JP2009297116A - Low-invasive medical tool and method of manufacturing the same - Google Patents

Low-invasive medical tool and method of manufacturing the same Download PDF

Info

Publication number
JP2009297116A
JP2009297116A JP2008152460A JP2008152460A JP2009297116A JP 2009297116 A JP2009297116 A JP 2009297116A JP 2008152460 A JP2008152460 A JP 2008152460A JP 2008152460 A JP2008152460 A JP 2008152460A JP 2009297116 A JP2009297116 A JP 2009297116A
Authority
JP
Japan
Prior art keywords
invasive medical
medical tool
minimally invasive
endoscope
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008152460A
Other languages
Japanese (ja)
Inventor
Yoichi Haga
洋一 芳賀
Tadao Matsunaga
忠雄 松永
Wataru Makishi
渉 牧志
Akira Zen
威 全
Shine Tatsu
新栄 竜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEMSAS Inc
Tohoku University NUC
Original Assignee
MEMSAS Inc
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEMSAS Inc, Tohoku University NUC filed Critical MEMSAS Inc
Priority to JP2008152460A priority Critical patent/JP2009297116A/en
Publication of JP2009297116A publication Critical patent/JP2009297116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-invasive medical tool having a highly functional part securing a narrow diameter and a wide inner lumen, optimizing the length of a hard part to the optimum shortness by adding the flexibility by the spiraling process, and allowing easy mounting of various micro-components such as an integrated circuit and a micro-sensor while keeping the narrow diameter. <P>SOLUTION: In the low-invasive medical tool such as a catheter or endoscope, a tubular insulated substrate having a circuit pattern on the outer surface is pierced to add a mechanical function. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、カテーテルや内視鏡等の低侵襲医療ツールに関する。   The present invention relates to a minimally invasive medical tool such as a catheter or an endoscope.

現在一般的に使われている内視鏡や,一部の屈曲機構付きカテーテルの屈曲機構は体外からワイヤを牽引することにより駆動されている。そのため,内視鏡のシャフトは,屈曲動作時に座屈しないように硬くなっている。また,内視鏡シャフトが複雑に蛇行したり,ループを形成するとワイヤによる牽引力や,回転トルクを内視鏡先端まで正確に伝えることができないため,操作が難しくなる。さらに,腸のようなやわらかい組織内部を観察する場合,腸壁が内視鏡に比べて薄くやわらかいため,内視鏡を腸内部に挿入しても腸が伸張するため内視鏡先端部を進めることが難しく,深部まで挿入し観察することが難しい。   Endoscopes that are commonly used at present and some bending mechanisms of catheters with bending mechanisms are driven by pulling wires from outside the body. Therefore, the endoscope shaft is stiff so as not to buckle during bending. Further, if the endoscope shaft meanders in a complicated manner or forms a loop, it becomes difficult to operate because the traction force and rotational torque by the wire cannot be accurately transmitted to the distal end of the endoscope. Furthermore, when observing the inside of a soft tissue such as the intestine, the intestinal wall is thinner and softer than the endoscope, so that the intestine extends even when the endoscope is inserted into the intestine, so that the distal end of the endoscope is advanced. It is difficult to insert and observe deeply.

ワイヤ牽引に代わる屈曲機構としてNi-Ti 形状記憶合金(Shape Memory Alloy SMA)コイルアクチュエータを用いた内視鏡を作製した。これまでにもSMA アクチュエータを用いた内視鏡やカテーテルを作製する試み(非特許文献1)(非特許文献2)が行われてきた。我々は,これまでに屈曲機構のアクチュエータをコイル状やジグザグばね形状にすることで動作時でもやわらかい状態を保つことができる医療用能動カテーテルやガイドワイヤーの開発を行ってきた(非特許文献3) (非特許文献4) (非特許文献5) (非特許文献6)。本機構では,先端の屈曲動作に電気エネルギーを用いているため,シャフト内部はワイヤに代わり,やわらかい電気配線が通るため内視鏡全体をやわらかくできる。そのため,これまで挿入の難しかった腸などのようにやわらかく,複雑に入り組んだ部位に挿入し,先端を自由に屈曲させて観察を行うことができ,さらに貫通穴(ワーキングチャネル)を通して生検・治療を行うことが可能となる(図1)。   An endoscope using a Ni-Ti shape memory alloy (SMA) coil actuator was fabricated as a bending mechanism instead of wire pulling. Attempts have been made to produce endoscopes and catheters using SMA actuators (Non-Patent Document 1) (Non-Patent Document 2). We have so far developed a medical active catheter and guide wire that can maintain a soft state even during operation by making the actuator of the bending mechanism into a coil shape or a zigzag spring shape (Non-patent Document 3). (Non-patent document 4) (Non-patent document 5) (Non-patent document 6). In this mechanism, since electric energy is used for the bending motion of the tip, the entire endoscope can be softened because a soft electric wiring passes through the shaft instead of a wire. Therefore, it can be inserted into a soft, complicated site like the intestine, which has been difficult to insert until now, and the tip can be bent freely for observation, and biopsy and treatment can be performed through a through hole (working channel). (Fig. 1).

体内に挿入するカテーテルや内視鏡は,外径が細く,また,硬く曲がらない硬性部が短い方が挿入性・操作性に優れる。これらの細径化および多機能化を行う場合,電子部品など機能付加のための微小部品を実装すると,カテーテルや内視鏡の機能として重要な内腔を埋めてしまったり,硬性部が長くなり挿入性が損なわれてしまう。本発明は非平面への微細加工技術を用いることにより,内腔の空間を保ちながら硬性部を短くする低侵襲医療ツールの高機能化、多機能化に関する。   For catheters and endoscopes inserted into the body, the outer diameter is narrow, and the shorter the rigid part that does not bend hard, the better the insertability and operability. When these small diameters and multi-functions are implemented, if electronic parts such as electronic parts are mounted, the internal lumens that are important for the function of catheters and endoscopes will be filled, and the rigid parts will become longer. Insertability is impaired. The present invention relates to a highly functional and multi-functionalization of a minimally invasive medical tool that shortens a hard part while maintaining a space of a lumen by using a microfabrication technique for non-planar surfaces.

K Ikuta, M Tsukamoto, S Hirose. “Shape Memory Alloy Servo Actuator System with Electric Resistance Feedback and Application for Active Endoscope”, Proceedings of 1988 IEEE Int. Conf. on Robotics and Automation, April 24-29, Philadelphia, USA, pp. 427-430 (1988)K Ikuta, M Tsukamoto, S Hirose. “Shape Memory Alloy Servo Actuator System with Electric Resistance Feedback and Application for Active Endoscope”, Proceedings of 1988 IEEE Int. Conf. On Robotics and Automation, April 24-29, Philadelphia, USA, pp .427-430 (1988) S Guo, T Fukuda, F Arai, M Negoro, K Oguro. “A Study on Active Catheter System”, JRSJ, Vol. 14, No. 6, pp. 820-835, (1996) (in Japanese) 郭 書祥,福田 敏男,新井 史人,根来 真,小黒 啓介.「能動カテーテルに関する研究」,日本ロボット学会誌,Vol. 14, No. 6, pp. 820-835 (1996)S Guo, T Fukuda, F Arai, M Negoro, K Oguro. “A Study on Active Catheter System”, JRSJ, Vol. 14, No. 6, pp. 820-835, (1996) (in Japanese) , Toshio Fukuda, Fumito Arai, Makoto Nerai, Keisuke Oguro. "Research on active catheters", Journal of the Robotics Society of Japan, Vol. 14, No. 6, pp. 820-835 (1996) Y Haga, M Esashi. “Small Diameter Active Catheter Using Shape Memory Alloy Coils”, T.IEE Japan, Vol. 120-E, No. 11, pp. 509-514 (2000) (in Japanese) 芳賀 洋一,江刺 正喜.「形状記憶合金コイルを用いた細径能動カテーテル」,電気学会論文誌E,Vol. 120-E, No. 11, pp. 509-514, (2000)Y Haga, M Esashi. “Small Diameter Active Catheter Using Shape Memory Alloy Coils”, T.IEE Japan, Vol. 120-E, No. 11, pp. 509-514 (2000) (in Japanese) Yoichi Haga, Masayoshi Esashi . "Small diameter active catheter using shape memory alloy coil", IEEJ Transactions E, Vol. 120-E, No. 11, pp. 509-514, (2000) T Mineta, T Mitsui, Y Watanabe, S Kobayashi, Y Haga, M Esashi. “An Active Guide Wire with Shape Memory Alloy Bending Actuator Fabricated by Room Temperature Process”, Sensors and ActuatorsA, Vol. 97-98, pp. 632-637 (2002)T Mineta, T Mitsui, Y Watanabe, S Kobayashi, Y Haga, M Esashi. “An Active Guide Wire with Shape Memory Alloy Bending Actuator Fabricated by Room Temperature Process”, Sensors and ActuatorsA, Vol. 97-98, pp. 632- 637 (2002) M Mizushima, Y Haga, K Totsu, M Esashi. “Active Catheter Using Shape Memory Alloy for Treatment of Intestinal Obstruction”, J JSCAS, Vol. 6, pp. 23−29 (2004) (in Japanese)水島 昌徳,芳賀 洋一,戸津 健太郎,江刺 正喜.「形状記憶合金を用いた腸閉塞治療用能動カテーテル」,J JSCAS,Vol.6,pp. 23−29 (2004)M Mizushima, Y Haga, K Totsu, M Esashi. “Active Catheter Using Shape Memory Alloy for Treatment of Intestinal Obstruction”, J JSCAS, Vol. 6, pp. 23-29 (2004) (in Japanese) Mizushima Masanori, Haga Yoichi , Kentaro Totsu, Masaki Esashi. "Active catheter for intestinal obstruction treatment using shape memory alloy", J JSCAS, Vol.6, pp. 23-29 (2004) W Makishi, T Matsunaga, M Esashi, Y Haga. “Active Bending Electric Endoscope Using Shape Memory Alloy Coil Actuators”, T. IEE Japan, Vol.127-E, No.2, pp. 75-81 (2007) 牧志 渉, 松永忠雄, 江刺正喜, 芳賀洋一.「形状記憶合金を用いた能動屈曲電子内視鏡」,電気学会論文誌E, 127 巻 2 号 (2007), pp. 75-81W Makishi, T Matsunaga, M Esashi, Y Haga. “Active Bending Electric Endoscope Using Shape Memory Alloy Coil Actuators”, T. IEE Japan, Vol.127-E, No.2, pp. 75-81 (2007) Makishi Wataru , Tadao Matsunaga, Masayoshi Esashi, Yoichi Haga. "Active bending electronic endoscope using shape memory alloy", IEEJ Transactions, Vol. 127, No. 2 (2007), pp. 75-81

細径かつ広い内腔を確保した高機能部品が作成可能であり、らせん加工により可撓性を付加することで硬性部を最適限の短さに最適化でき、さらに細径を保ったまま集積回路やマイクロセンサなどの各種微小部品を容易に実装できる高機能な低侵襲医療ツールを提供することを目的とする。   High-functional parts with a small diameter and a wide lumen can be created, and by adding flexibility by spiral processing, the hard part can be optimized to the shortest possible length, and further integrated while maintaining a small diameter An object of the present invention is to provide a highly functional minimally invasive medical tool capable of easily mounting various micro components such as circuits and microsensors.

前記課題を解決するために、本発明の請求項1に記載の低侵襲医療ツールは、カテーテルや内視鏡等の低侵襲医療ツールにおいて、外周面に回路パターンを有するチューブ形状絶縁基板を貫通加工し機械的な機能を付加したことを特徴としている。   In order to solve the above-mentioned problem, a minimally invasive medical tool according to claim 1 of the present invention is a minimally invasive medical tool such as a catheter or an endoscope, and is formed by penetrating a tube-shaped insulating substrate having a circuit pattern on its outer peripheral surface. It is characterized by the addition of mechanical functions.

本発明の請求項2に記載の低侵襲医療ツールは、請求項1に記載の低侵襲医療ツールであって、前記チューブ形状絶縁基板をらせん状に加工し、可撓性を付加したことを特徴としている。   A minimally invasive medical tool according to a second aspect of the present invention is the minimally invasive medical tool according to the first aspect, wherein the tube-shaped insulating substrate is processed into a spiral shape to add flexibility. It is said.

本発明の請求項3に記載の低侵襲医療ツールは、請求項2に記載の低侵襲医療ツールであって、前記らせん体の長さ方向の伸縮に伴う外径寸法変化を用い、らせん体の外径寸法を制御することを特徴としている。   A minimally invasive medical tool according to a third aspect of the present invention is the minimally invasive medical tool according to the second aspect, wherein a change in the outer diameter associated with expansion and contraction in the longitudinal direction of the helical body is used. It is characterized by controlling the outer diameter.

本発明の請求項4に記載の低侵襲医療ツールは、請求項1ないし3のいずれかに記載の低侵襲医療ツールであって、前記らせん体の上に微小部品が実装されていることを特徴としている。   A minimally invasive medical tool according to a fourth aspect of the present invention is the minimally invasive medical tool according to any one of the first to third aspects, wherein a micro component is mounted on the spiral body. It is said.

本発明の請求項5に記載の低侵襲医療ツールは、請求項1ないし4のいずれかに記載の低侵襲医療ツールであって、前記チューブ形状絶縁基板がポリイミドまたはポリテトラフルオロエチレンで構成されていることを特徴としている。   A minimally invasive medical tool according to a fifth aspect of the present invention is the minimally invasive medical tool according to any one of the first to fourth aspects, wherein the tube-shaped insulating substrate is made of polyimide or polytetrafluoroethylene. It is characterized by being.

本発明の請求項6に記載の低侵襲医療ツールの製造方法は、カテーテルや内視鏡等の低侵襲医療ツールの製造方法において、外周面に回路パターンを有するチューブ形状絶縁基板を貫通加工し機械的な機能を付加したことを特徴としている。   The method for manufacturing a minimally invasive medical tool according to claim 6 of the present invention is a method for manufacturing a minimally invasive medical tool such as a catheter or an endoscope, through a tube-shaped insulating substrate having a circuit pattern on the outer peripheral surface. It features a special function.

本発明の請求項7に記載の低侵襲医療ツールの製造方法は、請求項6に記載の低侵襲医療ツールの製造方法であって、前記チューブ形状絶縁基板をらせん状に加工し、可撓性を付加したことを特徴としている。   A method for manufacturing a minimally invasive medical tool according to claim 7 of the present invention is the method for manufacturing a minimally invasive medical tool according to claim 6, wherein the tube-shaped insulating substrate is processed into a spiral shape and is flexible. It is characterized by having added.

本構成によれば、細径かつ広い内腔を確保した高機能部品が作成可能であり、らせん加工により可撓性を付加することで硬性部を最適限の短さに最適化でき、さらに細径を保ったまま集積回路やマイクロセンサなどの各種微小部品を容易に実装できることから、より良い低侵襲医療が可能になる。1体の高機能部品であることから高機能な低侵襲医療ツールが容易に実現できる。   According to this configuration, it is possible to create a high-functional part with a small diameter and a wide lumen, and by adding flexibility by spiral processing, the hard part can be optimized to the shortest possible, Since various micro components such as an integrated circuit and a microsensor can be easily mounted while maintaining the diameter, better minimally invasive medical treatment becomes possible. Since it is a single high-functional part, a highly functional minimally invasive medical tool can be easily realized.

本発明に係る低侵襲医療ツールを実施するための最良の形態を実施例に基づいて以下に説明する。   The best mode for carrying out the minimally invasive medical tool according to the present invention will be described below based on examples.

光学イメージャの小型実装:内視鏡先端部の光学イメージャ実装部は,光学イメージャや周辺回路部品を実装するための基板から構成されるため,硬く曲がらない硬性部となる。内視鏡の硬性部はできるだけ短い方が挿入性,操作性が良い。しかし,内視鏡の細径化を行った場合,通常のプリント基板による実装では,硬性部が長くなり,また,内視鏡の内腔を埋める必要がある。本実施例では,図2 に示すように,円筒面基板の表面に微細加工行うことで回路の実装面積を増やし内腔の確保を行い,また,硬性部を短くする実装方法用いた。   Compact mounting of optical imager: Since the optical imager mounting part at the tip of the endoscope is composed of a substrate for mounting the optical imager and peripheral circuit components, it is a rigid part that does not bend hard. The hard part of the endoscope should be as short as possible for better insertability and operability. However, when the endoscope is made thinner, the rigid part becomes longer and the endoscope's lumen needs to be filled when mounting with a normal printed circuit board. In this embodiment, as shown in FIG. 2, a mounting method was used in which the mounting area of the circuit was increased by microfabrication on the surface of the cylindrical substrate to secure the lumen, and the rigid part was shortened.

硬性部となる周辺回路の実装部分の回路は,図3 のようになっており長さは5.5mm である。これをポリイミドチューブ基板上に作製を行うことで,円筒面基板を実現する。   The circuit of the mounting part of the peripheral circuit that becomes the rigid part is as shown in Fig. 3, and the length is 5.5 mm. By fabricating this on a polyimide tube substrate, a cylindrical substrate is realized.

光学イメージャを駆動するための配線は,光学イメージャ実装部分の根元側に配置された屈曲機構内部を通す必要がある。これまで試作した内視鏡では,被覆配線をインナーチューブ周囲にらせん状に配置することで柔らかくし,屈曲機構の動作へ影響を少なくしていた。しかし,多数ある配線を手作業でチューブ上へ配置するのが煩雑であり,また,組立時に光学イメージャと被服配線との対応関係を把握することが難しいといった問題があった。   The wiring for driving the optical imager needs to pass through the inside of the bending mechanism arranged on the base side of the optical imager mounting portion. Endoscopes that have been prototyped so far have been softened by arranging the coated wiring in a spiral around the inner tube, reducing the impact on the operation of the bending mechanism. However, it is complicated to manually place a large number of wires on the tube, and it is difficult to grasp the correspondence between the optical imager and the clothing wiring during assembly.

図4 に示すように光学イメージャ実装基板と,屈曲機構の配線部の一体化を行うことで組み立てが容易になり,また,より細径化を行うことが可能となる。基板には,ポリイミドチューブ基板(外径1.92mm/内径1.8mm,肉厚0.6mm)を用い、回路形成後,レーザー加工により基板をらせん状に貫通加工することで,屈曲部分を柔らかくすることが可能になる。このような設計とすることで,外径5mm 以下,硬性部長さ10mm 以下の内視鏡を実現することができる。微小部品の実装は貫通加工の前でも後でも良い。また微小部品の実装は硬性部上でも,らせん加工された基板上でも良い。   As shown in Fig. 4, the assembly of the optical imager mounting board and the wiring part of the bending mechanism can be integrated easily, and the diameter can be further reduced. A polyimide tube substrate (outer diameter 1.92mm / inner diameter 1.8mm, wall thickness 0.6mm) is used as the substrate. After forming the circuit, the bent portion can be softened by helically penetrating the substrate by laser processing. It becomes possible. By adopting such a design, an endoscope having an outer diameter of 5 mm or less and a rigid part length of 10 mm or less can be realized. The minute parts may be mounted before or after the penetration process. In addition, the mounting of minute parts may be on a hard part or on a spirally processed substrate.

図5 に細径内視鏡の作製プロセスを示す。作製プロセスは,以下のようになっている。今回,以下の作製プロセス(2)のポリイミドチューブ基板上への回路作製まで行い,また,屈曲部分を柔らかくするためのポリイミドチューブ基板のレーザー加工を別途行い以下のプロセス(3)の実証を行った。   Fig. 5 shows the manufacturing process of the small-diameter endoscope. The manufacturing process is as follows. This time, the circuit was fabricated on the polyimide tube substrate in the following fabrication process (2), and laser processing of the polyimide tube substrate was performed separately to soften the bent part, and the following process (3) was demonstrated. .

(1)銅層(シードレイヤー)成膜:基板であるポリイミドチューブ基板上へ電解めっきのシード層となる銅をスパッタにより厚さ300nm 程度成膜を行う。この銅薄膜は円筒面上へ均一に成膜する必要があるため,成膜には,基板の回転機構を持つ円筒面成膜装置を用いた。   (1) Copper layer (seed layer) deposition: A copper layer serving as a seed layer for electrolytic plating is deposited on a polyimide tube substrate as a substrate by sputtering to a thickness of about 300 nm. Since this copper thin film needs to be uniformly formed on a cylindrical surface, a cylindrical surface film forming apparatus having a substrate rotation mechanism was used for film formation.

(2)フォトレジスト塗布・パターニング,銅電解めっき:基板上に均一な厚さの回路作製するためには,銅薄膜の上にフォトレジストを均一に塗布する必要がある。ポリイミドチューブ基板は円筒形状をしているため,フォトレジストをスピンコーティングで塗布することはできず,また,ディップコーティングでは,均一に塗布することは難しい。今回は,スプレーコーティング装置を用いることで均一にフォトレジストの塗布を行った(図6)。このスプレーコーティング装置は,1 軸θ(回転)と2 軸XZ の精密自動ステージを備えており,コンピュータで座標データを処理することによりステージを制御し正確にレジストを塗布することができる。   (2) Photoresist application / patterning, copper electroplating: In order to produce a circuit having a uniform thickness on the substrate, it is necessary to apply the photoresist uniformly on the copper thin film. Since the polyimide tube substrate has a cylindrical shape, the photoresist cannot be applied by spin coating, and it is difficult to apply the photoresist uniformly by dip coating. This time, we applied the photoresist uniformly by using a spray coating device (Figure 6). This spray coating system is equipped with a 1-axis θ (rotation) and 2-axis XZ precision automatic stage. By processing the coordinate data with a computer, the stage can be controlled and the resist can be applied accurately.

配線の厚さを10μm とするため,塗布するフォトレジストの膜厚を12〜15μm とした。フォトレジストは,一度に厚くスプレーコーティングを行うと,液だれなどにより均一に成膜ができないため,1 回のコーティングを3μm 程度とし,スプレーコートとベークを4 回繰り返すことにより目的の膜厚を実現した。   In order to set the wiring thickness to 10 μm, the thickness of the photoresist to be applied was 12 to 15 μm. If the photoresist is thickly sprayed at once, it cannot be uniformly formed due to dripping, etc., so the desired film thickness is achieved by repeating the spray coating and baking four times with a coating of about 3 μm. did.

円筒面基板への露光を行う方法として,レーザー光源と多軸精密自動ステージを組み合わせたマスクレス露光方法を用いた。この露光システムは,1 軸θステージ(回転)と2 軸XZ ステージと露光用レーザー光源にはYAG レーザーを用いている。   A maskless exposure method combining a laser light source and a multi-axis precision automatic stage was used as a method for exposing a cylindrical substrate. This exposure system uses a 1-axis θ stage (rotation), a 2-axis XZ stage, and a YAG laser as the laser light source for exposure.

上記の露光システムを用いて露光・現像を行ったポリイミドチューブ基板が図7 である。らせん配線の形状は,配線幅130μm 程度,らせん状部分の長さが55mm となっている。露光・現像を行いフォトレジストの型を作製した後,銅スパッタ薄膜をシード層にして銅の電解めっきを行うことで,厚膜の配線を形成することができる。   FIG. 7 shows a polyimide tube substrate that has been exposed and developed using the above exposure system. The spiral wiring has a wiring width of about 130 μm and a helical section length of 55 mm. After producing a photoresist mold by exposure and development, a thick film wiring can be formed by performing copper electroplating using a copper sputtered thin film as a seed layer.

円筒面基板上へ電界めっきを行うためには,一様な電界を発生させるために,円筒基板を囲むようにアノード銅電極を配置する必要がある。また,電界めっき中は円筒基板を回転させることにより,電極と基板の距離による偏りをなくし均一な銅の成膜を行うようにした。   In order to perform electroplating on a cylindrical substrate, it is necessary to dispose an anode copper electrode so as to surround the cylindrical substrate in order to generate a uniform electric field. In addition, by rotating the cylindrical substrate during electroplating, a uniform copper film was formed without any deviation due to the distance between the electrode and the substrate.

銅電解めっき後のポリイミドチューブ基板を図8,フォトレジストの除去及び,銅シード層のエッチング後の基板を図9 に示す。   Figure 8 shows the polyimide tube substrate after copper electroplating, and Figure 9 shows the substrate after removing the photoresist and etching the copper seed layer.

(3)チューブ基板のレーザー加工:回路基板の作製後,屈曲機構部を柔らかくするために,基板をらせん状に加工する必要がある。今回ポリイミドチューブ基板の加工には,Nd-YAG レーザー装置を用いた。このYAG レーザー装置は,第一から四高調波を用いることができるが,今回は,ポリマーの加工が可能で,装置の出力が一番大きい第2高調波(532nm)の波長を用いて加工を行った。加工は,3 軸の精密自動ステージをコンピュータで用いて制御することで行った。図10 に加工を行ったポリイミドチューブ基板を示す。今回は,回路作製を行った基板での加工を行っていないが,レーザー加工を行うことで,屈曲機構に組み込むのに基板を十分柔らかくできることを確認した。   (3) Laser processing of the tube substrate: After the circuit board is manufactured, the substrate needs to be processed into a spiral shape in order to soften the bending mechanism. This time, Nd-YAG laser equipment was used to process the polyimide tube substrate. This YAG laser device can use the first to fourth harmonics, but this time the polymer can be processed, and processing is performed using the wavelength of the second harmonic (532 nm) where the output of the device is the largest. went. Machining was performed by controlling a 3-axis precision automatic stage using a computer. Figure 10 shows the processed polyimide tube substrate. This time, we did not process the circuit on which the circuit was fabricated, but we confirmed that laser processing can sufficiently soften the substrate for incorporation into the bending mechanism.

屈曲機構の構造を図11 に示す。屈曲部には,等間隔でリンクが配置されており,そこへ屈曲を行うためのSMA コイルアクチュエータを自然長より引き伸ばした状態で円周上に120°毎に計3 本固定する。この3 本のSMA コイルアクチュエータへ供給する電力量を変えることにより,任意の角度と方向へ屈曲することが可能となる。屈曲した内視鏡は,インナーチューブ,SMA コイルの外側に配置されたステンレスコイルおよび防水と漏電防止のためのアウターチューブなどの剛性により元の直線形状に戻る。前述の各部品の剛性が不十分だとSMAコイルの収縮に伴い全体が座屈する可能性があるが,らせん状に加工したチューブ基板の形状と材質を最適化することで適当な剛性を達成できる。   Fig. 11 shows the structure of the bending mechanism. Links are arranged at equal intervals in the bent part, and a total of three SMA coil actuators for bending there are fixed on the circumference every 120 ° in a state where the SMA coil actuator is extended from its natural length. By changing the amount of power supplied to these three SMA coil actuators, it is possible to bend in any angle and direction. The bent endoscope returns to its original linear shape due to the rigidity of the inner tube, the stainless steel coil placed outside the SMA coil, and the outer tube for waterproofing and leakage prevention. If the rigidity of each of the above parts is insufficient, the whole may buckle as the SMA coil contracts, but appropriate rigidity can be achieved by optimizing the shape and material of the spirally processed tube substrate. .

今回作製した細径内視鏡用の屈曲機構は,外径5.4mm,長さ45mm となっている。SMA コイルは,素線径75μm, 外径300μm の形状のものを用い,絶縁と防水用の外装パッケージングには,厚さ200μm のシリコーンゴムチューブを用いた。このシリコーンゴムチューブは,生体適合性・絶縁性・防水性を持ち,長軸方向への十分な引っ張り強度も兼ね備えているものを用いた。この屈曲機構を動作させたところ,任意の方向と角度への屈曲が可能であり,最大屈曲角度は90°(曲率半径28mm)であった。   The bending mechanism for the small-diameter endoscope produced this time has an outer diameter of 5.4 mm and a length of 45 mm. The SMA coil has a wire diameter of 75 μm and an outer diameter of 300 μm, and a 200 μm thick silicone rubber tube was used for the exterior packaging for insulation and waterproofing. This silicone rubber tube has biocompatibility, insulation and waterproofness, and has sufficient tensile strength in the long axis direction. When this bending mechanism was operated, bending in any direction and angle was possible, and the maximum bending angle was 90 ° (curvature radius 28mm).

結果:基板の回転機構を持つ,スパッタ装置・スプレーコーティング装置・露光装置を組み合わせた,非平面微細加工技術を用いることで,外径1.92mm のポリイミドチューブ基板上へ電子回路の作製を行い,また,回路実装部の長さを5.5mm とすることができた。このような設計とすることで,内腔埋めることなく光学イメージャを小型実装することができ,また,硬性部を短くすることが可能となる。図12は屈曲動作の様子である。   Result: Using a non-planar micromachining technology that combines a sputtering device, spray coating device, and exposure device with a substrate rotation mechanism, an electronic circuit was fabricated on a polyimide tube substrate with an outer diameter of 1.92 mm. The length of the circuit mounting part could be 5.5 mm. With such a design, the optical imager can be mounted in a small size without filling the lumen, and the rigid part can be shortened. FIG. 12 shows the bending operation.

能動屈曲電子内視鏡Active bending electronic endoscope 円筒面基板への微細加工Microfabrication on a cylindrical substrate ポリイミドチューブ状の回路パターンPolyimide tube circuit pattern 細径内視鏡の構造Structure of small-diameter endoscope 細径内視鏡の作製プロセスFabrication process of small-diameter endoscope スプレーコーター装置Spray coater equipment パターニング後のポリイミドチューブ基板Polyimide tube substrate after patterning 電解めっき後のチューブ基板Tube substrate after electrolytic plating レジスト層・シード層除去後のチューブ基板Tube substrate after resist / seed layer removal らせん状に加工したポリイミドチューブ基板Polyimide tube substrate processed into a spiral 屈曲機構の構造Bending mechanism structure 屈曲動作の様子Bending motion

Claims (7)

カテーテルや内視鏡等の低侵襲医療ツールにおいて、外周面に回路パターンを有するチューブ形状絶縁基板を貫通加工し機械的な機能を付加したことを特徴とする低侵襲医療ツール。   A minimally invasive medical tool such as a catheter or an endoscope, wherein a mechanical function is added by penetrating a tube-shaped insulating substrate having a circuit pattern on an outer peripheral surface. 前記チューブ形状絶縁基板をらせん状に加工し、可撓性を付加したことを特徴とする請求項1に記載の低侵襲医療ツール。   The minimally invasive medical tool according to claim 1, wherein the tube-shaped insulating substrate is processed into a spiral shape to add flexibility. 前記らせん体の長さ方向の伸縮に伴う外径寸法変化を用い、らせん体の外径寸法を制御することを特徴とする請求項2に記載の低侵襲医療ツール。   The minimally invasive medical tool according to claim 2, wherein the outer diameter dimension of the spiral body is controlled using a change in the outer diameter dimension associated with expansion and contraction in the length direction of the spiral body. 前記らせん体の上に微小部品が実装されていることを特徴とする請求項1ないし3のいずれかに記載の低侵襲医療ツール。   The minimally invasive medical tool according to any one of claims 1 to 3, wherein a micro component is mounted on the spiral body. 前記チューブ形状絶縁基板がポリイミドまたはポリテトラフルオロエチレンで構成されていることを特徴とする請求項1ないし4のいずれかに記載の低侵襲医療ツール。   The minimally invasive medical tool according to any one of claims 1 to 4, wherein the tube-shaped insulating substrate is made of polyimide or polytetrafluoroethylene. カテーテルや内視鏡等の低侵襲医療ツールの製造方法において、外周面に回路パターンを有するチューブ形状絶縁基板を貫通加工し機械的な機能を付加したことを特徴とする低侵襲医療ツールの製造方法。   In a method for manufacturing a minimally invasive medical tool such as a catheter or an endoscope, a method for manufacturing a minimally invasive medical tool characterized in that a mechanical function is added by penetrating a tube-shaped insulating substrate having a circuit pattern on the outer peripheral surface. . 前記チューブ形状絶縁基板をらせん状に加工し、可撓性を付加したことを特徴とする請求項6に記載の低侵襲医療ツールの製造方法。   The method for manufacturing a minimally invasive medical tool according to claim 6, wherein the tube-shaped insulating substrate is processed into a spiral shape to add flexibility.
JP2008152460A 2008-06-11 2008-06-11 Low-invasive medical tool and method of manufacturing the same Pending JP2009297116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008152460A JP2009297116A (en) 2008-06-11 2008-06-11 Low-invasive medical tool and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152460A JP2009297116A (en) 2008-06-11 2008-06-11 Low-invasive medical tool and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009297116A true JP2009297116A (en) 2009-12-24

Family

ID=41544658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152460A Pending JP2009297116A (en) 2008-06-11 2008-06-11 Low-invasive medical tool and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009297116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225535A1 (en) * 2020-05-07 2021-11-11 Ozyegin Universitesi A guiding assembly for catheters.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233027A (en) * 1998-12-14 2000-08-29 Masaki Esashi Active capillary and manufacturing of the same
JP2001009042A (en) * 1999-06-30 2001-01-16 Piolax Inc Catheter
JP2001346753A (en) * 2000-04-12 2001-12-18 Circon Corp Spiral frame formed of super-elastic alloy, and endoscope shaft having network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233027A (en) * 1998-12-14 2000-08-29 Masaki Esashi Active capillary and manufacturing of the same
JP2001009042A (en) * 1999-06-30 2001-01-16 Piolax Inc Catheter
JP2001346753A (en) * 2000-04-12 2001-12-18 Circon Corp Spiral frame formed of super-elastic alloy, and endoscope shaft having network

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225535A1 (en) * 2020-05-07 2021-11-11 Ozyegin Universitesi A guiding assembly for catheters.

Similar Documents

Publication Publication Date Title
KR100618099B1 (en) Active slender tubes and method of making the same
Haga et al. Development of minimally invasive medical tools using laser processing on cylindrical substrates
Russo et al. An additive millimeter‐scale fabrication method for soft biocompatible actuators and sensors
JP3477570B2 (en) Active conduit and method of manufacturing the same
TWI683678B (en) Steerable medical device with braided structure and the preparing method thereof
JP2009515617A (en) Medical device and method for producing and using the same
Haga et al. Bending, torsional and extending active catheter assembled using electroplating
JP2007502671A (en) Active polymer articulating instrument and insertion method
JP2005530558A (en) Programmable universal guide catheter
JP2009515656A (en) Variable rigidity shaft
JP2008049151A (en) Variable flexible shaft for endoscope
Wang et al. Flexible manipulator with low-melting-point alloy actuation and variable stiffness
Haga et al. Active bending catheter and endoscope using shape memory alloy actuators
Haga et al. Medical and welfare applications of shape memory alloy microcoil actuators
JP2009297116A (en) Low-invasive medical tool and method of manufacturing the same
WO2007009093A2 (en) Tubular compliant shape memory alloy actuators
Chen et al. A variable length, variable stiffness flexible instrument for transoral robotic surgery
Haga et al. Micro-robotic medical tools employing SMA actuators for use in the human body
JP2002113092A (en) Manufacturing method for medical instrument and medical instrument
JP2002035132A (en) Method for manufacturing flexible tube having electric wiring and flexible tube having electric wiring
KR20100026438A (en) Maintenance and movement system of microrobot for intravascular therapy
JP2001124250A (en) Flexible pipe, and its manufacturing method
JP2001173550A (en) Shape memory alloy actuator
JPH06133921A (en) Curving mechanism for flexible tube and manufacture of actuator thereof
JP4288324B2 (en) Actuator element obtained by using conductive metal pattern formation method on polymer electrolyte structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326