JP2009299104A5 - - Google Patents

Download PDF

Info

Publication number
JP2009299104A5
JP2009299104A5 JP2008152447A JP2008152447A JP2009299104A5 JP 2009299104 A5 JP2009299104 A5 JP 2009299104A5 JP 2008152447 A JP2008152447 A JP 2008152447A JP 2008152447 A JP2008152447 A JP 2008152447A JP 2009299104 A5 JP2009299104 A5 JP 2009299104A5
Authority
JP
Japan
Prior art keywords
temperature
alloy plate
range
forming
aging treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008152447A
Other languages
Japanese (ja)
Other versions
JP2009299104A (en
JP5313554B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2008152447A priority Critical patent/JP5313554B2/en
Priority claimed from JP2008152447A external-priority patent/JP5313554B2/en
Publication of JP2009299104A publication Critical patent/JP2009299104A/en
Publication of JP2009299104A5 publication Critical patent/JP2009299104A5/ja
Application granted granted Critical
Publication of JP5313554B2 publication Critical patent/JP5313554B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

具体的には、請求項1の発明の高温成形方法は、Cuを実質的に含有しないAl−Mg−Si系合金板を成形用素材とし、その合金板について、480℃以上の温度域で成形加工を施した後、2℃/sec以上の冷却速度で、200℃以下50℃以上の温度域まで冷却し、引続き直ちに140〜240℃の範囲内の温度に、15分以下1秒以上保持する予備時効処理を行なうことを特徴とするものである。 Specifically, the high temperature forming method of the invention of claim 1 uses an Al— Mg—Si based alloy plate substantially free of Cu as a forming material, and the alloy plate is formed in a temperature range of 480 ° C. or higher. After processing, it is cooled to a temperature range of 200 ° C. or lower and 50 ° C. or higher at a cooling rate of 2 ° C./sec or higher, and then immediately maintained at a temperature within the range of 140 to 240 ° C. for 15 minutes or shorter and 1 second or longer. Preliminary aging treatment is performed.

また請求項2の発明は、Cuを含むAl−Mg−Si系合金板を成形用素材とし、その合金板について、480℃以上の温度域で成形加工を施した後、2℃/sec以上の冷却速度で、200℃以下の温度域まで冷却し、引続き直ちに140〜240℃の範囲内の温度に、15分以下1秒以上保持する予備時効処理を行なうことを特徴とするものである。 The invention of claim 2 uses an Al- Mg-Si alloy plate containing Cu as a forming material, and the alloy plate is formed at a temperature range of 480 ° C or higher, and then 2 ° C / sec or higher. It is characterized in that it is cooled to a temperature range of 200 ° C. or lower at a cooling rate, and then a preliminary aging treatment is performed immediately at a temperature in the range of 140 to 240 ° C. for 15 minutes or less and 1 second or longer.

さらに請求項3の発明は、Mg0.3〜1.2%、Si0.4〜1.6%、Fe0.01〜0.4%を含有し、さらにMn0.01〜1.3%、Cr0.01〜0.3%、Zr0.01〜0.3%、Sc0.01〜0.5%、V0.01〜0.3%のうちから選ばれた1種または2種以上を含有し、残部がAlおよび不可避的不純物よりなるAl−Mg−Si系合金板を成形用素材とし、その合金板について、480℃以上の温度域で成形加工を施した後、2℃/sec以上の冷却速度で、200℃以下50℃以上の温度域まで冷却し、引続き直ちに140〜240℃の範囲内の温度に、15分以下1秒以上保持する予備時効処理を行なうことを特徴とするものである。 Further, the invention of claim 3 contains Mg 0.3 to 1.2%, Si 0.4 to 1.6%, Fe 0.01 to 0.4%, Mn 0.01 to 1.3%, Cr 0. Containing one or more selected from 01 to 0.3%, Zr 0.01 to 0.3%, Sc 0.01 to 0.5%, V 0.01 to 0.3%, An Al- Mg-Si based alloy plate, the balance of which is Al and inevitable impurities, is used as a forming material, and the alloy plate is subjected to forming processing in a temperature range of 480 ° C or higher, and then a cooling rate of 2 ° C / sec or higher. Then, it is cooled to a temperature range of 200 ° C. or lower and 50 ° C. or higher, and then a preliminary aging treatment is performed immediately at a temperature in the range of 140 to 240 ° C. for 15 minutes or shorter and 1 second or longer.

またさらに請求項4の発明は、Mg0.3〜1.2%、Si0.4〜1.6%、Fe0.01〜0.4%、Cu0.01〜1.0%を含有し、さらにMn0.01〜1.3%、Cr0.01〜0.3%、Zr0.01〜0.3%、Sc0.01〜0.5%、V0.01〜0.3%のうちから選ばれた1種または2種以上を含有し、残部がAlおよび不可避的不純物よりなるAl−Mg−Si系合金板を成形用素材とし、その合金板について、480℃以上の温度域で成形加工を施した後、2℃/sec以上の冷却速度で、200℃以下の温度域まで冷却し、引続き直ちに140〜240℃の範囲内の温度に、15分以下1秒以上保持する予備時効処理を行なうことを特徴とするものである。 Furthermore, the invention of claim 4 contains Mg 0.3-1.2%, Si 0.4-1.6%, Fe 0.01-0.4%, Cu 0.01-1.0%, and further Mn0 .01 to 1.3%, Cr 0.01 to 0.3%, Zr 0.01 to 0.3%, Sc 0.01 to 0.5%, V 0.01 to 0.3%. An Al- Mg-Si based alloy plate containing one or more types, the balance being Al and inevitable impurities was used as a forming material, and the alloy plate was formed in a temperature range of 480 ° C or higher. After that, it is cooled to a temperature range of 200 ° C. or lower at a cooling rate of 2 ° C./sec or higher, and then a preliminary aging treatment is performed immediately at a temperature within the range of 140 to 240 ° C. for 15 seconds or shorter for 1 second or longer. It is a feature.

Cu:
Cuは人工時効処理を兼ねた塗装焼付け処理時に析出するMgSiを微細かつ均一にする効果があり、そのためCuを添加することにより、塗装焼付け処理における耐力上昇幅が増大する。さらに、Cuの添加は、高温成形後に50℃未満の温度域まで冷却した際に形成される低温クラスタと称されるMgとSiからなる極微細析出物の形成を遅らせる効果がある。後に詳細に説明するように、この低温クラスタが析出してしまえば、塗装焼付け処理時の時効による効果が抑制されてしまい、耐力の上昇幅が大幅に低下するが、Cuを添加すれば低温クラスタの形成が遅れるため、耐力の上昇幅の低下を抑えることが可能となる。そこで請求項2、請求項4の各発明の高温成形方法の場合は、Cuを積極的に添加したAl−Mg−Si系合金を用いることとした。ここでCuを添加した場合には、前述のように低温クラスタの形成が遅れるため、高温成形後の冷却終了温度を50℃以下の低温としても、この冷却終了温度での保持時間が短時間であれば、塗装焼付け処理時の時効による耐力の向上幅が低下するようなことがない。この場合、冷却終了温度での保持時間は1時間以内であればよいが、高温成形後の曲げ加工性の向上と塗装焼付け処理時の耐力の上昇とをより充分に図るため、および生産性をより高めるためには、保持時間を5分以内とすることが好ましい。なおCuの添加量が0.01%未満では、Cu添加による上述の効果が充分に得られず、一方Cuの添加量が1.0%を越えれば、成形品の耐食性が大幅に低下してしまい、自動車ボディパネル等の腐食環境に曝される部材として不適当となるから、Cuを添加する場合のCu量は、請求項4に示すように0.01〜1.0%の範囲内とした。なおCuを積極的に添加しない請求項3の発明の場合も、不純物として0.01%未満のCuが含まれることがあることはもちろんである。
Cu:
Cu has the effect of making Mg 2 Si precipitated during the paint baking process also serving as an artificial aging process fine and uniform. Therefore, the addition of Cu increases the yield strength increase in the paint baking process. Furthermore, the addition of Cu has the effect of delaying the formation of ultrafine precipitates composed of Mg and Si, which are called low temperature clusters formed when cooled to a temperature range below 50 ° C. after high temperature molding. As will be described in detail later, if this low temperature cluster is precipitated, the effect due to aging during the coating baking process is suppressed, and the increase in the yield strength is greatly reduced. However, if Cu is added, the low temperature cluster is reduced. Therefore, it is possible to suppress a decrease in the increase in the yield strength. Therefore, in the case of the high temperature forming method of each invention of claims 2 and 4, an Al-Mg-Si alloy to which Cu is positively added is used. When Cu is added here, the formation of low-temperature clusters is delayed as described above, so even if the cooling end temperature after high-temperature forming is set to a low temperature of 50 ° C. or less, the holding time at this cooling end temperature is short. If there is, the improvement width of the proof stress due to aging during the paint baking process is not reduced. In this case, the holding time at the cooling end temperature may be 1 hour or less, but in order to sufficiently improve the bending workability after high-temperature forming and increase the yield strength during the coating baking process, and improve productivity. In order to further increase, the holding time is preferably within 5 minutes. In addition, if the addition amount of Cu is less than 0.01%, the above-described effects due to the addition of Cu cannot be sufficiently obtained. On the other hand, if the addition amount of Cu exceeds 1.0%, the corrosion resistance of the molded product is greatly reduced. Therefore, since it becomes unsuitable as a member exposed to a corrosive environment such as an automobile body panel, the amount of Cu when Cu is added is within the range of 0.01 to 1.0% as shown in claim 4. did. In the case of the invention of claim 3 in which Cu is not actively added, it is needless to say that less than 0.01% of Cu may be contained as an impurity.

以上の各元素のほかは、基本的には不可避不純物およびAlとすればよいが、鋳塊組織を微細にするためにTi0.01〜0.15%を、単独あるいはB0.0001〜0.05%とともに添加することは許容される。但し、Ti添加量が0.10%を越え、かつB添加量が0.01%を越えれば、鋳造時にこれらを主成分とする粗大な化合物が晶出して、材料の特性ならびに靭性が大幅に低下してしまい、またTi添加量が0.15%を越えれば、鋳造時にTiAlの粗大化合物が晶出し、材料の延性ならびに靭性が大幅に低下してしまう。さらにB添加量が0.05%を越えれば、鋳造時にTiB の粗大化合物が晶出し、材料の延性ならびに靭性が大幅に低下してしまう。そこでTiを単独で添加する場合のTi添加量は0.15%以下とすることが好ましく、またTiをBとともに添加する場合のTi量は0.10%以下、B量は0.01%以下とすることが好ましい。 In addition to the above elements, basically, inevitable impurities and Al may be used. However, in order to make the ingot structure fine, Ti 0.01 to 0.15% is used alone or B0.0001 to 0.05. % Is acceptable. However, if the Ti addition amount exceeds 0.10% and the B addition amount exceeds 0.01%, coarse compounds mainly composed of these crystallize during casting, and the characteristics and toughness of the material are greatly increased. If the Ti addition amount exceeds 0.15%, a coarse compound of TiAl 3 crystallizes during casting, and the ductility and toughness of the material are greatly reduced. In addition exceeds B addition amount of 0.05%, crude large compound of TiB 2 at the time of casting is crystallized, ductility and toughness of the material is greatly reduced. Therefore, the Ti addition amount when adding Ti alone is preferably 0.15% or less, and the Ti amount when adding Ti together with B is 0.10% or less, and the B amount is 0.01% or less. It is preferable that

また成形品を室温で10日間保持した後の塗装焼付け処理に相当する時効処理を行なう前の成形品の耐力値と、塗装焼付け処理に相当する時効処理を行なった後の成形品の耐力値を比較して、30MPa以上の耐力値の向上があった場合には、塗装焼付け処理により充分な耐力値の向上があるものと判定した。また塗装焼付け処理に相当する時効後の成形品の耐力値が170MPa以上の場合に、ボディシートとして適用が可能であると判定した。さらに総合的な判断として、曲げ加工性が良好でかつこれら二つの耐力値の判定基準を満たす場合に、ボディパネル用の成形品として、より適していると判定した。
これらの試験結果、判定結果を表2に示す。
Also, the yield strength value of the molded product before the aging treatment corresponding to the paint baking process after holding the molded article at room temperature for 10 days and the proof stress value of the molded product after the aging treatment equivalent to the paint baking process are given. In comparison, when there was an improvement in the yield strength of 30 MPa or more, it was determined that there was a sufficient improvement in the yield strength by the coating baking process. Moreover, when the proof stress value of the molded product after aging corresponding to the paint baking process was 170 MPa or more, it was determined that the product can be applied as a body sheet. Furthermore, as a comprehensive judgment, when the bending workability was good and the judgment criteria of these two proof stress values were satisfied, it was judged that it was more suitable as a molded product for a body panel.
These test results and determination results are shown in Table 2.

本発明例の合金1〜5は、いずれもこの発明で規定する成分組成の範囲内の合金を用い、この発明で規定する条件にて高温成形およびその後の冷却、予備時効処理を行なったものである。これらの本発明例では、高温成形後10日間室温保持後に行なった曲げ加工において、曲げ部の外側で割れが生じることはなく、良好な曲げ性を示した。また高温成形後10日間室温保持後において、塗装焼付け処理相当の時効後の耐力は、塗装焼付け処理相当の時効前の耐力と比較して30MPa以上向上していて、塗装焼付け処理相当の時効により充分な耐力値の上昇が認められ、なおかつ塗装焼付け処理相当の時効処理後耐力として、170MPa以上の高い耐力値が得られた。 Alloys 1 to 5 in the examples of the present invention are all alloys in the range of the component composition defined in the present invention, and subjected to high temperature forming, subsequent cooling and pre-aging treatment under the conditions defined in the present invention. is there. In these examples of the present invention, in bending performed after holding at room temperature for 10 days after high temperature molding, cracks did not occur outside the bent portion, and good bendability was exhibited. In addition, after holding at room temperature for 10 days after high-temperature molding, the yield strength after aging equivalent to the paint baking process is improved by 30 MPa or more compared to the pre-aging resistance equivalent to the paint baking process. such increase in proof stress was recognized, as yet aging treatment after strength of paint baking equivalent, high it has proof stress on 170MPa or more was obtained.

これらの合金板について、次に説明する条件で高温ブロー成形およびその後の冷却、予備時効処理を行なった。高温ブロー成形については、前述の実施例1の場合と同様に、平面部が300mm×300mmの大きさで、高さが80mmのフランジ付き角筒形状の成形品が得られる金型を用い、実施例1の場合と同様に高温ブロー成形機にセットした合金板の片側からガス圧を付与して、ガス圧を1気圧から10気圧まで1分間で昇圧して、10気圧の状態で1分間保持し、合計2分間の高温成形を行なった後に、ガス圧を1気圧まで減圧する方法を適用した。具体的な成形条件としては、先ず予備加熱として、合金板を所定の成形温度まで10℃/secの昇温速度で加熱後、合金板を成形機にセットした。その後、実施例1の場合と同様に所定の成形温度で成形を完了させた後、所定の冷却速度にて、所定の冷却終了温度まで冷却後、直ちに所定の予備時効処理温度にて所定時間予備時効処理を行ない、室温まで冷却した。このような実施例のプロセスについて、成形温度、冷却速度、冷却終了温度、予備時効処理温度、予備時効処理時間、予備時効後に曲げ加工および塗装焼付け相当処理を行なうまでに経過した日数の条件を、表4にまとめて示す。 These alloy plates were subjected to high temperature blow molding, subsequent cooling, and pre-aging treatment under the conditions described below. As with the case of Example 1 described above, high-temperature blow molding is performed using a mold that can obtain a flanged square tube-shaped molded product having a plane portion of 300 mm × 300 mm and a height of 80 mm. As in the case of Example 1, gas pressure is applied from one side of the alloy plate set in the high-temperature blow molding machine, and the gas pressure is increased from 1 atm to 10 atm in 1 minute and held at 10 atm for 1 minute. Then, after performing high temperature molding for a total of 2 minutes, a method of reducing the gas pressure to 1 atm was applied. As specific forming conditions, first, as preheating, the alloy plate was heated to a predetermined forming temperature at a heating rate of 10 ° C./sec, and then the alloy plate was set in a forming machine. After that, after completion of molding at a predetermined molding temperature in the same manner as in Example 1, after cooling to a predetermined cooling end temperature at a predetermined cooling rate, immediately preliminarily for a predetermined time at a predetermined preliminary aging temperature. An aging treatment was performed and the mixture was cooled to room temperature. Regarding the process of such an example , the molding temperature, cooling rate, cooling end temperature, preliminary aging treatment temperature, preliminary aging treatment time, conditions for the number of days that have passed before the preparatory aging and bending baking and equivalent processing are performed, Table 4 summarizes the results.

比較例である条件1の場合は、成形温度がこの発明で規定する範囲よりも低く、そのため、マトリックス中に未固溶のMgおよびSiが多数存在し、Mg、Siの固溶量が少なくなったため、高温成形後の曲げ性が不良となり、また塗装焼付け処理相当の時効処理による耐力の上昇が少なかった。これに対し本発明例である条件2、3、4の場合は、いずれも成形温度がこの発明で規定する範囲内であり、この場合は曲げ性、耐力値ともに良好となった。 If condition 1 is a comparative example is lower than the range of the molding temperature is stipulated in the present invention, therefore, there are many Mg and Si undissolved in the matrix, Mg, dissolved amount of Si Because of the decrease, the bendability after high-temperature molding became poor, and the increase in yield strength due to the aging treatment equivalent to the paint baking treatment was small. On the other hand, in the cases 2, 3, and 4 which are examples of the present invention, the molding temperature is within the range specified by the present invention, and in this case, both the bendability and the proof stress are good.

また比較例である条件8は、特にCuを含有しないAl−Mg−Si系合金を用いて、高温成形後の冷却終了温度の条件がこの発明で規定する冷却終了温度を越えたものである。この場合は、引続いて行なわれる予備時効処理温度に移行する間に結晶粒界上に粗大なMgSi粒子が多数析出し、この粒界上の析出粒子がその後に行なわれる曲げ加工時に割れの起点となって、曲げ性が大幅に低下した。これに対し本発明例である条件9、条件10および条件11は、同様にCuを含有しないAl−Mg−Si系合金を用い、高温成形後の冷却終了温度の条件をはじめとするすべての条件をこの発明の範囲内としたものであり、これらの場合は、曲げ性、耐力ともに良好であった。一方、比較例である条件12は、Cuを含有しないAl−Mg−Si系合金を用い、高温成形後の冷却終了温度が請求項2の発明で規定する範囲よりも低かったものであり、この場合は、冷却終了温度である40℃付近の温度域でMgとSiよりなる低温クラスタが多数形成され、その低温クラスタはその後の塗装焼付け処理に相当する時効によって耐力の増加に寄与する微細なMgSi析出物には直接変化しないため、塗装焼付け処理に相当する時効処理による耐力の上昇が小さくなってしまった。 In addition, Condition 8 as a comparative example is that in which an Al—Mg—Si based alloy not containing Cu is used, and the condition of the cooling end temperature after the high temperature forming exceeds the cooling end temperature defined in the present invention. In this case, a large number of coarse Mg 2 Si particles are precipitated on the grain boundaries during the transition to the subsequent pre-aging temperature, and the precipitated particles on the grain boundaries are cracked during the subsequent bending process. As a starting point, the bendability was greatly reduced. In contrast an invention example condition 9, Condition 10 and Condition 11, using the Al-Mg-Si based alloy containing no similarly Cu, the all the other internationalization condition of the cooling end temperature after the high temperature molding It is obtained by the condition in the range of inventions of this, in these cases, bendability was good in strength both. On the other hand, Condition 12, which is a comparative example, uses an Al—Mg—Si-based alloy that does not contain Cu, and the cooling end temperature after high-temperature forming is lower than the range defined in the invention of claim 2. In this case, a large number of low-temperature clusters composed of Mg and Si are formed in the temperature range around 40 ° C. that is the cooling end temperature, and the low-temperature clusters are fine Mg that contributes to an increase in yield strength by aging corresponding to the subsequent coating baking process. Since 2 Si precipitates do not change directly, the increase in yield strength due to the aging treatment corresponding to the coating baking treatment has been reduced.

Claims (5)

Cuを実質的に含有しないAl−Mg−Si系合金板を成形用素材とし、その合金板について、480℃以上の温度域で成形加工を施した後、2℃/sec以上の冷却速度で、200℃以下50℃以上の温度域まで冷却し、引続き直ちに140〜240℃の範囲内の温度に、15分以下1秒以上保持する予備時効処理を行なうことを特徴とする、Al−Mg−Si系合金板の高温成形方法。 An Al— Mg—Si based alloy plate that does not substantially contain Cu is used as a forming material, and the alloy plate is subjected to forming processing in a temperature range of 480 ° C. or higher, and at a cooling rate of 2 ° C./sec or higher. Al-Mg-Si, characterized in that it is cooled to a temperature range of 200 ° C or lower and 50 ° C or higher, and then immediately subjected to a pre-aging treatment at a temperature within the range of 140 to 240 ° C and held for 15 seconds or shorter for 1 second or longer. Method for high-temperature forming of an alloy plate. Cuを含むAl−Mg−Si系合金板を成形用素材とし、その合金板について、480℃以上の温度域で成形加工を施した後、2℃/sec以上の冷却速度で、200℃以下の温度域まで冷却し、引続き直ちに140〜240℃の範囲内の温度に、15分以下1秒以上保持する予備時効処理を行なうことを特徴とする、Al−Mg−Si系合金板の高温成形方法。 An Al— Mg—Si based alloy plate containing Cu is used as a forming material, and the alloy plate is subjected to forming processing at a temperature range of 480 ° C. or higher, and then at a cooling rate of 2 ° C./sec. A method of high-temperature forming an Al-Mg-Si alloy sheet, characterized by performing a pre-aging treatment that is cooled to a temperature range and then immediately maintained at a temperature in the range of 140 to 240 ° C for 15 seconds or less for 1 second or longer. . Mg0.3〜1.2%(mass%、以下同じ)、Si0.4〜1.6%、Fe0.01〜0.4%を含有し、さらにMn0.01〜1.3%、Cr0.01〜0.3%、Zr0.01〜0.3%、Sc0.01〜0.5%、V0.01〜0.3%のうちから選ばれた1種または2種以上を含有し、残部がAlおよび不可避的不純物よりなるAl−Mg−Si系合金板を成形用素材とし、その合金板について、480℃以上の温度域で成形加工を施した後、2℃/sec以上の冷却速度で、200℃以下50℃以上の温度域まで冷却し、引続き直ちに140〜240℃の範囲内の温度に、15分以下1秒以上保持する予備時効処理を行なうことを特徴とする、Al−Mg−Si系合金板の高温成形方法。 Mg 0.3 to 1.2% (mass%, the same shall apply hereinafter), Si 0.4 to 1.6%, Fe 0.01 to 0.4%, Mn 0.01 to 1.3%, Cr 0.01 0.3%, containing Zr0.01~0.3%, Sc0.01~0.5%, 1 or more kinds selected from among V 0.01 to 0.3%, the balance An Al —Mg—Si based alloy plate made of Al and inevitable impurities is used as a forming material, and the alloy plate is formed at a temperature range of 480 ° C. or higher and then cooled at a cooling rate of 2 ° C./sec or higher. The pre-aging treatment is carried out by cooling to a temperature range of 200 ° C. or lower and 50 ° C. or higher, and then immediately holding at a temperature within the range of 140 to 240 ° C. for 15 minutes or shorter for 1 second or longer. A high-temperature forming method for Si-based alloy plates. Mg0.3〜1.2%、Si0.4〜1.6%、Fe0.01〜0.4%、Cu0.01〜1.0%を含有し、さらにMn0.01〜1.3%、Cr0.01〜0.3%、Zr0.01〜0.3%、Sc0.01〜0.5%、V0.01〜0.3%のうちから選ばれた1種または2種以上を含有し、残部がAlおよび不可避的不純物よりなるAl−Mg−Si系合金板を成形用素材とし、その合金板について、480℃以上の温度域で成形加工を施した後、2℃/sec以上の冷却速度で、200℃以下の温度域まで冷却し、引続き直ちに140〜240℃の範囲内の温度に、15分以下1秒以上保持する予備時効処理を行なうことを特徴とする、Al−Mg−Si系合金板の高温成形方法。 Mg 0.3 to 1.2%, Si 0.4 to 1.6%, Fe 0.01 to 0.4%, Cu 0.01 to 1.0%, further Mn 0.01 to 1.3%, Cr0 .01~0.3%, containing Zr0.01~0.3%, Sc0.01~0.5%, 1 or more kinds selected from among V 0.01 to 0.3% Then, an Al— Mg—Si based alloy plate consisting of Al and inevitable impurities is used as a forming material, and the alloy plate is formed at a temperature of 480 ° C. or higher and then cooled at 2 ° C./sec or higher. The Al—Mg—Si is characterized in that it is cooled to a temperature range of 200 ° C. or less at a rate and is immediately subjected to a pre-aging treatment at a temperature in the range of 140 to 240 ° C. for 15 minutes or less for 1 second or longer. Method for high-temperature forming of an alloy plate. 請求項1〜請求項4のいずれかの請求項に記載の高温成形方法によって製造された成形品であって、前記予備時効処理後、15日以内に行なわれる曲げ加工での曲げ性が良好で、かつ前記予備時効処理後、15日以内に行なわれる170℃×20分の塗装焼付け処理により耐力が30MPa以上高くなって、170MPa以上の耐力値を示すことを特徴とする、Al−Mg−Si系合金からなる高温成形品。   It is a molded article manufactured by the high temperature molding method according to any one of claims 1 to 4, and has good bendability in bending performed within 15 days after the preliminary aging treatment. In addition, Al-Mg-Si is characterized in that the yield strength is increased by 30 MPa or more by a paint baking process at 170 ° C. for 20 minutes performed within 15 days after the preliminary aging treatment, and exhibits a yield value of 170 MPa or more. High-temperature molded product made of an alloy.
JP2008152447A 2008-06-11 2008-06-11 High temperature forming method of Al-Mg-Si alloy plate Expired - Fee Related JP5313554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008152447A JP5313554B2 (en) 2008-06-11 2008-06-11 High temperature forming method of Al-Mg-Si alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152447A JP5313554B2 (en) 2008-06-11 2008-06-11 High temperature forming method of Al-Mg-Si alloy plate

Publications (3)

Publication Number Publication Date
JP2009299104A JP2009299104A (en) 2009-12-24
JP2009299104A5 true JP2009299104A5 (en) 2010-05-06
JP5313554B2 JP5313554B2 (en) 2013-10-09

Family

ID=41546298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152447A Expired - Fee Related JP5313554B2 (en) 2008-06-11 2008-06-11 High temperature forming method of Al-Mg-Si alloy plate

Country Status (1)

Country Link
JP (1) JP5313554B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8438757B2 (en) 2009-06-23 2013-05-14 Mark Costin Roser Human locomotion assisting shoe
JP5693904B2 (en) * 2010-10-05 2015-04-01 株式会社Uacj Manufacturing method of superplastic molded product
KR101782664B1 (en) * 2010-11-01 2017-09-27 엔지케이 인슐레이터 엘티디 Heat treatment method and heat treatment apparatus
CN103710651B (en) * 2013-12-10 2015-07-01 中南大学 Aging heat treatment method for Al-Zn-Mg-Cu series high-strength aluminum alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4794862B2 (en) * 2004-01-07 2011-10-19 新日本製鐵株式会社 Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability
JP5111966B2 (en) * 2007-07-26 2013-01-09 古河スカイ株式会社 Method for manufacturing aluminum alloy panel

Similar Documents

Publication Publication Date Title
CN110983131B (en) 7-series aluminum alloy section and manufacturing method thereof
US20160145722A1 (en) Alloy casting material and method for manufacturing alloy object
JPWO2017169962A1 (en) High strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability, and method for producing the same
TW201615857A (en) Rolled aluminum alloy material
WO2015182748A1 (en) Method for manufacturing aluminum alloy member and aluminum alloy member using same
JP2015040340A (en) Molding aluminum alloy sheet and method for manufacturing the same
JP2009299104A5 (en)
EP3505648B1 (en) High-strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for producing internal combustion engine piston
JP2002235158A (en) Method for producing high strength aluminum alloy extrusion shape material having excellent bending workability
JP4229307B2 (en) Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same
JP3670706B2 (en) Method for producing high-strength aluminum alloy extrusion mold with excellent bending workability
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JP5313554B2 (en) High temperature forming method of Al-Mg-Si alloy plate
WO2016074424A1 (en) Magnesium alloy and preparation method and use thereof
JP2013053361A (en) Aluminum alloy for flying body excellent in heat-resistant strength
JP6726058B2 (en) Manufacturing method of Al alloy casting
JP6587533B2 (en) Aluminum alloy extruded material for cutting with excellent fatigue strength characteristics and method for producing the same
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP2007239005A (en) Method for producing 6000 series aluminum alloy sheet having excellent room temperature non-aging property, formability and coating/baking hardenability
JP2014201787A (en) High strength aluminum extrusion alloy and manufacturing method therefor
JPWO2018003709A1 (en) Aluminum alloy plate excellent in ridging resistance and hem bendability and method for producing the same
KR20140050172A (en) High strength and high toughness magnesium alloy with suppressed discontinuous precipitation
KR101786344B1 (en) Aluminum alloy for cylinder head method for manufacturing cylinder head using the same
JP5688744B2 (en) High strength and high toughness copper alloy forging
EP4083248A1 (en) Aluminum alloy and preparation method thereof, and aluminum alloy structural member