JP2009295930A - Magnetic base - Google Patents

Magnetic base Download PDF

Info

Publication number
JP2009295930A
JP2009295930A JP2008150818A JP2008150818A JP2009295930A JP 2009295930 A JP2009295930 A JP 2009295930A JP 2008150818 A JP2008150818 A JP 2008150818A JP 2008150818 A JP2008150818 A JP 2008150818A JP 2009295930 A JP2009295930 A JP 2009295930A
Authority
JP
Japan
Prior art keywords
film
magnetic
substrate
phase
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008150818A
Other languages
Japanese (ja)
Other versions
JP5185701B2 (en
Inventor
Akira Nakabayashi
亮 中林
Shigeru Kobayashi
茂 小林
Hisato Koshiba
寿人 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2008150818A priority Critical patent/JP5185701B2/en
Publication of JP2009295930A publication Critical patent/JP2009295930A/en
Application granted granted Critical
Publication of JP5185701B2 publication Critical patent/JP5185701B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic sheet which can properly improve soft magnetic properties compared to prior ones, in particular, in a magnetic sheet which uses a high resistance soft magnetic film (A-M-O). <P>SOLUTION: A Cr film 9 and a magnetic film 6 are stacked sequentially on a plastic sheet 5, wherein the magnetic film 6 includes A-M-O (where, element A denotes Fe or Co, or a mixture thereof, and element M denotes at least one out of Hf, Ti, Zr, V, Nb, Ta, Mo, W, Al, Mg, Zn, Ca, Ce, Y and Si). The magnetic film 6 is formed of a film structure including an amorphous phase containing a compound of elements M and O and a microcrystalline phase having an average crystalline grain size of 30 nm or smaller and mainly including one or two kinds selected out of Fe or Co interspersed in the amorphous phase. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、RFIDデバイスや電磁波吸収体等に用いられる磁性基体に関する。   The present invention relates to a magnetic substrate used for an RFID device, an electromagnetic wave absorber or the like.

磁性基体は、例えば、RFIDデバイスや電磁波吸収体に用いられる。磁性基体は、基板の表面に直接、磁性膜が成膜された構成となっている。   The magnetic substrate is used for, for example, an RFID device or an electromagnetic wave absorber. The magnetic base has a structure in which a magnetic film is formed directly on the surface of the substrate.

磁性膜は、例えば下記特許文献1に示すようなFe−M−O膜である。後述する実験結果に示すように、基板上に直接、Fe−M−O膜を成膜しただけの構成では、磁性膜の膜厚を厚くしても、複素比透磁率の実数部μ´を効果的に大きくできず良好な軟磁気特性を得ることが出来なかった。   The magnetic film is, for example, an Fe-MO film as shown in Patent Document 1 below. As shown in the experimental results to be described later, in the configuration in which the Fe—M—O film is formed directly on the substrate, the real part μ ′ of the complex relative permeability is increased even if the thickness of the magnetic film is increased. The size could not be increased effectively and good soft magnetic properties could not be obtained.

また特許文献1にあるように、通常、Fe−M−O膜に対して熱処理(アニール)を施さないと良好な軟磁気特性を得ることができなかった。そのため、基板に耐熱性の低い薄いシート状の樹脂基体を用いることが出来ず、磁性基体の薄型化、フレキシブル化を実現できなかった。
特開平6−316748号公報
In addition, as disclosed in Patent Document 1, normally, good soft magnetic properties could not be obtained unless heat treatment (annealing) was performed on the Fe-MO film. Therefore, a thin sheet-like resin substrate having low heat resistance cannot be used for the substrate, and the magnetic substrate cannot be made thin and flexible.
JP-A-6-316748

そこで本発明は上記従来の課題を解決するためのものであり、特に、高抵抗軟磁性膜(A−M−O)を用いた磁性基体において、従来に比べて適切に軟磁気特性の向上を図ることが可能な磁性基体を提供することを目的としている。   Therefore, the present invention is to solve the above-described conventional problems, and in particular, in a magnetic substrate using a high resistance soft magnetic film (AMO), the soft magnetic characteristics can be appropriately improved as compared with the conventional one. An object of the present invention is to provide a magnetic substrate that can be realized.

本発明における磁性基体は、基体上に、Cr膜と、A−M−O(ただし元素AはFeまたはCoまたはその混合物を表し、元素Mは、Hf、Ti、Zr、V、Nb、Ta、Mo、W、Al、Mg、Zn、Ca、Ce、Y、Siのうち少なくともいずれか一種を表す)から成る磁性膜とが順に積層されており、
前記磁性膜は、元素MとOの化合物を含むアモルファス相と、前記アモルファス相中に点在するFeまたはCoから選ばれる一種または二種を主体とした平均結晶粒径30nm以下の微結晶相との膜構造で形成されていることを特徴とするものである。
The magnetic substrate in the present invention has a Cr film, AMO (where the element A represents Fe or Co or a mixture thereof, the element M represents Hf, Ti, Zr, V, Nb, Ta, And a magnetic film made of Mo, W, Al, Mg, Zn, Ca, Ce, Y, and Si).
The magnetic film includes an amorphous phase containing a compound of elements M and O, a microcrystalline phase having an average crystal grain size of 30 nm or less mainly composed of one or two kinds selected from Fe or Co scattered in the amorphous phase. It is characterized by being formed with the following film structure.

これにより、微結晶相の析出を促進でき、軟磁気特性の改善を図ることが可能である。特に磁性膜の膜厚(磁性膜が複数層ある場合は合計膜厚)が薄くても、また、熱処理を施さなくても、優れた軟磁気特性を得ることが可能である。   Thereby, precipitation of a microcrystalline phase can be promoted and soft magnetic characteristics can be improved. In particular, even if the thickness of the magnetic film (the total thickness when there are a plurality of magnetic films) is thin or no heat treatment is performed, excellent soft magnetic characteristics can be obtained.

本発明では、基板上に、下から前記Cr膜、及び前記磁性膜の順に積層されている構成でも、前記基板上に、下から前記磁性膜、及び前記Cr膜の順に積層されている構成でもよい。   In the present invention, either the configuration in which the Cr film and the magnetic film are stacked in this order from the bottom on the substrate, or the configuration in which the magnetic film and the Cr film are stacked in order from the bottom on the substrate. Good.

また本発明では、前記基板上に、前記Cr膜と前記磁性膜とが交互に繰り返して積層されている構成であることが好ましい。   In the present invention, it is preferable that the Cr film and the magnetic film are alternately and repeatedly stacked on the substrate.

また本発明では、前記磁性膜は、元素AがFeであり、組成式がFeabcから成り、元素Oの組成比cが、6.85〜47at%の範囲内、元素Mの組成比が11〜17at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たすことが好ましい。 In the present invention, the magnetic film has the element A of Fe, the composition formula is Fe a M b O c , the composition ratio c of the element O is in the range of 6.85 to 47 at%, It is preferable that the composition ratio is in the range of 11 to 17 at%, the balance is the composition ratio a of the element Fe, and the relationship of a + b + c = 100 at% is satisfied.

また本発明では、前記磁性膜のX線回折スペクトルには、Feのbcc(110)のピークの他に、異なる結晶面のbcc相のピークが現れることが好ましい。これにより、より優れた軟磁気特性を得ることが出来る。   In the present invention, it is preferable that a peak of a bcc phase of a different crystal plane appears in addition to the peak of bcc (110) of Fe in the X-ray diffraction spectrum of the magnetic film. Thereby, more excellent soft magnetic characteristics can be obtained.

また本発明では、前記基体は、可撓性の樹脂シートであることが好ましい。本発明では、熱処理を施さなくても、アモルファス相と、微結晶相との混相構造を得ることができ、したがって、基板として耐熱性の低い樹脂シートを用いることが可能である。よって磁性基体の薄型化、フレキシブル化が可能である。   In the present invention, the base is preferably a flexible resin sheet. In the present invention, a mixed phase structure of an amorphous phase and a microcrystalline phase can be obtained without heat treatment, and therefore a resin sheet with low heat resistance can be used as a substrate. Therefore, the magnetic substrate can be made thin and flexible.

本発明の磁性基体によれば、微結晶相の析出を促進でき、軟磁気特性の改善を図ることが可能である。特に磁性膜の膜厚(磁性膜が複数層ある場合には合計膜厚)が薄くても、また、熱処理を施さなくても、優れた軟磁気特性を得ることが可能である。   According to the magnetic substrate of the present invention, the precipitation of the microcrystalline phase can be promoted and the soft magnetic characteristics can be improved. In particular, even if the thickness of the magnetic film (the total thickness when there are a plurality of magnetic films) is thin or no heat treatment is performed, excellent soft magnetic characteristics can be obtained.

図1は、RFIDデバイス及びリードライタの模式図、図2は本発明の実施形態の磁性基体である磁性シートの部分断面図、図3はFe−M−O膜の膜構造の模式図である。   FIG. 1 is a schematic diagram of an RFID device and a read dryer, FIG. 2 is a partial cross-sectional view of a magnetic sheet that is a magnetic substrate according to an embodiment of the present invention, and FIG. 3 is a schematic diagram of a film structure of an Fe-MO film. .

図1に示すようにRFID(Radio Frequency ID)デバイス1は、アンテナ及びICチップを備えるRFIDタグ2と、金属部材3と、RFIDタグ2と金属部材3との間に挿入された磁性シート4とを有して構成される。   As shown in FIG. 1, an RFID (Radio Frequency ID) device 1 includes an RFID tag 2 having an antenna and an IC chip, a metal member 3, and a magnetic sheet 4 inserted between the RFID tag 2 and the metal member 3. It is comprised.

RFIDタグ2は、基板上にアンテナ及びICチップが形成された形態である。
金属部材3は例えば筐体の一部を成しており、Al、Ti、Cr等で形成される。金属部材3の膜厚T1は、0.05〜0.5mm程度である。
The RFID tag 2 has a form in which an antenna and an IC chip are formed on a substrate.
The metal member 3 forms a part of the housing, for example, and is made of Al, Ti, Cr or the like. The film thickness T1 of the metal member 3 is about 0.05 to 0.5 mm.

RFIDタグ2と金属部材3との間に挿入される磁性シート4は、図2に示すように可撓性の樹脂シート5上に磁性膜6とCr膜9とが順に積層されたものである。   The magnetic sheet 4 inserted between the RFID tag 2 and the metal member 3 has a magnetic film 6 and a Cr film 9 sequentially laminated on a flexible resin sheet 5 as shown in FIG. .

磁性膜6は、A−M−O(ただし元素AはFeまたはCoまたはその混合物を表し、元素Mは、Hf、Ti、Zr、V、Nb、Ta、Mo、W、Al、Mg、Zn、Ca、Ce、Y、Siのうち少なくともいずれか一種を表す)から成る。   The magnetic film 6 is AMO (where the element A represents Fe or Co or a mixture thereof, and the element M is Hf, Ti, Zr, V, Nb, Ta, Mo, W, Al, Mg, Zn, At least one of Ca, Ce, Y, and Si).

図2(a)では、樹脂シート5の上面5aにCr膜9が成膜され、Cr膜9の上面9aに磁性膜6が成膜されている。   In FIG. 2A, a Cr film 9 is formed on the upper surface 5 a of the resin sheet 5, and a magnetic film 6 is formed on the upper surface 9 a of the Cr film 9.

図2(b)では、樹脂シート5の上面5aに磁性膜6が成膜され、磁性膜6の上面6aにCr膜9が成膜されている。   In FIG. 2B, the magnetic film 6 is formed on the upper surface 5 a of the resin sheet 5, and the Cr film 9 is formed on the upper surface 6 a of the magnetic film 6.

図2(c)では、樹脂シート5上にCr膜9と磁性膜6とが交互に繰り返し積層された構成である。なお図2(c)では、Cr膜9と磁性膜6の積層構造の全体がかなり厚く図示されているが、実際には各Cr膜9及び各磁性膜6を非常に薄く形成できるので多層化しても積層構造の合計膜厚を薄く形成することが出来る。   In FIG. 2C, the Cr film 9 and the magnetic film 6 are alternately and repeatedly laminated on the resin sheet 5. In FIG. 2C, the entire laminated structure of the Cr film 9 and the magnetic film 6 is shown to be considerably thick. However, in reality, each Cr film 9 and each magnetic film 6 can be formed very thin, so that a multilayer structure is formed. However, the total thickness of the laminated structure can be reduced.

図2(c)は、図2(a)の磁性膜6上に、さらに、Cr膜9/磁性膜6・・・が積層された構成であるが、図2(b)のCr膜9上に、さらに磁性膜6/Cr膜9が積層された構成であってもよい。   2C shows a configuration in which a Cr film 9 / magnetic film 6... Are further laminated on the magnetic film 6 in FIG. 2A. On the Cr film 9 in FIG. In addition, the magnetic film 6 / Cr film 9 may be laminated.

また、「Cr膜9と磁性膜6とが交互に繰り返し積層された構成」には、Cr膜9及び磁性膜6を共に同じ数だけ積層した構成(例えば図2(c)は、共に7層)のみならず、Cr膜9及び磁性膜6を異なる数で積層した構成も含む。すなわち、樹脂シート5/Cr膜9/磁性膜6/Cr膜9(Cr膜9が2層で、磁性膜6が1層)の積層構成や樹脂シート5/磁性膜6/Cr膜9/磁性膜6/Cr膜9/磁性膜6(Cr膜9が2層で、磁性膜6が3層)の積層構成等を含む。   In addition, in the “configuration in which the Cr film 9 and the magnetic film 6 are alternately and repeatedly stacked”, the same number of both the Cr film 9 and the magnetic film 6 are stacked (for example, FIG. ) As well as a structure in which the Cr film 9 and the magnetic film 6 are stacked in different numbers. That is, a laminated structure of resin sheet 5 / Cr film 9 / magnetic film 6 / Cr film 9 (two layers of Cr film 9 and one layer of magnetic film 6) or resin sheet 5 / magnetic film 6 / Cr film 9 / magnetic It includes a laminated structure of film 6 / Cr film 9 / magnetic film 6 (two Cr films 9 and three magnetic films 6).

本実施形態の磁性膜6は、図3に示す膜構造を有している。すなわち磁性膜6の膜構造は、図3に示すように、元素MとOの化合物を含むアモルファス相7と、アモルファス相7中に点在するFeを主体とした微結晶相8との混相構造で形成されている。微結晶相8の平均粒径を30nm以下にでき、また微結晶相8の結晶構造をbcc構造にできる。微結晶相8は、bcc構造に限定されずhcp構造、fcc構造でもよい。微結晶相8は、元素AにCo、あるいは元素AにFe及びCoを選択したときは、Co、あるいは、Fe及びCoを主体とした平均結晶粒径30nm以下の微結晶相である。   The magnetic film 6 of this embodiment has a film structure shown in FIG. That is, the film structure of the magnetic film 6 is a mixed phase structure of an amorphous phase 7 containing a compound of elements M and O and a microcrystalline phase 8 mainly composed of Fe scattered in the amorphous phase 7 as shown in FIG. It is formed with. The average grain size of the microcrystalline phase 8 can be 30 nm or less, and the crystal structure of the microcrystalline phase 8 can be a bcc structure. The microcrystalline phase 8 is not limited to the bcc structure, and may have an hcp structure or an fcc structure. The microcrystalline phase 8 is a microcrystalline phase having an average crystal grain size of 30 nm or less mainly composed of Co or Fe and Co when Co is selected as the element A or Fe and Co are selected as the element A.

アモルファス相7は、元素Mの酸化物を多量に含み、そのほか、FeOやFe23も含むと考えられる。元素MがHfの場合、アモルファス相7にはHfO2が多量に含まれていると考えられる。 It is considered that the amorphous phase 7 contains a large amount of an oxide of the element M and also contains FeO and Fe 2 O 3 . When the element M is Hf, it is considered that the amorphous phase 7 contains a large amount of HfO 2 .

本実施形態のA−M−Oから成る磁性膜6の膜構造は、ナノグラニュラー合金とは異なる。ナノグラニュラーは、強磁性微粒子と強磁性微粒子間に絶縁物等の粒界物質が介在する構成である。一方、磁性膜6におけるアモルファス相7は、微結晶相8間の粒界だけに存在しない。上記したように磁性膜6は、アモルファス相7中に微結晶相8が点在した混相構造となっている。後述するX線回折スペクトルでもアモルファス相7の存在とはっきりと見て取れる。   The film structure of the magnetic film 6 made of AMO in this embodiment is different from that of the nano granular alloy. The nano-granular has a configuration in which a grain boundary material such as an insulator is interposed between the ferromagnetic fine particles. On the other hand, the amorphous phase 7 in the magnetic film 6 does not exist only at the grain boundary between the microcrystalline phases 8. As described above, the magnetic film 6 has a mixed phase structure in which the microcrystalline phase 8 is scattered in the amorphous phase 7. Even in the X-ray diffraction spectrum described later, it can be clearly seen that the amorphous phase 7 exists.

磁性膜6中に含まれるアモルファス相7は体積比率で20〜80%程度であることが好適である。   The amorphous phase 7 contained in the magnetic film 6 is preferably about 20 to 80% by volume.

なおCr膜9は結晶質である。
本実施形態の磁気シート4は、樹脂シート5上にCr膜9とA−M−Oから成る磁性膜6とが順に積層された構成である。これにより、磁性膜6の微結晶相8の析出を促進できる。後述する実験結果によれば、樹脂シート5上に磁性膜6を直接、成膜しただけの従来例に比べて微結晶相8の析出を促進できることがわかっている。後述するX線回折スペクトルの結果によれば、本実施形態では、Feのbcc(110)のピークが従来構造よりも強く出た。また本実施形態には、bcc(110)のピーク以外に、bcc(200)や、bcc(211)のピークも見られた。
The Cr film 9 is crystalline.
The magnetic sheet 4 of the present embodiment has a configuration in which a Cr film 9 and a magnetic film 6 made of AMO are sequentially laminated on a resin sheet 5. Thereby, precipitation of the microcrystalline phase 8 of the magnetic film 6 can be promoted. According to the experimental results described later, it is known that the precipitation of the microcrystalline phase 8 can be promoted as compared with the conventional example in which the magnetic film 6 is directly formed on the resin sheet 5. According to the result of the X-ray diffraction spectrum described later, in this embodiment, the Fe bcc (110) peak appeared stronger than the conventional structure. In this embodiment, in addition to the bcc (110) peak, bcc (200) and bcc (211) peaks were also observed.

以上のように本実施形態では、従来例に比べて磁性膜6の微結晶相8の析出を促進でき、よって良好な軟磁気特を得ることができる。   As described above, in the present embodiment, the precipitation of the microcrystalline phase 8 of the magnetic film 6 can be promoted as compared with the conventional example, and thus a good soft magnetic characteristic can be obtained.

本実施形態では、複素比透磁率の実数部μ´(13.56MHz)を50以上、好ましくは300以上に設定できる。   In the present embodiment, the real part μ ′ (13.56 MHz) of the complex relative permeability can be set to 50 or more, preferably 300 or more.

特に、本実施形態では、磁性膜6の膜厚(図2(c)のように磁性膜6が複数層あるときは合計膜厚)を薄くしても、良好な軟磁気特性を得ることができることがわかっている。   In particular, in this embodiment, even if the thickness of the magnetic film 6 (the total thickness when there are a plurality of magnetic films 6 as shown in FIG. 2C) is reduced, good soft magnetic characteristics can be obtained. I know I can.

本実施形態では、磁性膜6の膜厚T2(図2(a)参照)を、0.001〜50μmの範囲内に設定できる。また、図2(c)のように複数の磁性膜6がある場合でも合計膜厚を、0.001〜50μmの範囲内に設定できる。また膜厚(合計膜厚)の好ましい上限値は10μm、より好ましい上限値は5μmである。またCr膜9は磁性膜6より薄いことが好ましい。Cr膜9の膜厚T3(図2(a)参照)は、0.001〜0.2μm程度であることが好適である。なお図2(c)のようにCr膜9が複数ある場合も、個々のCr膜9の膜厚T3を、0.001〜0.2μm程度とする。   In the present embodiment, the film thickness T2 (see FIG. 2A) of the magnetic film 6 can be set within a range of 0.001 to 50 μm. Moreover, even when there are a plurality of magnetic films 6 as shown in FIG. Moreover, the preferable upper limit of a film thickness (total film thickness) is 10 micrometers, and a more preferable upper limit is 5 micrometers. The Cr film 9 is preferably thinner than the magnetic film 6. The film thickness T3 (see FIG. 2A) of the Cr film 9 is preferably about 0.001 to 0.2 μm. Even when there are a plurality of Cr films 9 as shown in FIG. 2C, the film thickness T3 of each Cr film 9 is set to about 0.001 to 0.2 μm.

また樹脂シート5の膜厚は、0.01〜0.10mm程度であることが好適である。
以上により磁性シート4の薄型化を促進できる。
The film thickness of the resin sheet 5 is preferably about 0.01 to 0.10 mm.
As described above, thinning of the magnetic sheet 4 can be promoted.

また本実施形態では、熱処理を施さなくても、アモルファス相7と微結晶相8との混相構造を得ることができる。よって、樹脂シート5の材質を特に限定しなくてもよい。すなわち樹脂シート5の材質の選択性を広げることができる。また樹脂シート5に対する熱的影響がないため磁性シート4の寸法安定性を従来よりも高精度に得ることが可能である。樹脂シート5には、熱可塑性樹脂を使用でき、その中でも耐熱性に優れたPPS(ポリフェニレンスルフィド)の使用が好適であるものの、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)、アミラード(全芳香族系ポリアミド)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m−PPE)、アクリルニトリル・ブタジェン・スチレン(ABS)等各種エンジニアリングプラスチックやガラスエポキシ基板、ポリイミドフィルム等の使用も可能である。したがって、磁性シート4のフレキシブル化を促進できる。よって、磁性シート4をRFIDタグ2と金属部材3との間に密着させやすい。また、磁性シート4を湾曲させるような場合でも適切に磁性シート4を湾曲できる。   In the present embodiment, a mixed phase structure of the amorphous phase 7 and the microcrystalline phase 8 can be obtained without performing heat treatment. Therefore, the material of the resin sheet 5 does not have to be particularly limited. That is, the selectivity of the material of the resin sheet 5 can be expanded. Further, since there is no thermal influence on the resin sheet 5, it is possible to obtain the dimensional stability of the magnetic sheet 4 with higher accuracy than before. For the resin sheet 5, a thermoplastic resin can be used, and among them, PPS (polyphenylene sulfide) having excellent heat resistance is preferable, but PET (polyethylene terephthalate), PEN (polyethylene naphthalate), amirrad (totally fragrant) Group-based polyamide), polycarbonate (PC), modified polyphenylene ether (m-PPE), various engineering plastics such as acrylonitrile, butadiene, styrene (ABS), glass epoxy substrates, polyimide films, and the like can also be used. Therefore, the flexible formation of the magnetic sheet 4 can be promoted. Therefore, the magnetic sheet 4 is easily adhered between the RFID tag 2 and the metal member 3. Further, even when the magnetic sheet 4 is bent, the magnetic sheet 4 can be bent appropriately.

なお本実施形態では基板としてリジッドなガラス基板等を用いることもでき、例えば比耐熱性の基体に直接性膜したり、携帯機器等をはじめとする電子機器の筐体へ直接性膜することも可能である。   In this embodiment, a rigid glass substrate or the like can be used as the substrate. For example, a direct film can be formed on a specific heat-resistant substrate, or a direct film can be formed on a casing of an electronic device such as a portable device. Is possible.

また、磁性膜6は、A−M−O膜の元素AがFeであり、Feabcの組成式からなり、元素Oの組成比cが、6.85〜47at%の範囲内、元素Mの組成比bが11〜17at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たす高抵抗軟磁性膜であることが好ましい。元素Oの組成比cを13〜47at%とすることがより好ましい。さらに、元素Oの組成比cを27〜47at%とすることがより好ましい。さらに、元素Oの組成比cを27〜36at%とすることがより好ましい。これにより、アモルファス相と微結晶相との混相構造が得やすくなり、軟磁気特性の向上をより効果的に図ることが出来る。 In addition, the magnetic film 6 has the element A of the A-M-O film as Fe, and has a composition formula of Fe a M b O c , and the composition ratio c of the element O is in the range of 6.85 to 47 at%. It is preferable that the high-resistance soft magnetic film satisfy the relationship of a + b + c = 100 at% in which the composition ratio b of the element M is in the range of 11 to 17 at%, the balance is the composition ratio a of the element Fe. More preferably, the composition ratio c of the element O is 13 to 47 at%. Furthermore, the composition ratio c of the element O is more preferably 27 to 47 at%. Further, the composition ratio c of the element O is more preferably 27 to 36 at%. As a result, a mixed phase structure of an amorphous phase and a microcrystalline phase can be easily obtained, and the soft magnetic characteristics can be improved more effectively.

本実施形態では、図1に示すように、樹脂シート5上に、Cr膜9とA−M−Oから成る磁性膜6とを順に積層した磁性シート4をRFIDタグ2と金属部材3との間に挿入することで、リードライタ10からの磁束Hが磁性膜6内を通り、RFIDデバイス1とリードライタ10との間で還流磁束が形成される。この結果、RFIDタグ2のアンテナにて受信した信号出力の減衰量を小さくでき、例えば13.56MHzでのRFID特性の向上を効果的に図ることができる。また、本実施形態では、RFIDデバイス1とリードライタ10間の通信距離L1の範囲を広げることができ、具体的には通信距離L1を10〜50mmの範囲に設定しても適切に無線通信を行うことが可能である。   In this embodiment, as shown in FIG. 1, a magnetic sheet 4 in which a Cr film 9 and a magnetic film 6 made of A-M—O are sequentially laminated on a resin sheet 5 is provided between an RFID tag 2 and a metal member 3. By inserting the magnetic flux H from the reader / writer 10 through the magnetic film 6, a reflux magnetic flux is formed between the RFID device 1 and the reader / writer 10. As a result, the amount of attenuation of the signal output received by the antenna of the RFID tag 2 can be reduced, and for example, the RFID characteristics at 13.56 MHz can be effectively improved. In the present embodiment, the range of the communication distance L1 between the RFID device 1 and the reader / writer 10 can be expanded. Specifically, even when the communication distance L1 is set to a range of 10 to 50 mm, wireless communication can be performed appropriately. Is possible.

なお図2に示す磁性シート4は、電磁波抑制シート(ノイズ抑制シート)として用いることも出来る。   The magnetic sheet 4 shown in FIG. 2 can also be used as an electromagnetic wave suppression sheet (noise suppression sheet).

図2は、樹脂シート5の片面にのみ、Cr膜9と磁性膜6とを積層した構造であるが、樹脂シート5の両面に、Cr膜9と磁性膜6とを積層した構造であってもよい。   FIG. 2 shows a structure in which the Cr film 9 and the magnetic film 6 are laminated only on one side of the resin sheet 5, but a structure in which the Cr film 9 and the magnetic film 6 are laminated on both sides of the resin sheet 5. Also good.

図2に示す磁性シート4は、物理蒸着法により、樹脂シート5上にCr膜9と磁性膜6とを順に積層したものである。   A magnetic sheet 4 shown in FIG. 2 is obtained by sequentially laminating a Cr film 9 and a magnetic film 6 on a resin sheet 5 by physical vapor deposition.

物理蒸着法としては、スパッタ法、金属蒸着法、イオンビームスパッタ等を提示できる。またスパッタ法には、DC−FTS(対向ターゲットスパッタ)、RF−FTS(対向ターゲットスパッタ)、DCマグネトロンスパッタ、RFマグネトロンスパッタ、DCコンベンショナルスパッタ、RFコンベンショナルスパッタ等を提示できる。   As physical vapor deposition, sputtering, metal vapor deposition, ion beam sputtering, and the like can be presented. As the sputtering method, DC-FTS (opposite target sputtering), RF-FTS (opposed target sputtering), DC magnetron sputtering, RF magnetron sputtering, DC conventional sputtering, RF conventional sputtering, and the like can be presented.

(基板上にCr膜とFe−Hf−O膜とを積層した実施例と、基板上にFe−Hf−O膜を成膜した従来例における軟磁気特性の実験)
実験では樹脂シート上に[Fe−Hf−O膜/Cr膜]の積層体を15層、積層した実施例1及び実施例2、樹脂シート/Cr膜/Fe−Hf−O膜の実施例3、樹脂シート/Fe−Hf−O膜の従来例1を夫々、作製した。
(Experiment of soft magnetic characteristics in an example in which a Cr film and an Fe—Hf—O film are laminated on a substrate and a conventional example in which an Fe—Hf—O film is formed on a substrate)
In the experiment, Example 1 and Example 2 in which 15 layers of [Fe—Hf—O film / Cr film] were laminated on a resin sheet, and Example 3 of resin sheet / Cr film / Fe—Hf—O film were laminated. Conventional example 1 of a resin sheet / Fe—Hf—O film was produced.

実施例1では、各Fe−Hf−O膜の膜厚を0.2μm(合計膜厚3μm)とし、各Cr膜の膜厚を0.1μm(合計膜厚1.5μm)とした。また実施例2では、各Fe−Hf−O膜の膜厚を0.3μm(合計膜厚4.5μm)とし、Cr膜の膜厚を0.1μm(合計膜厚1.5μm)とした。また、実施例3では、Fe−Hf−O膜の膜厚を3μm、Cr膜の膜厚を0.1μmとした。また、従来例1では、Fe−Hf−O膜の膜厚が異なる複数の試料を作製した。   In Example 1, the film thickness of each Fe—Hf—O film was 0.2 μm (total film thickness 3 μm), and the film thickness of each Cr film was 0.1 μm (total film thickness 1.5 μm). In Example 2, the film thickness of each Fe—Hf—O film was set to 0.3 μm (total film thickness 4.5 μm), and the film thickness of the Cr film was set to 0.1 μm (total film thickness 1.5 μm). In Example 3, the film thickness of the Fe—Hf—O film was 3 μm, and the film thickness of the Cr film was 0.1 μm. In Conventional Example 1, a plurality of samples having different thicknesses of the Fe—Hf—O film were produced.

樹脂シートには、帝人DuPont製のPEN(ポリエチレンナフタレート)シート、あるいは、PPS(ポリフェニレンスルファイド)シートのいずれかを用いた。樹脂シートの膜厚は75μmであった。   As the resin sheet, either a PEN (polyethylene naphthalate) sheet manufactured by Teijin DuPont or a PPS (polyphenylene sulfide) sheet was used. The film thickness of the resin sheet was 75 μm.

また、Fe−Hf−O膜をArとO2の混合ガス中で、RF平行平板マグネトロンスパッタにより成膜した。スパッタ装置には、キヤノンアネルバ製のSPF−730 マグネトロンスパッタ装置を用いた。ターゲットにはFe−Hfターゲットを用いた。またArガス流量を50sccm、Ar+5%O2ガス流量を25sccm、O2/(Ar+O2)流量比を1.67%とした。またRF電力を600W、ガス圧を3mTorr、T/S=0%、基板間接冷却とした。 Further, a Fe—Hf—O film was formed by RF parallel plate magnetron sputtering in a mixed gas of Ar and O 2 . A SPF-730 magnetron sputtering apparatus manufactured by Canon Anelva was used as the sputtering apparatus. An Fe—Hf target was used as the target. The Ar gas flow rate was 50 sccm, the Ar + 5% O 2 gas flow rate was 25 sccm, and the O 2 / (Ar + O 2 ) flow rate ratio was 1.67%. The RF power was 600 W, the gas pressure was 3 mTorr, T / S = 0%, and substrate indirect cooling.

また、上記スパッタ装置を用いて、Arガス中で、Cr膜を成膜した。Cr膜の成膜では、RF電力を600W、ガス圧を8mTorr、Arガス流量を70sccmとした。   In addition, a Cr film was formed in Ar gas using the sputtering apparatus. In the formation of the Cr film, the RF power was 600 W, the gas pressure was 8 mTorr, and the Ar gas flow rate was 70 sccm.

なお各試料に対して熱処理は行っていない。
Fe−Hf−O膜の組成比は、Feが、50.2at%、Hfが13.7at、Oが36.1at%であった。
Each sample was not heat-treated.
The composition ratio of the Fe—Hf—O film was 50.2 at% for Fe, 13.7 at Hf, and 36.1 at% for O.

そして、実施例1〜3及び従来例1における13.56MHzでの複素比透磁率の実数部μ´及び虚数部μ″を測定した。その実験結果が図4に示されている。図4における実施例1,2のプロットの横軸は、夫々、Fe−Hf−O膜の合計膜厚の位置である。   Then, the real part μ ′ and the imaginary part μ ″ of the complex relative permeability at 13.56 MHz in Examples 1 to 3 and Conventional Example 1 were measured. The experimental results are shown in FIG. The horizontal axis of the plots of Examples 1 and 2 is the position of the total film thickness of the Fe—Hf—O film, respectively.

図4に示すように、実施例1〜3は、共に従来例1より、複素比透磁率の実数部μ´が大きくなった。   As shown in FIG. 4, in Examples 1 to 3, the real part μ ′ of the complex relative permeability is larger than that in Conventional Example 1.

特に、図4に示すように、従来例1では、Fe−Hf−O膜の膜厚を厚くしても複素比透磁率の実数部μ´は、270程度に留まり、それ以上大きくならなかった。   In particular, as shown in FIG. 4, in Conventional Example 1, even if the film thickness of the Fe—Hf—O film was increased, the real part μ ′ of the complex relative permeability remained at about 270 and did not increase any more. .

一方、実施例1〜3は、いずれも複素比透磁率の実数部μ´が300を越えた。
Cr膜とFe−Hf−O膜を多層構造とした実施例1(Fe−Hf−O膜の合計膜厚が3μm)では、450を越える非常に大きい複素比透磁率の実数部μ´を得ることが出来た。
On the other hand, in Examples 1 to 3, the real part μ ′ of the complex relative permeability exceeded 300.
In Example 1 in which the Cr film and the Fe—Hf—O film have a multilayer structure (the total film thickness of the Fe—Hf—O film is 3 μm), a real part μ ′ having a very large complex relative permeability exceeding 450 is obtained. I was able to.

(実施例における複素比透磁率の実数部μ´及び虚数部μ″の周波数特性)
上記の実験で用いた実施例1及び実施例2における複素比透磁率の実数部μ´及び虚数部μ″の周波数特性を調べた。その実験結果が図5に示されている。図5に示すように、高周波帯域で、高く且つ安定した複素比透磁率の実数部μ´を得ることが出来た。
(Frequency characteristics of the real part μ ′ and the imaginary part μ ″ of the complex relative permeability in the embodiment)
The frequency characteristics of the real part μ ′ and the imaginary part μ ″ of the complex relative permeability in Example 1 and Example 2 used in the above experiment were examined. The experimental results are shown in FIG. As shown, a real part μ ′ having a high and stable complex relative permeability can be obtained in a high frequency band.

また、磁性シートを電磁波抑制シート(ノイズ抑制シート)として用いる場合には、高周波帯域で複素比透磁率の虚数部μ″が大きいことが好ましいので、本実施例の磁性シートは、電磁波抑制シート(ノイズ抑制シート)としても有効に用いることが出来るとわかった。   In addition, when the magnetic sheet is used as an electromagnetic wave suppression sheet (noise suppression sheet), since the imaginary part μ ″ of the complex relative permeability is preferably large in the high frequency band, the magnetic sheet of this example is an electromagnetic wave suppression sheet ( It was found that it can also be used effectively as a noise suppression sheet.

(X線回折スペクトルの実験1)
従来例2として、Si/Al23基板上に、Fe−Hf−O膜を0.7μmの膜厚でスパッタ成膜した。なおスパッタ成膜条件は上記の実験と同じである。
(Experiment 1 of X-ray diffraction spectrum)
As Conventional Example 2, a Fe—Hf—O film having a thickness of 0.7 μm was formed on a Si / Al 2 O 3 substrate by sputtering. The sputter deposition conditions are the same as in the above experiment.

上記実験で用いた実施例1、従来例1、及び従来例2のX線回折スペクトルを測定した。従来例1には、Fe−Hf−O膜の膜厚が3.5μmの試料を用いた。その実験結果が図6に示されている。   The X-ray diffraction spectra of Example 1, Conventional Example 1, and Conventional Example 2 used in the above experiment were measured. In Conventional Example 1, a sample having a Fe—Hf—O film thickness of 3.5 μm was used. The experimental results are shown in FIG.

図6に示すように、従来例1及び従来例2のX線回折スペクトルはよく似ていることがわかった。一方、実施例1のX線回折スペクトルには、従来例1及び従来例2と違って、Fe相のbcc(200)やbcc(211)のピークが現れた。   As shown in FIG. 6, it was found that the X-ray diffraction spectra of Conventional Example 1 and Conventional Example 2 are very similar. On the other hand, in the X-ray diffraction spectrum of Example 1, unlike the conventional examples 1 and 2, peaks of bcc (200) and bcc (211) of the Fe phase appeared.

また、実施例1におけるbcc(110)のピークは、従来例1及び従来例2に比べて強く出ることがわかった。   Further, it was found that the peak of bcc (110) in Example 1 is stronger than those in Conventional Example 1 and Conventional Example 2.

実施例1、従来例1及び従来例2におけるFe−Hf−O膜の膜構造は、共に、酸化物アモルファス相とFeのbcc相との混相構造になっていることがわかったが、実施例1は、従来例1及び従来例2と違って複数種のbcc相のピークが見られ、またbcc(110)のピークが強く出ることがわかった。   It was found that the film structures of the Fe—Hf—O films in Example 1, Conventional Example 1 and Conventional Example 2 are all mixed phase structures of an oxide amorphous phase and a bcc phase of Fe. 1 was found to have a plurality of types of bcc phase peaks unlike the prior art examples 1 and 2, and a strong bcc (110) peak.

よってこの実験結果から、基板の違いによる磁性膜の膜構造への影響は小さく、本実施例のように、Cr膜とFe−Hf−O膜との積層構造とすることで、熱処理を施さずとも微結晶相の析出を促進できることがわかった。   Therefore, from this experimental result, the influence on the film structure of the magnetic film due to the difference in the substrate is small, and the heat treatment is not performed by using the laminated structure of the Cr film and the Fe—Hf—O film as in this embodiment. In both cases, it was found that precipitation of the microcrystalline phase can be promoted.

(X線回折スペクトルの実験2)
図7には、図6に示す実施例1及び従来例1のほかに実施例3のX線回折スペクトルが掲載されている。
(Experiment 2 of X-ray diffraction spectrum)
7 shows the X-ray diffraction spectrum of Example 3 in addition to Example 1 and Conventional Example 1 shown in FIG.

実施例3は、樹脂シート(PPS)上にCr膜とFe−Hf−O膜とを一層ずつ積層した構成である。   Example 3 has a configuration in which a Cr film and an Fe—Hf—O film are laminated one by one on a resin sheet (PPS).

図7に示すように、実施例3のX線回折スペクトルに現れるbcc相のピークは、樹脂シート(PPS)上にCr膜及びFe−Hf−O膜を多層積層した実施例1に比べると小さくなっているが、従来例1に対しては大きくなった。   As shown in FIG. 7, the peak of the bcc phase appearing in the X-ray diffraction spectrum of Example 3 is smaller than that of Example 1 in which a Cr film and a Fe—Hf—O film are laminated on a resin sheet (PPS). However, it is larger than that of Conventional Example 1.

よって、基板上に直接、磁性膜を成膜しただけの従来構成に比べて、Cr膜を少なくとも1層、Fe−Hf−O膜と重ねることで、熱処理を施さずとも微結晶相の析出を促進できることがわかった。   Therefore, compared with the conventional configuration in which the magnetic film is formed directly on the substrate, the microcrystalline phase is deposited without heat treatment by superposing at least one Cr film and the Fe—Hf—O film. I found that it can be promoted.

(組成比とX線回折スペクトルとの関係)
元素Oの組成比が6.41at%、27.08at%、66.91at%の各Fe−Hf−O膜のX線回折スペクトルを求めた。スパッタ装置には上記実験と同じものを使用した。実験ではO2流量比を変化させて、Fe−Hf−O中に取り込まれる元素Oの組成比を変化させた。いずれの試料に対しても熱処理を施していない。なお基板にはSi/Al23を用いた。またFe−Hf−O膜を基板上に直接、スパッタ成膜した。その結果が図8に示されている。
(Relationship between composition ratio and X-ray diffraction spectrum)
The X-ray diffraction spectrum of each Fe—Hf—O film having the composition ratio of element O of 6.41 at%, 27.08 at%, and 66.91 at% was determined. The same sputtering apparatus as that used in the above experiment was used. In the experiment, the composition ratio of the element O incorporated in Fe—Hf—O was changed by changing the O 2 flow rate ratio. None of the samples was heat-treated. Si / Al 2 O 3 was used for the substrate. Further, a Fe—Hf—O film was directly deposited on the substrate by sputtering. The result is shown in FIG.

元素Oの組成比を6.41at%とした場合、アモルファス相が主相となり、一方、Feのbcc相の存在を確認できなかった。また、元素Oの組成比を66.91at%としたFe−Hf−O膜のX線回折スペクトルには、Feのbcc相のピークが見られず、HfO、FeOのピークとアモルファス相(FeあるいはHfの酸化物)が存在することがわかった。   When the composition ratio of element O was 6.41 at%, the amorphous phase became the main phase, while the presence of the bcc phase of Fe could not be confirmed. Further, in the X-ray diffraction spectrum of the Fe—Hf—O film in which the composition ratio of element O is 66.91 at%, the peak of the bcc phase of Fe is not seen, and the peak of HfO, FeO and the amorphous phase (Fe or Fe Hf oxide) was present.

一方、元素Oの組成比を27.08at%としたFe−Hf−O膜のX線回折スペクトルには、Feのbcc相に対応するシャープで明瞭なピークとHfあるいはFeの酸化物に近い回折角にブロードなピークが観察された。   On the other hand, the X-ray diffraction spectrum of the Fe—Hf—O film in which the composition ratio of element O is 27.08 at% shows a sharp and clear peak corresponding to the bcc phase of Fe and a frequency close to that of Hf or Fe oxide. A broad peak was observed at the corner.

(組成比と複素比透磁率の実数部μ´及び虚数部μ″との関係)
基板上にFe−Hf−O膜をスパッタ成膜し、元素Oの組成比と複素比透磁率の実数部μ´(13.56MHz)及び虚数部μ″(13.56MHz)との関係を調べた。各試料のFe−Hf−O膜をほぼ1μmの膜厚にて形成した。スパッタ装置には上記実験と同じものを使用した。実験ではO2流量比を変化させて、Fe−Hf−O中に取り込まれる元素Oの組成比を変化させた。
(Relation between composition ratio and real part μ ′ and imaginary part μ ″ of complex relative permeability)
A Fe—Hf—O film is formed on the substrate by sputtering, and the relationship between the composition ratio of element O and the real part μ ′ (13.56 MHz) and the imaginary part μ ″ (13.56 MHz) of the complex relative permeability is investigated. and. by changing the O 2 flow rate ratio is used the same as the above experiment. the experiment in. sputtering device formed in a thickness of approximately 1μm and Fe-Hf-O film of each sample, Fe-Hf- The composition ratio of the element O taken in O was changed.

図9には、元素Oの組成比と、複素比透磁率の実数部μ´(13.56MHz)及び虚数部μ″(13.56MHz)との関係が示されている。また下記の表1は、組成比と、複素比透磁率の実数部μ´及び虚数部μ″とをまとめたものである。   9 shows the relationship between the composition ratio of the element O and the real part μ ′ (13.56 MHz) and the imaginary part μ ″ (13.56 MHz) of the complex relative permeability. Is a summary of the composition ratio and the real part μ ′ and imaginary part μ ″ of the complex relative permeability.

Figure 2009295930
Figure 2009295930

図9及び表1に示すように、元素Oの組成比を適正化することで、複素比透磁率の実数部μ´(13.56MHz)をより効果的に大きくできることがわかった。   As shown in FIG. 9 and Table 1, it was found that the real part μ ′ (13.56 MHz) of the complex relative permeability can be increased more effectively by optimizing the composition ratio of the element O.

また、DC対向ターゲットスパッタ法(FTS法)により、様々な組成比によりなるFe−Hf−O膜を基板上にスパッタ成膜した。以下の表2に示すようにガス圧を0.7mTorr、1.0mTorr、3.0mTorrと変えた。   In addition, an Fe—Hf—O film having various composition ratios was formed by sputtering on the substrate by a DC facing target sputtering method (FTS method). As shown in Table 2 below, the gas pressure was changed to 0.7 mTorr, 1.0 mTorr, and 3.0 mTorr.

Figure 2009295930
Figure 2009295930

表2に示すように元素Oを6.85at%まで小さくしても複素比透磁率の実数部μ´及び虚数部μ″の双方が高い優れた軟磁気特性を得ることが可能であることがわかった。   As shown in Table 2, even if the element O is reduced to 6.85 at%, it is possible to obtain excellent soft magnetic characteristics in which both the real part μ ′ and the imaginary part μ ″ of the complex relative permeability are high. all right.

RFIDデバイス及びリードライタの模式図、Schematic diagram of RFID device and reader / writer 本発明の実施形態の磁性シートの部分断面図、The fragmentary sectional view of the magnetic sheet of the embodiment of the present invention, Fe−M−O膜の膜構造の模式図、Schematic diagram of the film structure of the Fe-MO film, 実施例1〜3(いずれも基板上にCr膜とFe−Hf−O膜との積層構造)及び従来例1(基板上にFe−Hf−O膜を成膜した構成)における13.56MHzでの複素比透磁率の実数部μ´及び虚数部μ″の実験結果、At 13.56 MHz in Examples 1 to 3 (all are laminated structures of a Cr film and an Fe—Hf—O film on a substrate) and Conventional Example 1 (a configuration in which an Fe—Hf—O film is formed on a substrate) Experimental result of real part μ ′ and imaginary part μ ″ of complex relative permeability of 実施例1及び実施例2における複素比透磁率の実数部μ´及び虚数部μ″の周波数特性の実験結果、Experimental results of frequency characteristics of the real part μ ′ and the imaginary part μ ″ of the complex relative permeability in Example 1 and Example 2, 実施例1、従来例1、及び従来例2のX線回折スペクトル、X-ray diffraction spectra of Example 1, Conventional Example 1 and Conventional Example 2, 実施例1、実施例3及び従来例1のX線回折スペクトル、X-ray diffraction spectra of Example 1, Example 3 and Conventional Example 1, 元素Oの組成比を6.41at%、27.08at%、66.91at%とした各Fe−Hf−O膜のX線回折スペクトル、X-ray diffraction spectrum of each Fe—Hf—O film in which the composition ratio of the element O is 6.41 at%, 27.08 at%, 66.91 at%, Fe−Hf−O膜の元素Oの組成比と複素比透磁率の実数部μ´及び虚数部μ″との関係を示すグラフ、A graph showing the relationship between the composition ratio of the element O of the Fe—Hf—O film and the real part μ ′ and the imaginary part μ ″ of the complex relative permeability;

符号の説明Explanation of symbols

1 RFIDデバイス
2 RFIDタグ
3 金属部材
4 磁性シート
5 樹脂シート
6 磁性膜
7 アモルファス相
8 微結晶相
9 Cr膜
10 リードライタ
DESCRIPTION OF SYMBOLS 1 RFID device 2 RFID tag 3 Metal member 4 Magnetic sheet 5 Resin sheet 6 Magnetic film 7 Amorphous phase 8 Microcrystalline phase 9 Cr film 10 Lead dryer

Claims (7)

基体上に、Cr膜と、A−M−O(ただし元素AはFeまたはCoまたはその混合物を表し、元素Mは、Hf、Ti、Zr、V、Nb、Ta、Mo、W、Al、Mg、Zn、Ca、Ce、Y、Siのうち少なくともいずれか一種を表す)から成る磁性膜とが順に積層されており、
前記磁性膜は、元素MとOの化合物を含むアモルファス相と、前記アモルファス相中に点在するFeまたはCoから選ばれる一種または二種を主体とした平均結晶粒径30nm以下の微結晶相との膜構造で形成されていることを特徴とする磁性基体。
On the substrate, a Cr film and AMO (where element A represents Fe or Co or a mixture thereof, and element M is Hf, Ti, Zr, V, Nb, Ta, Mo, W, Al, Mg) , Zn, Ca, Ce, Y, and Si)) are sequentially laminated,
The magnetic film includes an amorphous phase containing a compound of elements M and O, a microcrystalline phase having an average crystal grain size of 30 nm or less mainly composed of one or two kinds selected from Fe or Co scattered in the amorphous phase. A magnetic substrate having a film structure of
基体上に、下から前記Cr膜、及び前記磁性膜の順に積層されている請求項1記載の磁性基体。   The magnetic substrate according to claim 1, wherein the Cr film and the magnetic film are laminated in that order from the bottom on the substrate. 前記基体上に、下から前記磁性膜、及び前記Cr膜の順に積層されている請求項1記載の磁性基体。   The magnetic substrate according to claim 1, wherein the magnetic film and the Cr film are laminated on the substrate in order from the bottom. 前記基体上に、前記Cr膜と前記磁性膜とが交互に繰り返して積層されている請求項2又は3に記載の磁性基体。   The magnetic substrate according to claim 2 or 3, wherein the Cr film and the magnetic film are alternately and repeatedly laminated on the substrate. 前記磁性膜は、元素AがFeであり、組成式がFeabcから成り、元素Oの組成比cが、6.85〜47at%の範囲内、元素Mの組成比が11〜17at%の範囲内、残部が元素Feの組成比aであり、a+b+c=100at%の関係を満たす請求項1ないし4のいずれかに記載の磁性基体。 In the magnetic film, the element A is Fe, the composition formula is Fe a M b O c , the composition ratio c of the element O is in the range of 6.85 to 47 at%, and the composition ratio of the element M is 11 to 11%. 5. The magnetic substrate according to claim 1, wherein the balance is a composition ratio a of the element Fe within a range of 17 at% and satisfies a relationship of a + b + c = 100 at%. 前記磁性膜のX線回折スペクトルには、Feのbcc(110)のピークの他に、異なる結晶面のbcc相のピークが現れる請求項5記載の磁性基体。   6. The magnetic substrate according to claim 5, wherein in the X-ray diffraction spectrum of the magnetic film, in addition to the bcc (110) peak of Fe, bcc phase peaks of different crystal planes appear. 前記基体は、可撓性の樹脂シートである請求項1ないし6のいずれかに記載の磁性基体。   The magnetic substrate according to claim 1, wherein the substrate is a flexible resin sheet.
JP2008150818A 2008-06-09 2008-06-09 Magnetic substrate Expired - Fee Related JP5185701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008150818A JP5185701B2 (en) 2008-06-09 2008-06-09 Magnetic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008150818A JP5185701B2 (en) 2008-06-09 2008-06-09 Magnetic substrate

Publications (2)

Publication Number Publication Date
JP2009295930A true JP2009295930A (en) 2009-12-17
JP5185701B2 JP5185701B2 (en) 2013-04-17

Family

ID=41543824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008150818A Expired - Fee Related JP5185701B2 (en) 2008-06-09 2008-06-09 Magnetic substrate

Country Status (1)

Country Link
JP (1) JP5185701B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522981A (en) * 2013-03-27 2016-08-04 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited Electromagnetic confinement
JP2017120924A (en) * 2011-08-31 2017-07-06 株式会社東芝 Magnetic material, inductor element, magnetic ink, and antenna device
US10593468B2 (en) 2018-04-05 2020-03-17 Apple Inc. Inductive power transfer assembly
US11043841B2 (en) 2016-05-25 2021-06-22 Apple Inc. Coil arrangement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120690A (en) * 1992-09-30 1994-04-28 Asahi Glass Co Ltd Electromagnetic shielding body
JPH1025530A (en) * 1996-02-26 1998-01-27 Alps Electric Co Ltd Soft magnetic alloy for high frequency use, and flat magnetic device, antenna, and wave absorber using same
JP2000054083A (en) * 1998-08-07 2000-02-22 Alps Electric Co Ltd Soft magnetic multilayered film, and flat magnetic element, filter, and thin film magnetic head using the soft magnetic multilayered film, and manufacture of the soft magnetic multilayer film
JP2001217125A (en) * 2000-02-04 2001-08-10 Alps Electric Co Ltd Soft magnetic film, planar-type magnetic element using soft magnetic film, filter and thin-film magnetic head
JP2005327853A (en) * 2004-05-13 2005-11-24 Shin Etsu Polymer Co Ltd Electromagnetic wave noise suppressor and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120690A (en) * 1992-09-30 1994-04-28 Asahi Glass Co Ltd Electromagnetic shielding body
JPH1025530A (en) * 1996-02-26 1998-01-27 Alps Electric Co Ltd Soft magnetic alloy for high frequency use, and flat magnetic device, antenna, and wave absorber using same
JP2000054083A (en) * 1998-08-07 2000-02-22 Alps Electric Co Ltd Soft magnetic multilayered film, and flat magnetic element, filter, and thin film magnetic head using the soft magnetic multilayered film, and manufacture of the soft magnetic multilayer film
JP2001217125A (en) * 2000-02-04 2001-08-10 Alps Electric Co Ltd Soft magnetic film, planar-type magnetic element using soft magnetic film, filter and thin-film magnetic head
JP2005327853A (en) * 2004-05-13 2005-11-24 Shin Etsu Polymer Co Ltd Electromagnetic wave noise suppressor and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017120924A (en) * 2011-08-31 2017-07-06 株式会社東芝 Magnetic material, inductor element, magnetic ink, and antenna device
JP2016522981A (en) * 2013-03-27 2016-08-04 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited Electromagnetic confinement
US11043841B2 (en) 2016-05-25 2021-06-22 Apple Inc. Coil arrangement
US10593468B2 (en) 2018-04-05 2020-03-17 Apple Inc. Inductive power transfer assembly

Also Published As

Publication number Publication date
JP5185701B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
Greve et al. Nanostructured magnetic Fe–Ni–Co/Teflon multilayers for high-frequency applications in the gigahertz range
JP5185701B2 (en) Magnetic substrate
JP5999290B2 (en) Magnetic recording medium
CN101285170B (en) Process for preparing wide-band and wave-absorbing magnetic multilayer membrane
CN107430872A (en) The manufacture method of magnetic recording media
TW200903536A (en) Inductor with exchange-coupling film
CN105849805B (en) Perpendicular magnetic recording medium
JP2010114246A (en) Multilayer magnetic sheet
WO2010137605A1 (en) Communication device
JP5284736B2 (en) Magnetic sheet and manufacturing method thereof
JP2007164941A (en) Perpendicular magnetic recording medium
US20160134020A1 (en) Magnetic shielding for an antenna, using a composite based on thin magnetic layers, and antenna comprising such a shielding
JP5162339B2 (en) Magnetic substrate and method for manufacturing the same
US10580558B2 (en) Texture inducing structure for alloy films and texture inducing method thereof
JP4453479B2 (en) Exchange coupling type soft magnetic material
WO2010113791A1 (en) Magnetic sheet
Hashimoto et al. Marked enhancement of synthetic-antiferromagnetic coupling in subnanocrystalline FeCoB∕ Ru∕ FeCoB sputtered films
JP2010283333A (en) Magnetic member for rfid, and rfid device
JP6739698B2 (en) Soft magnetic metal film and magnetic parts
Subramani et al. A simple process for ferrite film preparation from one solution without using hazardous oxidizing agent
JP2012008814A (en) Communication device
Yu et al. Magnetic behavior of CoPt–AlN granular structure laminated with AlN layers
Cheng et al. Effect of sputtering parameters on the magnetic properties of SmCo5/Cu films
WO2003096359A1 (en) Soft magnetic material of high saturation magnetic flux density
US10388315B2 (en) Perpendicular magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130118

R150 Certificate of patent or registration of utility model

Ref document number: 5185701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees