the next generation (Gigabit) multi-band (MB) OFDM UWB system. The preferred embodiment of the present invention enables a 1 Gbps mode with a long distance compared to prior art systems. The preferred embodiment of the present invention can also be used for fast flat fading channels as a coding scheme in multiple blocks.

本発明の好ましい実施例について図示及び説明したが、ここに記載のシステム、装置及び方法は例示的であり、本発明の真の範囲を逸脱することなく、様々な変更及び変形が行われてもよく、等価なものがこれらの要素に置換されてもよいことが、当業者にわかる。更に、中心の範囲を逸脱することなく、本発明の教示を特定の状況に適合させるために、多数の変更が行われてもよい。従って、本発明は、本発明を実行するために考えられたベストモードとして開示された特定の実施例に限定されず、本発明は、特許請求の範囲にある全ての実施例を含むことを意図する。   While the preferred embodiment of the invention has been illustrated and described, the system, devices and methods described herein are exemplary and various changes and modifications may be made without departing from the true scope of the invention. It will be appreciated by those skilled in the art that equivalents may be substituted for these elements. In addition, many modifications may be made to adapt a teaching of the invention to a particular situation without departing from its central scope. Accordingly, the invention is not limited to the specific embodiments disclosed as the best mode contemplated for carrying out the invention, and the invention is intended to include all embodiments within the scope of the claims. To do.

本発明の性能の改善を示す図Figure showing the performance improvement of the present invention 本発明による方法Method according to the invention ジョイント線形結合により後続されるチャネル毎のTの個々のMMSEデマッパとしてのMMSE受信機MMSE receiver as T individual MMSE demapper per channel followed by joint linear combination 図3の受信機を有するシステムアーキテクチャSystem architecture with receiver of FIG.

Claims (34)

ダイバーシチを有する空間多重(SMX:spatial multiplexing)通信システム用のシステムであって:
Tの異なる独立したチャネルで受信したTの拡散シンボルベクトルを受信してデコードする受信装置と;
Tのシンボルベクトルを拡散し、Tの異なる独立したチャネルで前記Tの拡散ベクトルを送信する送信装置と;
を有し、
前記SMX通信システムのダイバーシチが増加し、前記通信システムのスペクトル効率及び電力消費のうち少なくとも1つが維持されるシステム。
A system for a spatial multiplexing (SMX) communication system with diversity comprising:
A receiving device for receiving and decoding T spread symbol vectors received on T different independent channels;
A transmitter for spreading T symbol vectors and transmitting the T spread vectors on T different independent channels;
Have
A system in which diversity of the SMX communication system is increased and at least one of spectral efficiency and power consumption of the communication system is maintained.
前記SMX通信システムは、マルチバンド・直交周波数分割多重・ウルトラワイドバンド(MB OFDM UWB:multi-band orthogonal frequency division multiplexing ultra wide band)システムである、請求項1に記載のシステム。   The system of claim 1, wherein the SMX communication system is a multi-band orthogonal frequency division multiplexing ultra wide band (MB OFDM UWB) system. 前記Tの異なる独立したチャネルは、MIMO(multiple in multiple out)チャネルである、請求項1に記載のシステム。   The system of claim 1, wherein the T different independent channels are multiple in multiple out (MIMO) channels. 前記Tの異なる独立したチャネルは、高速平坦フェージングチャネルである、請求項1に記載のシステム。   The system of claim 1, wherein the T independent channels are fast flat fading channels. 前記送信装置は:
マッピングされたシンボルを受信し、Tブロックのシンボルベクトルを蓄積して出力するバッファモジュールであり、それぞれの前記マッピングされたシンボルは、コード化情報ビットを有するバッファモジュールと;
各ブロックを拡散する拡散モジュールであり、前記バッファモジュールに結合され、前記バッファモジュールにより出力される前記蓄積されたTブロックを受信し、所定のTxTの拡散回転行列Rで各ブロックを乗算する拡散モジュールと;
を更に有する、請求項1に記載のシステム。
The transmitter is:
A buffer module that receives the mapped symbols and accumulates and outputs a T-block symbol vector, each of the mapped symbols having a coded information bit;
A spreading module that spreads each block, is coupled to the buffer module, receives the accumulated T blocks output by the buffer module, and multiplies each block by a spreading rotation matrix R of a predetermined TxT When;
The system of claim 1, further comprising:
前記受信装置は、N≧1の受信アンテナを更に有し、
前記送信装置は、M≧1の送信アンテナを更に有し、前記通信システムのダイバーシチのオーダーがTxNに増加するように、前記Tのシンボルベクトルを拡散及び回転するためにTxTの拡散回転行列Rを使用する、請求項1に記載のシステム。
The receiver further includes a receiving antenna of N ≧ 1;
The transmission apparatus further includes a transmission antenna of M ≧ 1, and uses a TxT spread rotation matrix R to spread and rotate the T symbol vectors so that the diversity order of the communication system increases to TxN. The system according to claim 1, wherein the system is used.
前記受信装置は:
前記拡散回転行列Rとジョイント線形結合され、チャネル毎に結合した出力を生成するTの個々のデマッパと;
前記結合した出力を受信してデコードするチャネルデコーダと;
を更に有する、請求項6に記載のシステム。
The receiver is:
T individual demappers that are jointly linearly combined with the diffusion rotation matrix R to produce a combined output per channel;
A channel decoder for receiving and decoding the combined output;
The system of claim 6, further comprising:
前記デマッパは全て、最大平均2乗誤差(MMSE:maximum mean square error)空間デマッパとZFデマッパとから選択される、請求項7に記載のシステム。   The system of claim 7, wherein all of the demappers are selected from a maximum mean square error (MMSE) spatial demapper and a ZF demapper. 前記デコーダは、球面デコーダである、請求項7に記載のシステム。   The system of claim 7, wherein the decoder is a spherical decoder. 前記送信装置は:
マッピングされたシンボルを受信し、Tブロックのシンボルベクトルを蓄積して出力するバッファモジュールであり、それぞれの前記マッピングされたシンボルは、コード化情報ビットを有するバッファモジュールと;
各ブロックを拡散する拡散モジュールであり、前記バッファモジュールに結合され、前記バッファモジュールにより出力される前記蓄積されたTブロックを受信し、前記拡散回転行列Rで各ブロックを乗算する拡散モジュールと;
を更に有する、請求項7に記載のシステム。
The transmitter is:
A buffer module that receives the mapped symbols and accumulates and outputs a T-block symbol vector, each of the mapped symbols having a coded information bit;
A spreading module for spreading each block, coupled to the buffer module, receiving the accumulated T blocks output by the buffer module, and multiplying each block by the spreading rotation matrix R;
The system of claim 7 further comprising:
前記SMX通信システムは、マルチバンド・直交周波数分割多重・ウルトラワイドバンド(MB OFDM UWB:multi-band orthogonal frequency division multiplexing ultra wide band)システムである、請求項10に記載のシステム。   12. The system of claim 10, wherein the SMX communication system is a multi-band orthogonal frequency division multiplexing ultra wide band (MB OFDM UWB) system. 前記Tの異なる独立したチャネルは、MIMO(multiple in multiple out)チャネルである、請求項10に記載のシステム。   The system according to claim 10, wherein the T different independent channels are multiple in multiple out (MIMO) channels. 前記Tの異なる独立したチャネルは、高速平坦フェージングチャネルである、請求項10に記載のシステム。   The system of claim 10, wherein the T independent channels are fast flat fading channels. 空間多重(SMX:spatial multiplexing)通信システムのダイバーシチを増加させる方法であって:
所定のTxTの拡散回転行列Rで各ブロックを乗算することにより、コード化情報ビットを有するTブロックのマッピングされたシンボルベクトルを拡散及び回転するステップと;
前記Tの拡散及び回転されたベクトルをTの異なる独立したチャネルで送信するステップと;
を有し、
前記SMX通信システムのダイバーシチが増加し、前記通信システムのスペクトル効率及び電力消費の双方が維持される方法。
A method for increasing the diversity of a spatial multiplexing (SMX) communication system:
Spreading and rotating the mapped symbol vector of the T block with coded information bits by multiplying each block by a predetermined TxT spreading rotation matrix R;
Transmitting the T spread and rotated vectors on T different independent channels;
Have
A method in which diversity of the SMX communication system is increased and both spectral efficiency and power consumption of the communication system are maintained.
前記SMX通信システムは、マルチバンド・直交周波数分割多重・ウルトラワイドバンド(MB OFDM UWB:multi-band orthogonal frequency division multiplexing ultra wide band)システムである、請求項14に記載の方法。   The method of claim 14, wherein the SMX communication system is a multi-band orthogonal frequency division multiplexing ultra wide band (MB OFDM UWB) system. 前記Tの異なる独立したチャネルは、MIMO(multiple in multiple out)チャネルである、請求項14に記載の方法。   The method according to claim 14, wherein the T different independent channels are multiple in multiple out (MIMO) channels. 前記Tの異なる独立したチャネルは、高速平坦フェージングチャネルである、請求項14に記載の方法。   The method of claim 14, wherein the T independent channels are fast flat fading channels. 前記SMX通信システムのダイバーシチのオーダーがTxNに増加するように、N≧1の受信アンテナと、M≧1の送信アンテナとを提供するステップを更に有する、請求項14に記載の方法。   The method of claim 14, further comprising providing N ≧ 1 receive antennas and M ≧ 1 transmit antennas such that the order of diversity of the SMX communication system increases to TxN. 前記拡散回転行列Rとジョイント線形結合され、前記Tのチャネルで受信したTの信号から結合されたデマッピング後の出力を生成するチャネル毎に1つのTの個々のデマッパを提供するステップと;
前記提供されたジョイント結合されたTの個々のデマッパでTの受信した拡散及び回転された信号をデマッピングして結合し、デマッピング後の逆拡散及び逆回転された信号を生成するステップと;
デコーダで前記デマッピング後の逆拡散及び逆回転された信号をデコードするステップと;
を更に有する、請求項14に記載の方法。
Providing one T individual demapper for each channel that is jointly linearly combined with the spread rotation matrix R and produces a demapped output combined from T signals received on the T channels;
Demapping and combining T received spread and rotated signals with the provided joint-joined T individual demappers to generate a de-demapped and de-rotated signal after demapping;
Decoding a despread and derotated signal after the demapping by a decoder;
15. The method of claim 14, further comprising:
前記デコーダは、球面デコーダである、請求項19に記載の方法。   The method of claim 19, wherein the decoder is a spherical decoder. 前記デマッパは全て、最大平均2乗誤差(MMSE:maximum mean square error)空間デマッパとZFデマッパとを有するグループから選択された1つの種類の装置である、請求項19に記載の方法。   20. The method of claim 19, wherein all of the demappers are one type of device selected from the group having a maximum mean square error (MMSE) spatial demapper and a ZF demapper. ダイバーシチを有する空間多重(SMX:spatial multiplexing)通信システム用の送信機であって:
Tのシンボルベクトルを拡散及び回転する拡散器と;
送信するためにTの異なる独立したチャネルで前記Tの拡散及び回転されたベクトルを割り当てるベクトル解析器と;
を有し、
前記SMX通信システムのダイバーシチが増加し、前記通信システムのスペクトル効率及び電力消費のうち少なくとも1つが維持される送信機。
A transmitter for a spatial multiplexing (SMX) communication system with diversity comprising:
A diffuser for spreading and rotating T symbol vectors;
A vector analyzer for assigning said T spread and rotated vectors on T different independent channels for transmission;
Have
A transmitter in which diversity of the SMX communication system is increased and at least one of spectral efficiency and power consumption of the communication system is maintained.
前記SMX通信システムは、マルチバンド・直交周波数分割多重・ウルトラワイドバンド(MB OFDM UWB:multi-band orthogonal frequency division multiplexing ultra wide band)システムである、請求項22に記載の送信機。   23. The transmitter of claim 22, wherein the SMX communication system is a multi-band orthogonal frequency division multiplexing ultra wide band (MB OFDM UWB) system. 前記Tの異なる独立したチャネルは、MIMO(multiple in multiple out)チャネルである、請求項22に記載の送信機。   23. The transmitter of claim 22, wherein the T independent channels are multiple in multiple out (MIMO) channels. 前記Tの異なる独立したチャネルは、高速平坦フェージングチャネルである、請求項22に記載の送信機。   23. The transmitter of claim 22, wherein the T independent channels are fast flat fading channels. マッピングされたシンボルを受信し、Tブロックのシンボルベクトルを蓄積して出力するバッファモジュールであり、それぞれの前記マッピングされたシンボルは、コード化情報ビットを有するバッファモジュールと;
各ブロックを拡散及び回転する拡散モジュールであり、前記バッファモジュールに結合され、前記バッファモジュールにより出力される前記蓄積されたTブロックを受信し、所定のTxTの拡散回転行列Rで各ブロックを乗算する拡散モジュールと;
を更に有する、請求項22に記載の送信機。
A buffer module that receives the mapped symbols and accumulates and outputs a T-block symbol vector, each of the mapped symbols having a coded information bit;
A spreading module that spreads and rotates each block, is coupled to the buffer module, receives the accumulated T block output by the buffer module, and multiplies each block by a predetermined TxT spreading rotation matrix R With a diffusion module;
23. The transmitter of claim 22, further comprising:
M≧1の送信アンテナを更に有し、前記通信システムのダイバーシチのオーダーがTxNに増加するように、前記Tのシンボルベクトルを拡散及び回転するためにTxTの拡散回転行列Rを使用し、
Nは前記Tのチャネルで前記送信機により送信された前記拡散及び回転後のTのシンボルを受信する受信機の受信アンテナの数である、請求項22に記載の送信機。
Further comprising a transmission antenna of M ≧ 1, and using a TxT spreading rotation matrix R to spread and rotate the T symbol vectors so that the diversity order of the communication system increases to TxN,
23. The transmitter of claim 22, wherein N is the number of receive antennas of a receiver that receives the spread and rotated T symbols transmitted by the transmitter on the T channel.
ダイバーシチを有する空間多重(SMX:spatial multiplexing)通信システムのT≧1の拡散及び回転された信号を受信する受信機であって:
N≧1の受信アンテナにより受信され、行列Rにより拡散及び回転されてTの異なる独立したチャネルで受信されたTのシンボルベクトルをデマッピングするTの個々の空間デマッパと;
Tのデマッピングされたシンボルベクトルを前記Tの個々の空間デマッパから受信し、ジョイント線形結合する結合器と;
前記結合された出力を受信してデコードするデコーダと;
を有し、
前記SMX通信システムのダイバーシチが増加し、前記通信システムのスペクトル効率及び電力消費のうち少なくとも1つが維持される受信機。
A receiver for receiving a T ≧ 1 spread and rotated signal in a spatial multiplexing (SMX) communication system with diversity:
T individual spatial demappers that are received by N ≧ 1 receive antennas and that are spread and rotated by a matrix R to demap T symbol vectors received on T different independent channels;
A combiner that receives T demapped symbol vectors from the T individual spatial demappers and jointly combines them;
A decoder for receiving and decoding the combined output;
Have
A receiver in which diversity of the SMX communication system is increased and at least one of spectral efficiency and power consumption of the communication system is maintained.
前記デマッパは全て、最大平均2乗誤差(MMSE:maximum mean square error)空間デマッパとZFデマッパとを有するグループから選択された1つの種類の装置である、請求項28に記載の受信機。   30. The receiver of claim 28, wherein all of the demappers are one type of device selected from the group having a maximum mean square error (MMSE) spatial demapper and a ZF demapper. 前記デコーダは、球面デコーダである、請求項29に記載の受信機。   30. The receiver of claim 29, wherein the decoder is a spherical decoder. 前記SMX通信システムは、マルチバンド・直交周波数分割多重・ウルトラワイドバンド(MB OFDM UWB:multi-band orthogonal frequency division multiplexing ultra wide band)システムである、請求項30に記載の受信機。   31. The receiver of claim 30, wherein the SMX communication system is a multi-band orthogonal frequency division multiplexing ultra wide band (MB OFDM UWB) system. 前記Tの異なる独立したチャネルは、MIMO(multiple in multiple out)チャネルである、請求項30に記載の受信機。   The receiver according to claim 30, wherein the T independent channels are multiple in multiple out (MIMO) channels. 前記Tの異なる独立したチャネルは、高速平坦フェージングチャネルである、請求項30に記載の受信機。   The receiver of claim 30, wherein the T independent channels are fast flat fading channels. Rは、TxTの拡散回転行列であり、
前記SMX通信システムのダイバーシチは、TxNに増加する、請求項30に記載の受信機。
R is the TxT diffusion rotation matrix,
The receiver of claim 30, wherein diversity of the SMX communication system increases to TxN.
JP2008543974A 2005-12-08 2006-12-05 System, apparatus and method for performing spatial multiplexing by symbol diffusion Withdrawn JP2009518924A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US74867605P 2005-12-08 2005-12-08
PCT/IB2006/054613 WO2007066291A2 (en) 2005-12-08 2006-12-05 System, apparatus, and method for spatial multiplexing with symbol spreading

Publications (1)

Publication Number Publication Date
JP2009518924A true JP2009518924A (en) 2009-05-07

Family

ID=38043048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008543974A Withdrawn JP2009518924A (en) 2005-12-08 2006-12-05 System, apparatus and method for performing spatial multiplexing by symbol diffusion

Country Status (5)

Country Link
US (1) US8125886B2 (en)
EP (1) EP1961144A2 (en)
JP (1) JP2009518924A (en)
CN (1) CN101326753A (en)
WO (1) WO2007066291A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295335B2 (en) 2009-12-31 2012-10-23 Intel Corporation Techniques to control uplink power
CN104468040B (en) * 2014-11-28 2018-04-13 华南理工大学 A kind of wireless communication Sphere decoder method based on signal characteristic
US20170288933A1 (en) * 2016-03-30 2017-10-05 Intel IP Corporation Wireless signal receiver

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003201162A1 (en) * 2002-01-04 2003-07-15 Nokia Corporation High rate transmit diversity transmission and reception
US7095709B2 (en) * 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
US7349496B2 (en) * 2003-06-27 2008-03-25 Nortel Networks Limited Fast space-time decoding using soft demapping with table look-up
EP1511211B1 (en) * 2003-08-29 2008-04-09 Mitsubishi Electric Information Technology Centre Europe B.V. Method for transmitting data in a MIMO telecommunication system offering a high diversity as perceived from a receiver end
US7356089B2 (en) * 2003-09-05 2008-04-08 Nortel Networks Limited Phase offset spatial multiplexing
KR100580840B1 (en) * 2003-10-09 2006-05-16 한국전자통신연구원 Data communication method of multi input multi output system
US7302009B2 (en) * 2003-12-17 2007-11-27 Qualcomm Incorporated Broadcast transmission with spatial spreading in a multi-antenna communication system
US20050180312A1 (en) * 2004-02-18 2005-08-18 Walton J. R. Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
GB2411556B (en) * 2004-02-27 2006-03-29 Toshiba Res Europ Ltd Communications system, method and device
US7668227B2 (en) * 2004-03-05 2010-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for reducing interference in spread spectrum signals using spreading code cross-correlations
US7583747B1 (en) * 2004-03-31 2009-09-01 University Of Alberta Method of systematic construction of space-time constellations, system and method of transmitting space-time constellations
ATE333724T1 (en) * 2004-04-08 2006-08-15 Mitsubishi Electric Inf Tech METHOD FOR TRANSMITTING OPTIMALLY DISTRIBUTED INFORMATION IN A MIMO TELECOMMUNICATIONS SYSTEM
US7978649B2 (en) * 2004-07-15 2011-07-12 Qualcomm, Incorporated Unified MIMO transmission and reception
US8014463B2 (en) * 2005-05-25 2011-09-06 Qualcomm Incorporated Delay diversity and spatial rotation systems and methods
KR100790359B1 (en) * 2005-06-08 2008-01-02 한국전자통신연구원 Apparatus and Method of Space Code Block Coding Transmit Diversity, CDMA Diversity Transmitter using it, CDMA Mobile Station Receiver according to them

Also Published As

Publication number Publication date
CN101326753A (en) 2008-12-17
WO2007066291A2 (en) 2007-06-14
EP1961144A2 (en) 2008-08-27
WO2007066291A3 (en) 2007-10-25
US8125886B2 (en) 2012-02-28
US20080285434A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
KR101009774B1 (en) The spatial modulation method in multiple-input multiple-output system and the transmitting and receiving apparatus using the same
EP1608081B1 (en) Apparatus and method for space-frequency block coding/decoding in a communication system
RU2340100C1 (en) Device and method of frequency-space-time coding for increasing efficiency
US20070297529A1 (en) Recursive and trellis-based feedback reduction for MIMO-OFDM with rate-limited feedback
US8351549B1 (en) Multi-stream demodulation scheme using multiple detectors
NO340390B1 (en) Method and apparatus for combining space-frequency block coding, spatial multiplexing and beam-forming in a MIMO-OFDM system
WO2006019253A1 (en) Apparatus and method for space-time-frequency block coding for increasing performance
US9819404B2 (en) Reordered sub-block decoding
US8842755B2 (en) Process for decoding ALAMOUTI block code in an OFDM system, and receiver for the same
Heath et al. Characterization of MIMO channels for spatial multiplexing systems
JP2010093815A (en) Method for time-space encoding, and method and apparatus for transmitting, receiving and decoding radio signal
KR100780364B1 (en) Apparatus and method of space time block code for increasing performance
WO2009016573A2 (en) System and method of transmitting and receiving mimo-ofdm signals
JP2009518924A (en) System, apparatus and method for performing spatial multiplexing by symbol diffusion
Ahmed et al. On the capacity of ASTC-MIMO-OFDM system in a correlated Rayleigh frequency-selective channel
CN106953674B (en) Spatial modulation method and system
KR101073921B1 (en) Method of Transmitting Signals for Multiple Antenna System
KR101066105B1 (en) Method and System for Transmitting Signal in Spatial Multiplexing System by Using Multidimensional Rotated Modulation
Wu et al. Linear dispersion over time and frequency
Chaudhary et al. Hybrid MIMO-OFDM system with application to Image transmission
Clara et al. OFDM-CPM for MIMO wireless communication: signal detection and performance
Sampath et al. A simple scalable space-frequency coding scheme for MIMO-OFDM
Chen et al. Generalized cyclic delay diversity for orthogonal frequency division multiplexing
Giese et al. Space-time constellations for unknown frequency-selective channels
Remlein et al. OFDM with transmit and receive antenna selection based on subcarrier groups

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091202

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110325