JP2009288718A - Resonance grating coupler - Google Patents

Resonance grating coupler Download PDF

Info

Publication number
JP2009288718A
JP2009288718A JP2008143841A JP2008143841A JP2009288718A JP 2009288718 A JP2009288718 A JP 2009288718A JP 2008143841 A JP2008143841 A JP 2008143841A JP 2008143841 A JP2008143841 A JP 2008143841A JP 2009288718 A JP2009288718 A JP 2009288718A
Authority
JP
Japan
Prior art keywords
dbr
stage
light
waveguide
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008143841A
Other languages
Japanese (ja)
Inventor
Shogo Ura
升吾 裏
Shunsuke Murata
駿介 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Institute of Technology NUC
Original Assignee
Kyoto Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Institute of Technology NUC filed Critical Kyoto Institute of Technology NUC
Priority to JP2008143841A priority Critical patent/JP2009288718A/en
Publication of JP2009288718A publication Critical patent/JP2009288718A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resonance grating coupler which couples guided light and spatial light with a short coupling length. <P>SOLUTION: The resonance grating coupler includes a substrate 1 and a waveguide 2 on the substrate, wherein the waveguide 2 includes: a diffraction grating 5 for vertical radiation to couple primary diffracted light with vertical radiation mode light; a preceding DBR 4; a subsequent DBR 7; and a preceding phase adjusting region 4 and a subsequent phase adjusting region 6 respectively formed between the preceding DBR and the diffraction grating 5 for vertical radiation and between the subsequent DBR and the diffraction grating 5 for vertical radiation, and sizes of the DBRs and the phase adjusting regions are determined so as to make both transmission and reflection with respect to the resonance grating coupler be 0 or extremely small values. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、導波路に設けられた周期的屈折率変調により導波モード光と空間光を結合する集積光学素子であるグレーティングカップラに関する。   The present invention relates to a grating coupler that is an integrated optical element that couples waveguide mode light and spatial light by periodic refractive index modulation provided in a waveguide.

グレーティングカップラは導波モード光と空間光を結合する回折格子であり、集光、偏光分波、スイッチング、導波モード選択などの機能を併せ持たせることも可能である。グレーティングカップラは、実用化に向けて高効率化が求められ、グレーティングの凹凸形状をブレーズ化したり、平行四辺形としたり、基板側に反射構造を導入する等の手段により、回折光パワーを出力光に集中する工夫がなされてきた。そして、これからの超高性能情報処理システムを支える技術として、グレーティングカップラを用いた光配線板が注目されている。   The grating coupler is a diffraction grating that couples waveguide mode light and spatial light, and can also have functions such as condensing, polarization demultiplexing, switching, and waveguide mode selection. Grating couplers are required to be highly efficient for practical use, and the diffracted light power is output to the output light by means such as blazing the irregular shape of the grating, making it a parallelogram, or introducing a reflective structure on the substrate side. Ingenuity to concentrate on has been made. An optical wiring board using a grating coupler has attracted attention as a technology that will support an ultra-high performance information processing system in the future.

これらの状況において、グレーティングカップラにはさらに結合長の短小化が求められている。グレーティングカップラの実効結合長は、通常は結合の強さを表す放射損失係数αの逆数で与えられる。放射損失係数は、グレーティングカップラの屈折率変調深さや厚さ(凹凸グレーティングの場合はその深さ)に起因して、実際上の可能性に限界が伴う。これまでの研究では誘電体を用いたグレーティングカップラの結合長は100μm程度である(例えば、非特許文献1,2,3)。これが短小化されれば、チャネル幅の微細化が可能となる。例えば、数μmの結合長が実現できれば、桁違いに高い伝送帯域密度が確保できるのであり、その実現のためには結合長の短小化は極めて重要である。   Under these circumstances, the grating coupler is required to further reduce the coupling length. The effective coupling length of the grating coupler is usually given by the reciprocal of the radiation loss coefficient α representing the coupling strength. Due to the refractive index modulation depth and thickness of the grating coupler (the depth in the case of a concavo-convex grating), the radiation loss coefficient is limited in practical possibilities. In previous studies, the coupling length of a grating coupler using a dielectric material is about 100 μm (for example, Non-Patent Documents 1, 2, and 3). If this is shortened, the channel width can be reduced. For example, if a coupling length of several μm can be realized, an extremely high transmission band density can be secured, and shortening of the coupling length is extremely important for the realization.

一方、半導体導波路を用いた場合には大きな屈折率変調が得られるため、結合長の短いグレーティングカップラが報告されている(非特許文献4,5,6,7)。半導体導波路は、SiやGaAs半導体で形成される光検出器が使用できる近赤外波長に対して不透明であり使用できないという欠点があるが、機器の使用波長によっては結合長の短さを生かすことができる。したがって、半導体を用いたより短い結合長のグレーティングカップラが得られれば、有利である。
S. Ura, "Selective guided mode coupling via bridging mode by integrated gratings for intraboard optical interconnects," Proc. SPIE 4652, 86-96 (2002) J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, H. Nishihara, "Integrated-optic add/drop multiplexing of free-space waves for intra-board chip-to-chip optical interconnects," Jpn. J. Appl. Phys. 44, 7987-7992 (2005) K. Kintaka, J. Nishii, K. Shinoda, S. Ura, "WDM signal transmission in a thin-film waveguide for optical interconnection," IEEE Photon. Technolo. Lett. 18, 2299-2301 (2006) D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," J. Quantum Electron. 38, 949-955 (2002). D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, R. Baets, "Grating couplers for coupling between optical fibers and nanophotonic waveguides," Jpn. J. Appl. Phys. 45, 6071-6077 (2006) G. Roelkens, D. V. Thourhout, R. Baets, "High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers," Opt. Lett. 32, 1495-1497 (2007) C. Gunn, "CMOS photonics for high-speed interconnects," IEEE Micro, 58-66 (March-April 2006)
On the other hand, since a large refractive index modulation is obtained when a semiconductor waveguide is used, a grating coupler with a short coupling length has been reported (Non-Patent Documents 4, 5, 6, and 7). Semiconductor waveguides have the disadvantage that they cannot be used because they are opaque to near-infrared wavelengths that can be used with photodetectors made of Si or GaAs semiconductors, but they take advantage of the short coupling length depending on the wavelength used in the equipment. be able to. Therefore, it would be advantageous if a grating coupler with a shorter bond length using a semiconductor could be obtained.
S. Ura, "Selective guided mode coupling via bridging mode by integrated gratings for intraboard optical interconnects," Proc. SPIE 4652, 86-96 (2002) J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, H. Nishihara, "Integrated-optic add / drop multiplexing of free-space waves for intra-board chip-to-chip optical interconnects," Jpn. J. Appl. Phys. 44, 7987-7992 (2005) K. Kintaka, J. Nishii, K. Shinoda, S. Ura, "WDM signal transmission in a thin-film waveguide for optical interconnection," IEEE Photon. Technolo. Lett. 18, 2299-2301 (2006) D. Taillaert, W. Bogaerts, P. Bienstman, TF Krauss, PV Daele, I. Moerman, S. Verstuyft, KD Mesel, R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers, "J. Quantum Electron. 38, 949-955 (2002). D. Taillaert, FV Laere, M. Ayre, W. Bogaerts, DV Thourhout, P. Bienstman, R. Baets, "Grating couplers for coupling between optical fibers and nanophotonic waveguides," Jpn. J. Appl. Phys. 45, 6071 -6077 (2006) G. Roelkens, DV Thourhout, R. Baets, "High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers," Opt. Lett. 32, 1495-1497 (2007) C. Gunn, "CMOS photonics for high-speed interconnects," IEEE Micro, 58-66 (March-April 2006)

本発明は、上記の従来技術及びその問題点に鑑みてなされたものであり、結合長の短いグレーティングカップラを提供することを目的とする。   The present invention has been made in view of the above-described conventional technology and its problems, and an object thereof is to provide a grating coupler having a short coupling length.

本発明は、上記目的を達成するため、基材及び該基材上の導波路を備え、上記導波路は、該導波路を伝搬する入射導波モード光の1次回折光が垂直放射モード光に結合されるように屈折率変調周期が決められた垂直放射用回折格子と、該回折格子の格子面に沿う方向における入射側に形成された前段DBRと、該回折格子の格子面に沿う方向における入射側から遠い側に形成された後段DBRと、上記垂直放射用回折格子及び前段DBRの間に形成された前段位相調整域と、上記垂直放射用回折格子及び後段DBRの間に形成された後段位相調整域とを備え、上記後段DBRの結合長は、該後段DBRを透過する光を実用上無視できるまで低減するのに十分な長さとされ、上記後段位相調整域の導波方向長さは、上記後段DBRで反射した光の上記垂直放射用回折格子による回折放射の位相が入射導波モード光の上記垂直放射用回折格子による回折放射の位相に揃うように決められ、上記前段位相調整域の導波方向長さは、上記後段DBRで反射して上記前段DBRに到達する光の位相が入射導波モード光の上記前段DBRにより反射する光の位相と半波長分だけずれるように決められ、上記前段DBRの結合長は、上記後段DBRで反射したのち前段DBRを透過する光を該前段DBRによる入射導波モード光の反射で相殺するように決められていることを特徴とする共振グレーティングカップラを提供するものである。   In order to achieve the above object, the present invention includes a base material and a waveguide on the base material, and the waveguide has first-order diffracted light of incident waveguide mode light propagating through the waveguide as vertical radiation mode light. A vertical radiation diffraction grating whose refractive index modulation period is determined so as to be coupled; a pre-stage DBR formed on the incident side in the direction along the grating surface of the diffraction grating; and a direction along the grating surface of the diffraction grating. A rear stage DBR formed on the side far from the incident side, a front stage phase adjustment region formed between the vertical radiation diffraction grating and the front stage DBR, and a rear stage formed between the vertical radiation diffraction grating and the rear stage DBR. A phase adjustment area, and the coupling length of the latter stage DBR is sufficient to reduce light transmitted through the latter stage DBR to a practically negligible level. , The light reflected by the latter DBR The phase of the diffracted radiation by the vertical radiation diffraction grating is determined so as to be aligned with the phase of the diffracted radiation of the incident guided mode light by the vertical radiation diffraction grating, and the length of the preceding phase adjustment area in the waveguide direction is The phase of the light reflected by the rear stage DBR and reaching the front stage DBR is determined so as to be shifted from the phase of the light reflected by the front stage DBR of the incident waveguide mode light by a half wavelength, and the coupling length of the front stage DBR is: The present invention provides a resonant grating coupler characterized in that it is determined to cancel the light transmitted through the preceding DBR after being reflected by the latter DBR by the reflection of the incident waveguide mode light by the preceding DBR.

本発明に係る共振グレーティングカップラにおいては、入射導波モード光は前段DBRで一部反射された後、垂直放射用回折格子で一部放射モード光として出力され、後段DBRで反射される。垂直放射用回折格子の周期は1次回折で導波モード光を垂直放射モード光に結合するように決めるので、1次回折による垂直放射が得られる。さらに、後段DBRの結合長は該後段DBRの透過光が実用上無視できるまで十分低減するように決めるので、透過による損失が回避される。そして、後段DBRで反射された導波モード光は垂直放射用回折格子の1次回折により一部放射モード光に結合されるが、後段位相調整域により該垂直放射モード光の位相は上記入射導波モード光の1次回折で生じた放射モード光の位相に揃う。後段DBRで反射され垂直放射用回折格子を透過した反射導波モード光は前段DBRにより一部反射される。前段位相調整域の位相調整長を最適にすることにより、前段DBRにより反射された光が入射導波モード光に位相が揃って加算され、かつ前段DBRを透過する上記反射導波モード光が該前段DBRによる入射導波モード光の反射と半波長分だけ位相がずれるようにしておく。さらに、前段DBRの結合効率を最適にすることより、該前段DBRを透過する上記反射導波モード光は該前段DBRによる入射導波モード光の反射で相殺される。すなわち、共振グレーティングカップラの透過および反射の双方とも0又は極めて小さい値となる。このように、入射光が後段DBRで反射され、その反射光がさらに前段DBRにより反射されて、垂直放射用回折格子から垂直放射されるという出力形態は、一種の共振として捉えることができる。その結果、垂直放射用回折格子の放射損失係数αが小さな値であっても、入射光を100%に近い効率で放射出力できることになる。   In the resonant grating coupler according to the present invention, the incident waveguide mode light is partially reflected by the front-stage DBR, then output as partial-radiation mode light by the vertical radiation diffraction grating, and reflected by the rear-stage DBR. The period of the diffraction grating for vertical radiation is determined so as to couple the guided mode light to the vertical radiation mode light by the first order diffraction, so that the vertical radiation by the first order diffraction can be obtained. Further, the coupling length of the rear DBR is determined so as to be sufficiently reduced until the transmitted light of the rear DBR is practically negligible, so that loss due to transmission is avoided. Then, the guided mode light reflected by the rear DBR is partially coupled to the radiation mode light by the first-order diffraction of the vertical radiation diffraction grating, but the phase of the vertical radiation mode light is changed by the latter phase adjustment region. The phase of the radiation mode light generated by the first-order diffraction of the wave mode light is aligned. The reflected waveguide mode light reflected by the latter stage DBR and transmitted through the vertical radiation diffraction grating is partially reflected by the former stage DBR. By optimizing the phase adjustment length of the front-stage phase adjustment region, the light reflected by the front-stage DBR is added in phase to the incident waveguide mode light, and the reflected waveguide mode light transmitted through the front-stage DBR is The phase is shifted by a half wavelength from the reflection of the incident waveguide mode light by the previous stage DBR. Furthermore, by optimizing the coupling efficiency of the front-stage DBR, the reflected waveguide mode light transmitted through the front-stage DBR is canceled by the reflection of the incident waveguide mode light by the front-stage DBR. That is, both transmission and reflection of the resonant grating coupler are 0 or extremely small values. As described above, the output form in which the incident light is reflected by the rear-stage DBR, the reflected light is further reflected by the front-stage DBR, and is vertically emitted from the vertical radiation diffraction grating can be regarded as a kind of resonance. As a result, even if the radiation loss coefficient α of the vertical radiation diffraction grating is a small value, incident light can be radiated and output with an efficiency close to 100%.

したがって、本発明によれば、結合長の短いグレーティングカップラを提供することができる。   Therefore, according to the present invention, a grating coupler with a short coupling length can be provided.

[基本原理]
先ず、グレーティングカップラの機能に関する基本原理について説明する。薄膜導波路や単一モードファイバのように光伝送路のサイズが10μm以下と波長サイズに近く、もしくはサブ波長サイズとなると,波面を扱う波動光学素子の使用が必要となる。特に薄膜導波路にほぼ垂直に光波を入出力する場合はグレーティングカップラが有利である。図1(b)にグレーティングカップラの基本構成を示す。
[Basic principle]
First, the basic principle regarding the function of the grating coupler will be described. When the size of the optical transmission line is 10 μm or less, such as a thin film waveguide or a single mode fiber, is close to the wavelength size or the sub-wavelength size, it is necessary to use a wave optical element that handles the wavefront. In particular, a grating coupler is advantageous when light waves are input and output substantially perpendicular to the thin film waveguide. FIG. 1B shows the basic configuration of the grating coupler.

導波路面の法線方向をy方向,入射導波光の伝搬方向およびグレーティングベクトルの方向をz方向とする。導波路表面を凹凸加工するなどして、薄い屈折率グレーティングを設けておくと,導波光Liはそのグレーティングにより回折され、回折放射光Ldとなって放射される。図1(a)に示すように、回折に伴い導波光は伝搬とともに指数関数的に減衰する。回折光もその導波光の減衰を反映したプロファイルを有する。   The normal direction of the waveguide surface is the y direction, and the propagation direction of the incident guided light and the direction of the grating vector are the z direction. When a thin refractive index grating is provided by processing the surface of the waveguide, for example, the waveguide light Li is diffracted by the grating and radiated as diffracted radiation light Ld. As shown in FIG. 1 (a), the guided light attenuates exponentially with propagation along with the diffraction. The diffracted light also has a profile that reflects the attenuation of the guided light.

導波光電界の減衰がexp (−αGC z)で表されるように放射損失係数αGCを定義すると、出力結合効率は次式で与えられる:
η=ηout {1-exp(-2αGC LGC)}
ここで,LGCはグレーティングカップラの結合長、ηoutは全回折光パワーにおける出力光パワーへのパワー分配比である。
If the radiation loss coefficient α GC is defined such that the attenuation of the guided optical field is expressed as exp (−α GC z), the output coupling efficiency is given by:
η = η out {1-exp (-2α GC L GC )}
Here, L GC is the coupling length of the grating coupler, and η out is the power distribution ratio to the output optical power in the total diffracted optical power.

この場合の伝搬ベクトルダイアグラムを図2に示す。真空中での波長をλ0とすると、その波数k0 = 2π/λ0を用いて波動ベクトルはk = n k0 uで表される。ここでuは光波の伝搬方向の単位ベクトルであり、nは伝搬媒質の屈折率である。導波光は薄膜導波路に閉じこめられて伝搬し、コア薄膜の屈折率をnf、基板(基材)の屈折率をns、上部(空気)の屈折率をnaとすると導波モードの実効屈折率Neはnf>Ne>nsを満たし、導波モード光の伝搬ベクトルはβ= Ne ko u z で表される。ここでu z はz方向単位ベクトルである。上半円の半径はna ko、下半円の半径はnskoとしてあり、中心を始点とし円弧上に終点を持つベクトルがそれぞれの媒質中を伝搬する伝搬ベクトルを表す。 A propagation vector diagram in this case is shown in FIG. If the wavelength in vacuum is λ 0 , the wave vector is represented by k = nk 0 u using the wave number k 0 = 2π / λ 0 . Here, u is a unit vector in the propagation direction of the light wave, and n is the refractive index of the propagation medium. The guided light is confined in the thin film waveguide and propagates. If the refractive index of the core thin film is n f , the refractive index of the substrate (base material) is n s , and the refractive index of the upper part (air) is n a , The effective refractive index N e satisfies n f > N e > n s, and the propagation vector of the guided mode light is represented by β = N e k o u z . Here, u z is a z-direction unit vector. The radius of the upper half circle is n a k o and the radius of the lower half circle is n s k o , and a vector having a center as a start point and an end point on an arc represents a propagation vector propagating in each medium.

グレーティング周期をΛとすると、グレーティングベクトルはK=(2π/Λ) u z で表される。ここでグレーティングはy方向には非常に薄くz方向に長いため、ベクトル整合条件はz方向成分のみ考えればよい。したがって、m次の回折による上部への回折放射角 θaおよび基板側回折放射角θsは次式で与えられる:
na k0 sinθa = ns k0 sinθs = |β|−m|K|
この例では、1次の回折光は上部と基板側へ放射し、2次の回折光は基板側のみに放射することになる。各放射光へのパワー分配比は導波路の構造ならびにグレーティング形状で決まる。実用上は、上部への出力光パワー分配比として1が望まれることが多い。このためには、|K|を大きくして高次回折が発生しないようにし、また反射性基板などを導入して基板側放射光が生じないようにするのが望ましい。
When the grating period is Λ, the grating vector is represented by K = (2π / Λ) u z . Here, since the grating is very thin in the y direction and long in the z direction, the vector matching condition need only consider the z direction component. Therefore, the diffraction angle θ a toward the top and the substrate side diffraction angle θ s by the m-th order diffraction are given by the following equations:
n a k 0 sinθ a = n s k 0 sinθ s = | β | −m | K |
In this example, the first-order diffracted light is emitted to the upper part and the substrate side, and the second-order diffracted light is emitted only to the substrate side. The power distribution ratio to each radiation is determined by the waveguide structure and the grating shape. Practically, 1 is often desired as the output light power distribution ratio to the upper part. For this purpose, it is desirable to increase | K | so that higher-order diffraction does not occur, and to introduce a reflective substrate or the like so that substrate-side radiation does not occur.

グレーティングカップラを入力結合器として用いる場合は、時間を反転させて考えることができる。すなわち、出力結合において導波モード光が回折されて放射される光をそのまま逆進させて入射すれば同じ結合効率で導波モード光を励振することができる。導波モードは導波構造で決まり、|β|は離散的な値をとり、入射光の複素振幅分布が出力結合時の放射光の複素振幅分布からずれると、そのずれがそのまま結合効率の低下を招く。例えば、図1の出力結合では回折放射光は指数関数的振幅分布をもつが、実用上の入射光はVCSEL(垂直共振器面発光レーザ)からの発散光などのようにガウシアン的分布をしていることが多く、入力結合効率は出力結合効率よりその不一致分だけ低くなる。逆にこのような入射光を高効率で結合するためには、グレーティング凹凸の深さや幅比を分布させz方向にαGC(放射損失係数)を増加させて、回折放射光の振幅分布がガウシアン的になるようにすることもできる。 When the grating coupler is used as an input coupler, the time can be reversed. That is, if the light emitted by diffracting the guided mode light in the output coupling is made to travel backward as it is, the guided mode light can be excited with the same coupling efficiency. The guided mode is determined by the waveguide structure, and | β | takes a discrete value. If the complex amplitude distribution of the incident light deviates from the complex amplitude distribution of the radiated light at the time of output coupling, the deviation directly reduces the coupling efficiency. Invite. For example, in the output coupling of FIG. 1, the diffracted radiation has an exponential amplitude distribution, but the practical incident light has a Gaussian distribution such as divergent light from a VCSEL (vertical cavity surface emitting laser). In many cases, the input coupling efficiency is lower than the output coupling efficiency by the mismatch. Conversely, in order to couple such incident light with high efficiency, the depth and width ratio of the grating irregularities is distributed and α GC (radiation loss coefficient) is increased in the z direction, so that the amplitude distribution of diffracted radiation is Gaussian. It can also be made to become.

また、図3に示すように導波路WGに形成される放射用回折格子DGについて、グレーティング凹凸ラインに曲率と周期変化を設けて、レンズ機能を持たせることもできる。すなわち、入射導波光Liは、放射用回折格子DGで格子面から遠ざかる方向に回折し一点に収束する。これにより、外部レンズを使用せずにPD(フォトダイオード)への収束空間光やVCSELからの発散空間光と導波光を結合することが可能となる。
[本発明の実施形態]
次に、本発明の実施形態について添付図面を参照しつつ説明する。図4は、本発明に係る共振グレーティングカップラR-GCの基本構成を概略的に示す断面図である。
Further, as shown in FIG. 3, the diffractive diffraction grating DG formed in the waveguide WG can be provided with a lens function by providing curvature and period changes in the grating uneven line. That is, the incident guided light Li is diffracted in a direction away from the grating surface by the radiation diffraction grating DG and converges to one point. This makes it possible to couple the convergent spatial light to the PD (photodiode) or the divergent spatial light from the VCSEL and the guided light without using an external lens.
Embodiment of the present invention
Next, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 4 is a cross-sectional view schematically showing the basic configuration of the resonant grating coupler R-GC according to the present invention.

この共振グレーティングカップラR-GCは、各々透光性を有する誘電体により形成された基材1及び該基材上の導波路2を備えている。導波路2には、前段DBR3と後段DBR7との間に結合長LGCの垂直放射用回折格子5を位相調整域を挟んだ配置として集積する。この構造は、例えば、化学気相成長法などで導波路を基材上に堆積し、その上にレジストを塗布して、マスク露光や電子ビーム直接描画露光などでレジストにグレーティング凹凸パターンを形成し、そのパターンをドライエッチング等により導波路材質に転写するという方法で得ることができる。但し、この方法に限るものではなく、グレーティング凹凸用に導波路上に別の材質を堆積して凹凸加工したり、図6に示すように埋め込み加工することも可能である。位相調整域は、前段DBR3と垂直放射用回折格子5との間の前段位相調整域4、後段DBR7と垂直放射用回折格子5との間の後段位相調整域6として形成されている。ここでは、TE導波モードを扱うものとして説明する。 The resonant grating coupler R-GC includes a base material 1 and a waveguide 2 on the base material, each of which is formed of a light-transmitting dielectric. In the waveguide 2, a vertical radiation diffraction grating 5 having a coupling length L GC is integrated between the front-stage DBR 3 and the rear-stage DBR 7 in an arrangement with a phase adjustment region interposed therebetween. In this structure, for example, a waveguide is deposited on a substrate by a chemical vapor deposition method, a resist is applied thereon, and a grating uneven pattern is formed on the resist by mask exposure or electron beam direct drawing exposure. The pattern can be obtained by transferring the pattern onto the waveguide material by dry etching or the like. However, the present invention is not limited to this method, and another material can be deposited on the waveguide for grating irregularities, and irregularities can be processed, or embedding can be performed as shown in FIG. The phase adjustment area is formed as a front-stage phase adjustment area 4 between the front-stage DBR 3 and the vertical radiation diffraction grating 5 and a rear-stage phase adjustment area 6 between the rear-stage DBR 7 and the vertical radiation diffraction grating 5. Here, description will be made assuming that the TE waveguide mode is handled.

導波モードと放射モードの関係を図5に示す。z方向伝搬入射導波モード光および反射導波モード光の複素振幅をそれぞれA(z)およびB(z)とおく。入射導波モード光A(z)は結合長LBFの前段DBRで一部反射された後、垂直放射用回折格子5で一部放射モード光(空気層への放射光La,基材側への放射光Ls)として出力され、結合長LBRの後段DBR7で反射される。垂直放射用回折格子5の周期ΛGCは1次回折で導波モード光を垂直放射モード光に結合するように決める。このとき2次回折により反射が生じて入射導波モード光A(z)は反射導波モード光B(z)に一部結合する。後段DBR7によりA(z)はB(z)に結合されるが、該後段DBRの結合長LBRは該後段DBRの透過光が十分消失するように決める。垂直放射用回折格子5と後段DBR7の間の位相調整長lRは、反射導波モード光B(z)の回折放射の位相が入射導波モード光A(z)の回折放射の位相に揃うように決める。前段位相調整域4の位相調整長lFおよび前段DBR3の結合効率(LBFで制御する)は、前段DBR3を透過する反射導波モード光B(z)を前段DBR3による入射導波モード光A(z)の反射で相殺するように決める。このように、z>lR +LBRの領域の入射導波モード光A(z)、およびz<-LGC -lF -LBFの領域の反射導波モード光B(z)を0又は極めて小さい値とする。その結果、小さな放射損失係数α の垂直放射用回折格子5であっても入射導波モード光を100%に近い効率で放射出力できることになる。 FIG. 5 shows the relationship between the guided mode and the radiation mode. The complex amplitudes of the z-direction propagating incident guided mode light and the reflected guided mode light are respectively set to A (z) and B (z). The incident guided mode light A (z) is partially reflected by the preceding DBR having the coupling length L BF and then partially emitted by the vertical radiation diffraction grating 5 (radiated light La to the air layer, toward the substrate). is output as emitted light Ls), are reflected in the subsequent DBR7 bond length L BR. The period Λ GC of the vertical radiation diffraction grating 5 is determined so as to couple the guided mode light to the vertical radiation mode light by the first-order diffraction. At this time, reflection occurs due to second-order diffraction, and the incident guided mode light A (z) is partially coupled to the reflected guided mode light B (z). Although A (z) is coupled to B (z) by the rear stage DBR 7, the coupling length L BR of the rear stage DBR is determined so that the transmitted light of the rear stage DBR is sufficiently lost. The phase adjustment length l R between the vertical radiation diffraction grating 5 and the post-stage DBR 7 matches the phase of the diffracted radiation of the reflected waveguide mode light B (z) with the phase of the diffracted radiation of the incident guided mode light A (z). Decide as follows. The phase adjustment length l F of the front-stage phase adjustment region 4 and the coupling efficiency (controlled by L BF ) of the front-stage DBR 3 are the reflected waveguide mode light B (z) transmitted through the front-stage DBR 3 and the incident guided mode light A by the front-stage DBR 3. Decide to cancel with the reflection of (z). Thus, the incident guided mode light A (z) in the region of z> l R + L BR and the reflected guided mode light B (z) in the region of z <−L GC -l F -L BF are reduced to 0. Or very small value. As a result, a small radiation loss coefficient α Even the vertical radiation diffraction grating 5 can radiate and output incident waveguide mode light with an efficiency close to 100%.

また、共振グレーティングカップラを構成する、垂直放射用回折格子、前段DBR、後段DBRのそれぞれは、強い波長依存性を示し、これらの周期を調整することにより、波長を特定したカップリングを行うことができる。
[モード結合理論による解析]
図5に示すように垂直放射用回折格子の後端を原点とする。z方向伝搬定数βνに関して、空気側放射モードと基板側放射モードが縮退(同じ値をもつ)しており、それぞれの複素振幅分布をaνa (z)およびaνs(z)で表す。垂直放射用回折格子によるモード結合方程式は次式のように表される。

Figure 2009288718
In addition, each of the vertical radiation diffraction grating, the front-stage DBR, and the rear-stage DBR constituting the resonant grating coupler exhibits a strong wavelength dependency, and by adjusting the period thereof, it is possible to perform the coupling specifying the wavelength. it can.
[Analysis by mode coupling theory]
As shown in FIG. 5, the origin is the rear end of the vertical radiation diffraction grating. Regarding the z-direction propagation constant β ν , the air-side radiation mode and the substrate-side radiation mode are degenerate (having the same value), and the respective complex amplitude distributions are represented by a νa (z) and a νs (z). The mode coupling equation by the vertical radiation diffraction grating is expressed as follows.
Figure 2009288718

ここで、βA および βB は A(z) および B(z) の z方向伝搬定数でありβA= -βBである。KGC はグレーティングベクトルの大きさで2π/ΛGCで与えられる。TEモードを対象としており、結合係数は次式κνi,A およびκνi,Bで与えられる。

Figure 2009288718
Here, β A and β B are z-direction propagation constants of A (z) and B (z), and β A = −β B. K GC is the magnitude of the grating vector and is given by 2π / Λ GC . The TE mode is targeted, and the coupling coefficient is given by the following equations κνi, A and κνi, B.
Figure 2009288718

ここでEνiと Egはそれぞれ放射モードおよび導波モードの規格化電界である。また、ε0、ωおよびΔεはそれぞれ真空中の誘電率、角周波数、垂直放射用回折格子構造を表す比誘電率である。A(z) ≒ const. と B(z) ≒ const.の近似で式(3)から求めたaνi(z)を式(1)-(2)に代入して以下の導波モード間結合方程式を得る。

Figure 2009288718
Where E νi and E g are the normalized electric fields of the radiation mode and the waveguide mode, respectively. Further, ε 0 , ω, and Δε are a dielectric constant, an angular frequency, and a relative dielectric constant representing a vertical radiation diffraction grating structure, respectively. Substituting a νi (z) obtained from Eq. (3) by approximation of A (z) ≒ const. And B (z) ≒ const. Into Eqs. (1)-(2), the following coupling between guided modes: Get the equation.
Figure 2009288718

α、κGC および ΔGC はそれぞれ放射損失係数、導波モード結合係数および位相不整合量を表し、次式で与えられる。

Figure 2009288718
α, κ GC, and Δ GC represent a radiation loss coefficient, a waveguide mode coupling coefficient, and a phase mismatch amount, respectively, and are given by the following equations.
Figure 2009288718

境界条件 A(0) = 1 および B(0) = rBR のもとでは A(z) および B(z) は次式のようになる。

Figure 2009288718
Under the boundary conditions A (0) = 1 and B (0) = r BR , A (z) and B (z) are as follows.
Figure 2009288718

ここで sinc(x) はsin(x)/xで定義される関数である。位相整合条件ΔGC = 0では、式(4)、式(7) および式(8)からα=κGC であるからζ= 0となる。したがって式(10)-(11)は次式のようになる。

Figure 2009288718
Where sinc (x) is a function defined by sin (x) / x. Under the phase matching condition Δ GC = 0, ζ = 0 because α = κ GC from equations (4), (7), and (8). Therefore, equations (10)-(11) are as follows:
Figure 2009288718

A(z) および B(z) が放射モードへ相乗的に寄与して大きな結合を生じさせるためには、式(3)と式(13)-(14)を見比べて、rBRは大きな正実数であればよい。以下で述べるようにrBRは後段DBRの反射と位相調整長lRで決まる。 In order for A (z) and B (z) to synergistically contribute to the radiation mode to produce a large coupling, r BR is a large positive value comparing Eqs. (3) and (13)-(14). Any real number is acceptable. As described below, r BR is determined by the reflection of the rear DBR and the phase adjustment length l R.

前段および後段のDBRでのモード結合方程式は、次式のように書ける。

Figure 2009288718
The mode coupling equation in the front and rear DBRs can be written as:
Figure 2009288718

κBA およびΔDBR は結合係数、および位相不整合量であり、次式で与えられる。

Figure 2009288718
κ BA and Δ DBR are a coupling coefficient and a phase mismatch amount, and are given by the following equations.
Figure 2009288718

境界条件 A(0) = 1 および B(lR + LBR) = 0 を後段DBRに適用すると、rBR は次のようになる。

Figure 2009288718
When the boundary conditions A (0) = 1 and B (l R + L BR ) = 0 are applied to the post-stage DBR, r BR is as follows.
Figure 2009288718

位相整合条件ΔDBRGC=0では次のように書き改められる。

Figure 2009288718
The phase matching condition Δ DBR = Δ GC = 0 is rewritten as follows.
Figure 2009288718

rBR を大きな正の実数とするためには、κBA LBR は大きくかつ次式を満たせばよい。

Figure 2009288718
In order to make r BR a large positive real number, κ BA L BR should be large and satisfy the following equation.
Figure 2009288718

前段DBRに関しては、 z = - LGC - lFにおける境界条件が、式(10) -(11)から計算されるA(- LGC)およびB(- LGC)を用いて、A(- LGC- lF) = A(- LGC) exp(j βA lF)およびB(- LGC - lF) = B(- LGC) exp(-j βA lF)と与えられる。それゆえ、A(- LGC - lF - LBF) および B(- LGC - lF - LBF) はそれぞれ以下のように計算される。

Figure 2009288718
For the previous DBR, the boundary condition at z =-L GC -l F is A (-L GC ) using A (-L GC ) and B (-L GC ) calculated from equations (10)-(11). L GC -l F ) = A (-L GC ) exp (j β A l F ) and B (-L GC -l F ) = B (-L GC ) exp (-j β A l F ) . Therefore, A (- L GC - l F - L BF) and B (- L GC - l F - L BF) each of which is calculated as follows.
Figure 2009288718

位相整合条件ΔDBR = 0でB(- LGC - lF - LBF) = 0 とするには

Figure 2009288718
To set B (-L GC -l F -L BF ) = 0 under phase matching condition Δ DBR = 0
Figure 2009288718

とすればよい。ふたつめの等号は式(13)-(14)から導かれる。すなわち、 lFとLBF は次式を満たすように決めればよい。

Figure 2009288718
And it is sufficient. The second equal sign is derived from equations (13)-(14). That is, l F and L BF may be determined so as to satisfy the following equations.
Figure 2009288718

[設計例及びシミュレーション]
本発明に係る共振グレーティングカップラの一設計例を図6に示す。屈折率3.75のSi基板上に屈折率1.46、厚さ1.64μmのSiOバッファ層を介して屈折率1.54、厚さ0.65μmのGe:SiO導波コア層を形成する。垂直放射用回折格子およびDBRの屈折率変調は、導波コア層ほぼ中央に設けた屈折率2.01厚さ50nmのSi−N層を凹凸加工して得る。そのTE0モードの実効屈折率は1.516であり、垂直放射用回折格子およびDBRの周期はそれぞれ0.5607μmおよび0.2804μmとなる。放射損失係数及び結合係数は、α=κGC=8.70mm-1並びにκBA=140mm-1と算出された。後段DBRの結合長LBRは20μmとした。結合波長850nmにおける反射係数の大きさは|rBR|=0.993である。垂直放射用回折格子の結合長を5μmとし、式(26)から前段DBRの結合長LBFを8.55μmとした。
[Design examples and simulations]
FIG. 6 shows a design example of the resonant grating coupler according to the present invention. A Ge: SiO 2 waveguide core layer having a refractive index of 1.54 and a thickness of 0.65 μm is formed on a Si substrate having a refractive index of 3.75 through a SiO 2 buffer layer having a refractive index of 1.46 and a thickness of 1.64 μm. Form. The refractive index modulation of the diffraction grating for vertical radiation and the DBR is obtained by unevenly processing a Si-N layer having a refractive index of 2.01 and a thickness of 50 nm provided at substantially the center of the waveguide core layer. The effective refractive index of the TE 0 mode is 1.516, and the periods of the vertical radiation diffraction grating and the DBR are 0.5607 μm and 0.2804 μm, respectively. Radiation loss coefficient and the coupling coefficient was calculated to be α = κ GC = 8.70mm -1 and κ BA = 140mm -1. The bond length L BR of the rear DBR was 20 μm. The magnitude of the reflection coefficient at the coupling wavelength of 850 nm is | r BR | = 0.993. The coupling length of the vertical radiation diffraction grating was 5 μm, and the coupling length L BF of the preceding DBR was 8.55 μm from the equation (26).

規格化パワー透過率PT = (1-|B(0)|2)/|A(-LGC-lF-LBF)|2、規格化パワー反射率PR = |B(-LGC-lF-LBF)|2/|A(-LGC-lF-LBF)|2および規格化空気側パワー放射率POUT0(1-PT- PR)の計算例を図7に示す。ただし、垂直放射用回折格子による全放射光パワーに対する空気側出力光パワー分配比η0は0.78である。結合波長850nmにおいてη0に近い結合効率が期待できる。また半値波長幅は4nmと見積もられた。DBRを集積しない垂直放射用回折格子単独の出力結合効率はη0{1-exp(-2α LGC)}で与えられるが、結合長5μmでは0.065となる。すなわち、共振構造とすることで12倍の効率改善が見込める。 Normalized power transmittance P T = (1- | B (0) | 2 ) / | A (-L GC -l F -L BF ) | 2 , Normalized power reflectance P R = | B (-L GC -l F -L BF ) | 2 / | A (-L GC -l F -L BF ) | 2 and normalized air side power emissivity P OUT = η 0 (1-P T -P R ) Is shown in FIG. However, the air-side output light power distribution ratio η 0 with respect to the total radiation light power by the vertical radiation diffraction grating is 0.78. A coupling efficiency close to η 0 can be expected at a coupling wavelength of 850 nm. The half-value wavelength width was estimated to be 4 nm. The output coupling efficiency of the vertical radiation diffraction grating alone without DBR integration is given by η 0 {1-exp (−2α L GC )}, but becomes 0.065 when the coupling length is 5 μm. That is, a 12-fold improvement in efficiency can be expected by using a resonant structure.

PT、PRおよびPOUTの波長依存性のFDTDによるシミュレーション結果を図8に示す。図7と良く一致しており、モード結合理論による予測の正当性を裏付ける結果が得られた。ただし、結合波長における出力結合効率は0.1ほど低くなっている。より長いグレーティングカップラ結合長10μmでは両者の差は非常に小さかったことを考慮すると、この原因は垂直放射用回折格子の領域と周囲との屈折率境界における散乱が影響しているものと説明できる。
[比較例−共振型でない場合]
比較のため共振構造でないグレーティングカップラについて述べる。まず、構造パラメータはすべて同じで前段DBRのみ無い場合の規格化パワー透過率、規格化パワー反射率、規格化空気側パワー放射率の計算結果を図9に示す。透過はほぼ0であるが、反射が0.7もあり、出力結合効率は0.2強に留まっている。すなわち、垂直放射用回折格子単体による結合が小さいため、入射導波モード光はわずかに垂直放射用回折格子で回折された後にほとんどが後段DBRで反射されるが、その反射導波モード光のほとんどが垂直放射用回折格子を透過している状況を示している。
FIG. 8 shows a simulation result by FDTD of the wavelength dependence of P T , P R and P OUT . The result agrees well with FIG. 7, and the result confirming the correctness of the prediction by the mode coupling theory was obtained. However, the output coupling efficiency at the coupling wavelength is as low as 0.1. Considering that the difference between the two grating coupling lengths of 10 μm was very small, it can be explained that this is due to the scattering at the refractive index boundary between the region of the vertical emission diffraction grating and the surroundings.
[Comparative example-not resonant type]
For comparison, a grating coupler having no resonance structure will be described. First, FIG. 9 shows the calculation results of the normalized power transmittance, the normalized power reflectance, and the normalized air side power emissivity when all the structural parameters are the same and only the preceding stage DBR is absent. The transmission is almost 0, but the reflection is 0.7, and the output coupling efficiency remains at just over 0.2. That is, since the coupling by the vertical radiation diffraction grating alone is small, most of the incident waveguide mode light is reflected by the subsequent DBR after being slightly diffracted by the vertical radiation diffraction grating. Shows a state of being transmitted through the diffraction grating for vertical radiation.

一方、後段DBRがなく前段DBRと垂直放射用回折格子を組み合わせた場合を図10に示す。結合係数が小さいため、入射導波モード光は垂直放射用回折格子の1次回折でわずかに出力として取り出されるが、垂直放射用回折格子による2次回折反射はほとんど生じない。そのため、その反射を打ち消す働きをする前段DBRはほとんど存在価値が無い。すなわち、入射導波モード光はわずかに0.065(前述した単体の場合と結合効率とほとんど同じ)だけ出力し、若干の基板側放射を除いてその他は透過することになる。   On the other hand, FIG. 10 shows a case where there is no rear-stage DBR and a front-stage DBR and a diffraction grating for vertical radiation are combined. Since the coupling coefficient is small, incident waveguide mode light is extracted as a slight output as the first-order diffraction of the vertical radiation diffraction grating, but second-order diffraction reflection by the vertical radiation diffraction grating hardly occurs. For this reason, the pre-stage DBR that functions to cancel the reflection has little value. That is, the incident guided mode light is output only 0.065 (which is almost the same as the coupling efficiency in the case of the single unit described above), and the others are transmitted except for some substrate-side radiation.

また、参考のために、結合長を150μmと30倍ほど長くした垂直放射用回折格子と前段DBRを組み合わせた場合を図11に示す。この場合、確かに反射は抑圧されているが、透過率は無視できないレベルにあり、かつ波長依存性が急峻であり、実用上好ましくない。   For reference, FIG. 11 shows a case where a vertical radiation diffraction grating having a coupling length of 150 μm, which is about 30 times longer, and the preceding DBR are combined. In this case, although the reflection is certainly suppressed, the transmittance is at a level that cannot be ignored, and the wavelength dependency is steep, which is not preferable in practice.

以上、本発明の一実施形態について説明したが、本発明はこれに限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。   As mentioned above, although one Embodiment of this invention was described, this invention is not limited to this, A various change is possible unless it deviates from the meaning.

グレーティングを形成する屈折率変調の位置は導波コア層中央に設ける必要はなく、例えば、導波コア層上部や導波コア層下部あるいはその中間に設けても良い。ただし、基板側への放射を抑圧するようにバッファ層厚を最適化することが肝要である。   The position of the refractive index modulation for forming the grating need not be provided in the center of the waveguide core layer, and may be provided, for example, in the upper part of the waveguide core layer, the lower part of the waveguide core layer, or in the middle thereof. However, it is important to optimize the buffer layer thickness so as to suppress radiation toward the substrate side.

また、バッファ層下部に、金属膜もしくは多層膜などの反射構造を設けて、基板側放射を抑圧して空気側出力光パワー分配比η0を100%に近づけ、高効率化を図ることも可能である。 In addition, a reflective structure such as a metal film or multilayer film can be provided below the buffer layer to suppress substrate-side radiation and bring the air-side output light power distribution ratio η 0 closer to 100%, thereby improving efficiency. It is.

本発明に係るグレーティングカップラは、導波路を形成するのに、上に説明した誘電体のみならず半導体を用いることもできる。適用可能なものは、誘電体としては、SiO2系、SiON系の無機材料やポリイミド系などの有機材料、半導体としては、GaAs系、InP系材料を例示することができる。半導体を用いる場合も、上に説明したのと同様にして、垂直放射用回折格子、前段DBR、後段DBR、前段位相調整域、後段位相調整域を形成することにより、導波モード光に対する共振構造を形成することができ、短い結合長で高い光放射効率を得ることができる。 The grating coupler according to the present invention can use not only the dielectric described above but also a semiconductor to form the waveguide. Examples of applicable materials include SiO 2 and SiON inorganic materials and polyimide organic materials as dielectrics, and GaAs and InP materials as semiconductors. Also in the case of using a semiconductor, in the same manner as described above, a resonant structure for guided mode light is formed by forming a vertical radiation diffraction grating, a front-stage DBR, a rear-stage DBR, a front-stage phase adjustment area, and a rear-stage phase adjustment area. And a high light emission efficiency can be obtained with a short bond length.

グレーティングカップラの基本構成を示す説明図である。It is explanatory drawing which shows the basic composition of a grating coupler. 導波路を伝搬する光のベクトルダイアグラムである。It is a vector diagram of light propagating through a waveguide. 集光グレーティングカップラの構成例を示す斜視図である。It is a perspective view which shows the structural example of a condensing grating coupler. 本発明の一実施形態に係る共振グレーティングカップラの基本構成を概略的に示す断面図である。1 is a cross-sectional view schematically showing a basic configuration of a resonant grating coupler according to an embodiment of the present invention. 導波モードと放射モードの関係を示す説明図である。It is explanatory drawing which shows the relationship between waveguide mode and radiation mode. 図4に示した構成を有する共振グレーティングカップラの一設計例を概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a design example of a resonant grating coupler having the configuration shown in FIG. 4. 図6に示した共振グレーティングカップラの性能を示すグラフである。It is a graph which shows the performance of the resonance grating coupler shown in FIG. 図6に示した共振グレーティングカップラの性能に関しFDTDによるシミュレーションを行なった結果を示すグラフである。It is a graph which shows the result of having performed the simulation by FDTD regarding the performance of the resonant grating coupler shown in FIG. 一比較例に係るグレーティングカップラの性能を示すグラフである。It is a graph which shows the performance of the grating coupler which concerns on one comparative example. 他の比較例に係る共振グレーティングカップラの性能を示すグラフである。It is a graph which shows the performance of the resonant grating coupler which concerns on another comparative example. さらに他の比較例に係る共振グレーティングカップラの性能を示すグラフである。It is a graph which shows the performance of the resonance grating coupler concerning other comparative examples.

符号の説明Explanation of symbols

1:基材
2:導波路
3:前段DBR
4:前段位相調整域
5:垂直放射用回折格子
6:後段位相調整域
7:後段DBR
DG:放射用回折格子
Ld:回折放射光
Li:導波光
WG:導波路
1: Base material 2: Waveguide 3: Previous stage DBR
4: Front-stage phase adjustment area 5: Vertical radiation diffraction grating 6: Rear-stage phase adjustment area 7: Rear-stage DBR
DG: Diffraction grating for radiation
Ld: Diffraction synchrotron radiation
Li: guided light
WG: Waveguide

Claims (1)

基材及び該基材上の導波路を備え、上記導波路は、該導波路を伝搬する入射導波モード光の1次回折光が垂直放射モード光に結合されるように屈折率変調周期が決められた垂直放射用回折格子と、該回折格子の格子面に沿う方向における入射側に形成された前段DBRと、該回折格子の格子面に沿う方向における入射側から遠い側に形成された後段DBRと、上記垂直放射用回折格子及び前段DBRの間に形成された前段位相調整域と、上記垂直放射用回折格子及び後段DBRの間に形成された後段位相調整域とを備え、
上記後段DBRの結合長は、該後段DBRを透過する光を実用上無視できるまで低減するのに十分な長さとされ、上記後段位相調整域の導波方向長さは、上記後段DBRで反射した光の上記垂直放射用回折格子による回折放射の位相が入射導波モード光の上記垂直放射用回折格子による回折放射の位相に揃うように決められ、
上記前段位相調整域の導波方向長さは、上記後段DBRで反射して上記前段DBRに到達する光の位相が入射導波モード光の上記前段DBRにより反射する光の位相と半波長分だけずれるように決められ、上記前段DBRの結合長は、上記後段DBRで反射したのち前段DBRを透過する光を該前段DBRによる入射導波モード光の反射で相殺するように決められている
ことを特徴とする共振グレーティングカップラ。
And a waveguide on the substrate, wherein the waveguide has a refractive index modulation period determined so that the first-order diffracted light of the incident guided mode light propagating through the waveguide is coupled to the vertical radiation mode light. The vertical radiation diffraction grating, the front DBR formed on the incident side in the direction along the grating surface of the diffraction grating, and the rear DBR formed on the side far from the incident side in the direction along the grating surface of the diffraction grating And a front-stage phase adjustment area formed between the vertical radiation diffraction grating and the front-stage DBR, and a rear-stage phase adjustment area formed between the vertical radiation diffraction grating and the rear-stage DBR,
The coupling length of the post-stage DBR is set to a length sufficient to reduce the light transmitted through the post-stage DBR until it can be practically ignored, and the length in the waveguide direction of the post-stage phase adjustment region is reflected by the post-stage DBR. The phase of the diffracted radiation by the vertical radiation diffraction grating of light is determined to be aligned with the phase of the diffracted radiation of the incident guided mode light by the vertical radiation diffraction grating,
The length of the preceding phase adjustment region in the waveguide direction is such that the phase of the light reflected by the latter stage DBR and reaching the former stage DBR is half the wavelength and the phase of the light reflected by the former stage DBR of the incident waveguide mode light. The coupling length of the front-stage DBR is determined so as to cancel the light transmitted through the front-stage DBR after being reflected by the rear-stage DBR by the reflection of the incident waveguide mode light by the front-stage DBR. A characteristic resonant grating coupler.
JP2008143841A 2008-05-30 2008-05-30 Resonance grating coupler Pending JP2009288718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008143841A JP2009288718A (en) 2008-05-30 2008-05-30 Resonance grating coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008143841A JP2009288718A (en) 2008-05-30 2008-05-30 Resonance grating coupler

Publications (1)

Publication Number Publication Date
JP2009288718A true JP2009288718A (en) 2009-12-10

Family

ID=41457950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008143841A Pending JP2009288718A (en) 2008-05-30 2008-05-30 Resonance grating coupler

Country Status (1)

Country Link
JP (1) JP2009288718A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162609A1 (en) * 2012-04-27 2013-10-31 Hewlett-Packard Development Company, L.P. Directional pixel for use in a display screen
JP2015111255A (en) * 2013-10-25 2015-06-18 フォアルクス インコーポレイテッドForelux Inc. Optical coupler based on grating
US9128226B2 (en) 2013-07-30 2015-09-08 Leia Inc. Multibeam diffraction grating-based backlighting
US9201270B2 (en) 2012-06-01 2015-12-01 Leia Inc. Directional backlight with a modulation layer
US9298168B2 (en) 2013-01-31 2016-03-29 Leia Inc. Multiview 3D wrist watch
US9389415B2 (en) 2012-04-27 2016-07-12 Leia Inc. Directional pixel for use in a display screen
US9459461B2 (en) 2012-05-31 2016-10-04 Leia Inc. Directional backlight
US9557466B2 (en) 2014-07-30 2017-01-31 Leia, Inc Multibeam diffraction grating-based color backlighting
US10578793B2 (en) 2015-05-09 2020-03-03 Leia Inc. Color-scanning grating-based backlight and electronic display using same
US10670920B2 (en) 2015-03-16 2020-06-02 Leia Inc. Unidirectional grating-based backlighting employing an angularly selective reflective layer
US10684404B2 (en) 2015-01-10 2020-06-16 Leia Inc. Diffraction grating-based backlighting having controlled diffractive coupling efficiency
US10703375B2 (en) 2015-05-30 2020-07-07 Leia Inc. Vehicle monitoring system
JP2020118997A (en) * 2016-05-06 2020-08-06 マジック リープ, インコーポレイテッドMagic Leap,Inc. Metasurfaces with asymmetric gratings for redirecting light and methods of fabricating the same
US10768357B2 (en) 2015-01-10 2020-09-08 Leia Inc. Polarization-mixing light guide and multibeam grating-based backlighting using same
US10788619B2 (en) 2015-04-23 2020-09-29 Leia Inc. Dual light guide grating-based backlight and electronic display using same
US10852560B2 (en) 2015-01-10 2020-12-01 Leia Inc. Two-dimensional/three-dimensional (2D/3D) switchable display backlight and electronic display
CN112180514A (en) * 2020-10-09 2021-01-05 温州大学 Optical fiber surface wave guided mode resonance generating device and regulating and controlling method thereof
US10948647B2 (en) 2015-01-19 2021-03-16 Leia Inc. Unidirectional grating-based backlighting employing a reflective island
US11194086B2 (en) 2015-01-28 2021-12-07 Leia Inc. Three-dimensional (3D) electronic display
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
US11243338B2 (en) 2017-01-27 2022-02-08 Magic Leap, Inc. Diffraction gratings formed by metasurfaces having differently oriented nanobeams
JP2022060344A (en) * 2017-01-23 2022-04-14 マジック リープ, インコーポレイテッド Eyepiece for virtual, augmented and mixed reality systems
JP7151939B1 (en) * 2022-01-11 2022-10-12 三菱電機株式会社 grating coupler
CN115437061A (en) * 2022-11-07 2022-12-06 之江实验室 Grating coupler and simulation manufacturing method, device, medium and equipment thereof
US11604310B2 (en) 2016-08-22 2023-03-14 Magic Leap, Inc. Multi-layer diffractive eyepiece with front cover plate and wavelength-selective reflector
US11681153B2 (en) 2017-01-27 2023-06-20 Magic Leap, Inc. Antireflection coatings for metasurfaces

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104395814A (en) * 2012-04-27 2015-03-04 镭亚股份有限公司 Directional pixel for use in a display screen
WO2013162609A1 (en) * 2012-04-27 2013-10-31 Hewlett-Packard Development Company, L.P. Directional pixel for use in a display screen
JP2015524935A (en) * 2012-04-27 2015-08-27 レイア、インコーポレイテッドLeia Inc. Directional pixels used on the display screen
US9389415B2 (en) 2012-04-27 2016-07-12 Leia Inc. Directional pixel for use in a display screen
US9459461B2 (en) 2012-05-31 2016-10-04 Leia Inc. Directional backlight
US10082613B2 (en) 2012-06-01 2018-09-25 Leia Inc. Directional backlight with a modulation layer
US9201270B2 (en) 2012-06-01 2015-12-01 Leia Inc. Directional backlight with a modulation layer
US9785119B2 (en) 2013-01-31 2017-10-10 Leia Inc. Multiview display screen and multiview mobile device using same
US9298168B2 (en) 2013-01-31 2016-03-29 Leia Inc. Multiview 3D wrist watch
US10830939B2 (en) 2013-07-30 2020-11-10 Leia Inc. Multibeam diffraction grating-based backlighting
US9128226B2 (en) 2013-07-30 2015-09-08 Leia Inc. Multibeam diffraction grating-based backlighting
JP2015111255A (en) * 2013-10-25 2015-06-18 フォアルクス インコーポレイテッドForelux Inc. Optical coupler based on grating
US10345505B2 (en) 2014-07-30 2019-07-09 Leia, Inc. Multibeam diffraction grating-based color backlighting
US9557466B2 (en) 2014-07-30 2017-01-31 Leia, Inc Multibeam diffraction grating-based color backlighting
US10852560B2 (en) 2015-01-10 2020-12-01 Leia Inc. Two-dimensional/three-dimensional (2D/3D) switchable display backlight and electronic display
US10684404B2 (en) 2015-01-10 2020-06-16 Leia Inc. Diffraction grating-based backlighting having controlled diffractive coupling efficiency
US10768357B2 (en) 2015-01-10 2020-09-08 Leia Inc. Polarization-mixing light guide and multibeam grating-based backlighting using same
US10948647B2 (en) 2015-01-19 2021-03-16 Leia Inc. Unidirectional grating-based backlighting employing a reflective island
US11194086B2 (en) 2015-01-28 2021-12-07 Leia Inc. Three-dimensional (3D) electronic display
US10670920B2 (en) 2015-03-16 2020-06-02 Leia Inc. Unidirectional grating-based backlighting employing an angularly selective reflective layer
US10788619B2 (en) 2015-04-23 2020-09-29 Leia Inc. Dual light guide grating-based backlight and electronic display using same
US10578793B2 (en) 2015-05-09 2020-03-03 Leia Inc. Color-scanning grating-based backlight and electronic display using same
US11203346B2 (en) 2015-05-30 2021-12-21 Leia Inc. Vehicle monitoring system
US10703375B2 (en) 2015-05-30 2020-07-07 Leia Inc. Vehicle monitoring system
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
US11789198B2 (en) 2015-11-06 2023-10-17 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
JP2020118997A (en) * 2016-05-06 2020-08-06 マジック リープ, インコーポレイテッドMagic Leap,Inc. Metasurfaces with asymmetric gratings for redirecting light and methods of fabricating the same
US11796818B2 (en) 2016-05-06 2023-10-24 Magic Leap, Inc. Metasurfaces with asymetric gratings for redirecting light and methods for fabricating
US11360306B2 (en) 2016-05-06 2022-06-14 Magic Leap, Inc. Metasurfaces with asymmetric gratings for redirecting light and methods for fabricating
JP7085585B2 (en) 2016-05-06 2022-06-16 マジック リープ, インコーポレイテッド Meta-surface with asymmetric grid for redirecting light and manufacturing method
US11604310B2 (en) 2016-08-22 2023-03-14 Magic Leap, Inc. Multi-layer diffractive eyepiece with front cover plate and wavelength-selective reflector
US11822112B2 (en) 2016-08-22 2023-11-21 Magic Leap, Inc. Projector architecture incorporating artifact mitigation
JP7212806B2 (en) 2017-01-23 2023-01-25 マジック リープ, インコーポレイテッド Eyepieces for Virtual Reality, Augmented Reality, and Mixed Reality Systems
US11733456B2 (en) 2017-01-23 2023-08-22 Magic Leap, Inc. Eyepiece for virtual, augmented, or mixed reality systems
JP2022060344A (en) * 2017-01-23 2022-04-14 マジック リープ, インコーポレイテッド Eyepiece for virtual, augmented and mixed reality systems
US11681153B2 (en) 2017-01-27 2023-06-20 Magic Leap, Inc. Antireflection coatings for metasurfaces
US11243338B2 (en) 2017-01-27 2022-02-08 Magic Leap, Inc. Diffraction gratings formed by metasurfaces having differently oriented nanobeams
CN112180514A (en) * 2020-10-09 2021-01-05 温州大学 Optical fiber surface wave guided mode resonance generating device and regulating and controlling method thereof
CN112180514B (en) * 2020-10-09 2023-08-01 温州大学 Optical fiber surface waveguide mode resonance generating device and regulating and controlling method thereof
WO2023135649A1 (en) * 2022-01-11 2023-07-20 三菱電機株式会社 Grating coupler
JP7151939B1 (en) * 2022-01-11 2022-10-12 三菱電機株式会社 grating coupler
CN115437061B (en) * 2022-11-07 2023-02-17 之江实验室 Grating coupler and simulation manufacturing method, device, medium and equipment thereof
CN115437061A (en) * 2022-11-07 2022-12-06 之江实验室 Grating coupler and simulation manufacturing method, device, medium and equipment thereof

Similar Documents

Publication Publication Date Title
JP2009288718A (en) Resonance grating coupler
Asaduzzaman et al. Multiple layers of silicon–silica (Si–SiO 2) pair onto silicon substrate towards highly efficient, wideband silicon photonic grating coupler
EP2866067B1 (en) Grating based optical coupler
Wang et al. Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations
Halir et al. Recent advances in silicon waveguide devices using sub-wavelength gratings
US10371898B2 (en) Enhanced coupling strength grating having a cover layer
US8835204B2 (en) Method for manufacturing multi-dimensional target waveguide grating and volume grating with micro-structure quasi-phase-matching
JP2015111255A5 (en)
US6804446B1 (en) Waveguide including at least one photonic crystal region for directing signals propagating therethrough
US9829630B2 (en) Tunable reflectors based on multi-cavity interference
CN104204880A (en) Optical element, light transmitting element, light receiving element, hybrid laser, and light transmitting apparatus
Asano et al. Photonic crystal devices in silicon photonics
US20150277072A1 (en) Semiconductor optical waveguide device
JP2011203604A (en) Optical element and method for manufacturing the same
WO2018051370A1 (en) Broadband wavelength filter device using sidewall grating for filtering optical signals
JP6127171B1 (en) Polarization-independent wavelength filter
Sharma et al. Coupling performance enhancement using SOI grating coupler design
Song et al. Enhanced silicon ring resonators using low-loss bends
US7515804B2 (en) Optical waveguide device
US8625939B1 (en) Ultralow loss cavities and waveguides scattering loss cancellation
Ura et al. Position dependence of coupling efficiency of grating coupler in waveguide cavity
KR101725637B1 (en) Optical signal coupling appratus and method using grating-to-grating coupler having bandwidth performance enhancement
Kok et al. Transmission of pillar-based photonic crystal waveguides in InP technology
WO2006103850A1 (en) Waveguide element and laser generator
Mamun et al. Polarisation Independent Broadband Titanium Dioxide Photonic Integrated Circuits for Datacom and Telecom Optical Networks