JP2009291342A - Surgery assisting apparatus - Google Patents

Surgery assisting apparatus Download PDF

Info

Publication number
JP2009291342A
JP2009291342A JP2008146457A JP2008146457A JP2009291342A JP 2009291342 A JP2009291342 A JP 2009291342A JP 2008146457 A JP2008146457 A JP 2008146457A JP 2008146457 A JP2008146457 A JP 2008146457A JP 2009291342 A JP2009291342 A JP 2009291342A
Authority
JP
Japan
Prior art keywords
point
error
measurement
feature point
registration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008146457A
Other languages
Japanese (ja)
Other versions
JP5216949B2 (en
Inventor
Naohiko Sugita
直彦 杉田
Mamoru Mitsuishi
衛 光石
Yoshikazu Nakajima
義和 中島
Minoru Saito
季 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2008146457A priority Critical patent/JP5216949B2/en
Publication of JP2009291342A publication Critical patent/JP2009291342A/en
Application granted granted Critical
Publication of JP5216949B2 publication Critical patent/JP5216949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To permit a minimally invasive surgery and to reduce the burden on a patient by improving the precision of the surgery and reducing the time for the surgery in case of the minimally invasive surgery. <P>SOLUTION: A feature point having a geometric feature is set on a medical image, and a positional error between the feature point and a measurement point corresponding to the feature point to be measured during the surgery is estimated by point measurement error estimating means, and the appropriateness of the feature point is determined. Then, a group of feature points and a group of measurement points are captured as sets, and the error between the sets is estimated by registration error estimating means. Accordingly, the best combination of the feature point group can be obtained to further improve the accuracy of the surgery. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、術前計画で定めた手術計画を手術部位に高精度に反映できる手術支援装置に関するものである。   The present invention relates to a surgical operation support apparatus that can accurately reflect a surgical plan determined in a preoperative plan on a surgical site.

外科手術においては、手術前に患部のX線CTやMRI等の医用画像を撮影し、医師はその画像と手術部位を手術中に目視で照らし合わせながら経験と勘を頼りに手術を遂行している。ところが、このようなマニュアル手術では、その結果は医師の経験と勘及び技量に依存することになる。そこで、近年、技量に依存しなくても高精度な手術が可能な、BrainLAB VectorVision(登録商標)を代表とする手術支援システムが開発されている。   In surgery, medical images such as X-ray CT and MRI of the affected area are taken before the surgery, and the doctor performs the operation based on experience and intuition while visually comparing the image and the surgical site during the surgery. Yes. However, in such manual surgery, the result depends on the experience, intuition and skill of the doctor. Therefore, in recent years, a surgical support system represented by BrainLAB VectorVision (registered trademark), which can perform high-precision surgery without depending on skill, has been developed.

これは、手術前に撮影された医用画像を用いて3次元空間で手術位置・範囲や手術跡に埋め込むインプラント等の術前計画を立案してこの術前計画空間を術中空間内にマッピングし、術前計画の位置・域に対応する術中空間の位置・域に手術器械を誘導するものである。なお、医師の手に代えて、手術器械(工具)を誘導してインプラントの設置域を高精度に手術(加工)する手術ロボットシステム(下記特許文献1)も開発されている。そして、空間マッピングを行うために術前計画空間を実際の術中空間に対応付けし、それらの相対的な空間座標変換行列を求める作業をレジストレーションと呼ぶ。   This is to create a preoperative plan such as implants to be embedded in a surgical position / range and surgical trace in a three-dimensional space using medical images taken before surgery, and to map this preoperative plan space in the intraoperative space, The surgical instrument is guided to the position and area of the intraoperative space corresponding to the position and area of the preoperative plan. In addition, instead of a doctor's hand, a surgical robot system (Patent Document 1 below) has been developed that guides a surgical instrument (tool) and operates (processes) an implant installation area with high accuracy. Then, in order to perform space mapping, the preoperative planning space is associated with the actual operation space, and the operation for obtaining the relative space coordinate transformation matrix is called registration.

このレジストレーションは、術前計画空間及び術中空間のそれぞれのデータに共通する凹凸等の形状変化が大き点が採択される特徴点を抽出し、それらの対応付けを行うことで実現される。このレジストレーションは、それぞれの空間から抽出されるデータの種類で区別され、特徴点群と術中にこれに対応する点群を位置計測器で計測した計測点群との対応付けを行う点対応レジストレーション、術前計画空間内の手術部位の表面形状である点列と術中に計測された表面形状とを対応付けするサーフェスレジストレーション、手術部位の術前に撮影されたX線画像と術中に撮影されるX線画像の画素の濃淡を対応付けする2D/3Dレジストレーション等がある。   This registration is realized by extracting feature points at which a large point is adopted in the shape change such as unevenness common to each data of the preoperative planning space and the intraoperative space, and making them correspond. This registration is distinguished by the type of data extracted from each space, and is a point correspondence register that associates a feature point group with a measurement point group obtained by measuring a corresponding point group with a position measuring instrument during surgery. , Surface registration that associates the surface shape of the surgical site in the preoperative planning space with the surface shape measured during the operation, X-ray images taken before the operation and the intraoperative image 2D / 3D registration for associating shades of pixels of an X-ray image to be performed.

しかし、これらレジストレーションにおいても幾つかの課題があり、点対応及びサーフェスレジストレーションでは、手術中の切開及び手術部位周囲の状況によって形状が十分に計測できないための形状データの不足・偏りに基づく精度低下の問題、2D/3Dレジストレーションでは、手術中の患者及び医師等の医療スタッフのX線被曝問題が指摘されている。さらに、最近では、患者の肉体的負担の軽減及び早期回復を目的とする低侵襲(狭切開範囲)手術が指向されており、小さい傷での手術が行われている。この場合には手術部位周辺の切開空間がより狭くなるため、手術部位の点群や点列の計測が制約を受けることになり、レジストレーションの高精度化に必要な計測データが十分に取得できず、精度の低下を招く虞がある。   However, there are some problems in these registrations. In point correspondence and surface registration, the accuracy cannot be measured due to the incision during surgery and the situation around the surgical site. In the 2D / 3D registration, the problem of deterioration has been pointed out as an X-ray exposure problem for patients during surgery and medical staff such as doctors. Furthermore, recently, a minimally invasive (narrow incision range) operation aimed at reducing a physical burden on a patient and early recovery has been directed, and an operation with a small wound is performed. In this case, since the incision space around the surgical site becomes narrower, the measurement of the point cloud and point sequence of the surgical site is restricted, and sufficient measurement data necessary for high registration accuracy can be obtained. However, there is a possibility that accuracy may be reduced.

さらに、重要なことは、これらレジストレーションの結果の良否は、術中に術前計画空間におけるデータと対応付けされた点群同士や点列同士を実際に計測して始めて判明することである。したがって、医用画像から手術部位の形状が十分に把握できなかった等の原因で術前計画で採用された特徴点が適切でなかったような場合、改めて特徴点の設定をやり直すことになり、手術の精度の低下が予想される。また、このような操作をするとなると、手術時間は必然的に長くなり、患者の肉体的負担は一層増すことになる。
特開2002−306500号公報
Furthermore, what is important is that the quality of these registration results is determined only by actually measuring point groups or point sequences associated with data in the preoperative plan space during the operation. Therefore, if the feature points adopted in the preoperative plan are not appropriate due to reasons such as the shape of the surgical site not being fully grasped from the medical image, the feature points must be set again, A decrease in accuracy is expected. In addition, when such an operation is performed, the operation time is inevitably long, and the physical burden on the patient is further increased.
JP 2002-306500 A

本発明は、術前計画を策定した段階で、特徴点とこれと対応する手術部位を術中に光学式等の3次元位置計測器で計測した計測点(以下、単に計測点という)とのレジストレーション誤差を推定するとともに、このレジストレーション誤差を最低にする特徴点群を含む座標系の組合せを選択できるようにして患者の肉体的負担の少ない低侵襲手術であっても、手術の高精度化、短時間化を可能にしたものである。   In the present invention, at the stage where a preoperative plan is formulated, registration between a feature point and a measurement point (hereinafter simply referred to as a measurement point) obtained by measuring an operation site corresponding to the feature point with an optical type three-dimensional position measuring instrument during the operation is performed. Even in minimally invasive surgery with less physical burden on the patient, it is possible to select the combination of coordinate systems including the feature point group that minimizes this registration error. This makes it possible to shorten the time.

以上の課題の下、本発明は、請求項1に記載した、手術部位の医用画像を基に策定した術前計画空間を術中空間に対応付けし、両空間の相対的な空間座標変換行列を求めるレジストレーションを行って手術の精度を高める手術支援装置において、
特徴点群を医用画像の表面形状データから採択し、特定の特徴点から任意の距離を対象として固有値解析を行ってローカル座標系を設定し、この座標系における特徴点の固有ベクトルを特徴点を原点とするローカル座標系における表面の法線ベクトル方向のZ軸と、Z軸にそれぞれ直交するX、Y軸に設定する他、X−Y平面上において、X軸に対してθの角度で原点から長さrで延びる線分Iと原点に対して対称な線分I′を設定し、線分IとI′に沿った表面形状データにおける表面上の曲率変化関数をf(x)、g(x)として特徴点に対する曲率変化の空間対称性である形状評価値を線分IとI′の正規化相関係数
- - - - C=Σ(f(x)-f(x))・(g(x)-g(x)/ [(f(x)-f(x))2]1/2 ・[(g(x)-g(x))2]1/2
で表し、rーθ空間内における最大の形状評価値及びこのときの線分IとI′に直交する線分の形状評価値を抽出するとともに、各線分の方向ベクトルからX及びY座標系を修正し、形状評価値から各特徴点に対する点計測誤差の軸成分(標準偏差)を推定して点計測誤差分布を作成する点計測誤差推定手段と、
表面形状データ上において、特徴点を抽出する任意の集合{X}が与えられた場合における特徴点と術中にこれと対応する点を位置計測器で計測した計測点との対応付け誤差である点対応レジストレーション誤差の推定を
1)集合{X}から3以上の要素を持つ部分集合{Xs|Xs∈X}を抽出する手順
2)点計測誤差分布に従って部分集合{Xs}のそれぞれの点座標に乱数誤差を加えて集合{Xn}を作成する手順
3)2)で求めた点計測誤差を加算した集合{Xn}に対して元の部分集合{Xs}における特徴点と計測点との対応付けであるレジストレーションを行い、元の座標系からの移動量を算出してレジストレーション誤差とする手順
4)1)〜3)の手順をすべての部分集合の組合せに対して行い、レジストレーション誤差を最小にする特徴点群の集合及びこれと対応する計測点群の集合の推定誤差を算出する手順、で行うレジストレーション誤差推定手段と、
を有することを特徴とする手術支援装置を提供する。
Under the above problems, the present invention associates the preoperative planning space defined on the basis of the medical image of the surgical site described in claim 1 between the surgical hollows, and sets the relative spatial coordinate transformation matrix of both spaces. In a surgery support device that performs the required registration to increase the accuracy of surgery,
A feature point group is adopted from the surface shape data of a medical image, an eigenvalue analysis is performed for an arbitrary distance from a specific feature point, and a local coordinate system is set. In addition to setting the Z axis in the normal vector direction of the surface in the local coordinate system and the X and Y axes orthogonal to the Z axis, respectively, on the XY plane, from the origin at an angle θ with respect to the X axis A line segment I extending with a length r and a line segment I 'symmetrical to the origin are set, and the curvature change function on the surface in the surface shape data along the line segments I and I' is represented by f (x), g ( x) is a normalized correlation coefficient of line segments I and I ′, which is a shape evaluation value which is the spatial symmetry of the curvature change with respect to the feature point.
- - - - C = Σ ( f (x) -f (x)) · (g (x) -g (x) / [(f (x) -f (x)) 2] 1/2 · [( g (x) -g (x) ) 2] 1/2
The maximum shape evaluation value in the r-θ space and the shape evaluation value of the line segment orthogonal to the line segments I and I ′ at this time are extracted, and the X and Y coordinate systems are extracted from the direction vector of each line segment. A point measurement error estimating means for correcting and creating a point measurement error distribution by estimating the axis component (standard deviation) of the point measurement error for each feature point from the shape evaluation value;
A point that is an association error between a feature point and a measurement point obtained by measuring a point corresponding to the feature point during surgery in the case where an arbitrary set {X} for extracting feature points is given on the surface shape data Corresponding registration error estimation 1) Procedure for extracting a subset {Xs | XsεX} having three or more elements from the set {X} 2) Each point coordinate of the subset {Xs} according to the point measurement error distribution Procedure for creating a set {Xn} by adding random error to 3) Correspondence between feature points and measurement points in the original subset {Xs} with respect to the set {Xn} obtained by adding the point measurement errors obtained in 2) Registration 4 is performed, and the amount of movement from the original coordinate system is calculated and used as a registration error. Procedures 4) 1) to 3) are performed for all combinations of subsets, and registration error occurs. A registration error estimating means for performing steps, for calculating an estimated error of the set and the set of corresponding measurement point group and this feature point group to minimize
There is provided a surgery support device characterized by comprising:

要するに、医用画像上で特徴点を設定し、特徴点と計測点との位置誤差を点計測誤差推定手段によって推定するものである。これにより、採択すべき特徴点の良否が判別できるものになる。一方、この推定の精度を上げようとすれば、特徴点は相応の数が必要であることから、各々の特徴点群を集合として捉え、この特徴点群に対応する計測点群の集合との誤差をレジストレーション誤差推定手段によって推定し、特徴点群のベストの組合せが得られるようにして更に精度を高めるようにしたものである。そして、以上の処理は手術前にできることを特徴としているのである。   In short, a feature point is set on a medical image, and a position error between the feature point and the measurement point is estimated by the point measurement error estimation means. Thereby, the quality of the feature points to be adopted can be determined. On the other hand, if an attempt is made to increase the accuracy of this estimation, since a corresponding number of feature points are required, each feature point group is regarded as a set, and a set of measurement point groups corresponding to this feature point group is The error is estimated by the registration error estimation means, and the best combination of feature points is obtained to further improve the accuracy. And the above process is characterized in that it can be performed before surgery.

さらに、術中に3次元位置計測器によって手術部位の表面を連続で計測し、この計測点列と請求項1で推定されたレジストレーション誤差を最小にする特徴点群の計測点を重畳的に使用し、医用画像を基に策定した術前計画空間における特徴点群と表面形状データとのレジストレーションを行う手術支援装置を提供する。   Furthermore, the surface of the surgical site is continuously measured by a three-dimensional position measuring instrument during the operation, and the measurement point sequence and the measurement points of the feature point group that minimizes the registration error estimated in claim 1 are used in a superimposed manner. In addition, a surgical operation support apparatus that performs registration between feature point groups and surface shape data in a preoperative planning space created based on medical images is provided.

このように、特徴点群と手術部位の表面形状を計測した計測点列により、低侵襲手術において少なくなりがちである計測情報を、取得が困難な領域では請求項1で術中の計測精度が高いと推定される特徴点を採用し、取得が容易な領域では形状を連続計測して計測点列を取得することで、レジストレーション精度の高精度化を図ったものである。   Thus, measurement information that tends to be reduced in minimally invasive surgery by the measurement point sequence obtained by measuring the feature point group and the surface shape of the surgical site is high in the intraoperative measurement accuracy in claim 1 in a region where acquisition is difficult. In the region where it is assumed that the feature points are estimated and the shape is easily measured, the shape is continuously measured to obtain the measurement point sequence, thereby improving the registration accuracy.

請求項1の構成により、点計測誤差推定手段によって術前に採択した各特徴点の計測誤差が推定できるから、その良否が判別できるし、レジストレーション誤差推定手段によってこの誤差を最低にする特徴点群の集合が選定できる。したがって、術前計画の段階で高精度な手術が予測でき、術中に特定点の設定し直しや計測点の計測し直しといったことが生じない。このため、手術時間は短縮され、患者の肉体的負担は軽減する。このことは、低侵襲手術に好適なものになるとともに、手術部位の周辺が周囲組織等で覆い隠されている場合でも手術が可能なことを意味し、手術の高精度化、短時間化に一層寄与するものとなる。   According to the configuration of claim 1, since the measurement error of each feature point adopted before the operation can be estimated by the point measurement error estimating means, the quality can be determined, and the feature point which minimizes this error by the registration error estimating means. A set of groups can be selected. Therefore, highly accurate surgery can be predicted at the stage of preoperative planning, and there is no need to reset a specific point or remeasure a measurement point during the operation. Therefore, the operation time is shortened and the physical burden on the patient is reduced. This means that it is suitable for minimally invasive surgery, and that surgery can be performed even when the periphery of the surgical site is covered with surrounding tissue, etc. It will contribute more.

以下、本発明の実施の形態を膝に人工膝関節(インプラント)を置換する手術を例にとって説明する。図1は術前計画を策定する手順のフロー図であるが、まず、手術部位をX線CTやMRIで撮影した医用画像をコンピュータに取り込む。次いで、凹凸等の形状変化の大きい個所を優先して幾つかの特徴点を抽出して画像に表示する。ここで、形状変化の大きくて幾何学的特徴のある点を特徴点とするのは、計測点を術中に計測する場合に位置計測器の目標が定め易いからである。さらに、画像上で切除ラインや範囲を決めてインプラントを装填した状態を表示する。この術前計画をデータとして読込み、特徴点に対応する計測点との位置誤差を点計測誤差推定手段によって推定(計算)する。この特徴点は、表面形状の曲率と対称性によって評価されるものになるが、次の処理で求められる。   Hereinafter, an embodiment of the present invention will be described taking as an example surgery for replacing an artificial knee joint (implant) with a knee. FIG. 1 is a flowchart of a procedure for preparing a preoperative plan. First, a medical image obtained by imaging a surgical site by X-ray CT or MRI is taken into a computer. Next, some feature points are extracted and displayed on the image with priority given to places with large shape changes such as irregularities. Here, a point having a large shape change and having a geometric feature is used as a feature point because a target of the position measuring device is easily determined when measuring a measurement point intraoperatively. Furthermore, the state in which the implant is loaded with the ablation line and range determined on the image is displayed. This preoperative plan is read as data, and the position error with the measurement point corresponding to the feature point is estimated (calculated) by the point measurement error estimation means. This feature point is evaluated by the curvature and symmetry of the surface shape, but is obtained by the following process.

図2はこの処理を実行する手順のフロー図であるが、特徴点群を医用画像の表面形状データから採択し、特定の特徴点から任意の距離を対象として固有値解析を行ってローカル座標系を設定し、この座標系における特徴点の固有ベクトルを特徴点を原点とするローカル座標系における表面からの法線ベクトル方向のZ軸と、Z軸にそれぞれ直交するX、Y軸に設定する他、X−Y平面上において、X軸に対してθの角度で原点から長さrで延びる線分Iと原点に対して対称な線分I′を設定し、線分IとI′に沿った表面形状データにおける表面上の曲率変化関数をf(x)、g(x)として特徴点に対する曲率変化の空間対称性である形状評価値を線分IとI′の正規化相関係数   FIG. 2 is a flowchart of a procedure for executing this processing. A feature point group is selected from the surface shape data of a medical image, and an eigenvalue analysis is performed on an arbitrary distance from a specific feature point to determine a local coordinate system. In addition to setting the eigenvector of the feature point in this coordinate system to the Z axis in the direction of the normal vector from the surface in the local coordinate system with the feature point as the origin, and the X and Y axes orthogonal to the Z axis, On the -Y plane, a line segment I extending from the origin with a length r at an angle θ with respect to the X axis and a line segment I ′ symmetrical to the origin are set, and the surface along the line segments I and I ′ Assuming that the curvature change function on the surface in the shape data is f (x) and g (x), the shape evaluation value which is the spatial symmetry of the curvature change with respect to the feature point is the normalized correlation coefficient of the line segments I and I ′

- - - -
C=Σ(f(x)-f(x))・(g(x)-g(x)/ [(f(x)-f(x))2]1/2 ・[(g(x)-g(x))2]1/2
で表す。
----
C = Σ (f (x) -f (x)) · (g (x) -g (x) / [(f (x) -f (x)) 2] 1/2 · [(g (x) -g (x)) 2] 1 /2
Represented by

以上の形状評価値は、特徴点の上記した採択基準から、手術部位の曲率変化の空間対称性をあらわすことになる。そして、rーθ空間内における線分IとI′の最大の形状評価値及びこのときの線分IとI′に直交する線分の最大の形状評価値を抽出するとともに、各線分の方向ベクトルからX及びY座標系を修正し、形状評価値から各特徴点に対する点計測誤差の軸成分(標準偏差)を推定して点計測誤差分布を作成する。   The above-described shape evaluation value represents the spatial symmetry of the curvature change of the surgical site based on the above-described selection criteria for the feature points. Then, the maximum shape evaluation value of the line segments I and I ′ in the r-θ space and the maximum shape evaluation value of the line segment orthogonal to the line segments I and I ′ at this time are extracted, and the direction of each line segment The X and Y coordinate systems are corrected from the vector, and the axis component (standard deviation) of the point measurement error for each feature point is estimated from the shape evaluation value to create a point measurement error distribution.

具体的な例として、本手法の適用例を大腿骨内側後顆を特徴点とした場合について述べる。初期のX軸を大腿骨内外側方向、Y軸を大腿骨近位から遠位方向で荷重軸に平行な方向、Z軸を表面ベクトル方向に設定した場合、形状評価値の最大値はθ=10°付近に存在し(C=0.99998)、最終的にはこの最大評価値方向にX軸を再設定したθ=90°付近においてはrに依らず形状評価値は低くなる。この特徴点における実測値による形状誤差の標準偏差を表1に示す。複数回計測による計測点の主成分分析により、第一成分は形状評価値の低いY軸方向にほぼ一致する。このことから、本手法の形状評価値と計測誤差推定間の相関性が確認できる。   As a specific example, an application example of this method will be described with the femoral medial posterior condyle as a feature point. When the initial X-axis is set in the femoral medial-lateral direction, the Y-axis is set from the proximal to distal to the distal direction parallel to the load axis, and the Z-axis is set in the surface vector direction, the maximum value of the shape evaluation value is θ = It exists in the vicinity of 10 ° (C = 0.999998), and finally the shape evaluation value becomes low regardless of r in the vicinity of θ = 90 ° where the X axis is reset in the direction of the maximum evaluation value. Table 1 shows the standard deviation of the shape error based on the actual measurement values at the feature points. By the principal component analysis of the measurement points by multiple measurements, the first component substantially coincides with the Y-axis direction where the shape evaluation value is low. From this, the correlation between the shape evaluation value of this method and the measurement error estimation can be confirmed.

ここで、点計測誤差の軸成分標準偏差の推定方法であるが、これは実験的により獲得する。大腿骨の特徴点として8点を計測した場合、被験者3名の点計測の誤差(標準偏差)は6.53mmとなっている。このような結果において、形状評価値が1の場合は計測誤差は0、形状評価値が0の場合は6.53mmとして、この場合、計算の簡略化のため、形状評価値と計測誤差は線形関係であるとして誤差分布を推定する。なお、形状評価値と計測誤差の標準偏差の関係は、統計学的な手法によってもよい。これにより、各特徴点の良否が判定できることになり、誤差の少ない特徴点を選択することができる。特徴点の誤差分布が求められると、これから以下のレジストレーション誤差推定手段によって誤差の少ない評価点群を選択することになる。レジストレーション誤差推定手段は以下の処理で実行される。   Here, a method of estimating the axial component standard deviation of the point measurement error is obtained experimentally. When 8 points are measured as the femoral feature points, the error (standard deviation) of the point measurement of 3 subjects is 6.53 mm. In such a result, when the shape evaluation value is 1, the measurement error is 0, and when the shape evaluation value is 0, it is 6.53 mm. In this case, the shape evaluation value and the measurement error are linear to simplify the calculation. The error distribution is estimated as a relation. The relationship between the shape evaluation value and the standard deviation of measurement error may be a statistical method. Thereby, the quality of each feature point can be determined, and a feature point with few errors can be selected. When the error distribution of the feature points is obtained, an evaluation point group with few errors is selected from the following registration error estimation means. The registration error estimation means is executed by the following processing.

表面形状データ上において、特徴点を抽出する任意の集合{X}が与えられた場合における特徴点と術中にこれと対応する手術部位の点を位置計測器で計測した計測点との間の点対応レジストレーション誤差の推定を
1)集合{X}から3以上の要素を持つ部分集合{Xs|Xs∈X}を抽出する手順
2)上記で求めた点計測誤差分布に従って部分集合{Xs}のそれぞれの点座標に誤差分布内で乱数誤差を加えて集合{Xn}を作成する手順
3)2)で求めた点計測誤差を加算した集合{Xn}に対して元の部分集合{Xs}における特徴点と計測点との対応付けであるレジストレーションを行い、元の座標系からの移動量を算出してレジストレーション誤差とする手順
4)1)〜3)の手順をすべての部分集合の組合せに対して行い、レジストレーション誤差を最小にする特徴点群の集合及びこれと対応する計測点群の集合の推定誤差を算出する手順
On the surface shape data, a point between a feature point when an arbitrary set {X} for extracting a feature point is given and a measurement point obtained by measuring a corresponding surgical site point during surgery with a position measuring instrument Estimating the corresponding registration error 1) Procedure for extracting a subset {Xs | XsεX} having three or more elements from the set {X} 2) According to the point measurement error distribution obtained above, the subset {Xs} Procedure 3) of adding random error in error distribution to each point coordinate to create set {Xn} 3) In addition to the set {Xn} obtained by adding the point measurement error obtained in 2), the original subset {Xs} Perform registration, which is the correspondence between the feature points and measurement points, and calculate the amount of movement from the original coordinate system and set it as the registration error. 4) The procedure from 1) to 3) is a combination of all subsets. To Procedure for calculating the estimated error of the set of the set and this with the corresponding measurement point group of feature points to the striation minimum error

これにより、誤差の少ない特徴点群の集合を選択できることになり、手術の精度をより高めることができるとともに、この処理は術前に可能であることが特徴である。従来のレジストレーションは、術前計画で採択された特徴点に対応する計測点を実際に計測して可能になる。これによると、特徴点と計測点とに位置誤差が生じることから、術者は試行錯誤によって真の計測点を模索することとなり、時間と労力を費やすことになる。この意味からも、特徴点を幾何学的特徴のある点を採択するようにすれば、一致性が高まり、誤差が少なくなる。しかし、このように、術前に特徴点と計測点との位置誤差を推定し、これに基づいて最適な特徴点を採択できるとすれば、手術時間は短くなり、医師及び患者共にその肉体的負担は軽減する。   This makes it possible to select a set of feature points with less error, and improve the accuracy of the operation, and this processing is possible before surgery. Conventional registration is possible by actually measuring the measurement points corresponding to the feature points adopted in the preoperative plan. According to this, since a position error occurs between the feature point and the measurement point, the surgeon searches for the true measurement point by trial and error, and time and labor are consumed. Also in this sense, if a feature point having a geometric feature is adopted, the coincidence increases and the error decreases. However, if the position error between the feature point and the measurement point is estimated before the operation and the optimum feature point can be selected based on this, the operation time will be shortened. The burden will be reduced.

次に、以上の手術支援装置で支援される実際の手術の要領を説明する。図3は手術要領の説明図、図4は大腿骨と脛骨の説明図であるが、本例では、手術部位の位置を計測する光学式の3次元位置計測器1と、これの情報取込み手段であって骨表面をなぞるプローブ2と、コンピュータで制御される手術ロボットが設けられるものを例としている。まず、手術部位(本例では、大腿骨4と脛骨5)に位置計測器1用の各々のトラッカ6、7を固定する。次に、位置計測器1で計測される大腿骨/脛骨トラッカ座標系8、9に対する特徴点群をプローブ2で測定する。なお、位置計測器1については、非接触式、接触式を問わない。   Next, the actual operation procedure supported by the above operation support apparatus will be described. FIG. 3 is an explanatory diagram of the operation procedure, and FIG. 4 is an explanatory diagram of the femur and tibia. In this example, an optical three-dimensional position measuring instrument 1 for measuring the position of the surgical site and information acquisition means for this In this example, a probe 2 that traces the bone surface and a surgical robot controlled by a computer are provided. First, the trackers 6 and 7 for the position measuring device 1 are fixed to the surgical site (in this example, the femur 4 and the tibia 5). Next, a feature point group for the femur / tibia tracker coordinate systems 8 and 9 measured by the position measuring device 1 is measured by the probe 2. In addition, about the position measuring device 1, a non-contact type and a contact type are not ask | required.

ここで、特徴点群において、大腿骨頭中心10を計測するには直接プローブ2で計測することも考えられるが、そのためには、股関節にも切開を要する。本例では、膝関節を対象としているため、手術部位以外の切開を行うことは手術の高侵襲化を来すことになり、好ましくない。したがって、骨盤と大腿骨頭の嵌合部11(股関節のこと)とは球運動することから、この関係に基づいて大腿骨頭中心10を算出する。この手法は、手術の低侵襲化に寄与するものである。   Here, in order to measure the femoral head center 10 in the feature point group, it may be possible to directly measure with the probe 2, but in order to do so, an incision is also required in the hip joint. In this example, since the knee joint is targeted, it is not preferable to perform an incision other than the surgical site because this results in a highly invasive surgery. Therefore, since the fitting part 11 (hip joint) of the pelvis and the femoral head performs a ball motion, the femoral head center 10 is calculated based on this relationship. This technique contributes to minimally invasive surgery.

点計測誤差推定手段及びレジストレーション誤差推定手段において抽出されたレジストレーション誤差を最小化する特徴点群を採用して術中空間で計測された手術部位の実際の計測点群と術前計画空間において抽出された特徴点群間とで上記両手段を実行する演算部でレジストレーション手法を実施することができる。これにより、術前に各推定手段によって求めた誤差の精度の良否が検証できるとともに、実際にも誤差を低減することが可能となる。そのために、術前計画空間の大腿骨座標系12と術中空間の大腿骨トラッカ座標系8及び術前計画空間の脛骨座標系13と術中空間の脛骨トラッカ座標系9が高精度で対応付けされることになる。   The feature point group that minimizes the registration error extracted by the point measurement error estimation unit and the registration error estimation unit is used to extract the actual measurement point group of the surgical site measured in the intraoperative space and the preoperative plan space. The registration method can be implemented by a calculation unit that executes the above-described means between the set of feature points. As a result, it is possible to verify the accuracy of the error obtained by each estimation means before the operation, and to actually reduce the error. Therefore, the femoral coordinate system 12 in the preoperative planning space, the femoral tracker coordinate system 8 in the intraoperative space, the tibia coordinate system 13 in the preoperative planning space, and the tibial tracker coordinate system 9 in the intraoperative space are associated with high accuracy. It will be.

一般に、レジストレーションにおいては手術部位の特徴点は多いほど誤差は減少する傾向にある。ただし、低侵襲手術においては切開範囲が小さいため作業領域が狭い。言い換えると、手術中に計測可能な手術部位の領域は狭いこととなり、十分な特徴点の確保は困難となる。そこで、本例では、レジストレーション誤差推定手段を実行する過程で決定された特徴点群の計測データと患部形状を表現する計測点を連続的に出力した点列計測データを使用してレジストレーション誤差の最小化を行う。低侵襲手術によって十分な特徴点が確保できない手術部位の領域では、上記レジストレーション誤差推定手段で抽出された特徴点に対応する計測点の計測が容易であってレジストレーション誤差が少ないと推定される特徴点を採用する。一方、十分な計測点列が確保できる領域では、手術部位の形状を連続的に表現できる形状点群データを重畳的に採択する。   In general, in registration, errors tend to decrease as the number of feature points of a surgical site increases. However, in a minimally invasive surgery, the work area is narrow because the incision range is small. In other words, the region of the surgical site that can be measured during surgery is narrow, and it is difficult to secure sufficient feature points. Therefore, in this example, registration error using the measurement data of the feature point group determined in the process of executing the registration error estimation means and the point sequence measurement data that continuously outputs the measurement points expressing the affected part shape. Minimize. In a region of a surgical site where sufficient feature points cannot be secured by minimally invasive surgery, it is estimated that measurement points corresponding to the feature points extracted by the registration error estimation means can be easily measured and registration errors are small. Adopt feature points. On the other hand, in a region where a sufficient measurement point sequence can be secured, shape point group data that can continuously represent the shape of the surgical site is adopted in a superimposed manner.

本例における手術部位の形状点列計測は、上記と同様の方法によって術中に計測して取得する。上記の点対応レジストレーションにおいて計算された術前計画空間と術中空間を対応付ける変換情報を初期状態とし、術前計画空間においてX線CT画像から構築された手術部位の形状データ(本例では、大腿骨/脛骨形状データ、サーフェスデータ)と術中空間において計測された手術部位の形状点列データ間及びレジストレーション誤差推定手段において抽出された特徴点と計測点間の残差が最小になるように、平行移動及び回転を反復的に行い、最小残差位置になるようにサーフェスレジストレーションを実行し、その結果を出力する。   The shape point sequence measurement of the surgical site in this example is obtained by measuring intraoperatively by the same method as described above. The transformation information that correlates the preoperative planning space and intraoperative space calculated in the above point correspondence registration is set as the initial state, and the shape data of the surgical site constructed from the X-ray CT image in the preoperative planning space (in this example, the femoral region) (Bone / tibial shape data, surface data) and the shape point sequence data of the surgical site measured in the intraoperative space and the residual between the feature points and measurement points extracted by the registration error estimation means are minimized. By performing translation and rotation repeatedly, surface registration is performed so that the minimum residual position is obtained, and the result is output.

この場合、レジストレーション誤差は特徴点の位置特性と空間分布に依存することを鑑み、大腿骨4では、少なくとも大腿骨頭中心10を含む複数の特徴点群と大腿骨遠位の形状を表現する点列14を採用する。一方、脛骨5では、距腿関節内外側の特徴点群15と皮膚の厚みの少ない脛骨前縁部の点列16及び脛骨近位の点列17を採用する。表2は位置計測器1で手術部位の特徴点を計測してレジストレーションを行った結果であるが、この場合の正解値としては、位置計測器1によって骨形状全体を計測した点列データと、術前計画で策定された手術部位の形状サーフェスデータ間の最小残差位置とした。これにおいて、大腿骨/脛骨双方で残差1mm以下、角度誤差1°以下となっており、臨床上十分な精度で術前空間と術中空間の対応付けが行われていることがわかる。   In this case, considering that the registration error depends on the position characteristics and spatial distribution of the feature points, the femur 4 represents a plurality of feature point groups including at least the femoral head center 10 and the shape of the distal femur. Column 14 is employed. On the other hand, for the tibia 5, a feature point group 15 inside and outside the thigh joint, a point sequence 16 at the front edge of the tibia with a small skin thickness, and a point sequence 17 at the proximal tibia are employed. Table 2 shows the result of registration performed by measuring the characteristic points of the surgical site with the position measuring instrument 1, and the correct value in this case is the point sequence data obtained by measuring the entire bone shape with the position measuring instrument 1. The minimum residual position between the shape surface data of the surgical site established in the preoperative plan. In this case, the residual is 1 mm or less and the angle error is 1 ° or less in both the femur / tibia, and it can be seen that the preoperative space and the intraoperative space are associated with sufficient clinical accuracy.

結果が上記した許容範囲内であれば、レジストレーション誤差推定で選択された特徴点群の計測及び点対応レジストレーションで処理を終わってもよいが、必要なら或いは結果が許容範囲を超えておれば、上記のサーフェスレジストレーションを行う。サーフェスレジストレーションは、位置計測器1で骨表面を連続的に計測を行った点列データを使用するのであり、計測の困難な部分では局所的計測誤差の小さい点群を、計測点が多く確保できる領域では手術部位の表面形状を表現する計測点列を採用する。この手法によると、切開領域18が小さい低侵襲手術において手術部位における特徴点の空間分布の偏りによる影響を抑制することができるため、レジストレーションを高精度で実施することもできるものである。   If the result is within the above-described allowable range, the processing may be finished with the measurement of the feature point group selected by the registration error estimation and the point-based registration, but if necessary or if the result exceeds the allowable range. Perform the above surface registration. Surface registration uses point sequence data obtained by continuously measuring the bone surface with the position measuring instrument 1, and secures a large number of measurement points with small local measurement errors in areas where measurement is difficult. A measurement point sequence that expresses the surface shape of the surgical site is adopted in the region where it can be performed. According to this method, in a minimally invasive operation where the incision region 18 is small, it is possible to suppress the influence due to the bias of the spatial distribution of the feature points at the surgical site, so that the registration can be performed with high accuracy.

以上の1又は2通りの処理によってレジストレーション情報を出力することで術前計画空間と術中空間の対応付けが完了する。そこで、 この情報に従って手術することになるのであるが、マニュアル手術においては、骨切除をボーンソーで行うため、そのボーンソーを誘導する治具の設置位置決定を支援する。例えば、上記例で使用した位置計測器1を使用した場合、治具にトラッカを設置すれば、手術部位と治具の術中空間における位置を同時に計測することにより、術中に手術部位と治具の相対位置関係を計算することができる。   The registration of the preoperative plan space and the intraoperative space is completed by outputting the registration information by the above-described one or two processes. Therefore, surgery is performed according to this information. In manual surgery, since bone resection is performed with a bone saw, the installation position of a jig for guiding the bone saw is supported. For example, when the position measuring instrument 1 used in the above example is used, if a tracker is installed on the jig, the position of the surgical site and the jig can be measured during the operation by simultaneously measuring the position of the surgical site and the jig in the intraoperative space. The relative positional relationship can be calculated.

本例の人工膝関節置換術では、術前計画空間において人工関節の設置位置、言い換えると人工関節を設置するための骨切除位置が画面上に表示されている。空間同士の対応付けが行われれば、術中空間において骨切除位置の相対位置関係は容易に計算できる。この情報を基に手術ロボット内部の動作座標系に変換することで、手術術前計画における骨切除位置に手術ロボットを誘導することができる。   In the artificial knee joint replacement of this example, the installation position of the artificial joint in the preoperative planning space, in other words, the bone resection position for installing the artificial joint is displayed on the screen. If the spaces are associated with each other, the relative positional relationship between the bone resection positions in the intraoperative space can be easily calculated. By converting the motion coordinate system inside the surgical robot based on this information, the surgical robot can be guided to the bone resection position in the preoperative plan.

このように、本発明は医療用ナビゲーションシステム、手術ロボットシステム等のコンピュータ・ロボット技術の援用において非常に有用である。コンピュータ・ロボット技術の援用により、より高度な手術を可能にする上に低侵襲化、高精度化、省力化によって術者支援・負担軽減、手術時間の短縮による患者の肉体的負担軽減等を実現するための基盤技術として寄与するものである。   Thus, the present invention is very useful in the aid of computer robot technology such as medical navigation systems and surgical robot systems. With the aid of computer robot technology, more advanced surgery is possible, and less invasiveness, higher accuracy, and labor savings enable support and reduction of burden on the surgeon, and reduction of the patient's physical burden by shortening the operation time. It contributes as a basic technology for doing this.

ところで、以上の説明は人工膝関節置換術におけるものであるが、本発明は、この他に股関節、肘関節等の人工関節置換術及び一般整形外科分野、さらには、内臓系の手術にも適用できる。   By the way, the above explanation is for artificial knee joint replacement. However, the present invention is also applicable to artificial joint replacement such as hip joint and elbow joint and general orthopedic field, and also to visceral surgery. it can.

術前作成のフロー図である。It is a flowchart of preoperative preparation. 誤差推定のフロー図である。It is a flowchart of an error estimation. 手術要領を示す説明図である。It is explanatory drawing which shows the operation | movement point. 大腿骨と脛骨の模式図である。It is a schematic diagram of a femur and a tibia.

符号の説明Explanation of symbols

1 光学式3次元位置測定器
2 プローブ
4 大腿骨
5 脛骨
6 大腿骨トラッカ
7 脛骨トラッカ
8 大腿骨トラッカ座標系
9 脛骨トラッカ座標系
10 大腿骨頭中心
11 嵌合部
12 大腿骨座標系
13 脛骨座標系
14 大腿骨遠位点群
15 距腿関節内外側点
16 脛骨前縁点群
17 脛骨近位点群
18 切開領域
19 手術ロボットトラッカ
DESCRIPTION OF SYMBOLS 1 Optical three-dimensional position measuring device 2 Probe 4 Femur 5 Tibia 6 Femur tracker 7 Tibia tracker 8 Femur tracker coordinate system 9 Tibia tracker coordinate system 10 Femoral head center 11 Fitting part 12 Femur coordinate system 13 Tibia coordinate system 14 Thighbone distal point group 15 Thigh joint inner and outer point 16 Tibial leading edge point group 17 Tibial proximal point group 18 Incision region 19 Surgical robot tracker

Claims (2)

手術部位の医用画像を基に策定した術前計画空間を術中空間に対応付けし、両空間の相対的な空間座標変換行列を求めるレジストレーションを行って手術の精度を高める手術支援装置において、
特徴点群を医用画像の表面形状データから採択し、特定の特徴点から任意の距離を対象として固有値解析を行ってローカル座標系を設定し、この座標系における特徴点の固有ベクトルを特徴点を原点とするローカル座標系における表面の法線ベクトル方向のZ軸と、Z軸にそれぞれ直交するX、Y軸に設定する他、X−Y平面上において、X軸に対してθの角度で原点から長さrで延びる線分Iと原点に対して対称な線分I′を設定し、線分IとI′に沿った表面形状データにおける表面上の曲率変化関数をf(x)、g(x)として特徴点に対する曲率変化の空間対称性である形状評価値を線分IとI′の正規化相関係数
- - - -
C=Σ(f(x)-f(x))・(g(x)-g(x)/ [(f(x)-f(x))2]1/2 ・[(g(x)-g(x))2]1/2
で表し、rーθ空間内における最大の形状評価値及びこのときの線分IとI′に直交する線分の形状評価値を抽出するとともに、各線分の方向ベクトルからX及びY座標系を修正し、形状評価値から各特徴点に対する点計測誤差の軸成分(標準偏差)を推定して点計測誤差分布を作成する点計測誤差推定手段と、
表面形状データ上において、特徴点を抽出する任意の集合{X}が与えられた場合における特徴点と術中にこれと対応する点を位置計測器で計測した計測点との対応付け誤差である点対応レジストレーション誤差の推定を
1)集合{X}から3以上の要素を持つ部分集合{Xs|Xs∈X}を抽出する手順
2)点計測誤差分布に従って部分集合{Xs}のそれぞれの点座標に乱数誤差を加えて集合{Xn}を作成する手順
3)2)で求めた点計測誤差を加算した集合{Xn}に対して元の部分集合{Xs}における特徴点と計測点との対応付けであるレジストレーションを行い、元の座標系からの移動量を算出してレジストレーション誤差とする手順
4)1)〜3)の手順をすべての部分集合の組合せに対して行い、レジストレーション誤差を最小にする特徴点群の集合及びこれと対応する計測点群の集合の推定誤差を算出する手順、で行うレジストレーション誤差推定手段と、
を有することを特徴とする手術支援装置。
In a surgery support device that increases the accuracy of surgery by associating the preoperative planning space established based on the medical image of the surgical site between the surgical hollows and performing registration to obtain the relative spatial coordinate transformation matrix of both spaces,
A feature point group is adopted from the surface shape data of a medical image, an eigenvalue analysis is performed for an arbitrary distance from a specific feature point, a local coordinate system is set, and an eigenvector of the feature point in this coordinate system is set as the origin of the feature point In addition to setting the Z axis in the normal vector direction of the surface in the local coordinate system and the X and Y axes orthogonal to the Z axis, respectively, on the XY plane, from the origin at an angle θ with respect to the X axis A line segment I extending with a length r and a line segment I 'symmetrical to the origin are set, and the curvature change function on the surface in the surface shape data along the line segments I and I' is represented by f (x), g ( x) is a normalized correlation coefficient of line segments I and I ′, which is a shape evaluation value which is the spatial symmetry of the curvature change with respect to the feature point.
----
C = Σ (f (x) -f (x)) · (g (x) -g (x) / [(f (x) -f (x)) 2] 1/2 · [(g (x) -g (x)) 2] 1 /2
The maximum shape evaluation value in the r-θ space and the shape evaluation value of the line segment orthogonal to the line segments I and I ′ at this time are extracted, and the X and Y coordinate systems are extracted from the direction vector of each line segment. A point measurement error estimating means for correcting and creating a point measurement error distribution by estimating the axis component (standard deviation) of the point measurement error for each feature point from the shape evaluation value;
A point that is an association error between a feature point and a measurement point obtained by measuring a point corresponding to the feature point during surgery in the case where an arbitrary set {X} for extracting feature points is given on the surface shape data Corresponding registration error estimation 1) Procedure for extracting a subset {Xs | XsεX} having three or more elements from the set {X} 2) Each point coordinate of the subset {Xs} according to the point measurement error distribution Procedure for creating a set {Xn} by adding random error to 3) Correspondence between feature points and measurement points in the original subset {Xs} with respect to the set {Xn} obtained by adding the point measurement errors obtained in 2) Registration 4 is performed, and the amount of movement from the original coordinate system is calculated and used as a registration error. Procedures 4) 1) to 3) are performed for all combinations of subsets, and registration error occurs. A registration error estimating means for performing steps, for calculating an estimated error of the set and the set of corresponding measurement point group and this feature point group to minimize
A surgical operation support device comprising:
術中に3次元位置計測器によって手術部位の表面を連続で計測し、この計測点列と請求項1で推定されたレジストレーション誤差を最小にする特徴点群の計測点を重畳的に使用し、医用画像を基に策定した術前計画空間における特徴点群と表面形状データとのレジストレーションを行う手術支援装置。   During the operation, the surface of the surgical site is continuously measured by a three-dimensional position measuring device, and the measurement point sequence and the measurement points of the feature point group that minimizes the registration error estimated in claim 1 are used in a superimposed manner. An operation support apparatus that performs registration between feature point groups and surface shape data in a preoperative planning space created based on medical images.
JP2008146457A 2008-06-04 2008-06-04 Surgery support device Expired - Fee Related JP5216949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008146457A JP5216949B2 (en) 2008-06-04 2008-06-04 Surgery support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008146457A JP5216949B2 (en) 2008-06-04 2008-06-04 Surgery support device

Publications (2)

Publication Number Publication Date
JP2009291342A true JP2009291342A (en) 2009-12-17
JP5216949B2 JP5216949B2 (en) 2013-06-19

Family

ID=41540093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008146457A Expired - Fee Related JP5216949B2 (en) 2008-06-04 2008-06-04 Surgery support device

Country Status (1)

Country Link
JP (1) JP5216949B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960332A1 (en) * 2010-05-21 2011-11-25 Gen Electric METHOD OF PROCESSING RADIOLOGICAL IMAGES TO DETERMINE A 3D POSITION OF A NEEDLE.
WO2014077192A1 (en) * 2012-11-15 2014-05-22 株式会社東芝 Surgery assisting device
JP2016144536A (en) * 2015-02-06 2016-08-12 帝人ナカシマメディカル株式会社 Surgery support device
CN109490830A (en) * 2018-11-23 2019-03-19 北京天智航医疗科技股份有限公司 Operating robot Locating System Accuracy detection method and detection device
JP2020511239A (en) * 2017-03-17 2020-04-16 インテリジョイント サージカル インク. System and method for augmented reality display in navigation surgery
CN113633377A (en) * 2021-08-13 2021-11-12 天津大学 Tibia optimization registration system and method for tibia high-position osteotomy
CN114451992A (en) * 2021-10-11 2022-05-10 南京佗道医疗科技有限公司 Postoperative nail precision evaluation method
CN116728420A (en) * 2023-08-11 2023-09-12 苏州安博医疗科技有限公司 Mechanical arm regulation and control method and system for spinal surgery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1226788A1 (en) * 2001-01-25 2002-07-31 Finsbury (Development) Limited Computer-assisted knee arthroplasty system
JP2005518264A (en) * 2002-02-13 2005-06-23 キナメッド・インコーポレーテッド Non-imaging computer-aided navigation system for hip replacement surgery
WO2006119387A2 (en) * 2005-05-02 2006-11-09 Smith & Nephew, Inc. System and method for determining tibial rotation
JP2006526433A (en) * 2003-06-05 2006-11-24 アエスキュラップ アーゲー ウント ツェーオー カーゲー Positioning device for position verification
WO2006128301A1 (en) * 2005-06-02 2006-12-07 Orthosoft Inc. Leg alignment for surgical parameter measurement in hip replacement surgery
WO2009116663A1 (en) * 2008-03-21 2009-09-24 Takahashi Atsushi Three-dimensional digital magnifier operation supporting system
JP2009273521A (en) * 2008-05-12 2009-11-26 Niigata Univ Navigation system for arthroscopical surgery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1226788A1 (en) * 2001-01-25 2002-07-31 Finsbury (Development) Limited Computer-assisted knee arthroplasty system
JP2005518264A (en) * 2002-02-13 2005-06-23 キナメッド・インコーポレーテッド Non-imaging computer-aided navigation system for hip replacement surgery
JP2006526433A (en) * 2003-06-05 2006-11-24 アエスキュラップ アーゲー ウント ツェーオー カーゲー Positioning device for position verification
WO2006119387A2 (en) * 2005-05-02 2006-11-09 Smith & Nephew, Inc. System and method for determining tibial rotation
WO2006128301A1 (en) * 2005-06-02 2006-12-07 Orthosoft Inc. Leg alignment for surgical parameter measurement in hip replacement surgery
WO2009116663A1 (en) * 2008-03-21 2009-09-24 Takahashi Atsushi Three-dimensional digital magnifier operation supporting system
JP2009273521A (en) * 2008-05-12 2009-11-26 Niigata Univ Navigation system for arthroscopical surgery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960332A1 (en) * 2010-05-21 2011-11-25 Gen Electric METHOD OF PROCESSING RADIOLOGICAL IMAGES TO DETERMINE A 3D POSITION OF A NEEDLE.
US8600138B2 (en) 2010-05-21 2013-12-03 General Electric Company Method for processing radiological images to determine a 3D position of a needle
WO2014077192A1 (en) * 2012-11-15 2014-05-22 株式会社東芝 Surgery assisting device
CN104066403A (en) * 2012-11-15 2014-09-24 株式会社东芝 Surgery assisting device
JP2016144536A (en) * 2015-02-06 2016-08-12 帝人ナカシマメディカル株式会社 Surgery support device
JP2020511239A (en) * 2017-03-17 2020-04-16 インテリジョイント サージカル インク. System and method for augmented reality display in navigation surgery
JP2022133440A (en) * 2017-03-17 2022-09-13 インテリジョイント サージカル インク. Systems and methods for augmented reality display in navigated surgeries
CN109490830A (en) * 2018-11-23 2019-03-19 北京天智航医疗科技股份有限公司 Operating robot Locating System Accuracy detection method and detection device
CN113633377A (en) * 2021-08-13 2021-11-12 天津大学 Tibia optimization registration system and method for tibia high-position osteotomy
CN113633377B (en) * 2021-08-13 2024-02-20 天津大学 Tibia optimization registration system and method for tibia high osteotomy
CN114451992A (en) * 2021-10-11 2022-05-10 南京佗道医疗科技有限公司 Postoperative nail precision evaluation method
CN114451992B (en) * 2021-10-11 2023-08-15 佗道医疗科技有限公司 Post-operation nail placement precision evaluation method
CN116728420A (en) * 2023-08-11 2023-09-12 苏州安博医疗科技有限公司 Mechanical arm regulation and control method and system for spinal surgery
CN116728420B (en) * 2023-08-11 2023-11-03 苏州安博医疗科技有限公司 Mechanical arm regulation and control method and system for spinal surgery

Also Published As

Publication number Publication date
JP5216949B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
US10898278B2 (en) Systems, methods and devices to measure and display inclination and track patient motion during a procedure
US11701182B2 (en) Systems and methods for determining a joint center of rotation during a procedure
JP5216949B2 (en) Surgery support device
US9855152B2 (en) Systems and methods for facilitating hip surgery
US9456765B2 (en) Systems and methods for measuring parameters in joint replacement surgery
CN113842214B (en) Surgical robot navigation positioning system and method
JP7475082B2 (en) Determining relative 3D positions and orientations between objects in 2D medical images - Patents.com
US10993817B1 (en) Method for femur resection alignment approximation in hip replacement procedures
EP3697305B1 (en) Device for determining the anteversion angle
US20240122560A1 (en) Method for verifying hard tissue location using implant imaging
JP2016532475A (en) Method for optimal visualization of bone morphological regions of interest in X-ray images
US20150105698A1 (en) Method for knee resection alignment approximation in knee replacement procedures
CN111166474A (en) Auxiliary examination method and device before joint replacement surgery
Ecker et al. Computer-assisted femoral head-neck osteochondroplasty using a surgical milling device: an in vitro accuracy study
US9889021B2 (en) Method for hip resection alignment approximation in hip replacement procedures
US20220257145A1 (en) Systems and methods for computer assisted femoral surgery
Strydom et al. Real-time joint motion analysis and instrument tracking for robot-assisted orthopaedic surgery
Nedopil et al. Correcting for distal femoral asymmetry is necessary to determine postoperative alignment deviations from planned alignment of the femoral component
Herregodts et al. Accuracy of intraoperative bone registration and stereotactic boundary reconstruction during total knee arthroplasty surgery
Świątek-Najwer et al. The Maxillo-Facial Surgery System for guided cancer resection and bone reconstruction
US20240050045A1 (en) Computer-implemented method for ascertaining an item of torsion information of a bone, x-ray facility, computer program and electronically readable data carrier
US20230118746A1 (en) Medical apparatus, method for recording a model dataset, data processing program, and program memory medium
Tannast et al. Computer-assisted simulation of femoro-acetabular impingement surgery
Hafez et al. Computer-assisted total knee arthroplasty using patient-specific templates: the custom-made cutting guides
Jang et al. A novel registration method for total knee arthroplasty using a patient-specific registration guide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5216949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees