JP2009298601A - Method for producing metal oxynitride - Google Patents

Method for producing metal oxynitride Download PDF

Info

Publication number
JP2009298601A
JP2009298601A JP2008151372A JP2008151372A JP2009298601A JP 2009298601 A JP2009298601 A JP 2009298601A JP 2008151372 A JP2008151372 A JP 2008151372A JP 2008151372 A JP2008151372 A JP 2008151372A JP 2009298601 A JP2009298601 A JP 2009298601A
Authority
JP
Japan
Prior art keywords
metal oxynitride
metal
raw material
oxynitride
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008151372A
Other languages
Japanese (ja)
Inventor
Takeshi Hattori
武司 服部
Yutaka Ito
伊藤  豊
Kenji Nakane
堅次 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008151372A priority Critical patent/JP2009298601A/en
Publication of JP2009298601A publication Critical patent/JP2009298601A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a metal oxynitride being minute, having a homogeneous composition and having high crystallinity. <P>SOLUTION: The method for producing the metal oxynitride is characterized by that a metal oxynitride raw material is reacted hydrothermally under the existence of water in a supercritical state or a subcritical state. In the method, the metal oxynitride raw material contains at least one kind of metal elements selected from among Group 4 elements and Group 5 elements in the IUPAC periodic table. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属酸窒化物の製造方法に関する。   The present invention relates to a method for producing a metal oxynitride.

金属酸窒化物は、燃料電池などの各種電気化学システムにおける電極に用いられている資源面で制約のある白金触媒にかわる電極触媒として、その適用が試みられている。このような金属酸窒化物の製造方法として、特許文献1には、金属酸化物粉末およびアンモニアガスを原料として用いて、例えば850℃の高温で熱処理することにより窒化する方法が開示されている。   Application of metal oxynitrides has been attempted as an electrode catalyst that replaces platinum catalysts that are limited in terms of resources used for electrodes in various electrochemical systems such as fuel cells. As a method for producing such a metal oxynitride, Patent Document 1 discloses a method of nitriding by using a metal oxide powder and ammonia gas as raw materials and performing a heat treatment at a high temperature of 850 ° C., for example.

特開2005−161203JP2005-161203

しかしながら、上述のような従来技術においては、微粒化を促進し難く、得られる電極触媒の触媒活性として、未だ改良の余地はある。本発明の目的は、微粒でかつ均一組成で、しかも結晶性の高い金属酸窒化物の製造方法を提供することにある。   However, in the prior art as described above, it is difficult to promote atomization, and there is still room for improvement as the catalytic activity of the obtained electrode catalyst. An object of the present invention is to provide a method for producing a metal oxynitride having fine particles, a uniform composition, and high crystallinity.

本発明者らは、上記の課題を解決すべく検討を重ね、本発明に至った。すなわち、本発明は、下記の発明を提供する。
<1>金属酸窒化物原料を、超臨界状態または亜臨界状態の水の存在下において、水熱反応させることを特徴とする金属酸窒化物の製造方法。
<2>金属酸窒化物原料が、IUPAC周期表における第4族元素および第5族元素から選ばれる少なくとも1種の金属元素を含む前記<1>記載の製造方法。
The inventors of the present invention have repeatedly studied to solve the above problems, and have reached the present invention. That is, the present invention provides the following inventions.
<1> A method for producing a metal oxynitride, comprising subjecting a metal oxynitride raw material to a hydrothermal reaction in the presence of water in a supercritical state or a subcritical state.
<2> The production method according to <1>, wherein the metal oxynitride material includes at least one metal element selected from Group 4 elements and Group 5 elements in the IUPAC periodic table.

本発明によれば、微粒でかつ均一組成で、しかも結晶性の高い金属酸窒化物を提供することができる。本発明を用いることにより、資源面で制約のある白金触媒にかわる電極触媒で、燃料電池などの各種電気化学システムの電極に好適な電極触媒を提供することもでき、さらには、光触媒、蛍光体などへの適用も可能であり、本発明は工業的に極めて有用である。   According to the present invention, it is possible to provide a metal oxynitride having fine particles, a uniform composition, and high crystallinity. By using the present invention, it is possible to provide an electrode catalyst suitable for an electrode of various electrochemical systems such as a fuel cell as an electrode catalyst that replaces a platinum catalyst that is limited in terms of resources. Furthermore, a photocatalyst, a phosphor The present invention is extremely useful industrially.

本発明の金属酸窒化物の製造方法は、金属酸窒化物原料を、超臨界状態または亜臨界状態の水の存在下において、水熱反応させることを特徴とする。本発明により、微粒でかつ均一組成で、しかも結晶性の高い金属酸窒化物を得ることができる。   The method for producing a metal oxynitride of the present invention is characterized in that a metal oxynitride raw material is subjected to a hydrothermal reaction in the presence of water in a supercritical state or a subcritical state. According to the present invention, it is possible to obtain a metal oxynitride having a fine particle size, a uniform composition, and high crystallinity.

本発明において、金属酸窒化物原料としては、例えば、金属化合物および窒素含有化合物を用いることができる。金属化合物としては、例えば、金属硝酸塩、金属硫酸塩、金属塩化物等を挙げることができる。また、窒素含有化合物としては、例えば、アンモニア、アンモニウム塩、ヒドラジン、金属アミド、金属アンミン錯体等を挙げることができる。また、金属酸窒化物の生成を促進させる意味で、アルカリ金属の水酸化物を併用することが好ましい。   In the present invention, as the metal oxynitride raw material, for example, a metal compound and a nitrogen-containing compound can be used. Examples of the metal compound include metal nitrate, metal sulfate, and metal chloride. Examples of nitrogen-containing compounds include ammonia, ammonium salts, hydrazine, metal amides, metal ammine complexes, and the like. In addition, it is preferable to use an alkali metal hydroxide in combination to promote the formation of metal oxynitride.

上記の金属酸窒化物原料は、水に溶解できるものであることが好ましい。この場合、金属酸窒化物原料を、水に溶解させて得られる水溶液(以下、原料水溶液ということがある。)を、超臨界状態または亜臨界状態にすることで、本発明の金属酸窒化物を製造することができる。   The metal oxynitride raw material is preferably one that can be dissolved in water. In this case, the aqueous solution obtained by dissolving the metal oxynitride raw material in water (hereinafter sometimes referred to as raw material aqueous solution) is brought into a supercritical state or a subcritical state, whereby the metal oxynitride of the present invention is used. Can be manufactured.

金属酸窒化物原料を水に溶解させる場合、原料水溶液における金属化合物濃度としては、特に制限されるものではないが、例えば、0.01mol/L〜1mol/L程度である。また、原料水溶液における窒素含有化合物濃度は、金属化合物濃度に応じて、適宜調整すればよい。   When the metal oxynitride raw material is dissolved in water, the concentration of the metal compound in the raw material aqueous solution is not particularly limited, but is, for example, about 0.01 mol / L to 1 mol / L. Moreover, what is necessary is just to adjust the nitrogen-containing compound density | concentration in raw material aqueous solution suitably according to a metal compound density | concentration.

水の超臨界点は、374℃、22MPaである。すなわち、本発明において、超臨界状態の水とは、温度374℃以上でかつ圧力22MPa以上である条件下の水であり、また、亜臨界状態の水としては、温度250℃以上でかつ圧力20MPa以上である条件下の水である。このような水の存在下に、金属酸窒化物原料をおくことにより、水熱反応を促進させ、微粒でかつ均一組成で、しかも結晶性に優れる金属酸窒化物を得ることができる。   The supercritical point of water is 374 ° C. and 22 MPa. That is, in the present invention, supercritical water is water under a temperature of 374 ° C. or higher and a pressure of 22 MPa or higher, and subcritical water is a temperature of 250 ° C. or higher and a pressure of 20 MPa. Water under the above conditions. By placing the metal oxynitride raw material in the presence of such water, the hydrothermal reaction is promoted, and a metal oxynitride having a fine particle, uniform composition and excellent crystallinity can be obtained.

本発明において、得られる金属酸窒化物の触媒活性を高める意味で、金属酸窒化物原料が、IUPAC周期表における第4族元素および第5族元素から選ばれる少なくとも1種の金属元素を含むことが好ましい。第4族元素としては、Ti、Zr、Hfを挙げることができ、第5族元素としては、V、Nb、Taを挙げることができる。中でも、金属酸窒化物原料は、Ti、Zr、NbおよびTaからなる群から選ばれる少なくとも一種の金属元素を含むことが、さらに好ましい。また、資源面の制約が少ない観点で、好ましいのはTi、Zrである。   In the present invention, the metal oxynitride raw material contains at least one metal element selected from Group 4 elements and Group 5 elements in the IUPAC periodic table in order to enhance the catalytic activity of the obtained metal oxynitride. Is preferred. Examples of the Group 4 element include Ti, Zr, and Hf. Examples of the Group 5 element include V, Nb, and Ta. Among these, it is more preferable that the metal oxynitride material contains at least one metal element selected from the group consisting of Ti, Zr, Nb, and Ta. Further, Ti and Zr are preferable from the viewpoint of less resource constraints.

本発明の金属酸窒化物の製造方法を実施するための反応装置としては、バッチ式の反応装置や連続式(流通式)の反応装置を用いることができる。バッチ式の反応装置を例にとって説明すると、反応容器内に原料水溶液を入れて密閉し、これを所定温度で所定時間保持した後、冷却し、容器から生成物を回収する。反応容器としては、保持温度に対して充分な耐熱性を持ち、反応時の圧力に対して充分な耐圧性を持ち、用いる原料水溶液や中間体、生成物に対して充分な耐食性を持つ構造、材質のものを選べばよい。反応容器の材質は、原料水溶液の種類や反応温度、圧力などの条件に基づき、適切なものを選択すればよいが、例えばSUS316などのステンレス鋼や、ハステロイ、インコネルなどのニッケル合金、あるいはチタン合金を挙げることができる。また、金などの耐食性の高い材料で容器の内面をライニングしてもよい。所定温度に保持するためには、例えば電気炉を利用することができる。この場合、電気炉は、反応容器の設置、取出しなどの操作を行い易いように、電気炉の加熱部に反応容器を挿入できる構造にすればよい。また、昇温時、所定温度保持時に、内容物の均一性を保つ意味で、反応容器を振盪してもよい。保持する所定温度に応じて、反応容器内に入れる原料水溶液の量を調整して、水熱反応時の反応容器内の圧力を調整する事ができる。所定時間保持した後、反応容器を冷却する方法としては、反応容器ごと水に浸けるなどして急冷する手法が挙げられる。生成物を回収する方法としては、固液分離、洗浄、乾燥し、粉末状態で回収してもよいし、スラリー状態で回収することも出来る。   As a reaction apparatus for carrying out the method for producing a metal oxynitride of the present invention, a batch-type reaction apparatus or a continuous (flow-through) reaction apparatus can be used. A batch type reaction apparatus will be described as an example. A raw material aqueous solution is sealed in a reaction vessel, and this is kept at a predetermined temperature for a predetermined time, then cooled, and a product is recovered from the vessel. As a reaction vessel, it has sufficient heat resistance to the holding temperature, has sufficient pressure resistance to the pressure during the reaction, and has a structure having sufficient corrosion resistance to the raw material aqueous solution, intermediate and product used, Choose a material. The material of the reaction vessel may be selected appropriately based on conditions such as the type of raw material aqueous solution, reaction temperature, and pressure. For example, stainless steel such as SUS316, nickel alloy such as Hastelloy and Inconel, or titanium alloy Can be mentioned. Further, the inner surface of the container may be lined with a material having high corrosion resistance such as gold. In order to maintain at a predetermined temperature, for example, an electric furnace can be used. In this case, the electric furnace may be structured such that the reaction container can be inserted into the heating portion of the electric furnace so that operations such as installation and removal of the reaction container can be easily performed. In addition, the reaction vessel may be shaken in order to maintain the uniformity of the contents when the temperature is raised and when the predetermined temperature is maintained. The pressure in the reaction vessel at the time of the hydrothermal reaction can be adjusted by adjusting the amount of the raw material aqueous solution put in the reaction vessel according to the predetermined temperature to be held. As a method for cooling the reaction vessel after being held for a predetermined time, a method of quenching the reaction vessel by immersing it in water or the like can be mentioned. As a method for recovering the product, solid-liquid separation, washing, drying, and recovery in a powder state or a slurry state can be performed.

本発明において、金属酸窒化物原料が、IUPAC周期表における第4族元素および第5族元素から選ばれる少なくとも1種の金属元素を含む場合には、得られる金属酸窒化物は、電極触媒として作用することができ、例えば、酸性電解質中において、可逆水素電極電位に対して0.4V以上の電位で用いることができる。具体的には、該金属酸窒化物を、燃料電池などの電気化学システムにおいて、電極に担持され、酸素を還元するための電極触媒、すなわち酸素還元触媒として用いることができる。酸素還元触媒として用いる場合の電位の上限は、電極の安定性に依存し、通常、酸素が発生する電位である約1.6Vである。また、水素酸化触媒として用いることも可能である。   In the present invention, when the metal oxynitride raw material contains at least one metal element selected from Group 4 elements and Group 5 elements in the IUPAC periodic table, the obtained metal oxynitride serves as an electrode catalyst. For example, in an acidic electrolyte, it can be used at a potential of 0.4 V or more with respect to the reversible hydrogen electrode potential. Specifically, the metal oxynitride can be used as an electrode catalyst for reducing oxygen by being supported on an electrode in an electrochemical system such as a fuel cell, that is, an oxygen reduction catalyst. The upper limit of the potential when used as an oxygen reduction catalyst depends on the stability of the electrode, and is usually about 1.6 V, which is the potential at which oxygen is generated. It can also be used as a hydrogen oxidation catalyst.

本発明の製造方法により得られる金属酸窒化物を、電極触媒として用いる場合には、酸化タングステン、酸化イリジウムなどの導電性酸化物や炭素材料などの電子導電性の触媒担体に分散させて用いることもできるし、酸化アルミニウムのような耐食性の高い酸化物などの材料と本発明における金属酸窒化物とを混合して用いることもできる。また、該材料を上記の原料水溶液に分散させて、これを超臨界状態または亜臨界状態にして、該材料を構成する粒子の表面に、金属酸窒化物を形成させることもできる。特に、金属酸窒化物原料が、資源量の限られた金属元素を含有する場合には、この形成は有用である。   When the metal oxynitride obtained by the production method of the present invention is used as an electrode catalyst, the metal oxynitride should be dispersed in a conductive oxide such as tungsten oxide or iridium oxide or an electronically conductive catalyst carrier such as a carbon material. Alternatively, a material such as an oxide having high corrosion resistance such as aluminum oxide and the metal oxynitride according to the present invention can be mixed and used. In addition, the material can be dispersed in the above raw material aqueous solution so as to be in a supercritical state or a subcritical state, and a metal oxynitride can be formed on the surface of the particles constituting the material. This formation is particularly useful when the metal oxynitride raw material contains a metal element with a limited amount of resources.

また、電極触媒を、電極に担持させて、酸性電解質溶液中において、水の電気分解、有機物の電気分解などを行う電極にも用いることができる。   Moreover, an electrode catalyst can be carried on an electrode and used for an electrode that performs electrolysis of water, electrolysis of organic matter, etc. in an acidic electrolyte solution.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれら実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited by these Examples.

実施例1
オキシ塩化ジルコニウム水溶液に、水酸化カリウム水溶液およびアンモニア水溶液を添加し、原料水溶液1を調製する。原料水溶液1を反応容器内に入れて密閉(このとき、反応容器の内容積に対する原料水溶液1の体積は30%)した後、これを400℃に加熱した電気炉内に入れ、加熱した後、反応容器を取り出して、容器ごと水冷する。その後、反応容器から、生成物のスラリーを回収し、固液分離、洗浄、乾燥し、ジルコニウム酸窒化物を得る。
Example 1
A raw material aqueous solution 1 is prepared by adding a potassium hydroxide aqueous solution and an ammonia aqueous solution to the zirconium oxychloride aqueous solution. After the raw material aqueous solution 1 was put in a reaction vessel and sealed (at this time, the volume of the raw material aqueous solution 1 with respect to the internal volume of the reaction vessel was 30%), this was placed in an electric furnace heated to 400 ° C. and heated, Take out the reaction vessel and cool the whole vessel with water. Thereafter, the product slurry is recovered from the reaction vessel, solid-liquid separated, washed and dried to obtain zirconium oxynitride.

実施例2
四塩化チタン水溶液に、水酸化カリウム水溶液およびアンモニア水溶液を添加し、原料水溶液2を調製する。原料水溶液2を反応容器内に入れて密閉(このとき、反応容器の内容積に対する原料水溶液2の体積は30%)した後、これを400℃に加熱した電気炉内に入れ、加熱した後、反応容器を取り出して、容器ごと水冷する。その後、反応容器から、生成物のスラリーを回収し、固液分離、洗浄、乾燥し、チタン酸窒化物を得る。
Example 2
A raw material aqueous solution 2 is prepared by adding an aqueous potassium hydroxide solution and an aqueous ammonia solution to the aqueous titanium tetrachloride solution. After the raw material aqueous solution 2 was put in a reaction vessel and sealed (at this time, the volume of the raw material aqueous solution 2 with respect to the internal volume of the reaction vessel was 30%), this was placed in an electric furnace heated to 400 ° C. and heated, Take out the reaction vessel and cool the whole vessel with water. Thereafter, the product slurry is recovered from the reaction vessel, solid-liquid separated, washed and dried to obtain titanium oxynitride.

〔電気化学システムでの使用例〕
上記により得られるジルコニウム酸窒化物、チタン酸窒化物について、純水と混合したのち、「ナフィオン(登録商標)」溶液(デュポン社製)と混合し、超音波を照射して撹拌して懸濁液とし、この懸濁液をグラッシーカーボン電極に塗布して、窒素気流下で乾燥後、120℃で1時間加熱して、電極触媒をグラッシーカーボン電極上に担持させた電極を得る。この修飾電極を濃度0.1モル/Lの硫酸水溶液中に浸漬し、30℃、大気圧下で、酸素雰囲気下または窒素雰囲気下に、それぞれ可逆水素電極電位に対して0.05〜1.2Vの走査範囲で、50mV/sの走査速度で電位をサイクルして、サイクルごとの各電位における電流値を比較することにより、電極安定性を確認することができる。また、酸素雰囲気下における電流値と窒素雰囲気下におけるそれとを比較して、酸素還元電流を求めて、これらの金属酸窒化物の酸素還元活性を確認することができる。
[Examples of use in electrochemical systems]
Zirconium oxynitride and titanium oxynitride obtained as described above are mixed with pure water, then mixed with a “Nafion (registered trademark)” solution (manufactured by DuPont), suspended by stirring with ultrasonic irradiation. The resulting suspension is applied to a glassy carbon electrode, dried under a nitrogen stream, and heated at 120 ° C. for 1 hour to obtain an electrode having an electrode catalyst supported on the glassy carbon electrode. This modified electrode is immersed in an aqueous sulfuric acid solution having a concentration of 0.1 mol / L, and 0.05 to 1. The electrode stability can be confirmed by cycling the potential at a scanning speed of 50 mV / s in the scanning range of 2 V and comparing the current value at each potential for each cycle. Further, the current value in an oxygen atmosphere is compared with that in a nitrogen atmosphere to obtain an oxygen reduction current, and the oxygen reduction activity of these metal oxynitrides can be confirmed.

Claims (2)

金属酸窒化物原料を、超臨界状態または亜臨界状態の水の存在下において、水熱反応させることを特徴とする金属酸窒化物の製造方法。   A method for producing a metal oxynitride, comprising subjecting a metal oxynitride raw material to a hydrothermal reaction in the presence of water in a supercritical state or a subcritical state. 金属酸窒化物原料が、IUPAC周期表における第4族元素および第5族元素から選ばれる少なくとも1種の金属元素を含む請求項1記載の製造方法。   The production method according to claim 1, wherein the metal oxynitride material contains at least one metal element selected from Group 4 elements and Group 5 elements in the IUPAC periodic table.
JP2008151372A 2008-06-10 2008-06-10 Method for producing metal oxynitride Pending JP2009298601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151372A JP2009298601A (en) 2008-06-10 2008-06-10 Method for producing metal oxynitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008151372A JP2009298601A (en) 2008-06-10 2008-06-10 Method for producing metal oxynitride

Publications (1)

Publication Number Publication Date
JP2009298601A true JP2009298601A (en) 2009-12-24

Family

ID=41545906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151372A Pending JP2009298601A (en) 2008-06-10 2008-06-10 Method for producing metal oxynitride

Country Status (1)

Country Link
JP (1) JP2009298601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002550A1 (en) * 2010-06-30 2012-01-05 住友化学株式会社 Method for producing electrode catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215718A (en) * 1988-02-24 1989-08-29 Mitsubishi Metal Corp Titanium oxide nitride fiber and production thereof
JP2000357686A (en) * 1999-01-27 2000-12-26 Matsushita Electric Ind Co Ltd Contamination removing method, film-forming method, semiconductor device and film-forming apparatus
JP2004035362A (en) * 2002-07-05 2004-02-05 Catalysts & Chem Ind Co Ltd Tubular titanium oxide particle and method for manufacturing tubular titanium oxide particle
JP2005161203A (en) * 2003-12-02 2005-06-23 Japan Science & Technology Agency Metal oxynitride electrode catalyst
JP2005532897A (en) * 2002-07-15 2005-11-04 ハンファ ケミカル コーポレーション Method for producing fine metal oxide particles
JP2008053581A (en) * 2006-08-28 2008-03-06 Osaka Univ Oxide forming method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215718A (en) * 1988-02-24 1989-08-29 Mitsubishi Metal Corp Titanium oxide nitride fiber and production thereof
JP2000357686A (en) * 1999-01-27 2000-12-26 Matsushita Electric Ind Co Ltd Contamination removing method, film-forming method, semiconductor device and film-forming apparatus
JP2004035362A (en) * 2002-07-05 2004-02-05 Catalysts & Chem Ind Co Ltd Tubular titanium oxide particle and method for manufacturing tubular titanium oxide particle
JP2005532897A (en) * 2002-07-15 2005-11-04 ハンファ ケミカル コーポレーション Method for producing fine metal oxide particles
JP2005161203A (en) * 2003-12-02 2005-06-23 Japan Science & Technology Agency Metal oxynitride electrode catalyst
JP2008053581A (en) * 2006-08-28 2008-03-06 Osaka Univ Oxide forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002550A1 (en) * 2010-06-30 2012-01-05 住友化学株式会社 Method for producing electrode catalyst

Similar Documents

Publication Publication Date Title
JP5146121B2 (en) Method for producing metal carbonitride
Bao et al. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle
CN101331240B (en) Method for the recovery of ruthenium from used ruthenium oxide-containing catalysts
Kominami et al. Photocatalytic hydrogen formation from ammonia and methyl amine in an aqueous suspension of metal-loaded titanium (IV) oxide particles
CN106925314B (en) A kind of method of nickel assisted cryogenic synthesis molybdenum carbide elctro-catalyst
WO2005053840A1 (en) Metal oxynitride electrode catalyst
CN105244513A (en) Graphite-phase carbon nitride-modified carbon black-loaded platinum-palladium alloy nano electrocatalyst and preparation method
Cui et al. Theory-guided design of nanoporous CuMn alloy for efficient electrocatalytic nitrogen reduction to ammonia
JP2010509050A (en) Extraction of platinum group metals from spent catalyst by electrochemical method
CN104775036B (en) The method that noble metal is reclaimed from the waste and old Ni―Ti anode with noble coatings
CN109701510A (en) A kind of preparation method of Magneli phase oxidation titanium mesopore surfaces
JP2020501875A (en) Method for producing catalyst containing intermetallic compound and catalyst produced by the method
CN112237927A (en) Catalyst for electrocatalytic reduction of nitrate and preparation method and application thereof
CN106865618A (en) One kind &#34; peanut shape &#34; Mn2O3The preparation method of/C particles
Zhang et al. Preparation of CeNi2 intermetallic compound by direct electroreduction of solid CeO2-2NiO in molten LiCl
CN110902649B (en) Method for preparing iron-nitrogen-carbon catalyst by using template
JP2010227843A (en) Method for producing electrode catalyst, and electrode catalyst
Cai et al. Ruthenium/titanium oxide interface promoted electrochemical nitrogen reduction reaction
JP2007084890A (en) Oxygen generating device and oxygen generating method in molten salt
JP2009298601A (en) Method for producing metal oxynitride
Rivera et al. Electrochemical study in acid aqueous solution and ex-situ X-ray photoelectron spectroscopy analysis of metallic rhenium surface
CN103933979B (en) A kind of for control TiO 2the preparation method of nano tube supported metal state
Zaichenko et al. Recovery of tungsten and cobalt from secondary raw materials by a combined electrochemical and chemical procedure
JP2017043521A (en) Ti4O7 PRODUCTION METHOD
WO2012002550A1 (en) Method for producing electrode catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305