JP2009284467A - Signal coupling device for power line communication - Google Patents

Signal coupling device for power line communication Download PDF

Info

Publication number
JP2009284467A
JP2009284467A JP2009056711A JP2009056711A JP2009284467A JP 2009284467 A JP2009284467 A JP 2009284467A JP 2009056711 A JP2009056711 A JP 2009056711A JP 2009056711 A JP2009056711 A JP 2009056711A JP 2009284467 A JP2009284467 A JP 2009284467A
Authority
JP
Japan
Prior art keywords
power line
magnetic core
signal
coupling device
wound around
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009056711A
Other languages
Japanese (ja)
Other versions
JP5140022B2 (en
Inventor
Norihiko Akashi
憲彦 明石
Yuichiro Murata
雄一郎 村田
Akinori Nishizawa
昭則 西沢
Tetsuaki Nagano
鉄明 長野
Akira Hatakei
彰 畑井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009056711A priority Critical patent/JP5140022B2/en
Publication of JP2009284467A publication Critical patent/JP2009284467A/en
Application granted granted Critical
Publication of JP5140022B2 publication Critical patent/JP5140022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filters And Equalizers (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a coupling device for power line communication, by which a transmission efficiency can be improved and a leak electromagnetic field can be suppressed. <P>SOLUTION: The signal coupling device for power line communication includes: a magnetic core 2; a signal injection or/and extraction winding wire 3 which is wound around the magnetic core 2 for one or more turns and connected with a MODEM 4; and a power line 1 having at least two or more phases. The power line 1 is wound around the magnetic core 2 for one or more turns for each phase so as to differentially couple one or more phases of the power line 1 with the signal injection or/and extraction winding wire 3, and the power line 1 is wound around the magnetic core 2 for one or more turns for each phase so as to cumulatively couple one or more phases of the power line 1 with the signal injection or/and extraction winding wire 3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、電力線搬送通信用信号結合装置に関し、特に、伝送効率を向上させ、漏洩電磁界を低減させるものに係わる。   The present invention relates to a signal coupling device for power line carrier communication, and more particularly to a device for improving transmission efficiency and reducing a leakage electromagnetic field.

電力線搬送通信(PLCともいう。PLC=Power Line Communication)システムは、電力線に極めて微弱なMHz帯域の搬送信号を効率よく伝送することが必要である。即ち、搬送信号を効率よく注入・抽出すること、電力線に存在する電磁雑音の影響を受けないことが重要となる。また、電力線搬送通信システムが他の電気機器へ電磁雑音を与えないように、電力線から発生する漏洩電磁界を低減することも重要となる。   A power line carrier communication (PLC: PLC = Power Line Communication) system is required to efficiently transmit a very weak carrier signal in the MHz band to a power line. That is, it is important to efficiently inject and extract the carrier signal and not be affected by electromagnetic noise existing in the power line. It is also important to reduce the leakage electromagnetic field generated from the power line so that the power line carrier communication system does not give electromagnetic noise to other electric devices.

従来の電力線搬送通信用信号結合装置として、特許文献1では、伝送効率の劣化を防ぐために、電磁誘導結合させ、配電線路のインピーダンスが低下して搬送信号電流が増加した場合に、電磁誘導結合部の磁束が増加するためより多くの搬送信号を注入することを可能としている。ここで、電磁誘導結合は、電力線の1相毎に電力線と信号注入・抽出巻き線とを一括して磁性体コアに貫通させる構造である。
また、特許文献2では、電力線に接続されている電気機器からのノイズの影響を除去するために、チョークコイルとコンデンサでローパスフィルタを構成し、伝送効率の劣化を防ぐ構造である。また、ローパスフィルタは、電力線から発生する漏洩電磁界を低減させる構造でもある。
As a conventional signal coupling device for power line carrier communication, in Patent Document 1, in order to prevent deterioration in transmission efficiency, electromagnetic induction coupling is performed, and when the impedance of the distribution line decreases and the carrier signal current increases, the electromagnetic induction coupling unit Since the magnetic flux increases, more carrier signals can be injected. Here, the electromagnetic induction coupling is a structure in which the power line and the signal injection / extraction winding are collectively penetrated into the magnetic core for each phase of the power line.
In Patent Document 2, a low-pass filter is configured with a choke coil and a capacitor in order to eliminate the influence of noise from an electric device connected to the power line, thereby preventing deterioration in transmission efficiency. The low-pass filter is also a structure that reduces a leakage electromagnetic field generated from the power line.

特開2004−32585号公報(段落[0012][0022]、図2)JP 2004-32585 A (paragraphs [0012] [0022], FIG. 2) 特開2006−33113号公報(段落[0032]、図4)JP 2006-33113 A (paragraph [0032], FIG. 4)

特許文献1のような従来の電力線搬送通信用信号結合装置にあっては、電力線に接続されている電気機器などが原因により、電力線上にノイズ電流が発生した場合に、電磁誘導結合部でノイズ電流により発生する磁束を抽出することによる伝送効率の劣化が生じるという問題点があった。さらに、電力線の1相毎に磁性体コアを用いるため、2相では磁性体コアを2つ、3相では磁性体コアを3つと相数分の磁性体コアを必要とする。その結果、コストの増加、電力線搬送通信用信号結合装置の電力線への施工性が複雑となるという問題点もあった。   In a conventional power line carrier communication signal coupling device such as Patent Document 1, when noise current is generated on the power line due to electrical equipment connected to the power line, noise is generated in the electromagnetic induction coupling unit. There is a problem that transmission efficiency is deteriorated by extracting magnetic flux generated by current. Further, since a magnetic core is used for each phase of the power line, two magnetic cores are required for the two phases, and three magnetic cores are required for the three phases, and the number of magnetic cores corresponding to the number of phases is required. As a result, there has been a problem that the cost is increased and the workability of the power line carrier communication signal coupling device to the power line becomes complicated.

また、特許文献2のような従来の電力線搬送通信用信号結合装置にあっては、ローパスフィルタを構成するために、チョークコイル及びコンデンサを必要とするため、コストの増加、電気部品領域の増加が生じるという問題点があった。
この発明では上記のような問題を解消するためになされたものであり、伝送効率を向上させ、かつ漏洩電磁界を抑制できる電力線搬送通信用結合装置を得ることを目的とする。
Moreover, in the conventional signal coupling device for power line carrier communication as in Patent Document 2, a choke coil and a capacitor are required to configure a low-pass filter, which increases the cost and the electrical component area. There was a problem that occurred.
The present invention has been made to solve the above-described problems, and an object thereof is to obtain a power line carrier communication coupling device that can improve transmission efficiency and suppress leakage electromagnetic fields.

この発明に係わる電力線搬送通信用信号結合装置は、磁性体コアと、この磁性体コアに1ターン以上で巻かれモデムと接続された信号注入又は/及び抽出巻き線と、少なくとも
2相以上の相を有している電力線を備え、前記電力線の1相以上を前記信号注入又は/及び抽出巻き線と差動結合させるように各相1ターン以上で前記磁性体コアに巻き、かつ、前記電力線の1相以上を前記信号注入又は/及び抽出巻き線と和動結合させるように各相1ターン以上で前記磁性体コアに巻くものである。
A signal coupling device for power line carrier communication according to the present invention includes a magnetic core, a signal injection or / and extraction winding wound around the magnetic core in one turn or more and connected to a modem, and at least two or more phases. A power line having at least one turn of each phase so that at least one phase of the power line is differentially coupled with the signal injection or / and extraction winding, and the power line One or more phases are wound around the magnetic core in one or more turns for each phase so as to be coupled with the signal injection or / and extraction winding.

この発明の電力線搬送通信用信号結合装置によれば、少なくとも2相以上の相を有している電力線を備え、前記電力線の1相以上を信号注入又は/及び抽出巻き線と差動結合させるように各相1ターン以上で磁性体コアに巻き、かつ、前記電力線の1相以上を前記信号注入又は/及び抽出巻き線と和動結合させるように各相1ターン以上で前記磁性体コアに巻くようにしたので、伝送効率を向上させることができ、かつ漏洩電磁界を低減させることができる。   According to the signal coupling device for power line carrier communication of the present invention, the power line having at least two phases is provided, and one or more phases of the power line are differentially coupled with the signal injection or / and extraction winding. Wound around the magnetic core in one or more turns in each phase, and wound around the magnetic core in one or more turns in each phase so that one or more phases of the power line are combined with the signal injection or / and extraction windings Since it did in this way, transmission efficiency can be improved and a leakage electromagnetic field can be reduced.

この発明の実施の形態1による電力線搬送通信システムを示す構成図である。It is a block diagram which shows the power line carrier communication system by Embodiment 1 of this invention. 実施の形態1による電力線搬送通信用モデムから信号が送信される場合の電気的流れを示す模式図である。FIG. 4 is a schematic diagram showing an electrical flow when a signal is transmitted from the power line carrier communication modem according to the first embodiment. 実施の形態1による電力線搬送通信用モデムが信号を受信する場合の電気的流れを示す模式図である。It is a schematic diagram which shows the electrical flow in case the power line carrier communication modem by Embodiment 1 receives a signal. 実施の形態2による電力線搬送通信用信号結合装置を示す構成図である。5 is a configuration diagram illustrating a signal coupling device for power line carrier communication according to Embodiment 2. FIG. 実施の形態3による電力線搬送通信用信号結合装置を示す構成図である。FIG. 5 is a configuration diagram illustrating a signal coupling device for power line carrier communication according to a third embodiment. 実施の形態4による電力線搬送通信用信号結合装置を示す構成図である。FIG. 6 is a configuration diagram illustrating a signal line coupling device for power line carrier communication according to a fourth embodiment. 実施の形態1における測定の構成を示す図である。3 is a diagram illustrating a measurement configuration in Embodiment 1. FIG. 実施の形態1における測定の構成を示す図である。3 is a diagram illustrating a measurement configuration in Embodiment 1. FIG.

図7,図8の測定の構成における測定結果を示す図である。It is a figure which shows the measurement result in the structure of a measurement of FIG. 7, FIG. 実施の形態6による電力線搬送通信用信号結合装置を示す構成図である。FIG. 10 is a configuration diagram showing a signal coupling device for power line carrier communication according to a sixth embodiment. 実施の形態8による電力線搬送通信用信号結合装置を示す構成図である。FIG. 10 is a configuration diagram illustrating a power line carrier communication signal coupling device according to an eighth embodiment. 実施の形態7による電力線搬送通信用信号結合装置を示す構成図である。FIG. 10 is a configuration diagram illustrating a signal coupling device for power line carrier communication according to a seventh embodiment. 実施の形態9による電力線搬送通信用信号結合装置を示す構成図である。FIG. 10 is a configuration diagram illustrating a signal coupling device for power line carrier communication according to a ninth embodiment. 実施の形態10による電力線搬送通信用信号結合装置を示す構成図である。FIG. 12 is a configuration diagram showing a signal coupling device for power line carrier communication according to a tenth embodiment. 実施の形態10による電力線搬送通信用信号結合装置を示す構成図である。FIG. 12 is a configuration diagram showing a signal coupling device for power line carrier communication according to a tenth embodiment. 実施の形態11による電力線搬送通信用信号結合装置を示す構成図である。FIG. 17 is a configuration diagram showing a signal line coupling device for power line carrier communication according to an eleventh embodiment. 実施の形態11による電力線搬送通信用信号結合装置を示す構成図である。FIG. 17 is a configuration diagram showing a signal line coupling device for power line carrier communication according to an eleventh embodiment.

実施の形態1.
図1はこの発明の実施の形態1による電力線搬送通信システムを示す構成図である。電力線1は少なくとも2相以上の相を有しており、電力線搬送通信システムが使用される環境により、電力線1には様々な電気機器5が複数台接続される。磁性体コア2には、電力線搬送通信用モデム4に接続された信号注入・抽出巻き線3が1ターン以上で巻かれており、また、信号注入・抽出巻き線3と和動結合された電力線1bが1ターン以上で磁性体コア2に巻かれており、さらに差動結合された電力線1aが1ターン以上で磁性体コア2に巻かれている。なお、この明細書で、信号注入・抽出巻き線は、信号注入又は/及び抽出巻き線の意味であり、信号注入のみ、信号抽出のみ、信号注入及び抽出の両方に使用す
る場合がある。
Embodiment 1 FIG.
1 is a block diagram showing a power line carrier communication system according to Embodiment 1 of the present invention. The power line 1 has at least two phases, and a plurality of various electric devices 5 are connected to the power line 1 depending on the environment in which the power line carrier communication system is used. A signal injection / extraction winding 3 connected to the power line carrier communication modem 4 is wound around the magnetic core 2 in one turn or more, and a power line coupled with the signal injection / extraction winding 3 in a Japanese-style manner. 1b is wound around the magnetic core 2 in one turn or more, and the differentially coupled power line 1a is wound around the magnetic core 2 in one turn or more. In this specification, signal injection / extraction winding means signal injection or / and extraction winding, and may be used for signal injection only, signal extraction only, or both signal injection and extraction.

このような構成によれば、電力線搬送通信用モデム4から信号が送信される場合には、図2に示すように、信号注入・抽出巻き線3に注入信号電流7(実線矢印で示す)が流れ、磁性体コア2に巻かれた電力線1aおよび1bに誘導電流8a,8b(実線矢印で示す)が生じる。このとき、電力線1aに生じる誘導電流8aの位相と電力線1bに生じる誘導電流8bの位相は逆位相となる。したがって、電力線1bを流れる誘導電流8bのリターン電流経路のほとんどが電力線1aを流れる誘導電流8aとなり、磁性体コア2に巻かれていない電力線1c、1dおよび大地アースなどへ漏れる電流が減少するため、伝送特性を向上させることができる。   According to such a configuration, when a signal is transmitted from the power line carrier communication modem 4, as shown in FIG. 2, the injected signal current 7 (indicated by the solid line arrow) is applied to the signal injection / extraction winding 3. As a result, induced currents 8a and 8b (indicated by solid arrows) are generated in the power lines 1a and 1b wound around the magnetic core 2. At this time, the phase of the induced current 8a generated in the power line 1a is opposite to the phase of the induced current 8b generated in the power line 1b. Therefore, most of the return current path of the induced current 8b flowing through the power line 1b becomes the induced current 8a flowing through the power line 1a, and the current leaking to the power lines 1c, 1d and the earth ground not wound around the magnetic core 2 is reduced. Transmission characteristics can be improved.

さらに、電力線1aに生じる誘導電流8aと電力線1bに生じる誘導電流8bの位相が逆位相となるため、誘導電流8aから生じる電磁界と、誘導電流8bから生じる電磁界は互いに打ち消しあうため、電力線1から発生する漏洩電磁界を抑制することができる。また、図1で左側の電力線搬送通信用モデム4が信号を送信(注入)し、右側の電力線搬送通信用モデム4が信号を受信(抽出)する場合には、右側の磁性体コア2に対して、電力線1aに生じる誘導電流8aと電力線1bに生じる誘導電流8bの位相が同位相となり、磁性体コア2の磁束が重なり合うため、信号注入・抽出巻き線3より伝送が良好な信号を受信(抽出)できる。   Furthermore, since the phases of the induced current 8a generated in the power line 1a and the induced current 8b generated in the power line 1b are opposite to each other, the electromagnetic field generated from the induced current 8a and the electromagnetic field generated from the induced current 8b cancel each other. Can be suppressed. Further, in FIG. 1, when the left power line carrier communication modem 4 transmits (injects) a signal and the right power line carrier communication modem 4 receives (extracts) a signal, the right magnetic core 2 is connected to the right magnetic core 2. Thus, the induced current 8a generated in the power line 1a and the induced current 8b generated in the power line 1b have the same phase, and the magnetic flux of the magnetic core 2 overlaps, so that a signal having better transmission than the signal injection / extraction winding 3 is received ( Extraction).

電力線搬送通信用モデム4が信号を受信(抽出)する場合に、図3に示すように、電力線1に接続された電気機器5などから電力線1aに発生するノイズ電流6a(点線矢印で示す)と電力線1bに発生するノイズ電流6b(点線矢印で示す)の位相が同相である場合、ノイズ電流6aが作る磁束(φa)9a(点線矢印で示す)とノイズ電流6bが作る磁束(φb)9b(点線矢印で示す)は互いに打ち消しあうため、ノイズ電流6により信号注入・抽出巻き線3に発生する誘導電流は微少となる。   When the power line carrier communication modem 4 receives (extracts) a signal, as shown in FIG. 3, a noise current 6a (indicated by a dotted arrow) generated in the power line 1a from the electrical equipment 5 connected to the power line 1 and the like When the phase of the noise current 6b (indicated by the dotted arrow) generated in the power line 1b is in phase, the magnetic flux (φa) 9a (indicated by the dotted arrow) generated by the noise current 6a and the magnetic flux (φb) 9b generated by the noise current 6b ( (Indicated by dotted arrows) cancel each other, so that the induced current generated in the signal injection / extraction winding 3 by the noise current 6 becomes very small.

磁性体コア2に巻かれる電力線1の結合方法により、ノイズ電流6により信号注入・抽出巻き線3に発生する誘導電流の比較のため、図7に示すように、電力線1に電気機器5を接続し、磁性体コア2にスペクトラムアナライザ10に接続された信号注入・抽出巻き線3を1ターンで巻き、さらに、信号注入・抽出巻き線3と差動結合された電力線1aを1ターンで磁性体コア2に巻かれた状態のスペクトラムアナライザ10の出力と、図8に示すように、電力線1に電気機器5を接続し、磁性体コア2にスペクトラムアナライザ10に接続された信号注入・抽出巻き線3を1ターンで巻き、かつ、信号注入・抽出巻き線3と和動結合された電力線1bを1ターンで磁性体コア2に巻き、さらに、差動結合された電力線1aが1ターンで磁性体コア2に巻かれた状態のスペクトラムアナライザ10の出力を測定した結果を図9に示した。   As shown in FIG. 7, an electric device 5 is connected to the power line 1 for comparison of the induced current generated in the signal injection / extraction winding 3 by the noise current 6 by the coupling method of the power line 1 wound around the magnetic core 2. The signal injection / extraction winding 3 connected to the spectrum analyzer 10 is wound around the magnetic core 2 in one turn, and the power line 1a differentially coupled to the signal injection / extraction winding 3 is wound in one turn. The output of the spectrum analyzer 10 wound around the core 2, and the signal injection / extraction winding connected to the electric power line 1 and the magnetic core 2 to the spectrum analyzer 10 as shown in FIG. 3 is wound around in one turn, and the power line 1b coupled with the signal injection / extraction winding 3 is wound around the magnetic core 2 in one turn, and the differentially coupled power line 1a is magnetized in one turn. The results of measuring the output of the spectrum analyzer 10 in the state wound around the core 2 shown in FIG.

図9から、図8に示す結合方法は、電気機器などにより電力線1に存在するノイズ電流6による信号注入・抽出巻き線3への誘導電流は、図7に示す結合方法より、最大で−20dB以下と劇的に低減する。
このように、電力線1の1つの相を信号注入・抽出巻き線3と和動結合させ、電力線1の別の1つの相を信号注入・抽出巻き線3と差動結合させることにより、それぞれの結合された相に生じる誘導電流8a,8bの位相は逆位相となり、また、電力線1に接続された電気機器5から発生するノイズ電流6が、磁性体コア2に巻かれる電力線1に同相で発生する場合、ノイズ電流が作る磁性体コア2の磁束9a,9bは互いに打ち消しあうため、伝送効率を向上させることができ、かつ漏洩電磁界を低減させることができる。
From FIG. 9, the coupling method shown in FIG. 8 has a maximum induced current of -20 dB to the signal injection / extraction winding 3 due to the noise current 6 existing in the power line 1 due to electrical equipment or the like, compared to the coupling method shown in FIG. Reduce dramatically with:
In this way, one phase of the power line 1 is coupled in a coupled manner with the signal injection / extraction winding 3, and another phase of the power line 1 is differentially coupled with the signal injection / extraction winding 3. The phases of the induced currents 8a and 8b generated in the combined phase are opposite to each other, and the noise current 6 generated from the electric device 5 connected to the power line 1 is generated in the same phase in the power line 1 wound around the magnetic core 2. In this case, since the magnetic fluxes 9a and 9b of the magnetic core 2 generated by the noise current cancel each other, the transmission efficiency can be improved and the leakage electromagnetic field can be reduced.

実施の形態2.
実施の形態2において、信号注入・抽出巻き線3と和動結合された電力線1は1相のみ
でなく、かつ、差動結合された電力線1は1相のみでなく、図4に示すように、和動結合と差動結合が組み合わされていれば良く、和動結合される電力線1は1相以上で、差動結合される電力線1は1相以上で、和動結合と差動結合の相数が、例えば同数であればよい。このような構成によれば、電力線搬送通信用モデム4から信号が送信される場合には、差動結合させる相と和動結合させる相の組み合わせにより、信号注入・抽出巻き線3から電力線1への誘導電流を最適化させるように調節できる。
Embodiment 2. FIG.
In the second embodiment, the power line 1 coupled with the signal injection / extraction winding 3 is not only one phase, and the differentially coupled power line 1 is not only one phase, as shown in FIG. As long as the sum coupling and the differential coupling are combined, the power line 1 to be summed is one or more phases, and the power line 1 to be differentially coupled is one or more phases. For example, the number of phases may be the same. According to such a configuration, when a signal is transmitted from the power line carrier communication modem 4, the signal injection / extraction winding 3 is connected to the power line 1 by a combination of a phase to be differentially coupled and a phase to be coupled in a coupled manner. Can be adjusted to optimize the induced current.

また、電力線搬送通信用モデム4が信号を受信する場合には、前述した実施の形態2の構成により、電力線1に接続された電気機器5などにより電力線1に存在するノイズ電流6により信号注入・抽出巻き線3に発生する誘導電流を、減少させるように調節できる。このように、信号注入・抽出巻き線3と和動結合と差動結合される電力線1の組み合わせを調節することにより、電力線1の環境である配置,相数,負荷接続等により、伝送効率および漏洩電磁界が最適となる組み合わせに調節できる。   Further, when the power line carrier communication modem 4 receives a signal, the signal is injected / injected by the noise current 6 existing in the power line 1 by the electric device 5 connected to the power line 1 by the configuration of the second embodiment described above. The induced current generated in the extraction winding 3 can be adjusted to decrease. In this way, by adjusting the combination of the signal injection / extraction winding 3 and the power line 1 that is differentially coupled with the sum coupling, the transmission efficiency and the number of phases, load connection, etc., which are the environment of the power line 1, It is possible to adjust to a combination that optimizes the leakage electromagnetic field.

実施の形態3.
実施の形態1から実施の形態2において、信号注入・抽出巻き線3と和動結合された電力線1と差動結合された電力線1は同じ相数でなく、図5に示すように、和動結合された電力線1の相数と差動結合された電力線1の相数は異なっていても良い。このような構成によれば、電力線搬送通信用モデム4から信号が送信される場合には、差動結合させる相と和動結合させる相の組み合わせにより、信号注入・抽出巻き線3から電力線1への誘導電流を最適化させるように調節できる。
Embodiment 3 FIG.
In the first embodiment to the second embodiment, the power line 1 that is combined with the signal injection / extraction winding 3 and the power line 1 that is differentially coupled are not the same in number of phases, and as shown in FIG. The number of phases of the coupled power line 1 and the number of phases of the differentially coupled power line 1 may be different. According to such a configuration, when a signal is transmitted from the power line carrier communication modem 4, the signal injection / extraction winding 3 is connected to the power line 1 by a combination of a phase to be differentially coupled and a phase to be coupled in a coupled manner. Can be adjusted to optimize the induced current.

また、電力線搬送通信用モデム4が信号を受信する場合には、前述した実施の形態3の構成により、電気機器5などにより電力線1に存在するノイズ電流6により信号注入・抽出巻き線3に発生する誘導電流を、減少させるように調節できる。このように、信号注入・抽出巻き線3と和動結合と差動結合される電力線1の組み合わせを調節することにより、伝送効率および漏洩電磁界が最適となる組み合わせに調節できる。   Also, when the power line carrier communication modem 4 receives a signal, it is generated in the signal injection / extraction winding 3 by the noise current 6 existing in the power line 1 by the electric device 5 or the like by the configuration of the third embodiment described above. The induced current can be adjusted to decrease. In this manner, by adjusting the combination of the signal injection / extraction winding 3 and the power line 1 that is differentially coupled with the sum coupling, the transmission efficiency and the leakage electromagnetic field can be adjusted to the optimum combination.

実施の形態4.
また実施の形態1から実施の形態3において、磁性体コア2に巻かれた電力線1は同じターン数でなく、図6に示すように、磁性体コア2に巻く電力線1のターン数は各相で異なっていても良い。このような構成によれば、電力線搬送通信用モデム4から信号が送信される場合には、磁性体コア2に巻くターン数の組み合わせにより、信号注入・抽出巻き線3から電力線1への誘導電流を調節できる。また、電力線搬送通信用モデム4が信号を受信する場合には、磁性体コア2に巻くターン数の組み合わせにより、電気機器5などにより電力線1に存在するノイズ電流6により信号注入・抽出巻き線3に発生する誘導電流を減少させるように調節できる。このように、磁性体コア2に巻くターン数の組み合わせを調節することにより、伝送効率および漏洩電磁界が最適となる組み合わせに調節できる。
Embodiment 4 FIG.
In the first to third embodiments, the power line 1 wound around the magnetic core 2 does not have the same number of turns, and the number of turns of the power line 1 wound around the magnetic core 2 is different for each phase as shown in FIG. May be different. According to such a configuration, when a signal is transmitted from the power line carrier communication modem 4, an induced current from the signal injection / extraction winding 3 to the power line 1 is combined by the number of turns wound around the magnetic core 2. Can be adjusted. Further, when the power line carrier communication modem 4 receives a signal, the signal injection / extraction winding 3 is generated by the noise current 6 existing in the power line 1 by the electric device 5 or the like by the combination of the number of turns wound around the magnetic core 2. Can be adjusted to reduce the induced current generated in the circuit. As described above, by adjusting the combination of the number of turns wound around the magnetic core 2, the transmission efficiency and the leakage electromagnetic field can be adjusted to the optimum combination.

実施の形態5.
実施の形態1から実施の形態4において、電力線1に接続されている複数の様々な電気機器5などにより電力線1に存在するノイズ電流6がつくる磁束9が最小となるように、信号注入・抽出巻き線3と差動結合される電力線1の相と、和動結合される電力線1の相の組み合わせ、および磁性体2に巻く電力線1のターン数を調節した構成でもよい。このように、磁性体コア2に巻く電力線1の組み合わせを調節することにより、電気機器5などにより電力線1に存在するノイズ電流6の影響を最小限にでき、伝送効率を向上させることができる利点がある。
Embodiment 5 FIG.
In the first to fourth embodiments, signal injection / extraction is performed so that the magnetic flux 9 generated by the noise current 6 existing in the power line 1 by a plurality of various electric devices 5 connected to the power line 1 is minimized. A configuration in which the phase of the power line 1 that is differentially coupled to the winding 3 and the phase of the power line 1 that is coupled in a coupled manner and the number of turns of the power line 1 wound around the magnetic body 2 may be adjusted. As described above, by adjusting the combination of the power lines 1 wound around the magnetic core 2, it is possible to minimize the influence of the noise current 6 existing in the power line 1 by the electric device 5 and the like and to improve the transmission efficiency. There is.

実施の形態6.
実施の形態1から実施の形態4において、電力線1が単相2線式の場合には、図10に
示すように、電力線1の1相1eを信号注入・抽出巻き線3と差動結合し、電力線1の別の1相1fを信号注入・抽出巻き線3と和動結合した構成でよい。このとき、磁性体コア2に巻く電力線1eおよび電力線1fは1ターン以上でもよく、また、磁性体コア2に巻く電力線1eのターン数と電力線1fのターン数は異なっていてもよい。なお、電力線で、信号注入・抽出巻き線3と差動結合させる相を1相とし、かつ、和動結合させる相を1相とすることにより、磁性体コア径を小さくでき、製作工程を少なくすることができる。
Embodiment 6 FIG.
In the first to fourth embodiments, when the power line 1 is a single-phase two-wire system, the one-phase 1e of the power line 1 is differentially coupled to the signal injection / extraction winding 3 as shown in FIG. A configuration in which another one-phase 1f of the power line 1 is combined with the signal injection / extraction winding 3 in a oscillating manner. At this time, the power line 1e and the power line 1f wound around the magnetic core 2 may have one or more turns, and the number of turns of the power line 1e wound around the magnetic core 2 may be different from the number of turns of the power line 1f. In addition, by making the phase differentially coupled with the signal injection / extraction winding 3 in the power line into one phase and the phase to be coupled in a single phase into one phase, the magnetic core diameter can be reduced and the manufacturing process is reduced. can do.

実施の形態7.
実施の形態1から実施の形態6において、図12に示すように、単相3線式電源(3線式電源)11の場合には、磁性体コア2に巻く電力線1の相を接地されていない電力線1jおよび電力線1kの2線としても良い。このような構成によれば、電力線1lの1線は接地されているため、電力線1lのインピーダンスは電力線1jおよび電力線1kと異なる。これに対し、電力線1jと電力線1kは同様の接続のため、インピーダンスも同様となり、電力線1jと電力線1kを磁性体コア2に巻くことにより、誘導電流8は、電力線1lや大地アースへ漏れる電流が最小限となり、多くは電力線1jと電力線1kを流れ、また、ノイズ電流6aとノイズ電流6bは、同様の電流となり、ノイズ電流6により信号注入・抽出巻き線3に発生する誘導電流は微少となり、伝送特性を向上されることができ、かつ漏洩電磁界を低減することができる。
Embodiment 7 FIG.
In the first to sixth embodiments, as shown in FIG. 12, in the case of a single-phase three-wire power source (three-wire power source) 11, the phase of the power line 1 wound around the magnetic core 2 is grounded. Two power lines, i.e., no power line 1j and power line 1k may be used. According to such a configuration, since one line of the power line 11 is grounded, the impedance of the power line 11 is different from that of the power line 1j and the power line 1k. On the other hand, since the power line 1j and the power line 1k are connected in the same manner, the impedance is also the same. By winding the power line 1j and the power line 1k around the magnetic core 2, the induced current 8 has a current leaking to the power line 1l or the earth ground. Most of the current flows through the power line 1j and the power line 1k, and the noise current 6a and the noise current 6b become the same current, and the induced current generated in the signal injection / extraction winding 3 by the noise current 6 becomes very small. Transmission characteristics can be improved, and leakage electromagnetic fields can be reduced.

実施の形態8.
実施の形態1から実施の形態5において、電力線1が単相3線式の場合には、図11に示すように、電力線1の1相1gを信号注入・抽出巻き線3と差動結合し、電力線1の別の1相以上を信号注入・抽出巻き線3と和動結合した構成でよい。このとき、磁性体コア2に信号注入・抽出巻き線3と和動結合する電力線1の相と差動結合する電力線1の相の組み合わせは、いずれでもよく、また磁性体コア2に巻く電力線は1ターン以上でもよく、それぞれの相でターン数は異なっていてもよい。なお、電力線で、信号注入・抽出巻き線3と和動結合させるように1ターンで磁性体コアに巻き、かつ、信号注入・抽出巻き線3と差動結合させるように1ターンで磁性体コアに巻くことにより、磁性体コア径を小さくでき、製作工程を少なくすることができる。なおまた、電力線は、例えば、商用電源に接続された配電線であってもよい。
Embodiment 8 FIG.
In the first to fifth embodiments, when the power line 1 is a single-phase three-wire system, the 1-phase 1g of the power line 1 is differentially coupled to the signal injection / extraction winding 3 as shown in FIG. A configuration in which one or more other phases of the power line 1 are combined with the signal injection / extraction winding 3 in a oscillating manner may be used. At this time, any combination of the phase of the power line 1 that is differentially coupled with the phase of the power line 1 that is coupled to the magnetic core 2 with the signal injection / extraction winding 3 may be used, and the power line wound around the magnetic core 2 is It may be one turn or more, and the number of turns may be different for each phase. The power core is wound around the magnetic core in one turn so as to be coupled with the signal injection / extraction winding 3 in one turn, and the magnetic core is turned in one turn so as to be differentially coupled with the signal injection / extraction winding 3 in the power line. As a result, the magnetic core diameter can be reduced and the manufacturing process can be reduced. In addition, the power line may be, for example, a distribution line connected to a commercial power source.

実施の形態9.
実施の形態1から実施の形態5において、図13に示すように、電力線1が三相3線式
電源12のようなデルタ結線の場合には、磁性体コア2に巻く電力線1の相を接地されていない電力線1mおよび電力線1の2線としても良い。このような構成によれば、電力線1oの1線は接地されているため、電力線1oのインピーダンスは電力線1mおよび1nと異なる。これに対し、電力線1mと電力線1nは同様の接続のため、インピーダンスも同様となり、電力線1mと電力線1nを磁性体コア2に巻くことにより、誘導電流8は、電力線1oや大地アースへ漏れる電流が最小限となり、多くは電力線1mと電力線1nを流れ、また、ノイズ電流6aとノイズ電流6bは、同様の電流となり、ノイズ電流6により信号注入・抽出巻き線3に発生する誘導電流は微少となり、伝送特性を向上されることができ、かつ漏洩電磁界を低減することができる。
Embodiment 9 FIG.
In the first to fifth embodiments, as shown in FIG. 13, when the power line 1 is a delta connection such as a three-phase three-wire power source 12, the phase of the power line 1 wound around the magnetic core 2 is grounded. It is good also as 2 lines of the power line 1m and the power line 1 which are not carried out. According to such a configuration, since one line of the power line 1o is grounded, the impedance of the power line 1o is different from that of the power lines 1m and 1n. On the other hand, since the power line 1m and the power line 1n are connected in the same manner, the impedance is also the same. When the power line 1m and the power line 1n are wound around the magnetic core 2, the induced current 8 has a current leaking to the power line 1o or the earth ground. Most of the current flows through the power line 1m and the power line 1n, and the noise current 6a and the noise current 6b become the same current, and the induced current generated in the signal injection / extraction winding 3 by the noise current 6 becomes very small. Transmission characteristics can be improved, and leakage electromagnetic fields can be reduced.

実施の形態10.
実施の形態1から実施の形態9において、図14に示すように、電力線搬送通信する電力線搬送通信用モデム4区間の外側(図14で、左側の磁性体コア2の左側及び右側の磁性体コア2の右側)に、磁性体コア2に巻かれた電力線の相間に、電力線搬送通信の周波数に対して低インピーダンスとなるコンデンサ13を接続した構成でも良い。このような構成によれば、誘導電流8aは、コンデンサ13を介して誘導電流8bとなり、磁性体コ
ア2に巻かれていない電力線や大地アースへ漏れる電流は最小限となり、伝送特性を向上されることができる。
Embodiment 10 FIG.
In the first to ninth embodiments, as shown in FIG. 14, outside the power line carrier communication modem 4 section for power line carrier communication (in FIG. 14, the left and right magnetic cores of the left magnetic core 2 in FIG. 2), a capacitor 13 having a low impedance with respect to the frequency of the power line carrier communication may be connected between the phases of the power lines wound around the magnetic core 2. According to such a configuration, the induced current 8a becomes the induced current 8b through the capacitor 13, and the current leaking to the power line and the earth ground not wound around the magnetic core 2 is minimized, and the transmission characteristics are improved. be able to.

また、図15に示すように、電力線搬送通信用モデム4が複数台ある場合でも、電力線搬送通信する電力線搬送用モデム4区間の外側に、磁性体コア2に巻かれた電力線の相間に、電力線搬送通信の周波数に対して低インピーダンスとなるコンデンサ13を接続した構成にすれば良い。   As shown in FIG. 15, even when there are a plurality of power line carrier communication modems 4, the power line is connected between the power lines wound around the magnetic core 2 outside the section of the power line carrier modem 4 for power line carrier communication. What is necessary is just to make it the structure which connected the capacitor | condenser 13 which becomes low impedance with respect to the frequency of carrier communication.

実施の形態11.
実施の形態1から実施の形態10において、図16に示すように、コンデンサ13は、電力線搬送通信する電力線搬送通信用モデム4区間の外側で、磁性体コア2に巻かれた電力線の相間、並びに磁性体コア2に巻かれていない電力線の相間にそれぞれ接続してもよい。このとき磁性体コア2に巻かれた電力線の相間に接続されるコンデンサ13は電力線搬送通信の周波数に対して低インピーダンスとなるコンデンサが望ましく、磁性体コア2に巻かれていない電力線の相間に接続されるコンデンサ13は、電力線1に接続された電気機器5などから電力線1に発生するノイズ電流6の周波数に対して低インピーダンスとなるコンデンサが望ましい。このような構成によれば、実施の形態10の効果が得られ、さらに、電力線1に接続された電気機器5などから電力線1に発生するノイズ電流6は、図17に示すように、コンデンサ13を介して電気機器5へ戻るため、信号注入・抽出巻き線3へ流れるノイズ電流6は微少となり、伝送特性を向上されることができ、かつ電気機器からのノイズを低減できる。
Embodiment 11 FIG.
In the first to tenth embodiments, as shown in FIG. 16, the capacitor 13 is arranged between the power lines wound around the magnetic core 2 outside the power line carrier communication modem 4 section for power line carrier communication, and You may connect between the phases of the electric power line which is not wound around the magnetic body core 2, respectively. At this time, the capacitor 13 connected between the phases of the power lines wound around the magnetic core 2 is preferably a capacitor having a low impedance with respect to the frequency of the power line carrier communication, and is connected between the phases of the power lines not wound around the magnetic core 2. The capacitor 13 to be used is preferably a capacitor having a low impedance with respect to the frequency of the noise current 6 generated in the power line 1 from the electric device 5 or the like connected to the power line 1. According to such a configuration, the effects of the tenth embodiment can be obtained, and furthermore, the noise current 6 generated in the power line 1 from the electrical equipment 5 connected to the power line 1 is generated as shown in FIG. Therefore, the noise current 6 flowing to the signal injection / extraction winding 3 becomes very small, the transmission characteristics can be improved, and the noise from the electric device can be reduced.

1 電力線 2 磁性体コア
3 信号注入・抽出巻き線 4 電力線搬送通信用モデム
5 電気機器 6 ノイズ電流
7 注入信号電流 8 注入信号電流による誘導電流
9 ノイズ電流が作る磁束 10 スペクトラムアナライザ
11 単相3線式電源 12 三相3線式電源
13 コンデンサ
DESCRIPTION OF SYMBOLS 1 Power line 2 Magnetic body core 3 Signal injection / extraction winding 4 Power line carrier communication modem 5 Electric equipment 6 Noise current 7 Injection signal current 8 Induction current due to injection signal current 9 Magnetic flux generated by noise current 10 Spectrum analyzer 11 Single phase 3 wire Power supply 12 Three-phase 3-wire power supply 13 Capacitor

Claims (9)

磁性体コアと、この磁性体コアに1ターン以上で巻かれモデムと接続された信号注入又は/及び抽出巻き線と、少なくとも2相以上の相を有している電力線を備え、前記電力線の1相以上を前記信号注入又は/及び抽出巻き線と差動結合させるように各相1ターン以上で前記磁性体コアに巻き、かつ、前記電力線の1相以上を前記信号注入又は/及び抽出巻き線と和動結合させるように各相1ターン以上で前記磁性体コアに巻くことを特徴とする電力線搬送通信用信号結合装置。   A magnetic core, a signal injection or / and extraction winding wound around the magnetic core in one turn or more and connected to a modem, and a power line having at least two phases, More than one phase is wound around the magnetic core at least one turn of each phase so as to be differentially coupled with the signal injection or / and extraction winding, and one or more phases of the power line are wound around the signal injection or / and extraction winding. A signal line coupling device for power line carrier communication, wherein the magnetic core is wound in at least one turn for each phase so as to be coupled in a harmonized manner. 前記電力線で、信号伝送効率を向上させるように、前記信号注入又は/及び抽出巻き線と差動結合させる相数と前記磁性体コアに巻くターン数、並びに前記注入又は/及び抽出巻き線と和動結合させる相数と前記磁性体コアに巻くターン数のいずれかを調節することを特徴とする請求項1記載の電力線搬送通信用信号結合装置。   In the power line, the number of phases differentially coupled to the signal injection or / and extraction winding, the number of turns wound around the magnetic core, and the sum of the injection or / and extraction winding to improve signal transmission efficiency. 2. The signal coupling device for power line communication according to claim 1, wherein the number of phases to be dynamically coupled and the number of turns wound on the magnetic core are adjusted. 前記電力線で、前記電力線に流れるノイズ電流が作る磁束が減少するように、前記信号注入又は/及び抽出巻き線と差動結合させる相数と前記磁性体コアに巻くターン数、並びに前記信号注入又は/及び抽出巻き線と和動結合させる相数と前記磁性体コアに巻くターン数のいずれかを調節することを特徴とする請求項1又は請求項2記載の電力線搬送通信用信号結合装置。   In the power line, the signal injection or / and the number of phases to be differentially coupled to the extraction winding, the number of turns wound around the magnetic core, and the signal injection or so that the magnetic flux generated by the noise current flowing through the power line is reduced. 3. The signal coupling device for power line carrier communication according to claim 1, wherein: one of a number of phases to be coupled to the extracted winding and a number of turns wound on the magnetic core is adjusted. 前記電力線で、前記信号注入又は/及び抽出巻き線と差動結合させる相を1相とし、かつ、和動結合させる相を1相とすることを特徴とする請求項1〜請求項3のいずれか1項に記載の電力線搬送通信用信号結合装置。   4. The power line according to claim 1, wherein a phase to be differentially coupled to the signal injection or / and extraction winding is one phase, and a phase to be coupled to the power line is one phase. The signal coupling device for power line carrier communication according to claim 1. 前記電力線で、前記信号注入又は/及び抽出巻き線と和動結合させるように1ターンで前記磁性体コアに巻き、かつ、前記信号注入又は/及び抽出巻き線と差動結合させるように1ターンで前記磁性体コアに巻くことを特徴とする請求項1〜請求項4のいずれか1項に記載の電力線搬送通信用信号結合装置。   The power line is wound around the magnetic core in one turn so as to be coupled with the signal injection or / and extraction winding, and one turn so as to be differentially coupled with the signal injection or / and extraction winding. The signal coupling device for power line carrier communication according to any one of claims 1 to 4, wherein the signal coupling device is wound around the magnetic core. 前記電力線は、一線が接地された3線式電源に接続された3線であり、前記磁性体コアに巻く前記電力線は接地されていない前記電力線の2線であることを特徴とする請求項1〜請求項5のいずれか1項に記載の電力線搬送通信用信号結合装置。   The power line is a three-wire connected to a three-wire power source with one line grounded, and the power line wound around the magnetic core is two lines of the power line that are not grounded. The signal coupling device for power line carrier communication according to any one of claims 5 to 6. 電力線搬送通信する前記電力線区間の外側で、前記磁性体コアと結合させた前記電力線の相間にコンデンサを接続することを特徴とする請求項1〜請求項6のいずれか1項に記載の電力線搬送通信用信号結合装置。   The power line carrier according to any one of claims 1 to 6, wherein a capacitor is connected between phases of the power line coupled to the magnetic core outside the power line section that performs power line carrier communication. Communication signal coupling device. 電力線搬送通信する前記電力線区間の外側で、前記電力線の相間にそれぞれコンデンサを接続することを特徴とする請求項7記載の電力線搬送通信用信号結合装置。   8. The signal coupling device for power line carrier communication according to claim 7, wherein a capacitor is connected between the phases of the power line outside the power line section for power line carrier communication. 前記電力線は商用電源に接続された配電線であることを特徴とする請求項1〜請求項8のいずれか1項に記載の電力線搬送通信用信号結合装置。   9. The signal coupling device for power line carrier communication according to claim 1, wherein the power line is a distribution line connected to a commercial power source. 10.
JP2009056711A 2008-04-23 2009-03-10 Signal coupling device for power line carrier communication Active JP5140022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056711A JP5140022B2 (en) 2008-04-23 2009-03-10 Signal coupling device for power line carrier communication

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008112730 2008-04-23
JP2008112730 2008-04-23
JP2009056711A JP5140022B2 (en) 2008-04-23 2009-03-10 Signal coupling device for power line carrier communication

Publications (2)

Publication Number Publication Date
JP2009284467A true JP2009284467A (en) 2009-12-03
JP5140022B2 JP5140022B2 (en) 2013-02-06

Family

ID=41454391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056711A Active JP5140022B2 (en) 2008-04-23 2009-03-10 Signal coupling device for power line carrier communication

Country Status (1)

Country Link
JP (1) JP5140022B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229914A1 (en) * 2018-05-31 2019-12-05 三菱電機株式会社 Outdoor unit and refrigeration cycle device
WO2020122000A1 (en) * 2018-12-13 2020-06-18 パナソニックIpマネジメント株式会社 Coupling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04276996A (en) * 1991-03-05 1992-10-02 Mitsubishi Materials Corp Distribution line carrier control system
JP2007214765A (en) * 2006-02-08 2007-08-23 Tokyo Electric Power Co Inc:The Communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04276996A (en) * 1991-03-05 1992-10-02 Mitsubishi Materials Corp Distribution line carrier control system
JP2007214765A (en) * 2006-02-08 2007-08-23 Tokyo Electric Power Co Inc:The Communication system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229914A1 (en) * 2018-05-31 2019-12-05 三菱電機株式会社 Outdoor unit and refrigeration cycle device
JPWO2019229914A1 (en) * 2018-05-31 2020-12-10 三菱電機株式会社 Outdoor unit and refrigeration cycle equipment
CN112154294A (en) * 2018-05-31 2020-12-29 三菱电机株式会社 Outdoor unit and refrigeration cycle device
US11473789B2 (en) 2018-05-31 2022-10-18 Mitsubishi Electric Corporation Outdoor unit for a refrigeration cycle apparatus and refrigerating cycle device
WO2020122000A1 (en) * 2018-12-13 2020-06-18 パナソニックIpマネジメント株式会社 Coupling device
JP2020096293A (en) * 2018-12-13 2020-06-18 パナソニックIpマネジメント株式会社 Coupler
JP7228774B2 (en) 2018-12-13 2023-02-27 パナソニックIpマネジメント株式会社 binding device

Also Published As

Publication number Publication date
JP5140022B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
US20060244571A1 (en) Power line coupling device and method of use
KR20090053251A (en) Coupling apparatus for medium voltage power line communication built-in impedance matching transformer and control circuit of phase selection
CN109379048A (en) Broadband with integrated balanced-to-unblanced transformer integrates RF/ microwave/millimeter wave frequency mixer
JP4757123B2 (en) Transmission equipment for power line carrier communication, outlet plug, outlet plug box, table tap, coupling device, communication device, and communication system
MXPA04011462A (en) Device and method for low-frequency magnetic field compensation in an inductive signal coupling unit.
US8866565B2 (en) Systems and methods for providing an electric choke
US9350315B1 (en) Power line communication filter for multiple conductors
CN104201590A (en) Method for inhibiting high-frequency transduction interference in GIS
JP5140022B2 (en) Signal coupling device for power line carrier communication
JP2004032585A (en) Input/output circuit for power distribution line carrier signal
JP2006295247A (en) Power line communication system
JP5103595B2 (en) High frequency injection apparatus for power line communication system
JP5778016B2 (en) Power line communication system
JP2012089924A (en) Noise elimination filter
TWI740303B (en) Coupling device
JP6210464B2 (en) electric circuit
JP2005217839A (en) Noise suppressor circuit
Nicolae et al. The designing, realization and testing of a network filter used to reduce electromagnetic disturbances and to improve the EMI for static switching equipment
JP2006033113A (en) Power line communication adapter
JP2010147520A (en) Filter for distribution switchboard, distribution switchboard, and distribution switchboard power line communication system
JP2003188778A (en) Filtering device for power line communication system
JP2006279214A (en) Signal-injecting/extracting apparatus
JP2010074632A (en) High frequency signal supplying device
US20130033119A1 (en) Methods and systems for reducing leakage current
JP2012023430A (en) Signal coupling apparatus for plc

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121116

R151 Written notification of patent or utility model registration

Ref document number: 5140022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250