JP2009301971A - Fuel gas supply device for fuel cell - Google Patents

Fuel gas supply device for fuel cell Download PDF

Info

Publication number
JP2009301971A
JP2009301971A JP2008157430A JP2008157430A JP2009301971A JP 2009301971 A JP2009301971 A JP 2009301971A JP 2008157430 A JP2008157430 A JP 2008157430A JP 2008157430 A JP2008157430 A JP 2008157430A JP 2009301971 A JP2009301971 A JP 2009301971A
Authority
JP
Japan
Prior art keywords
fuel
fuel gas
pressure
flow rate
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008157430A
Other languages
Japanese (ja)
Inventor
Shogo Hamaya
正吾 濱谷
Masahiro Shibata
昌宏 柴田
Ichiro Gonda
一郎 権田
Masaharu Mizuno
将治 水野
Hiroya Ishikawa
浩也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2008157430A priority Critical patent/JP2009301971A/en
Publication of JP2009301971A publication Critical patent/JP2009301971A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel gas supply device for a fuel cell, which can effectively suppress pressure and flow fluctuations of fuel gas. <P>SOLUTION: The fuel gas supply device for the fuel cell comprises a flow amount measuring means for measuring the flow amount of hydrocarbon-based fuel gas supplied from a supply line, a pressure regulating means for suppressing pressure and flow fluctuations of the fuel gas flowing out of the flow amount measuring means, a fuel pump for applying pressure to the fuel gas flowing out of the pressure regulating means, and a fuel pump control means for controlling the operation of the fuel pump corresponding to the measurement result of the flow amount measuring means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は,燃料電池に燃料ガスを供給する燃料電池用燃料ガス供給装置に関する。   The present invention relates to a fuel cell fuel gas supply device that supplies fuel gas to a fuel cell.

固体酸化物形燃料電池は,固体酸化物を用いて,燃料ガスと酸素を反応させて,電力を発生する。ここで,固体酸化物形燃料電池に燃料ガスを供給するための技術が開示されている(特許文献1,2参照)。特許文献1記載の技術では,燃料電池の燃料ガス供給ラインに,流量制御器,バッファタンク,ポンプを設置する。燃料ガスの供給量を流量制御器によって制御することで,燃料ガスの圧力変動や流量変動を抑制する。特許文献2記載の技術では,ポンプ動作量とポンプの下流に設置した流量計の値との相関から燃料電池へ供給するガス流量を制御する。
特開2006−260874号公報 特開2002−358990号公報
A solid oxide fuel cell generates electric power by reacting a fuel gas with oxygen using a solid oxide. Here, techniques for supplying fuel gas to a solid oxide fuel cell are disclosed (see Patent Documents 1 and 2). In the technique described in Patent Document 1, a flow controller, a buffer tank, and a pump are installed in the fuel gas supply line of the fuel cell. By controlling the amount of fuel gas supplied by a flow controller, pressure fluctuations and flow fluctuations of the fuel gas are suppressed. In the technique described in Patent Document 2, the flow rate of gas supplied to the fuel cell is controlled based on the correlation between the pump operation amount and the value of the flow meter installed downstream of the pump.
JP 2006-260874 A JP 2002-358990 A

しかしながら,特許文献1,2記載の技術では,ポンプの下流での圧力変動の抑制が必ずしも十分とはいえない。固体酸化物形燃料電池では,燃焼ガス改質用水の気化や燃焼器での未燃ガスの燃焼に伴う圧力変動が有り得る。
また,特許文献1,2記載の技術において,ポンプ下流に脈動抑制のための容器を配置しているが,ポンプ下流に調圧容器を設置する場合はポンプ上流に設置する場合よりも容器体積が大きくなり,発電システムが大きくなる。さらにポンプ下流に設置する容器の容量が大きいと,燃料電池の発電に必要な流量を供給する際のロスになりうる。
上記に鑑み,本発明は,燃料ガスの圧力変動や流量変動を効果的に抑制可能な燃料電池用燃料ガス供給装置を提供することを目的とする。
However, the techniques described in Patent Documents 1 and 2 are not necessarily sufficient to suppress pressure fluctuation downstream of the pump. In solid oxide fuel cells, there may be pressure fluctuations associated with vaporization of combustion gas reforming water and combustion of unburned gas in the combustor.
In the techniques described in Patent Documents 1 and 2, a container for suppressing pulsation is arranged downstream of the pump. However, when a pressure regulating container is installed downstream of the pump, the container volume is larger than when installed upstream of the pump. The power generation system becomes larger. Furthermore, if the capacity of the container installed downstream of the pump is large, it may be a loss when supplying the flow rate required for power generation of the fuel cell.
In view of the above, an object of the present invention is to provide a fuel gas supply device for a fuel cell that can effectively suppress pressure fluctuation and flow rate fluctuation of fuel gas.

本発明の一態様に係る燃料電池用燃料ガス供給装置は,供給ラインから供給される炭化水素系の燃料ガスの圧力を所定の圧力近傍に安定化させる圧力安定化手段と,前記圧力が安定化された燃料ガスの流量を計測する流量計測手段と,前記流量計測手段から流出する燃料ガスの圧力変動及び流量変動を抑える調圧手段と,前記調圧手段から流出する燃料ガスを加圧する燃料ポンプと,前記流量計測手段での計測結果に対応して,前記燃料ポンプの動作を制御する燃料ポンプ制御手段と,を具備することを特徴とする。即ち,燃料ガスの圧力安定化手段と,流量計測手段と,調圧手段とを燃料ポンプの燃料供給ライン上流側に順に設置し,燃料ポンプの動作を制御する。この結果,燃料ポンプの下流での燃焼ガスの圧力変動,流量変動を抑制できる。   A fuel gas supply apparatus for a fuel cell according to an aspect of the present invention includes a pressure stabilization unit that stabilizes the pressure of a hydrocarbon-based fuel gas supplied from a supply line in the vicinity of a predetermined pressure, and the pressure is stabilized. A flow rate measuring means for measuring the flow rate of the fuel gas, a pressure regulating means for suppressing pressure fluctuation and flow rate fluctuation of the fuel gas flowing out from the flow rate measuring means, and a fuel pump for pressurizing the fuel gas flowing out from the pressure regulating means And a fuel pump control means for controlling the operation of the fuel pump corresponding to the measurement result of the flow rate measuring means. That is, the fuel gas pressure stabilizing means, the flow rate measuring means, and the pressure adjusting means are sequentially installed on the upstream side of the fuel supply line of the fuel pump to control the operation of the fuel pump. As a result, pressure fluctuations and flow fluctuations of the combustion gas downstream of the fuel pump can be suppressed.

(1)燃料電池用燃料ガス供給装置が,前記燃料ポンプで加圧された燃料ガスと,水蒸気と,を混合するミキシングチャンバと,前記ミキシングチャンバで水蒸気と混合された燃料ガスを改質する改質処理装置と,をさらに具備しても良い。ミキシングチャンバによって,例えば,改質用水の気化および燃焼器での未燃ガスの燃焼に伴う圧力変動を抑制できる。 (1) A fuel cell fuel gas supply device includes a mixing chamber that mixes fuel gas pressurized by the fuel pump and water vapor, and a reformer that reforms the fuel gas mixed with water vapor in the mixing chamber. And a quality processing device. The mixing chamber can suppress, for example, pressure fluctuation caused by vaporization of reforming water and combustion of unburned gas in the combustor.

(2)前記調圧手段が,燃料ガスに含有される硫黄成分を除去する脱硫機能を有しても良い。燃料ガスが硫黄成分を含む場合,燃料電池の発電性能が低下する可能性がある。燃料ガスに含まれる硫黄成分を除去する機能を前記調圧器に具備させることで,燃料電池発電システムの構造のコンパクト化が可能になる。 (2) The pressure adjusting means may have a desulfurization function for removing sulfur components contained in the fuel gas. If the fuel gas contains a sulfur component, the power generation performance of the fuel cell may be reduced. By providing the pressure regulator with the function of removing sulfur components contained in the fuel gas, the structure of the fuel cell power generation system can be made compact.

なお,燃料ポンプの上流に脱硫機能を備えることで,燃料ポンプの劣化を防止することが可能となる。   In addition, it is possible to prevent deterioration of the fuel pump by providing a desulfurization function upstream of the fuel pump.

本発明によれば,燃料ガスの圧力変動や流量変動を効果的に抑制可能な燃料電池用燃料ガス供給装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the fuel gas supply apparatus for fuel cells which can suppress the pressure fluctuation and flow volume fluctuation | variation of fuel gas effectively can be provided.

以下,図面を参照して,本発明の実施の形態を詳細に説明する。
図1は本発明の一実施形態に係る燃料電池発電システムを表す図である。この燃料電池発電システムは,燃料電池スタック1,発電制御装置2,改質処理装置3,弁4,ゼロガバナ5,流量計測手段6,バッファタンク7,燃料ポンプ8,燃料ポンプ制御手段9,改質用水送液ポンプ10,ミキシングチャンバ11,酸化剤ガス流量計測手段12,酸化剤ガスブロワ13,燃焼器14,オフガス排出ライン15,断熱容器16,DC−ACインバータ17,AC電流出力ライン18を有する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a fuel cell power generation system according to an embodiment of the present invention. This fuel cell power generation system includes a fuel cell stack 1, a power generation control device 2, a reforming processing device 3, a valve 4, a zero governor 5, a flow rate measuring means 6, a buffer tank 7, a fuel pump 8, a fuel pump control means 9, a reforming device. The water supply pump 10, the mixing chamber 11, the oxidant gas flow rate measuring means 12, the oxidant gas blower 13, the combustor 14, the off-gas discharge line 15, the heat insulation container 16, the DC-AC inverter 17, and the AC current output line 18 are provided.

燃料電池スタック1は,複数個の発電セルが積層されて構成され,燃料ガスと酸化剤ガスが供給されることで発電が可能となる。発電制御装置2が燃料電池スタック1での発電量を制御する。燃料ガスは燃料ガス供給ライン上にある改質処理装置3により改質されて,燃料電池スタック1に供給される。酸化剤ガスは,酸化剤ガス流量計測手段12,酸化剤ガスブロワ13を経由して,燃料電池スタック1に供給される。燃料電池スタック1で,燃料ガスと酸化剤ガスが反応することで,発電がなされる。発電された電力は,DC−ACインバータ17で,DC−AC変換され,AC電流として,AC電流出力ライン18から出力される。燃料電池スタック1で未反応の燃焼ガス(未燃ガス)は,燃焼器14で燃焼され,排ガス(オフガス)として,オフガス排出ライン15から断熱容器16の外へ流出される。   The fuel cell stack 1 is configured by stacking a plurality of power generation cells, and can generate power by supplying fuel gas and oxidant gas. The power generation control device 2 controls the power generation amount in the fuel cell stack 1. The fuel gas is reformed by the reforming apparatus 3 on the fuel gas supply line and supplied to the fuel cell stack 1. The oxidant gas is supplied to the fuel cell stack 1 via the oxidant gas flow rate measuring means 12 and the oxidant gas blower 13. In the fuel cell stack 1, the fuel gas and the oxidant gas react to generate power. The generated electric power is DC-AC converted by the DC-AC inverter 17 and output from the AC current output line 18 as an AC current. Unreacted combustion gas (unburned gas) in the fuel cell stack 1 is burned in the combustor 14 and flows out of the heat insulating container 16 from the offgas discharge line 15 as exhaust gas (offgas).

燃料電池スタック1と改質処理装置3は,同一の断熱容器16内に収納され,起動時に,断熱容器16内の加熱手段で加熱されることで,発電機能及び改質処理機能を発揮する。この加熱手段は,図示しないが,例えば,電気ヒータやガスバーナーを利用できる。但し,他の加熱手段を適宜に利用しても良い。   The fuel cell stack 1 and the reforming apparatus 3 are housed in the same heat insulating container 16 and are heated by heating means in the heat insulating container 16 at the time of start-up, thereby exhibiting a power generation function and a reforming processing function. Although this heating means is not shown, for example, an electric heater or a gas burner can be used. However, other heating means may be used as appropriate.

燃料ガス供給ラインの最上流には弁4が設けられ,この弁4の開閉は発電制御装置2が制御する。弁4と燃料電池スタック1の間の燃料ガス供給ラインには燃料ガスを加圧する燃料ポンプ8があり,燃料ガス(低圧の炭化水素系ガス(都市ガス,天然ガスなど))を燃料電池スタック1に供給する。燃料ポンプ8としては,小型で安価なものとしてダイアフラム式ポンプやベローズポンプを利用できる。   A valve 4 is provided in the uppermost stream of the fuel gas supply line, and the power generation control device 2 controls the opening and closing of the valve 4. The fuel gas supply line between the valve 4 and the fuel cell stack 1 has a fuel pump 8 for pressurizing the fuel gas, and the fuel gas (low-pressure hydrocarbon gas (city gas, natural gas, etc.)) is supplied to the fuel cell stack 1. To supply. As the fuel pump 8, a diaphragm type pump or a bellows pump can be used as a small and inexpensive one.

ここで,燃料ポンプ8から供給される燃料ガスに流量や圧力の変動が生じる可能性が有る。例えば,容積式ポンプ(ダイアフラム式ポンプやベローズポンプ)は,原理的に脈動を発生させ,供給する燃料ガスの流量や圧力が変動する。燃料ポンプ8から燃料電池スタック1に供給される燃料ガスの流量変動や圧力変動は,改質処理装置3でのカーボンの析出や,発電そのものの不安定の原因となる。   Here, the fuel gas supplied from the fuel pump 8 may vary in flow rate and pressure. For example, positive displacement pumps (diaphragm pumps and bellows pumps) generate pulsation in principle, and the flow rate and pressure of the supplied fuel gas vary. Flow rate fluctuations and pressure fluctuations of the fuel gas supplied from the fuel pump 8 to the fuel cell stack 1 cause carbon deposition in the reforming apparatus 3 and instability of power generation itself.

弁4と燃料ポンプ8の間に,ゼロガバナ5,流量計測手段6,バッファタンク7とを上流から順に配置し,燃料ポンプ8等に起因する流量変動や圧力変動を抑制する。
ゼロガバナ5は,燃料ポンプ8に入る前の燃料ガスの圧力(二次圧)を大気圧近傍に安定化するものであり(弁4から供給される燃料ガスの元圧(一次圧)に依存しない),燃料ガスの圧力を所定の圧力近傍に安定化させる圧力安定化手段として機能する。供給される燃料ガスとしては,都市ガスなどの低圧ガスがあるが,その供給圧力は,2±1kPaGの間で不安定である。このため,供給圧力が変動するよりも大気圧で安定している方が特に低負荷時の発電に燃料ポンプ8の運転に必要な電力を抑制しつつ,必要な燃料流量制御が容易となる。
Between the valve 4 and the fuel pump 8, a zero governor 5, a flow rate measuring means 6, and a buffer tank 7 are arranged in order from the upstream side to suppress flow rate fluctuations and pressure fluctuations caused by the fuel pump 8 and the like.
The zero governor 5 stabilizes the pressure (secondary pressure) of the fuel gas before entering the fuel pump 8 in the vicinity of the atmospheric pressure (does not depend on the original pressure (primary pressure) of the fuel gas supplied from the valve 4. ), Functioning as pressure stabilizing means for stabilizing the pressure of the fuel gas in the vicinity of a predetermined pressure. The supplied fuel gas includes low-pressure gas such as city gas, but the supply pressure is unstable between 2 ± 1 kPaG. For this reason, when the supply pressure is stable rather than fluctuating, the required fuel flow rate control becomes easier while suppressing the power required for the operation of the fuel pump 8 for power generation particularly at a low load.

尚,二次圧は,必ずしも大気圧である必要はない。即ち,ゼロガバナ5に換えて,元圧(一次圧)よりも低い所定の圧力に圧力(二次圧)を安定化するガバナや圧力安定化手段を用いることができる。また,例えば,弁4から供給される燃料ガスの圧力がある程度安定な場合,ゼロガバナ5を省略することも可能である。   The secondary pressure is not necessarily atmospheric pressure. That is, in place of the zero governor 5, a governor or pressure stabilizing means for stabilizing the pressure (secondary pressure) to a predetermined pressure lower than the original pressure (primary pressure) can be used. For example, when the pressure of the fuel gas supplied from the valve 4 is stable to some extent, the zero governor 5 can be omitted.

図2は,ゼロガバナ5の内部構成の一例を表す模式図である。図2に示すゼロガバナ5は,弁51,ダイヤフラム52,弾性手段53,調節機構54を有する。弁51は,ガス通路の開度を調整する。ダイヤフラム52は,大気圧Ptと二次圧P2の圧力差に応じて変形することで,弁51を開閉する。弾性手段53は,例えば,スプリングであり,弁51およびダイヤフラム52を支持する。調節機構54は,弾性手段53の支持の強度,即ち,ゼロガバナ5の感度を調節する。一次圧P1の変動に基づいて,弁51が開閉され,二次圧P2が大気圧Ptに保たれる。例えば,一次圧P1が上昇したときには,その圧力変動に伴って,二次圧P2も上昇する。この圧力変動に伴って,弁51が下方に移動し,二次圧P2を下降させて,大気圧Ptになるように調整する。このようにして,一次圧P1が変動した場合においても,二次圧P2が大気圧Ptになるように調整される。   FIG. 2 is a schematic diagram illustrating an example of the internal configuration of the zero governor 5. The zero governor 5 shown in FIG. 2 has a valve 51, a diaphragm 52, elastic means 53, and an adjustment mechanism 54. The valve 51 adjusts the opening degree of the gas passage. The diaphragm 52 opens and closes the valve 51 by being deformed according to the pressure difference between the atmospheric pressure Pt and the secondary pressure P2. The elastic means 53 is, for example, a spring, and supports the valve 51 and the diaphragm 52. The adjusting mechanism 54 adjusts the strength of the support of the elastic means 53, that is, the sensitivity of the zero governor 5. Based on the fluctuation of the primary pressure P1, the valve 51 is opened and closed, and the secondary pressure P2 is maintained at the atmospheric pressure Pt. For example, when the primary pressure P1 increases, the secondary pressure P2 also increases with the pressure fluctuation. Along with this pressure fluctuation, the valve 51 moves downward, and the secondary pressure P2 is lowered to adjust to the atmospheric pressure Pt. In this way, even when the primary pressure P1 varies, the secondary pressure P2 is adjusted to the atmospheric pressure Pt.

ここで,仮に,燃料ポンプ8の上流にゼロガバナ5とバッファタンク7を設置して,燃料ポンプ8の下流に,流量計測手段6のみを配置する場合を考える。この場合,燃料ポンプ8の下流での流量や圧力の変動に起因して,流量計測手段6での計測結果が不安定になり易い。また,バッファタンク7によって,燃料ポンプ8での脈動,即ち,流量変動や圧力変動が低減される。また,流量変動の低減により,流量計測手段6での指示値も安定化される。   Here, it is assumed that the zero governor 5 and the buffer tank 7 are installed upstream of the fuel pump 8 and only the flow rate measuring means 6 is arranged downstream of the fuel pump 8. In this case, due to the flow rate and pressure fluctuations downstream of the fuel pump 8, the measurement result by the flow rate measuring means 6 tends to become unstable. Further, the buffer tank 7 reduces the pulsation in the fuel pump 8, that is, the flow rate fluctuation and the pressure fluctuation. Moreover, the instruction value in the flow rate measuring means 6 is also stabilized by reducing the flow rate fluctuation.

この流量計測手段6の指示値を取り込み,燃料ポンプ8の動作量を制御する燃料ポンプ制御手段9が発電制御装置2に組み込まれている。燃料ポンプ制御手段9が流量計測手段6の計測結果に基づき,燃料ポンプ8を制御することで,燃料ポンプ8からの燃料ガスの供給が安定化する。例えば,流量計測手段6の指示値が所望の流量値になるように,燃料ポンプ8を制御する。   A fuel pump control means 9 for taking the indicated value of the flow rate measuring means 6 and controlling the operation amount of the fuel pump 8 is incorporated in the power generation control device 2. The fuel pump control means 9 controls the fuel pump 8 based on the measurement result of the flow rate measuring means 6, so that the supply of fuel gas from the fuel pump 8 is stabilized. For example, the fuel pump 8 is controlled so that the indicated value of the flow rate measuring means 6 becomes a desired flow rate value.

この所望の流量値は,燃料電池スタック1に供給される燃料ガス流量(正確には,燃料ポンプ8の燃料ガス吸込量)に対応している。所望の流量値を変更することで,燃料電池発電システムの発電量の制御が可能となる。   This desired flow rate value corresponds to the flow rate of the fuel gas supplied to the fuel cell stack 1 (more precisely, the fuel gas suction amount of the fuel pump 8). By changing the desired flow rate value, the power generation amount of the fuel cell power generation system can be controlled.

燃料ポンプ制御手段9が,負荷変動および燃料電池スタック1や改質処理装置3の温度に応じて,燃料ポンプ8の動作量を変更しても良い。燃料ポンプ8の消費電力の抑制が可能となる。   The fuel pump control means 9 may change the operation amount of the fuel pump 8 according to the load fluctuation and the temperature of the fuel cell stack 1 and the reforming apparatus 3. The power consumption of the fuel pump 8 can be suppressed.

改質処理装置3は改質触媒を有し,燃料ガスを水蒸気改質する。水蒸気改質のために必要な水は,改質用水送液ポンプ10から送られて,断熱容器16内で水蒸気化される。水蒸気化された水は燃料ポンプ8と燃料電池スタック1の間に配置されるミキシングチャンバ11内で炭化水素系燃料ガスと混合されて,改質処理装置3へ送られる。   The reforming apparatus 3 has a reforming catalyst and steam reforms the fuel gas. Water necessary for the steam reforming is sent from the reforming water feed pump 10 and is steamed in the heat insulating container 16. The steamed water is mixed with the hydrocarbon fuel gas in the mixing chamber 11 disposed between the fuel pump 8 and the fuel cell stack 1 and sent to the reforming apparatus 3.

改質用水送液ポンプ10によって送り込まれる水が気化する際に,圧力変動が生じる。また,燃料電池スタック1の下流にある未燃ガスを燃焼処理する燃焼器14で,燃焼に伴う圧力変動が生じ,上流側へも影響を及ぼす。ミキシングチャンバ11がある程度の容積を有すれば,これらの圧力変動を抑制できる。このため,ミキシングチャンバ11を用いることで,改質処理装置3に安定した流量と圧力で水蒸気混合ガスを送ることが可能になる。   When the water fed by the reforming water feed pump 10 is vaporized, pressure fluctuation occurs. Further, in the combustor 14 that combusts the unburned gas downstream of the fuel cell stack 1, pressure fluctuation accompanying combustion occurs, which also affects the upstream side. If the mixing chamber 11 has a certain volume, these pressure fluctuations can be suppressed. For this reason, by using the mixing chamber 11, it is possible to send the steam mixed gas to the reforming apparatus 3 at a stable flow rate and pressure.

流量計測手段6としては,熱線式質量流量計や差圧式流量計などを利用できる。但し,他の計測手段を適宜に利用できる。   As the flow rate measuring means 6, a hot wire mass flow meter, a differential pressure flow meter, or the like can be used. However, other measuring means can be used as appropriate.

燃料ポンプ制御手段9は,例えば,PID制御により燃料ポンプ8の動作を制御する。但し,流量計測手段6の指示値を所望の値に制御可能であれば,制御の手法は問われない。   The fuel pump control means 9 controls the operation of the fuel pump 8 by PID control, for example. However, the control method is not limited as long as the indicated value of the flow rate measuring means 6 can be controlled to a desired value.

バッファタンク7の内部構造について記す。図3A〜図3Cはそれぞれ,バッファタンク7の内部構造の一例を表す断面図である。バッファタンク7に入口側配管71,出口側配管72が接続され,必要に応じて,その内部に羽根板73が配置される。   The internal structure of the buffer tank 7 will be described. 3A to 3C are cross-sectional views each showing an example of the internal structure of the buffer tank 7. An inlet-side pipe 71 and an outlet-side pipe 72 are connected to the buffer tank 7, and a vane plate 73 is disposed therein as necessary.

バッファタンク7は容積が大きいほど脈動抑制の効果が得られる。但し,図3Aに示すように,バッファタンク内部に羽根板73を配置し,流路を形成することで,バッファタンク7のコンパクト化が可能となる。   As the volume of the buffer tank 7 increases, the effect of suppressing pulsation is obtained. However, as shown in FIG. 3A, the buffer tank 7 can be made compact by disposing the vane plate 73 inside the buffer tank and forming a flow path.

図3Bに示すように,入口側配管71と出口側配管72を互い違いに(同軸とならないように)配置することで,脈動流を抑制し,バッファタンク7のコンパクト化が可能となる。   As shown in FIG. 3B, by arranging the inlet side pipes 71 and the outlet side pipes 72 alternately (so as not to be coaxial), the pulsating flow is suppressed and the buffer tank 7 can be made compact.

さらに,図3Cに示すように,バッファタンク7内に羽根板73を配置し,かつ入口側配管71と出口側配管72を互い違いに配置しても良い。バッファタンク7のさらなるコンパクト化が可能となる。   Furthermore, as shown in FIG. 3C, the vane plate 73 may be arranged in the buffer tank 7 and the inlet side pipe 71 and the outlet side pipe 72 may be alternately arranged. The buffer tank 7 can be further downsized.

ここで,バッファタンク7に脱硫機能を持たせ,炭化水素系ガスに含有される硫黄成分を除去し,燃料ポンプ8及び改質処理装置3へと送ることが可能になる。例えば,都市ガスでは,臭い付けのため,硫黄成分を添加することがあり,燃料電池アノード材料,改質触媒および燃料ポンプ8の劣化の原因となる。燃料ポンプ8の上流で,炭化水素系ガスの硫黄成分を除去することで,改質触媒および燃料ポンプ8の部品の劣化を防止できる。この結果,燃料電池発電システムの耐久性の向上が図れる。   Here, the buffer tank 7 is provided with a desulfurization function so that the sulfur component contained in the hydrocarbon gas can be removed and sent to the fuel pump 8 and the reforming apparatus 3. For example, in city gas, a sulfur component may be added for smelling, which causes deterioration of the fuel cell anode material, the reforming catalyst, and the fuel pump 8. By removing the sulfur component of the hydrocarbon gas upstream of the fuel pump 8, it is possible to prevent deterioration of the reforming catalyst and the components of the fuel pump 8. As a result, the durability of the fuel cell power generation system can be improved.

この場合,例えば,図4に示すように,バッファタンク7内に脱硫触媒74を充填する。この脱硫触媒74は粒状あるいは粉体状であり,脱硫触媒74が充填された構造自体が脈動を抑えるための効果を発揮する。バッファタンク7内の出口側に,脱硫触媒74の流出防止のため,フィルタカバー75を設けている(図示しないがバッファタンクの入口側にも同様のフィルタを設けている)。脱硫触媒74としてはゼオライト系や酸化マンガン系などを利用できる。バッファタンク7に脱硫機能を発揮する脱硫触媒が少なくとも1種類以上充填されていれば,バッファタンク7が脱硫機能を有すると言える。   In this case, for example, as shown in FIG. 4, the desulfurization catalyst 74 is filled in the buffer tank 7. The desulfurization catalyst 74 is granular or powdery, and the structure itself filled with the desulfurization catalyst 74 exhibits an effect for suppressing pulsation. A filter cover 75 is provided on the outlet side in the buffer tank 7 to prevent the desulfurization catalyst 74 from flowing out (although not shown, a similar filter is provided on the inlet side of the buffer tank). As the desulfurization catalyst 74, a zeolite type or a manganese oxide type can be used. If the buffer tank 7 is filled with at least one desulfurization catalyst that exhibits the desulfurization function, it can be said that the buffer tank 7 has the desulfurization function.

本実施形態では,燃料ガスの供給を制御し,燃料電池発電システムの安定動作が可能になる。また,燃料ガスを脱硫することで,燃料電池発電システムの耐久性の向上が図れる。   In the present embodiment, the fuel gas supply is controlled, and the fuel cell power generation system can be stably operated. Also, by desulfurizing the fuel gas, the durability of the fuel cell power generation system can be improved.

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.

本発明の一実施形態に係る燃料電池発電システムを表す図である。It is a figure showing the fuel cell power generation system which concerns on one Embodiment of this invention. ゼロガバナ5の内部構成の一例を表す模式図である。3 is a schematic diagram illustrating an example of an internal configuration of a zero governor 5. FIG. バッファタンク7の内部構成の一例を表す断面図である。3 is a cross-sectional view illustrating an example of an internal configuration of a buffer tank 7. FIG. バッファタンク7の内部構成の一例を表す断面図である。3 is a cross-sectional view illustrating an example of an internal configuration of a buffer tank 7. FIG. バッファタンク7の内部構成の一例を表す断面図である。3 is a cross-sectional view illustrating an example of an internal configuration of a buffer tank 7. FIG. 脱硫機能を持たせたバッファタンク7の内部構成の一例を表す断面図である。It is sectional drawing showing an example of the internal structure of the buffer tank 7 which gave the desulfurization function.

符号の説明Explanation of symbols

1 燃料電池スタック
2 発電制御装置
3 改質処理装置
4 弁
5 ゼロガバナ
6 流量計測手段
7 バッファタンク
8 燃料ポンプ
9 燃料ポンプ制御手段
10 改質用水送液ポンプ
11 ミキシングチャンバ
12 酸化剤ガス流量計測手段
13 酸化剤ガスブロワ
14 燃焼器
15 オフガス排出ライン
16 断熱容器
17 DC−ACインバータ
18 AC電流出力ライン
DESCRIPTION OF SYMBOLS 1 Fuel cell stack 2 Electric power generation control apparatus 3 Reformation processing apparatus 4 Valve 5 Zero governor 6 Flow rate measuring means 7 Buffer tank 8 Fuel pump 9 Fuel pump control means 10 Reforming water feed pump 11 Mixing chamber 12 Oxidant gas flow rate measuring means 13 Oxidant gas blower 14 Combustor 15 Off-gas discharge line 16 Thermal insulation container 17 DC-AC inverter 18 AC current output line

Claims (4)

供給ラインから供給される炭化水素系の燃料ガスの流量を計測する流量計測手段と,
前記流量計測手段から流出する燃料ガスの圧力変動及び流量変動を抑える調圧手段と,
前記調圧手段から流出する燃料ガスを加圧する燃料ポンプと,
前記流量計測手段での計測結果に対応して,前記燃料ポンプの動作を制御する燃料ポンプ制御手段と,
を具備することを特徴とする燃料電池用燃料ガス供給装置。
A flow rate measuring means for measuring a flow rate of hydrocarbon fuel gas supplied from a supply line;
Pressure regulating means for suppressing pressure fluctuations and flow fluctuations of the fuel gas flowing out from the flow rate measuring means;
A fuel pump for pressurizing the fuel gas flowing out from the pressure regulating means;
Fuel pump control means for controlling the operation of the fuel pump in response to the measurement result of the flow rate measurement means;
A fuel gas supply device for a fuel cell, comprising:
前記供給ラインと前記燃料ポンプとの間に配置され,前記燃料ガスの圧力を所定の圧力近傍に安定化させる圧力安定化手段
をさらに具備する請求項1記載の燃料電池用燃料ガス供給装置。
2. The fuel gas supply device for a fuel cell according to claim 1, further comprising a pressure stabilizing means disposed between the supply line and the fuel pump for stabilizing the pressure of the fuel gas in the vicinity of a predetermined pressure.
前記燃料ポンプで加圧された燃料ガスと,水蒸気と,を混合するミキシングチャンバと,
前記ミキシングチャンバで水蒸気と混合された燃料ガスを改質する改質処理装置と,
をさらに具備することを特徴とする請求項1または2に記載の燃料電池用燃料ガス供給装置。
A mixing chamber for mixing fuel gas pressurized by the fuel pump and water vapor;
A reforming apparatus for reforming fuel gas mixed with water vapor in the mixing chamber;
The fuel gas supply device for a fuel cell according to claim 1, further comprising:
前記調圧手段が,燃料ガスに含有される硫黄成分を除去する脱硫機能を有する
ことを特徴とする請求項1乃至請求項3のいずれか1項に記載の燃料電池用燃料ガス供給装置。
The fuel gas supply device for a fuel cell according to any one of claims 1 to 3, wherein the pressure adjusting means has a desulfurization function of removing a sulfur component contained in the fuel gas.
JP2008157430A 2008-06-17 2008-06-17 Fuel gas supply device for fuel cell Withdrawn JP2009301971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008157430A JP2009301971A (en) 2008-06-17 2008-06-17 Fuel gas supply device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008157430A JP2009301971A (en) 2008-06-17 2008-06-17 Fuel gas supply device for fuel cell

Publications (1)

Publication Number Publication Date
JP2009301971A true JP2009301971A (en) 2009-12-24

Family

ID=41548652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008157430A Withdrawn JP2009301971A (en) 2008-06-17 2008-06-17 Fuel gas supply device for fuel cell

Country Status (1)

Country Link
JP (1) JP2009301971A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159485A (en) * 2010-02-01 2011-08-18 Osaka Gas Co Ltd Solid oxide fuel cell
WO2012074005A1 (en) * 2010-11-30 2012-06-07 京セラ株式会社 Fuel cell system and operating method therefor
JP2013527580A (en) * 2010-06-04 2013-06-27 ワルトシラ フィンランド オサケユキチュア Method and arrangement for controlling the thermal balance of a fuel cell stack in a fuel cell system
JP5838491B1 (en) * 2015-02-13 2016-01-06 株式会社フクハラ High purity pressurized nitrogen gas generation system and high purity pressurized nitrogen gas generation method
EP3024076A1 (en) * 2014-11-18 2016-05-25 Hexis AG Device and method for supplying a fuel cell battery
CN108400356A (en) * 2018-03-15 2018-08-14 东莞深圳清华大学研究院创新中心 A kind of control method of SOFC fuel cells cogeneration system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159485A (en) * 2010-02-01 2011-08-18 Osaka Gas Co Ltd Solid oxide fuel cell
JP2013527580A (en) * 2010-06-04 2013-06-27 ワルトシラ フィンランド オサケユキチュア Method and arrangement for controlling the thermal balance of a fuel cell stack in a fuel cell system
US8623560B2 (en) 2010-06-04 2014-01-07 Convion Oy Method and arrangement to control the heat balance of fuel cell stacks in a fuel cell system
WO2012074005A1 (en) * 2010-11-30 2012-06-07 京セラ株式会社 Fuel cell system and operating method therefor
US20130266879A1 (en) * 2010-11-30 2013-10-10 Kyocera Corporation Fuel cell system and operating method thereof
JPWO2012074005A1 (en) * 2010-11-30 2014-05-19 京セラ株式会社 Fuel cell system and operation method thereof
JP5542965B2 (en) * 2010-11-30 2014-07-09 京セラ株式会社 Fuel cell system and operation method thereof
US9564646B2 (en) 2010-11-30 2017-02-07 Kyocera Corporation Fuel cell system and operating method thereof
EP3024076A1 (en) * 2014-11-18 2016-05-25 Hexis AG Device and method for supplying a fuel cell battery
JP5838491B1 (en) * 2015-02-13 2016-01-06 株式会社フクハラ High purity pressurized nitrogen gas generation system and high purity pressurized nitrogen gas generation method
CN108400356A (en) * 2018-03-15 2018-08-14 东莞深圳清华大学研究院创新中心 A kind of control method of SOFC fuel cells cogeneration system
CN108400356B (en) * 2018-03-15 2020-07-07 东莞深圳清华大学研究院创新中心 Control method of SOFC fuel cell cogeneration system

Similar Documents

Publication Publication Date Title
US6890673B2 (en) Hydrogen producing apparatus and power generating system using it
JP2009301971A (en) Fuel gas supply device for fuel cell
WO2012105300A1 (en) Fuel cell system
JP2014239056A (en) Fuel cell system
US20110039175A1 (en) Method for operating indirect internal reforming solid oxide fuel cell system
JP2008030990A (en) Reforming system and fuel cell system
JP2017050049A (en) Fuel battery system
EP2485310A1 (en) Fuel cell device
JP6459063B2 (en) Operation method of solid oxide fuel cell system
JP2008300251A (en) Fuel cell cogeneration device
JP5474260B2 (en) Power generation system and operation method thereof
JP7259654B2 (en) Hydrogen utilization system
JP6344113B2 (en) Reformer
JP5358357B2 (en) Fuel cell system
JP4847053B2 (en) Load control method for reforming system
JP4622244B2 (en) Operation control method of fuel cell power generator
JPH06349510A (en) Temperature control device for fuel reformer for fuel cell
KR102559980B1 (en) Fuel cell with improved efficiency by having an air supply unit that can control the amount of air supplied
JP2008084822A (en) Fuel cell device
JP4988259B2 (en) Fuel cell system
JP2003277012A (en) Apparatus and method for supplying raw material to hydrogen producer
Dolanc et al. Control of an afterburner in a diesel fuel cell power unit under variable load
JP2009238622A (en) Solid oxide fuel cell power generation system and its operation control method
JP2010222209A (en) Hydrogen generating device and fuel cell power generator using the same
JP3918537B2 (en) Fuel cell system and control method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906