JP2009302145A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2009302145A
JP2009302145A JP2008152091A JP2008152091A JP2009302145A JP 2009302145 A JP2009302145 A JP 2009302145A JP 2008152091 A JP2008152091 A JP 2008152091A JP 2008152091 A JP2008152091 A JP 2008152091A JP 2009302145 A JP2009302145 A JP 2009302145A
Authority
JP
Japan
Prior art keywords
light
led chip
color conversion
conversion member
mounting substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008152091A
Other languages
Japanese (ja)
Inventor
Akihiko Murai
章彦 村井
Keiichi Yamazaki
圭一 山崎
Kenichiro Tanaka
健一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008152091A priority Critical patent/JP2009302145A/en
Publication of JP2009302145A publication Critical patent/JP2009302145A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting device capable of suppressing degradation of quantum efficiency caused by temperature rising of phosphor, and capable of widening a divergence angle of emission light. <P>SOLUTION: The light-emitting device includes an LED chip 10, and a color conversion member 70 which is formed from a translucent material containing a phosphor which is excited with the light radiated from the LED chip 10 to release the light whose wavelength is longer than the LED chip 10, and is so bonded to a mounting substrate 20 as to enclose the LED chip 10 with the mounting substrate 20. The LED chip 10 is so mounted on the mounting substrate 20 that an LED part (light-emitting part) 12 having a lamination structure comprising a p-type nitride semiconductor layer, a light-emitting layer, and an n-type nitride semiconductor layer, a cathode electrode 13a which is electrically connected to the n-type nitride semiconductor layer, and an anode electrode 13b which is electrically connected to the p-type nitride semiconductor layer, are formed on the lower surface side of a conductive spindle 11 of six-sided pyramid shape comprising ZnO crystal. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、LEDチップ(発光ダイオードチップ)を備えた発光装置に関するものである。   The present invention relates to a light emitting device including an LED chip (light emitting diode chip).

従来から、LEDチップとLEDチップから放射された光によって励起されてLEDチップとは異なる発光色の光を放射する波長変換材料としての蛍光体とを組み合わせてLEDチップの発光色とは異なる色合いの混色光を出す発光装置の研究開発が各所で行われている(例えば、特許文献1参照)。なお、この種の発光装置としては、例えば、青色光あるいは紫外光を放射するLEDチップと蛍光体とを組み合わせて白色の光(白色光の発光スペクトル)を得る白色発光装置(一般的に白色LEDと呼ばれている)の商品化がなされている。   Conventionally, an LED chip and a phosphor that is excited by light emitted from the LED chip and emits light of a color different from that of the LED chip is combined with a phosphor that emits light having a different color from the LED chip. Research and development of light-emitting devices that emit mixed color light are performed in various places (for example, see Patent Document 1). In addition, as this kind of light emitting device, for example, a white light emitting device (generally a white LED) that obtains white light (white light emission spectrum) by combining an LED chip that emits blue light or ultraviolet light and a phosphor. Has been commercialized).

上記特許文献1には、この種の発光装置の一例として、図5に示すように、LEDチップ10’と、当該LEDチップ10’が実装された実装基板20’と、第1の透光性材料(例えば、シリコーン樹脂など)により形成され実装基板20’におけるLEDチップ10’の実装面側でLEDチップ10’を封止した半球状の透光性封止部50’と、LEDチップ10’から放射される光によって励起されてLEDチップ10’よりも長波長の光を放射する蛍光体を含有した第2の透光性材料(例えば、シリコーン樹脂など)により形成され透光性封止部50’との間に空気層80’が介在する形で実装基板20’に固着されたドーム状の色変換部材70’とを備えた発光装置が記載されている。なお、上記特許文献1には、LEDチップ10’として紫外光を放射するGaN系の紫外LEDチップを用い、蛍光体として赤色蛍光体と緑色蛍光体と青色蛍光体とを用いて白色光を得る例が記載されているが、色むらを抑制するために、LEDチップ10’として可視光である青色光を放射する青色LEDチップを用い、蛍光体として黄色蛍光体を用いて白色光を得ることも考えられる。
特許第3978451号公報
In Patent Document 1, as an example of this type of light emitting device, as shown in FIG. 5, an LED chip 10 ′, a mounting substrate 20 ′ on which the LED chip 10 ′ is mounted, and a first light-transmitting property are disclosed. A hemispherical translucent sealing portion 50 ′ formed of a material (for example, silicone resin) and sealing the LED chip 10 ′ on the mounting surface side of the LED chip 10 ′ in the mounting substrate 20 ′; and the LED chip 10 ′ A light-transmitting sealing portion formed of a second light-transmitting material (for example, silicone resin) containing a phosphor that emits light having a wavelength longer than that of the LED chip 10 ′ when excited by light emitted from the LED chip 10 ′ A light emitting device is described that includes a dome-shaped color conversion member 70 ′ fixed to the mounting substrate 20 ′ with an air layer 80 ′ interposed therebetween. In Patent Document 1, a GaN ultraviolet LED chip that emits ultraviolet light is used as the LED chip 10 ′, and white light is obtained using a red phosphor, a green phosphor, and a blue phosphor as phosphors. Although an example is described, in order to suppress color unevenness, a blue LED chip that emits blue light, which is visible light, is used as the LED chip 10 ′, and white light is obtained using a yellow phosphor as the phosphor. Is also possible.
Japanese Patent No. 3978451

ところで、上述の発光装置は、LEDチップ10’が平板状の面発光型のLEDチップであり、放射光強度の放射角依存性がランバート(Lambert)型分布で近似されるとすると、LEDチップ10’の直上方向の放射光強度を1とした場合、直上方向から45°傾いた方向の放射光強度が0.6、直上方向から60°傾いた方向の放射光強度が0.4となり、色変換部材70’から出射される白色光の配光がLEDチップ10’から出射される青色光の配光に起因して狭角配光となるので、広角配光の白色光源を得るためには大掛かりな光学レンズなどを用いる必要があり、照明用途に用いる場合のコスト増加の原因となってしまい、また、色変換部材70’の頂部における相対入射光強度が色変換部材70’の周部における相対入射光強度に比べて大きく、ストークスシフトによるエネルギ損失に起因して発熱する蛍光体が局所的に集中しやすくなって、色変換部材70’の温度が局所的に上昇しやすくなるので、蛍光体の量子効率が低下し、結果的に白色光の発光効率が低下してしまう。   By the way, in the light emitting device described above, if the LED chip 10 ′ is a flat surface emitting LED chip, and the radiation angle dependency of the emitted light intensity is approximated by a Lambert distribution, the LED chip 10 Assuming that the emitted light intensity directly above '1 is 1, the emitted light intensity in the direction inclined 45 ° from the directly above direction is 0.6, the emitted light intensity in the direction inclined 60 ° from the immediately above direction is 0.4, and the color In order to obtain a white light source with a wide-angle light distribution, the light distribution of the white light emitted from the conversion member 70 ′ becomes a narrow-angle light distribution due to the light distribution of the blue light emitted from the LED chip 10 ′. It is necessary to use a large optical lens or the like, which causes an increase in cost when used for illumination purposes, and the relative incident light intensity at the top of the color conversion member 70 ′ is at the periphery of the color conversion member 70 ′. Relative light intensity The phosphors that generate heat due to energy loss due to Stokes shift are likely to concentrate locally, and the temperature of the color conversion member 70 ′ is likely to rise locally. As a result, the luminous efficiency of white light is reduced.

本発明は上記事由に鑑みて為されたものであり、その目的は、蛍光体の温度上昇による量子効率の低下を抑制でき、且つ、出射光の広がり角を大きくすることが可能な発光装置を提供することにある。   The present invention has been made in view of the above-described reasons, and an object of the present invention is to provide a light-emitting device capable of suppressing a decrease in quantum efficiency due to a temperature rise of a phosphor and increasing a spread angle of emitted light. It is to provide.

請求項1の発明は、LEDチップと、当該LEDチップが実装された実装基板と、LEDチップから放射される光によって励起されてLEDチップよりも長波長の光を放射する蛍光体を含有した透光性材料により形成され実装基板との間にLEDチップを囲む形で実装基板に固着された色変換部材とを備え、LEDチップは、n形窒化物半導体層とp形窒化物半導体層とを有するLED部、n形窒化物半導体層に電気的に接続されたカソード電極およびp形窒化物半導体層に電気的に接続されたアノード電極がZnO結晶からなる六角錘状の錐体の下面側に形成されてなり、当該錐体よりもLED部が実装基板に近くなる形で実装基板に実装されてなることを特徴とする。   The invention of claim 1 includes a LED chip, a mounting substrate on which the LED chip is mounted, and a transparent material that is excited by light emitted from the LED chip and emits light having a longer wavelength than the LED chip. And a color conversion member fixed to the mounting substrate so as to surround the LED chip between the mounting substrate and the LED chip. The LED chip includes an n-type nitride semiconductor layer and a p-type nitride semiconductor layer. An LED portion having a cathode electrode electrically connected to the n-type nitride semiconductor layer and an anode electrode electrically connected to the p-type nitride semiconductor layer on the lower surface side of the hexagonal pyramid cone made of ZnO crystal. It is formed, and the LED portion is mounted on the mounting substrate so as to be closer to the mounting substrate than the cone.

この発明によれば、実装基板に実装されたLEDチップから放射される光によって励起されてLEDチップよりも長波長の光を放射する蛍光体を含有した透光性材料により形成され実装基板との間にLEDチップを囲む形で実装基板に固着された色変換部材を備え、LEDチップは、n形窒化物半導体層とp形窒化物半導体層とを有するLED部、n形窒化物半導体層に電気的に接続されたカソード電極およびp形窒化物半導体層に電気的に接続されたアノード電極がZnO結晶からなる六角錘状の錐体の下面側に形成されてなり、当該錐体よりもLED部が実装基板に近くなる形で実装基板に実装されているので、LEDチップの出射光の広がり角を大きくすることができるから、色変換部材の局所的な温度上昇を抑制できて蛍光体の温度上昇による量子効率の低下を抑制でき、且つ、出射光の広がり角を大きくすることが可能になる。   According to the present invention, the mounting substrate is formed of a translucent material containing a phosphor that is excited by light emitted from the LED chip mounted on the mounting substrate and emits light having a longer wavelength than the LED chip. The LED chip includes a color conversion member fixed to the mounting substrate so as to surround the LED chip, and the LED chip includes an n-type nitride semiconductor layer and a p-type nitride semiconductor layer, and an n-type nitride semiconductor layer. An electrically connected cathode electrode and an anode electrode electrically connected to the p-type nitride semiconductor layer are formed on the lower surface side of a hexagonal pyramid cone made of ZnO crystal, and the LED is more than the cone. Since the portion is mounted on the mounting substrate in a manner close to the mounting substrate, the spread angle of the emitted light of the LED chip can be increased, so that the local temperature rise of the color conversion member can be suppressed and the phosphor temperature It can suppress a decrease in quantum efficiency due to the temperature, and makes it possible to increase the divergence angle of the emitted light.

請求項2の発明は、請求項1の発明において、前記色変換部材は、下面開口した六角錐状の形状に形成されてなることを特徴とする。   A second aspect of the invention is characterized in that, in the first aspect of the invention, the color conversion member is formed in a hexagonal pyramid shape having an open bottom surface.

この発明によれば、前記LEDチップの前記錐体から放射された光が前記色変換部材の光入射面で全反射されるのを抑制できて前記LEDチップからの光を前記色変換部材で効率良く色変換(波長変換)することができ、また、前記色変換部材の光入射面への前記LEDチップからの光の入射光強度の均一化を図れ、前記色変換部材の局所的な温度上昇をより抑制することができ、蛍光体の量子効率の向上を図れる。   According to the present invention, the light emitted from the cone of the LED chip can be prevented from being totally reflected by the light incident surface of the color conversion member, and the light from the LED chip can be efficiently used by the color conversion member. Color conversion (wavelength conversion) can be performed well, and the intensity of light incident from the LED chip on the light incident surface of the color conversion member can be made uniform, and the temperature of the color conversion member rises locally. Can be further suppressed, and the quantum efficiency of the phosphor can be improved.

請求項3の発明は、請求項1または請求項2の発明において、前記色変換部材は、前記LEDチップとの間に空気層が形成される形で前記実装基板に固着されてなることを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the invention, the color conversion member is fixed to the mounting substrate in a form in which an air layer is formed between the color conversion member and the LED chip. And

この発明によれば、前記LEDチップを封止する透光性封止部を備え前記色変換部材と透光性封止部との間に空気層が形成されている場合に比べて、発光装置全体の小型化を図れ、また、前記LEDチップから放射されて前記色変換部材に入射し前記色変換部材の前記蛍光体により散乱された光のうち前記LEDチップ側へ散乱されて前記LEDチップに吸収される光の光量を低減できて外部への光取り出し効率を向上できる。   According to this invention, the light-emitting device is provided as compared with the case where a light-transmitting sealing portion that seals the LED chip is provided and an air layer is formed between the color conversion member and the light-transmitting sealing portion. The entire size can be reduced, and the light emitted from the LED chip, incident on the color conversion member and scattered by the phosphor of the color conversion member is scattered toward the LED chip and is reflected on the LED chip. The amount of absorbed light can be reduced, and the light extraction efficiency to the outside can be improved.

請求項4の発明は、請求項1または請求項2の発明において、前記色変換部材は、内側面が前記錐体の外側面全体に接する大きさに形成されてなることを特徴とする。   According to a fourth aspect of the present invention, in the first or second aspect of the present invention, the color conversion member is formed such that the inner surface is in contact with the entire outer surface of the cone.

この発明によれば、発光装置全体の小型化を図れるとともに、前記色変換部材の前記蛍光体で発生した熱を前記LEDチップを通して放熱させることができて、前記蛍光体の温度上昇をより抑制できて、量子効率のより一層の向上を図れる。   According to the present invention, the entire light emitting device can be reduced in size, and the heat generated in the phosphor of the color conversion member can be dissipated through the LED chip, and the temperature rise of the phosphor can be further suppressed. Thus, the quantum efficiency can be further improved.

請求項1の発明では、蛍光体の温度上昇による量子効率の低下を抑制でき、且つ、出射光の広がり角を大きくすることが可能になるという効果がある。   According to the first aspect of the present invention, there is an effect that it is possible to suppress the decrease in quantum efficiency due to the temperature rise of the phosphor and to increase the spread angle of the emitted light.

(実施形態1)
以下、本実施形態の発光装置について図1を参照しながら説明する。
(Embodiment 1)
Hereinafter, the light-emitting device of this embodiment will be described with reference to FIG.

本実施形態の発光装置は、図1に示すように、LEDチップ10と、当該LEDチップ10が実装された矩形板状の実装基板20と、LEDチップ10から放射される光によって励起されてLEDチップ10よりも長波長の光を放射する蛍光体を含有した透光性材料により形成され実装基板20との間にLEDチップ10を囲む形で実装基板20に固着された色変換部材70とを備えている。   As shown in FIG. 1, the light emitting device of the present embodiment is an LED that is excited by light emitted from the LED chip 10, a rectangular plate-like mounting substrate 20 on which the LED chip 10 is mounted, and the LED chip 10. A color conversion member 70 formed of a translucent material containing a phosphor that emits light having a wavelength longer than that of the chip 10 and fixed to the mounting substrate 20 so as to surround the LED chip 10 with the mounting substrate 20. I have.

また、本実施形態の発光装置は、実装基板20におけるLEDチップ10の実装面側でLEDチップ10を封止した透光性封止部50を備えており、上述の色変換部材70は、透光性封止部50との間に空気層80が形成される形で実装基板20に固着されている。   In addition, the light emitting device of the present embodiment includes a translucent sealing portion 50 that seals the LED chip 10 on the mounting surface side of the LED chip 10 on the mounting substrate 20. The air layer 80 is formed between the optical sealing portion 50 and the mounting substrate 20.

本実施形態の発光装置では、LEDチップ10として、青色光を放射するGaN系青色LEDチップを用い、色変換部材70の蛍光体として、LEDチップ10から放射された青色光によって励起されて黄色光を放射する粒子状の黄色蛍光体を用いており、LEDチップ10から放射され透光性封止部50、空気層80、および色変換部材70を通過した青色光と、色変換部材70の黄色蛍光体から放射された黄色光との混色光からなる白色光を得ることができる。   In the light emitting device of this embodiment, a GaN-based blue LED chip that emits blue light is used as the LED chip 10, and yellow light is excited by the blue light emitted from the LED chip 10 as the phosphor of the color conversion member 70. The blue light emitted from the LED chip 10 and passed through the light-transmitting sealing portion 50, the air layer 80, and the color conversion member 70, and the yellow color of the color conversion member 70 are used. White light consisting of mixed color light with yellow light emitted from the phosphor can be obtained.

実装基板20は、電気絶縁性を有し且つ熱伝導率の高い窒化アルミニウム基板からなる絶縁性基板20aの一表面側に、LEDチップ10が電気的に接続される配線パターン23,23、LEDチップ10から放射された光を反射する複数の光反射膜24が形成されている。ここで、各配線パターン23,23は、一端側にLEDチップ10が金属材料(例えば、Au、半田など)からなるバンプ14,14を介して接合される端子部23aが形成され、他端側に外部接続用電極部23bが形成されている。ここにおいて、外部接続用電極部23bは、平面視において色変換部材70よりも外側で露出している。なお、絶縁性基板20aは、LEDチップ10および色変換部材70それぞれで発生した熱を伝熱させる伝熱板を兼ねたものであり、ガラスエポキシ樹脂基板などの有機系基板に比べて熱伝導率の高いものであればよく、窒化アルミニウム基板に限らず、例えば、アルミナ基板や、ホーロー基板、表面にシリコン酸化膜が形成されたシリコン基板などを採用してもよい。また、配線パターン23,23は、Cu膜とNi膜とAu膜との積層膜により構成され、最上層がAu膜となっている。また、各光反射膜24は、Ni膜とAg膜との積層膜により構成してあるが、材料や層構造は特に限定するものではなく、例えば、Ni膜とAl膜との積層膜により構成してもよい。   The mounting substrate 20 includes wiring patterns 23 and 23 in which the LED chip 10 is electrically connected to one surface side of an insulating substrate 20a made of an aluminum nitride substrate having electrical insulation and high thermal conductivity, A plurality of light reflecting films 24 that reflect the light emitted from 10 are formed. Here, each wiring pattern 23, 23 is formed with a terminal portion 23 a to which the LED chip 10 is joined via bumps 14, 14 made of a metal material (for example, Au, solder, etc.) on one end side, and the other end side. The external connection electrode portion 23b is formed on the surface. Here, the external connection electrode portion 23b is exposed outside the color conversion member 70 in plan view. The insulating substrate 20a also serves as a heat transfer plate for transferring the heat generated by the LED chip 10 and the color conversion member 70, and has a thermal conductivity as compared with an organic substrate such as a glass epoxy resin substrate. However, the substrate is not limited to an aluminum nitride substrate. For example, an alumina substrate, a hollow substrate, or a silicon substrate having a silicon oxide film formed on the surface may be employed. Moreover, the wiring patterns 23 and 23 are comprised by the laminated film of Cu film | membrane, Ni film | membrane, and Au film | membrane, and the uppermost layer is Au film | membrane. Each light reflecting film 24 is constituted by a laminated film of a Ni film and an Ag film, but the material and the layer structure are not particularly limited. For example, the light reflecting film 24 is constituted by a laminated film of a Ni film and an Al film. May be.

LEDチップ10は、青色光を放射するGaN系の青色LEDチップであり、p形窒化物半導体層と発光層とn形窒化物半導体層との積層構造を有するLED部(発光部)12、n形窒化物半導体層に電気的に接続されたカソード電極13aおよびp形窒化物半導体層に電気的に接続されたアノード電極13bが導電性を有するZnO結晶からなる六角錘状の錐体11の下面側に形成されており、LED部12が錐体11よりも実装基板20に近い側となる形で実装基板20に実装されている(言い換えれば、錐体11よりもLED部12が実装基板20に近くなる形で実装基板20に実装されている)。要するに、LEDチップ1は、アノード電極13bおよびカソード電極13aそれぞれがバンプ14,14を介して配線パターン23,23の端子部23a,23aと接合されている。   The LED chip 10 is a GaN-based blue LED chip that emits blue light, and has an LED unit (light-emitting unit) 12 having a stacked structure of a p-type nitride semiconductor layer, a light-emitting layer, and an n-type nitride semiconductor layer, n The lower surface of the hexagonal pyramid-shaped cone 11 in which the cathode electrode 13a electrically connected to the p-type nitride semiconductor layer and the anode electrode 13b electrically connected to the p-type nitride semiconductor layer are made of conductive ZnO crystals. The LED portion 12 is mounted on the mounting substrate 20 so as to be closer to the mounting substrate 20 than the cone 11 (in other words, the LED portion 12 is mounted on the mounting substrate 20 rather than the cone 11). It is mounted on the mounting board 20 in a form close to In short, in the LED chip 1, the anode electrode 13b and the cathode electrode 13a are joined to the terminal portions 23a and 23a of the wiring patterns 23 and 23 via the bumps 14 and 14, respectively.

LEDチップ10のLED部12は、n形窒化物半導体層をn形GaN層により構成し、発光層をInGaN層により構成し、p形窒化物半導体層を発光層側のp形AlGaN層と当該p形AlGaN層における発光層側とは反対側のp形GaN層とで構成してあるが、LED部12の積層構造は特に限定するものではなく、発光層は単層構造に限らず、多重量子井戸構造ないし単一量子井戸構造でもよい。   The LED portion 12 of the LED chip 10 includes an n-type nitride semiconductor layer composed of an n-type GaN layer, a light-emitting layer composed of an InGaN layer, and a p-type nitride semiconductor layer connected to the p-type AlGaN layer on the light-emitting layer side. The p-type AlGaN layer is composed of a p-type GaN layer opposite to the light-emitting layer side, but the stacked structure of the LED unit 12 is not particularly limited, and the light-emitting layer is not limited to a single layer structure, It may be a quantum well structure or a single quantum well structure.

また、LEDチップ10は、カソード電極13aが、LED部12のn形窒化物半導体層に接する形で形成されて当該n形窒化物半導体層と電気的に接続され、アノード電極13bが錐体11の下面に接する形で形成され当該錐体11を介してp形窒化物半導体層と電気的に接続されている。したがって、n形窒化物半導体層と発光層とp形窒化物半導体層との平面サイズを同じにすることができる。ここで、LEDチップ10のアノード電極13bおよびカソード電極13aは、下層側のNi膜と上層側のAu膜との積層膜により構成されている。また、各バンプ14,14はAuバンプにより構成されているが、各バンプ14,14の材料はAuに限らず、半田などでもよいが、LEDチップ10で発生した熱を効率的に放熱させるには、半田に比べて熱伝導率の高いAuを採用することが好ましい。カソード電極13aおよびアノード電極13bそれぞれと配線パターン23,23との間に介在するバンプ14の数は特に限定するものではないが、バンプ14の数が多いほどLEDチップ10と実装基板20との間の熱抵抗を低減できて放熱性を高めることができる。   In the LED chip 10, the cathode electrode 13 a is formed in contact with the n-type nitride semiconductor layer of the LED unit 12 and is electrically connected to the n-type nitride semiconductor layer, and the anode electrode 13 b is the cone 11. And is electrically connected to the p-type nitride semiconductor layer via the cone 11. Therefore, the planar sizes of the n-type nitride semiconductor layer, the light emitting layer, and the p-type nitride semiconductor layer can be made the same. Here, the anode electrode 13b and the cathode electrode 13a of the LED chip 10 are configured by a laminated film of a lower layer Ni film and an upper layer Au film. The bumps 14 and 14 are composed of Au bumps, but the material of the bumps 14 and 14 is not limited to Au but may be solder or the like. However, in order to efficiently dissipate the heat generated in the LED chip 10. It is preferable to use Au, which has a higher thermal conductivity than solder. The number of bumps 14 interposed between the cathode electrode 13a and the anode electrode 13b and the wiring patterns 23 and 23 is not particularly limited. However, the larger the number of bumps 14, the greater the distance between the LED chip 10 and the mounting substrate 20. Therefore, the heat resistance can be reduced.

上述のLEDチップ10は、主表面がc面のサファイアウェハの主表面側に上記積層構造を有するLED部12をエピタキシャル成長法(例えば、MOVPE法など)により成長し、その後、LED部12を錐体11の基礎となるZnOウェハに固着してから、サファイアウェハを除去し、続いて、塩酸系のエッチング液を用いてエッチング速度の結晶方位依存性を利用した異方性エッチングを行うことによりZnOウェハの一部からなる六角錘状の錐体11を形成している。なお、ZnOウェハとしては、水熱合成法を利用して製造したものを用いている。錐体11の高さは、ZnOウェハの厚さで規定することができ、本実施形態では、ZnOウェハとして厚さが500μmのものを用いているので、錐体11の高さは500μmとなっているが、ZnOウェハの厚さは特に限定するものではない。また、錐体11の下面(底面)に対する各側面それぞれの傾斜角は、ZnOウェハの結晶軸方向で規定され、主表面がc面のZnOウェハに対して上述の異方性エッチングを行うことにより錐体11を形成しているので、下面に対する各側面それぞれの傾斜角が60°となっている。   In the LED chip 10 described above, the LED portion 12 having the above laminated structure is grown on the main surface side of the sapphire wafer whose main surface is c-plane by an epitaxial growth method (for example, MOVPE method). Then, the sapphire wafer is removed, and then anisotropic etching is performed using a hydrochloric acid-based etchant utilizing the crystal orientation dependence of the etching rate. A hexagonal pyramid 11 is formed. In addition, as a ZnO wafer, what was manufactured using the hydrothermal synthesis method is used. The height of the cone 11 can be defined by the thickness of the ZnO wafer. In the present embodiment, the ZnO wafer having a thickness of 500 μm is used, so the height of the cone 11 is 500 μm. However, the thickness of the ZnO wafer is not particularly limited. In addition, the inclination angle of each side surface with respect to the lower surface (bottom surface) of the cone 11 is defined by the crystal axis direction of the ZnO wafer, and the above-described anisotropic etching is performed on the ZnO wafer having the c-plane main surface. Since the cone 11 is formed, the inclination angle of each side surface with respect to the lower surface is 60 °.

本実施形態の発光装置では、LED部12がZnO結晶からなる錐体11の下面側に形成され錐体11よりもLED部12が実装基板20に近くなる形で実装基板20に実装されており、ZnOはサファイアに比べて屈折率がGaNに近いので、LEDチップ10からの光取り出し効率を高めることができる。なお、波長が450nmの光に対するZnOの屈折率は2.1、GaNの屈折率は2.4、サファイアの屈折率は1.8、透光性封止部50の材料であるシリコーン樹脂の屈折率は1.5である。   In the light emitting device of the present embodiment, the LED unit 12 is formed on the lower surface side of the cone 11 made of ZnO crystal, and the LED unit 12 is mounted on the mounting substrate 20 in a form closer to the mounting substrate 20 than the cone 11. Since ZnO has a refractive index close to that of GaN compared to sapphire, the light extraction efficiency from the LED chip 10 can be increased. In addition, the refractive index of ZnO with respect to light having a wavelength of 450 nm is 2.1, the refractive index of GaN is 2.4, the refractive index of sapphire is 1.8, and the refraction of the silicone resin that is the material of the light-transmitting sealing portion 50. The rate is 1.5.

上述の透光性封止部50は、半球状の形状に形成されている。ここにおいて、透光性封止部50の材料である透光性封止材としては、シリコーン樹脂を用いているが、シリコーン樹脂に限らず、例えば、エポキシ樹脂、アクリル樹脂、ガラスなどを用いてもよい。   The above-described translucent sealing part 50 is formed in a hemispherical shape. Here, as a translucent sealing material which is a material of the translucent sealing part 50, although silicone resin is used, it is not restricted to silicone resin, For example, epoxy resin, acrylic resin, glass etc. are used. Also good.

色変換部材70は、シリコーン樹脂のような透光性材料とLEDチップ10から放射された青色光によって励起されてブロードな黄色系の光を放射する粒子状の黄色蛍光体とを混合した混合物の成形品であり、ドーム状に形成されている。したがって、本実施形態の発光装置は、LEDチップ10から放射された青色光と黄色蛍光体から放射された光とが色変換部材70の光出射面を通して放射されることとなり、白色光を得ることができる。なお、色変換部材70の材料として用いる透光性材料は、シリコーン樹脂に限らず、例えば、アクリル樹脂、ガラス、有機成分と無機成分とがnmレベルもしくは分子レベルで混合、結合した有機・無機ハイブリッド材料などを採用してもよい。また、色変換部材70の材料として用いる透光性材料に混合する蛍光体も黄色蛍光体に限らず、例えば、赤色蛍光体と緑色蛍光体とを混合しても白色光を得ることができる。   The color conversion member 70 is a mixture of a translucent material such as a silicone resin and a particulate yellow phosphor that emits broad yellow light when excited by the blue light emitted from the LED chip 10. It is a molded product and is formed in a dome shape. Therefore, in the light emitting device of the present embodiment, the blue light emitted from the LED chip 10 and the light emitted from the yellow phosphor are emitted through the light emitting surface of the color conversion member 70 to obtain white light. Can do. The translucent material used as the material of the color conversion member 70 is not limited to a silicone resin, but an organic / inorganic hybrid in which, for example, an acrylic resin, glass, an organic component and an inorganic component are mixed and combined at the nm level or the molecular level. Materials etc. may be adopted. Further, the phosphor mixed with the translucent material used as the material of the color conversion member 70 is not limited to the yellow phosphor. For example, white light can be obtained by mixing a red phosphor and a green phosphor.

ここで、色変換部材70は、光入射面が透光性封止部50の光出射面に沿った形状に形成されている。したがって、透光性封止部50の光出射面の位置によらず法線方向における透光性封止部50の光出射面と色変換部材70の光入射面との間の距離が略一定値となっている。なお、色変換部材70は、位置によらず法線方向に沿った肉厚が一様となるように成形されている。また、色変換部材70は、実装基板20側の端縁(開口部の周縁)を実装基板20に対して、接着剤(例えば、シリコーン樹脂、エポキシ樹脂など)を用いて固着されている。   Here, the color conversion member 70 has a light incident surface formed in a shape along the light emitting surface of the translucent sealing portion 50. Therefore, the distance between the light emitting surface of the light transmitting sealing portion 50 and the light incident surface of the color conversion member 70 in the normal direction is substantially constant regardless of the position of the light emitting surface of the light transmitting sealing portion 50. It is a value. In addition, the color conversion member 70 is shape | molded so that the thickness along a normal line direction may become uniform irrespective of a position. In addition, the color conversion member 70 is fixed to the mounting substrate 20 with an end edge (periphery of the opening) on the mounting substrate 20 side using an adhesive (for example, silicone resin, epoxy resin, or the like).

ところで、透光性封止部50の光出射面は上述の空気層80との境界でLEDチップ10からの光が全反射しないように凸曲面状に形成されており、LEDチップ10と光軸が一致するように配置されている。したがって、LEDチップ10から放射され透光性封止部50に入射した光が透光性封止部50の光出射面と空気層80との境界で全反射されることなく色変換部材70まで到達しやすくなり、全光束を高めることができる。   By the way, the light emitting surface of the translucent sealing portion 50 is formed in a convex curved surface so that the light from the LED chip 10 is not totally reflected at the boundary with the air layer 80 described above. Are arranged to match. Therefore, the light emitted from the LED chip 10 and incident on the light-transmitting sealing portion 50 is not totally reflected at the boundary between the light emitting surface of the light-transmitting sealing portion 50 and the air layer 80 and reaches the color conversion member 70. It becomes easy to reach and the total luminous flux can be increased.

以上説明した本実施形態の発光装置によれば、実装基板20に実装されたLEDチップ10から放射される光によって励起されてLEDチップ10よりも長波長の光を放射する蛍光体を含有した透光性材料により形成され実装基板20との間にLEDチップ10を囲む形で実装基板20に固着された色変換部材70を備え、LEDチップ10は、n形窒化物半導体層とp形窒化物半導体層とを有するLED部12、n形窒化物半導体層に電気的に接続されたカソード電極13aおよびp形窒化物半導体層に電気的に接続されたアノード電極13bがZnO結晶からなる六角錘状の錐体11の下面側に形成され、錐体11よりもLED部12が実装基板20に近くなる形で実装基板20に実装されているので、LEDチップ10の出射光の広がり角を大きくすることができるから、色変換部材70の局所的な温度上昇を抑制できて蛍光体の温度上昇による量子効率の低下を抑制でき、且つ、出射光の広がり角を大きくすることが可能になる。   According to the light emitting device of the present embodiment described above, a transparent material containing a phosphor that is excited by light emitted from the LED chip 10 mounted on the mounting substrate 20 and emits light having a longer wavelength than the LED chip 10. A color conversion member 70 formed of an optical material and fixed to the mounting substrate 20 so as to surround the LED chip 10 between the mounting substrate 20 and the LED chip 10 includes an n-type nitride semiconductor layer and a p-type nitride. The LED portion 12 having a semiconductor layer, the cathode electrode 13a electrically connected to the n-type nitride semiconductor layer, and the anode electrode 13b electrically connected to the p-type nitride semiconductor layer have a hexagonal pyramid shape made of ZnO crystals. Since the LED portion 12 is mounted on the mounting substrate 20 so as to be closer to the mounting substrate 20 than the cone 11, the emission light of the LED chip 10 is widened. Since the angle can be increased, the local temperature increase of the color conversion member 70 can be suppressed, the decrease in quantum efficiency due to the temperature increase of the phosphor can be suppressed, and the spread angle of the emitted light can be increased. become.

ここにおいて、単位立体角当たりの放射光強度が最大値に対して50%以上となる角度範囲を光出射角(出射光の広がり角)と定義すると、本実施形態の発光装置では、LEDチップ10の光出射角が120°以上であり、色変換部材70から放射される混色光の光出射角も120°以上であり、広角配光を要求される一般照明用途に適した白色光源を実現することができる。   Here, when the angle range in which the emitted light intensity per unit solid angle is 50% or more with respect to the maximum value is defined as the light emission angle (the spread angle of the emitted light), in the light emitting device of this embodiment, the LED chip 10 The light emission angle of the mixed color light emitted from the color conversion member 70 is 120 ° or more, and a white light source suitable for general lighting applications requiring wide-angle light distribution is realized. be able to.

なお、実装基板20に色変換部材70で発生した熱をより効率的に放熱させるための伝熱部を絶縁性基板20aよりも熱伝導率の高い材料(例えば、Cu、Alなど)により形成してもよく、このような熱伝導部を設ければ、色変換部材70で発生した熱を実装基板20において絶縁性基板20aよりも熱伝導率の高い伝熱部を通して効率的に放熱させることができるから、蛍光体の温度上昇をより抑制することができる。   In addition, the heat transfer part for more efficiently dissipating the heat generated in the color conversion member 70 on the mounting substrate 20 is formed of a material (for example, Cu, Al, etc.) having a higher thermal conductivity than the insulating substrate 20a. If such a heat conducting part is provided, the heat generated in the color conversion member 70 can be efficiently radiated through the heat conducting part having a higher thermal conductivity than the insulating substrate 20a in the mounting substrate 20. Therefore, the temperature rise of the phosphor can be further suppressed.

また、本実施形態の発光装置では、色変換部材70と透光性封止部50との間に空気層80が存在しているので、LEDチップ10から放射され透光性封止部50、空気層80を通して色変換部材70に入射し当該色変換部材70中の蛍光体により散乱された光のうちLEDチップ10側へ散乱されてLEDチップ10に吸収される光の光量を低減できて発光装置全体としての外部への光取り出し効率を向上できるという利点や、外部雰囲気中の水分がLEDチップ10に到達しにくくなるという利点がある。   Further, in the light emitting device of the present embodiment, since the air layer 80 exists between the color conversion member 70 and the translucent sealing part 50, the light transmitting device 50 radiated from the LED chip 10, Of the light that is incident on the color conversion member 70 through the air layer 80 and is scattered by the phosphor in the color conversion member 70, the amount of light scattered to the LED chip 10 side and absorbed by the LED chip 10 can be reduced to emit light. There is an advantage that the light extraction efficiency to the outside as the whole apparatus can be improved, and an advantage that moisture in the external atmosphere hardly reaches the LED chip 10.

また、本実施形態の発光装置では、色変換部材70の透光性材料としてシリコーン樹脂を採用しているが、ガラスを採用すれば、シリコーン樹脂を採用している場合に比べて、色変換部材70の熱伝導性が向上するので、蛍光体の温度上昇をより抑制できて光束を向上させることができ、しかも、水蒸気やNOなど対するガスバリア性や耐透湿性が向上するとともに、蛍光体の吸湿劣化を抑制でき、信頼性および耐久性が向上する。 Further, in the light emitting device of the present embodiment, a silicone resin is employed as the translucent material of the color conversion member 70. However, if glass is employed, the color conversion member is compared with a case where a silicone resin is employed. As the thermal conductivity of 70 is improved, the temperature rise of the phosphor can be further suppressed, the luminous flux can be improved, and the gas barrier property and moisture permeability resistance against water vapor and NO x are improved. Hygroscopic deterioration can be suppressed, and reliability and durability are improved.

また、本実施形態の発光装置では、透光性封止部50をガラスにより形成すれば、透光性封止部50がシリコーン樹脂などの有機材料により形成されている場合に比べて、色変換部材70で発生した熱の伝熱経路に関して、色変換部材70−空気層80−透光性封止部50−実装基板20を通る伝熱経路の熱伝導性が向上し、色変換部材70の温度上昇をより抑制することが可能となる。   Further, in the light emitting device of the present embodiment, when the translucent sealing part 50 is formed of glass, color conversion is performed as compared with the case where the translucent sealing part 50 is formed of an organic material such as a silicone resin. Regarding the heat transfer path of the heat generated in the member 70, the heat conductivity of the heat transfer path passing through the color conversion member 70 -the air layer 80 -the translucent sealing portion 50 -the mounting substrate 20 is improved. It becomes possible to further suppress the temperature rise.

また、本実施形態の発光装置は、実装基板20の上記一表面側にLEDチップ10への給電用の配線パターン23,23を有しているので、実装基板20を回路基板に実装することなく照明器具の器具本体と熱結合させることが可能となり、LEDチップ10から器具本体までの熱抵抗を小さくできて放熱性が向上し、LEDチップ10のジャンクション温度の温度上昇を抑制できるから、入力電力を大きくでき、光出力の高出力化を図れる。   Moreover, since the light-emitting device of this embodiment has the wiring patterns 23 and 23 for the electric power feeding to the LED chip 10 in the said one surface side of the mounting board | substrate 20, without mounting the mounting board | substrate 20 on a circuit board. Since it is possible to thermally couple with the fixture body of the lighting fixture, the thermal resistance from the LED chip 10 to the fixture body can be reduced, the heat dissipation is improved, and the temperature rise of the junction temperature of the LED chip 10 can be suppressed. The optical output can be increased and the optical output can be increased.

(実施形態2)
本実施形態の発光装置の基本構成は実施形態1と略同じであり、図2に示すように、透光性封止部50が六角錐状に形成され、色変換部材70が下面開口した六角錐状の形状に形成されている点が相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
The basic configuration of the light emitting device of the present embodiment is substantially the same as that of the first embodiment. As shown in FIG. 2, the light-transmitting sealing portion 50 is formed in a hexagonal pyramid shape, and the color conversion member 70 is open on the lower surface. It is different in that it is formed in a pyramid shape. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

本実施形態における透光性封止部50および色変換部材70は、LEDチップ10の錐体11と相似形状に形成されている。要するに、本実施形態では、透光性封止部50の光出射面および色変換部材70の光入射面がLEDチップ10の錐体11の各側面に沿った形状に形成されている。したがって、LEDチップ10の錐体11の各側面の位置によらず、法線方向における透光性封止部50の光出射面、色変換部材70の光入射面までの距離がそれぞれ略一定値となっている。   The translucent sealing part 50 and the color conversion member 70 in this embodiment are formed in a similar shape to the cone 11 of the LED chip 10. In short, in this embodiment, the light emission surface of the translucent sealing part 50 and the light incident surface of the color conversion member 70 are formed in a shape along each side surface of the cone 11 of the LED chip 10. Therefore, regardless of the position of each side surface of the cone 11 of the LED chip 10, the distances to the light emitting surface of the translucent sealing portion 50 and the light incident surface of the color conversion member 70 in the normal direction are substantially constant values, respectively. It has become.

しかして、本実施形態の発光装置では、透光性封止部50が六角錐状に形成され、色変換部材70が下面開口した六角錐状の形状に形成されているので、LEDチップ10の錐体11から放射された光が色変換部材70の光入射面で全反射されるのを抑制できてLEDチップ10からの光を色変換部材70で効率良く色変換(波長変換)することができ、また、色変換部材70の光入射面へのLEDチップ10からの光の入射光強度の均一化を図れ、色変換部材70の局所的な温度上昇をより抑制することができ、蛍光体の量子効率を向上できる。   Thus, in the light emitting device of this embodiment, the translucent sealing portion 50 is formed in a hexagonal pyramid shape, and the color conversion member 70 is formed in a hexagonal pyramid shape having an opening on the lower surface. It is possible to suppress the light emitted from the cone 11 from being totally reflected by the light incident surface of the color conversion member 70 and to efficiently perform color conversion (wavelength conversion) on the light from the LED chip 10 by the color conversion member 70. In addition, the intensity of the incident light of the light from the LED chip 10 on the light incident surface of the color conversion member 70 can be made uniform, and the local temperature rise of the color conversion member 70 can be further suppressed, and the phosphor Quantum efficiency can be improved.

なお、本実施形態では、透光性封止部50を六角錐状に形成し、色変換部材70を下面開口した六角錐状の形状に形成してあるが、透光性封止部50を円錐状に形成し、色変換部材70を下面開口した円錐状の形状に形成してもよい。   In the present embodiment, the translucent sealing portion 50 is formed in a hexagonal pyramid shape, and the color conversion member 70 is formed in a hexagonal pyramid shape having an opening on the bottom surface. The color conversion member 70 may be formed in a conical shape with a lower surface opened.

(実施形態3)
本実施形態の発光装置の基本構成は実施形態2と略同じであり、実施形態2にて説明した透光性封止部50が設けられておらず、図3に示すように、下面開口した六角錐状の色変換部材70が、LEDチップ10との間に空気層80が形成される形で実装基板20に固着されている点が相違する。なお、実施形態2と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 3)
The basic configuration of the light emitting device of the present embodiment is substantially the same as that of the second embodiment, and the translucent sealing portion 50 described in the second embodiment is not provided, and the lower surface is opened as shown in FIG. A different point is that the hexagonal pyramid-shaped color conversion member 70 is fixed to the mounting substrate 20 in such a manner that an air layer 80 is formed between the color conversion member 70 and the LED chip 10. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 2, and description is abbreviate | omitted.

しかして、本実施形態の発光装置では、実施形態2のようにLEDチップ10を封止する透光性封止部50を備え色変換部材70と透光性封止部50との間に空気層80が形成されている場合に比べて、発光装置全体の小型化を図れ、また、LEDチップ10から放射されて色変換部材70に入射し色変換部材70の蛍光体により散乱された光のうちLEDチップ10側へ散乱されてLEDチップ10に吸収される光の光量を低減できて外部への光取り出し効率を向上できる。   Therefore, in the light emitting device according to the present embodiment, the light-transmitting sealing portion 50 that seals the LED chip 10 as in Embodiment 2 is provided, and air is interposed between the color conversion member 70 and the light-transmitting sealing portion 50. Compared with the case where the layer 80 is formed, the entire light emitting device can be reduced in size, and the light emitted from the LED chip 10 and incident on the color conversion member 70 and scattered by the phosphor of the color conversion member 70 can be reduced. Among them, the amount of light scattered to the LED chip 10 side and absorbed by the LED chip 10 can be reduced, and the light extraction efficiency to the outside can be improved.

なお、本実施形態では、色変換部材70を下面開口した六角錐状の形状に形成してあるが、色変換部材70を下面開口した円錐状の形状に形成してもよい。   In the present embodiment, the color conversion member 70 is formed in a hexagonal pyramid shape with an opening on the lower surface, but the color conversion member 70 may be formed in a conical shape with an opening on the lower surface.

(実施形態4)
本実施形態の発光装置の基本構成は実施形態3と略同じであり、図4に示すように、色変換部材70の内側面(光入射面)がLEDチップ10の錐体11の外側面全体に接する大きさに形成されている点が相違する。なお、実施形態3と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 4)
The basic configuration of the light emitting device of the present embodiment is substantially the same as that of the third embodiment. As shown in FIG. 4, the inner surface (light incident surface) of the color conversion member 70 is the entire outer surface of the cone 11 of the LED chip 10. It is different in that it is formed in a size that touches. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 3, and description is abbreviate | omitted.

しかして、本実施形態の発光装置では、色変換部材70の内側面が錐体11の外側面全体に接する大きさに形成されているので、実施形態2や実施形態3に比べて発光装置全体の小型化を図れるとともに、色変換部材70の蛍光体で発生した熱を透光性封止部50(図1,2参照)や空気層80(図1〜図3参照)などを通さずに、直接、LEDチップ10を通して実装基板20へ放熱させることができて、蛍光体の温度上昇をより抑制できて、量子効率のより一層の向上を図れる。   Thus, in the light emitting device according to the present embodiment, the inner surface of the color conversion member 70 is formed in a size in contact with the entire outer surface of the cone 11, so that the entire light emitting device is compared with the second and third embodiments. The heat generated by the phosphor of the color conversion member 70 does not pass through the translucent sealing part 50 (see FIGS. 1 and 2), the air layer 80 (see FIGS. 1 to 3), and the like. In addition, heat can be directly radiated to the mounting substrate 20 through the LED chip 10, the temperature rise of the phosphor can be further suppressed, and the quantum efficiency can be further improved.

なお、上述の各実施形態では、LEDチップ10の発光色を青色光としてあるが、LEDチップ10の発光色は青色光に限らず、例えば、赤色光、緑色光、紫色光、紫外光などでもよい。   In each of the above-described embodiments, the emission color of the LED chip 10 is blue light. However, the emission color of the LED chip 10 is not limited to blue light, and may be, for example, red light, green light, purple light, ultraviolet light, or the like. Good.

実施形態1の発光装置を示し、(a)は概略断面図、(b)は要部概略斜視図である。The light-emitting device of Embodiment 1 is shown, (a) is a schematic sectional drawing, (b) is a principal part schematic perspective view. 実施形態2の発光装置の概略断面図である。6 is a schematic cross-sectional view of a light emitting device according to Embodiment 2. FIG. 実施形態3の発光装置の概略断面図である。6 is a schematic cross-sectional view of a light emitting device according to Embodiment 3. FIG. 実施形態4の発光装置の概略断面図である。6 is a schematic cross-sectional view of a light emitting device according to Embodiment 4. FIG. 従来例の発光装置の概略断面図である。It is a schematic sectional drawing of the light-emitting device of a prior art example.

符号の説明Explanation of symbols

10 LEDチップ
11 錐体
12 LED部
13a カソード電極
13b アノード電極
20 実装基板
20a 絶縁性基板
23 配線パターン
70 色変換部材
80 空気層
DESCRIPTION OF SYMBOLS 10 LED chip 11 Cone 12 LED part 13a Cathode electrode 13b Anode electrode 20 Mounting board 20a Insulating board 23 Wiring pattern 70 Color conversion member 80 Air layer

Claims (4)

LEDチップと、当該LEDチップが実装された実装基板と、LEDチップから放射される光によって励起されてLEDチップよりも長波長の光を放射する蛍光体を含有した透光性材料により形成され実装基板との間にLEDチップを囲む形で実装基板に固着された色変換部材とを備え、LEDチップは、n形窒化物半導体層とp形窒化物半導体層とを有するLED部、n形窒化物半導体層に電気的に接続されたカソード電極およびp形窒化物半導体層に電気的に接続されたアノード電極がZnO結晶からなる六角錘状の錐体の下面側に形成されてなり、当該錐体よりもLED部が実装基板に近くなる形で実装基板に実装されてなることを特徴とする発光装置。   An LED chip, a mounting substrate on which the LED chip is mounted, and a translucent material containing a phosphor that emits light having a longer wavelength than the LED chip when excited by light emitted from the LED chip. And a color conversion member fixed to the mounting substrate so as to surround the LED chip between the substrate and the LED chip, the LED chip having an n-type nitride semiconductor layer and a p-type nitride semiconductor layer, n-type nitriding A cathode electrode electrically connected to the metal semiconductor layer and an anode electrode electrically connected to the p-type nitride semiconductor layer are formed on the lower surface side of a hexagonal pyramid cone made of ZnO crystal. A light-emitting device, wherein the LED portion is mounted on the mounting substrate in a form closer to the mounting substrate than the body. 前記色変換部材は、下面開口した六角錐状の形状に形成されてなることを特徴とする請求項1記載の発光装置。   The light emitting device according to claim 1, wherein the color conversion member is formed in a hexagonal pyramid shape having an opening on a lower surface. 前記色変換部材は、前記LEDチップとの間に空気層が形成される形で前記実装基板に固着されてなることを特徴とする請求項1または請求項2記載の発光装置。   3. The light emitting device according to claim 1, wherein the color conversion member is fixed to the mounting substrate in a form in which an air layer is formed between the color conversion member and the LED chip. 前記色変換部材は、内側面が前記錐体の外側面全体に接する大きさに形成されてなることを特徴とする請求項2記載の発光装置。   The light emitting device according to claim 2, wherein the color conversion member is formed to have a size in which an inner surface is in contact with the entire outer surface of the cone.
JP2008152091A 2008-06-10 2008-06-10 Light-emitting device Withdrawn JP2009302145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008152091A JP2009302145A (en) 2008-06-10 2008-06-10 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152091A JP2009302145A (en) 2008-06-10 2008-06-10 Light-emitting device

Publications (1)

Publication Number Publication Date
JP2009302145A true JP2009302145A (en) 2009-12-24

Family

ID=41548770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152091A Withdrawn JP2009302145A (en) 2008-06-10 2008-06-10 Light-emitting device

Country Status (1)

Country Link
JP (1) JP2009302145A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151311A (en) * 2010-01-25 2011-08-04 Panasonic Electric Works Co Ltd Light emitting device
JP2011159813A (en) 2010-02-01 2011-08-18 Panasonic Electric Works Co Ltd Light-emitting device
JP2012156443A (en) * 2011-01-28 2012-08-16 Nichia Chem Ind Ltd Method of manufacturing light-emitting device
JP2016524316A (en) * 2013-04-22 2016-08-12 クライツール スポル.エス アール.オー.Crytur Spol.S R.O. White light-emitting diode having single-crystal phosphor and method for manufacturing the same
JP7458582B2 (en) 2022-05-24 2024-04-01 日亜化学工業株式会社 Method for manufacturing a light emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151311A (en) * 2010-01-25 2011-08-04 Panasonic Electric Works Co Ltd Light emitting device
JP2011159813A (en) 2010-02-01 2011-08-18 Panasonic Electric Works Co Ltd Light-emitting device
JP2012156443A (en) * 2011-01-28 2012-08-16 Nichia Chem Ind Ltd Method of manufacturing light-emitting device
JP2016524316A (en) * 2013-04-22 2016-08-12 クライツール スポル.エス アール.オー.Crytur Spol.S R.O. White light-emitting diode having single-crystal phosphor and method for manufacturing the same
JP7458582B2 (en) 2022-05-24 2024-04-01 日亜化学工業株式会社 Method for manufacturing a light emitting device

Similar Documents

Publication Publication Date Title
US9508697B2 (en) Semiconductor light emitting device and semiconductor light emitting device package including the same
JP2016082231A (en) Light-emitting element package and lighting system including the same
US20160087159A1 (en) Semiconductor light-emitting device
US9412917B2 (en) Light emitting device
KR20120030761A (en) A light emitting device package and a light emitting module
JP2007243054A (en) Light-emitting device
JP2010003978A (en) Light emitting device
JP2006310667A (en) Light emitting device
JP2009135306A (en) Light-emitting apparatus
JP6510763B2 (en) Light emitting device package
JP2007243056A (en) Light emitting device
JP2009302145A (en) Light-emitting device
KR101943824B1 (en) Light emitting device, light emitting device package and lighting system
JP2007208301A (en) Led lighting equipment
JP4552798B2 (en) LED lighting device
US9897298B2 (en) Light emitting module and light unit having the same
US9046259B2 (en) Lighting apparatus
KR20160086559A (en) Light emitting device, light emitting device package having the same, and light system having the same
JP4829577B2 (en) Light emitting device
JP2007080867A (en) Light emitting device
JP5271066B2 (en) Light emitting device and lighting apparatus
JP2007116127A (en) Light emitting device
KR102346157B1 (en) Light emitting device package
JP2007243057A (en) Light-emitting device
JP5655253B2 (en) Light emitting device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100809

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906