JP2009281787A - Measuring instrument for phase difference distribution - Google Patents

Measuring instrument for phase difference distribution Download PDF

Info

Publication number
JP2009281787A
JP2009281787A JP2008132360A JP2008132360A JP2009281787A JP 2009281787 A JP2009281787 A JP 2009281787A JP 2008132360 A JP2008132360 A JP 2008132360A JP 2008132360 A JP2008132360 A JP 2008132360A JP 2009281787 A JP2009281787 A JP 2009281787A
Authority
JP
Japan
Prior art keywords
phase difference
measured
spectrum
value
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008132360A
Other languages
Japanese (ja)
Other versions
JP5115928B2 (en
Inventor
Kiyokazu Sakai
清和 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OJI KEISOKU KIKI KK
New Oji Paper Co Ltd
Original Assignee
OJI KEISOKU KIKI KK
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OJI KEISOKU KIKI KK, Oji Paper Co Ltd filed Critical OJI KEISOKU KIKI KK
Priority to JP2008132360A priority Critical patent/JP5115928B2/en
Publication of JP2009281787A publication Critical patent/JP2009281787A/en
Application granted granted Critical
Publication of JP5115928B2 publication Critical patent/JP5115928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure the phase difference distribution of a measuring target article changed in phase difference over a wide range. <P>SOLUTION: A phase difference measuring part equipped with a polarizer of a parallel nicol, an analyzer and an imaging spectroscope to detect the two-dimensional transmitted light spectral diffraction spectrum is used to calculate the added-up spectrum actually measured value I<SB>T</SB>'[=I(0)/I<SB>0</SB>(0)+I(45)/I<SB>0</SB>(45)] at the respective positions on the measuring target article from transmitted light spectral diffraction spectra I<SB>0</SB>(0) and I<SB>0</SB>(45) when the polarization orientations by the polarizer and the analyzer in a measuring target article absent state are 0° and 45° and the transmitted light spectral diffraction spectra I(0) and I(45) at every position on the measuring target article when the polarization orientations by the polarizer and the analyzer at the time when the measuring target article is relatively moved with respect to the phase difference measuring part are 0° and 45°. The comparison with a plurality of added-up spectrum I<SB>T</SB>[=(C+3)/2] calculated values different in phase difference is performed at the respective positions on the measuring target article to set the phase difference corresponding to I<SB>T</SB>becoming minimum in the phase difference to the phase difference Rm(λ) at the respective positions. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は被測定物について少なくとも位相差の二次元分布を測定するための位相差分布測定装置に関する。   The present invention relates to a phase difference distribution measuring apparatus for measuring at least a two-dimensional distribution of a phase difference of an object to be measured.

被測定物の位相差を測定する方法としては、偏光子と検光子それぞれの透過軸を平行に配置し、偏光子と検光子との間に被測定物を置き、偏光子と検光子とを平行ニコル状態に保って1回転し、そのときの透過光強度変化から被測定物の位相差と配向角とを求める方法(平行ニコル回転法)がある。   As a method of measuring the phase difference of the object to be measured, the transmission axes of the polarizer and the analyzer are arranged in parallel, the object to be measured is placed between the polarizer and the analyzer, and the polarizer and the analyzer are connected. There is a method (parallel Nicol rotation method) in which the phase difference and the orientation angle of the object to be measured are determined from the change in transmitted light intensity at that time while maintaining a parallel Nicol state.

透明樹脂成形品の位相差分布を測定するために実際に平行ニコル回転法とCCDカメラとを組み合わせた装置も実用化されており、主に位相差が約260nm以下の比較的低位相差領域の被測定物を対象とした位相差分布測定に利用されている。   In order to measure the phase difference distribution of transparent resin molded products, an apparatus that combines a parallel Nicol rotation method and a CCD camera has also been put into practical use, and mainly covers a relatively low phase difference region having a phase difference of about 260 nm or less. It is used for phase difference distribution measurement for the measurement object.

平行ニコル回転法では単一波長の測定光を用いている。図11は平行ニコル回転法のときの測定波長λと位相差Rとによって表されるC(=cos2πR/λ)を位相差Rに対して示したものである。その下に示した図形は、それぞれの位相差をもつ被測定物に対して偏光子と検光子とを平行ニコル状態に保って1回転したときの透過光の検出強度図形である。
特開2001−228034号公報 日本写真学会誌, Vol.27, No.6, pp.478-483 (1990)
In the parallel Nicol rotation method, measurement light having a single wavelength is used. FIG. 11 shows C (= cos 2πR / λ) represented by the measurement wavelength λ and the phase difference R in the parallel Nicol rotation method with respect to the phase difference R. The figure shown below is a detected intensity figure of transmitted light when the object to be measured having each phase difference is rotated once while the polarizer and the analyzer are kept in a parallel Nicol state.
JP 2001-228034 A Journal of the Japan Society of Photography, Vol.27, No.6, pp.478-483 (1990)

平行ニコル回転法では、透過光強度図形からCの値を求めて位相差Rを算出するが、図11からもわかるように、追随可能な位相差Rの変化範囲は測定波長λの半分以内に制限される。そのため、例えば、図12の〇印のグラフのように場所によって位相差がおおよそ50〜860nmの範囲で変化しているような被測定物を平行ニコル回転法の測定波長590nmで測定したとすると、位相差Rが295nm(λ/2)と590nm(λ)が次数の変わり目になり、次数2の領域(R=295〜590nm)のグラフは次数1の領域(R=0〜295nm)に折り返された形になり、次数3の領域(R=590〜885nm)のグラフは次数1の領域に平行移動された形になる。その結果、図12の▲印のグラフのようになり、正確な位相差変化を捉えることはできない。   In the parallel Nicol rotation method, the value of C is obtained from the transmitted light intensity diagram and the phase difference R is calculated. As can be seen from FIG. 11, the change range of the phase difference R that can be followed is within half of the measurement wavelength λ. Limited. Therefore, for example, when a measured object whose phase difference is changed in a range of approximately 50 to 860 nm depending on the location as shown by a circle mark in FIG. The phase difference R becomes 295 nm (λ / 2) and 590 nm (λ) at the transition of the order, and the graph of the order 2 region (R = 295 to 590 nm) is folded back into the order 1 region (R = 0 to 295 nm). The graph of the order 3 region (R = 590 to 885 nm) is translated into the order 1 region. As a result, the graph becomes as indicated by a triangle mark in FIG. 12, and an accurate phase difference change cannot be captured.

平行ニコル回転法以外の例としては、ディスク基板内の内部応力状態を評価するために位相差及び光学主軸の分布の測定法が示されている(特許文献1参照。)。この場合も、測定例は位相角15°以下すなわち測定波長を633nmとすると15°×633nm/360°=26nm以下の位相差である。この方法で測定可能な位相差範囲は、波長の1/4すなわち160nm程度までで、平行ニコル回転法と同様に位相差範囲が広範囲になる場合は測定することはできない。   As an example other than the parallel Nicol rotation method, a method for measuring the phase difference and the distribution of the optical principal axis is shown in order to evaluate the internal stress state in the disk substrate (see Patent Document 1). Also in this case, in the measurement example, when the phase angle is 15 ° or less, that is, when the measurement wavelength is 633 nm, the phase difference is 15 ° × 633 nm / 360 ° = 26 nm or less. The phase difference range measurable by this method is up to 1/4 of the wavelength, that is, about 160 nm, and cannot be measured when the phase difference range is wide as in the parallel Nicol rotation method.

一般的にプラスチックレンズや導光板などの光学用途の成形品においては、残留応力ひずみによる複屈折が大きいと場所によって屈折率が異なったり、変形の原因になったりすることから、残留応力ひずみによる複屈折が大きいことは好ましくない。また射出成形品では、ゲート周辺の位相差分布に関心が高いが、光学部品であってもゲート周辺では位相差が1000nm以上になることも珍しくなく、従来のように測定可能な位相差範囲が狭い方法で測定するのは実質的に困難である。   In general, in molded products for optical applications such as plastic lenses and light guide plates, if the birefringence due to residual stress strain is large, the refractive index will differ depending on the location and cause deformation. A large refraction is not preferable. In addition, in injection molded products, there is a great interest in the phase difference distribution around the gate, but even in the case of optical components, it is not uncommon for the phase difference to be 1000 nm or more around the gate. Measuring in a narrow way is practically difficult.

本発明は、透明な樹脂成形品など、広範囲にわたる位相差変化がある被測定物の位相差分布を測定するための装置を提供することを目的とするものである。   An object of this invention is to provide the apparatus for measuring the phase difference distribution of the to-be-measured object which has a phase difference change over a wide range, such as a transparent resin molded product.

本発明の位相差分布測定装置は、白色光のような多波長成分を含む測定光が被測定物に偏光子を通して照射され、被測定物を透過した測定光が検光子を通して分光器に入射して透過光分光スペクトルが測定される位相差測定部と、位相差測定部で測定された透過光分光スペクトルから被測定物の位相差分布を少なくとも算出する演算処理部を備えている。   In the phase difference distribution measuring apparatus of the present invention, measurement light containing multi-wavelength components such as white light is irradiated to the object to be measured through the polarizer, and the measurement light transmitted through the object to be measured enters the spectroscope through the analyzer. A phase difference measuring unit for measuring the transmitted light spectrum, and an arithmetic processing unit for calculating at least the phase difference distribution of the object to be measured from the transmitted light spectrum measured by the phase difference measuring unit.

位相差測定部は被測定物を位相差測定部に対して相対的に移動させる移動機構を備えている。偏光子及び検光子は平行ニコルの状態を維持して基準方位に対する偏光方位(透過軸方位)が少なくとも0°と45°の間で回転可能に支持されている。基準方位は任意に設定することができる。例えば、測定装置の角度基準0°が決まっている場合は、その角度基準を基準方位とすればよい。   The phase difference measuring unit includes a moving mechanism that moves the object to be measured relative to the phase difference measuring unit. The polarizer and the analyzer are supported so that the polarization azimuth (transmission axis azimuth) with respect to the reference azimuth can be rotated between at least 0 ° and 45 ° while maintaining a parallel Nicol state. The reference azimuth can be set arbitrarily. For example, when the angle reference 0 ° of the measuring device is determined, the angle reference may be set as the reference orientation.

分光器はグレーティングなどの分散素子とCCDカメラなどの二次元検出器を備えて、被測定物の相対的移動方向に直交する一直線上の測定光を取り込み分光して透過光分光スペクトルを検出するイメージング分光器である。例えば、スリットから入射した一直線状の光をグレーティングによってその一直線とは直交する方向に分散させた分光スペクトルをCCDカメラで検出することにより、一直線上の位置ごとの分光スペクトルを一度に検出できるようにしたものである。   The spectroscope is equipped with a dispersive element such as a grating and a two-dimensional detector such as a CCD camera, and captures the measurement light on a straight line perpendicular to the relative movement direction of the object to be measured and performs spectroscopy to detect the transmitted light spectrum It is a spectroscope. For example, by detecting a spectral spectrum in which a straight line of light incident from a slit is dispersed by a grating in a direction orthogonal to the straight line, a spectral spectrum for each position on the straight line can be detected at a time. It is a thing.

平行ニコル配置の場合、一般的に検出光強度は下記の式で表現される。
I(θ)
=I0{α2cos4(θ−φ)+sin4(θ−φ)+(Cα/2)sin2 2(θ−φ )}
(1)
ただし、C =cos(2πR /λ ) (2)
ここで、θは偏光子・検光子の透過軸方位、I0は被測定物がないときの検出光強度、αは直交する2つの光学主軸方向に直線偏光が透過するときの振幅透過率比、φは被測定物の配向角(被測定物の2つの光学主軸のうちの屈折率が大きい方向)、Rは被測定物の位相差、λは測定波長である。θとφは適当に設定した基準方位に対する角度である。
In the case of the parallel Nicol arrangement, the detection light intensity is generally expressed by the following equation.
I (θ)
= I 02 cos 4 (θ−φ) + sin 4 (θ−φ) + (Cα / 2) sin 2 2 (θ−φ)}
(1)
Where C = cos (2πR / λ) (2)
Where θ is the transmission axis orientation of the polarizer / analyzer, I 0 is the detected light intensity when there is no object to be measured, α is the amplitude transmittance ratio when linearly polarized light is transmitted in the two optical principal axis directions orthogonal to each other , Φ is the orientation angle of the object to be measured (the direction in which the refractive index of the two optical principal axes of the object to be measured is large), R is the phase difference of the object to be measured, and λ is the measurement wavelength. θ and φ are angles with respect to an appropriately set reference direction.

(1)式において、I0及びRは測定波長λに依存する。また、αはほとんどの場合ほぼ1であるが、被測定物の位相差が大きいときは2つの光学主軸の屈折率差が大きいことに相当するため、2つの方向において表面反射率に差が生じ、その結果2つの光学主軸方向に対する直線偏光の透過率にも差が生じて、αは1より小さくなる。しかし、その場合でもαは0.95程度まで小さくなるだけであり、かつ可視域の波長全体について考える場合、αの波長依存性は無視できることが多い。 In the equation (1), I 0 and R depend on the measurement wavelength λ. In addition, α is almost 1 in most cases, but when the phase difference of the object to be measured is large, this corresponds to a large difference in refractive index between the two optical main axes. As a result, a difference also occurs in the transmittance of linearly polarized light with respect to the two optical principal axis directions, and α is smaller than 1. However, even in that case, α is only reduced to about 0.95, and when considering the entire wavelength in the visible range, the wavelength dependency of α is often negligible.

まず簡単のために、(1)式においてα=1の場合について考える。θ=0°と45°のときの検出光強度をI(0)とI(45)と表記し、θ=0°と45°のときのI0を区別してI0(0)とI0(45)とすると、I(0)とI(45)はそれぞれ次のように表される。
I(0)={I0(0)/2}{2+(C−1)sin22φ} (3)
I(45)={I0(45)/2}{2+(C−1)cos22φ} (4)
被測定物がないときの検出光強度I0(0)とI0(45)とは本来ほとんど同じであるが、それぞれの偏光子の特性や分光器の波長特性に僅かの違いがある場合も考えられるので、一応異なるものとして扱う。
First, for the sake of simplicity, consider the case where α = 1 in equation (1). The detected light intensities when θ = 0 ° and 45 ° are expressed as I (0) and I (45), and I 0 (0) and I 0 are distinguished from I 0 when θ = 0 ° and 45 °. Assuming that (45), I (0) and I (45) are expressed as follows.
I (0) = {I 0 (0) / 2} {2+ (C−1) sin 2 2φ} (3)
I (45) = {I 0 (45) / 2} {2+ (C−1) cos 2 2φ} (4)
The detected light intensities I 0 (0) and I 0 (45) when there is no object to be measured are essentially the same, but there may be slight differences in the characteristics of the polarizers and the wavelength characteristics of the spectrometer. Since it is considered, it is treated as something different.

そこで、I(0)/I0(0)とI(45)/I0(45)とを計算した後、それらを合算した値をITとすると、式(3),(4)からITは次のように表される。
T=(C+3)/2 (5)
(5)式からITはCすなわち位相差Rと測定波長λによって決まり、被測定物の配向角φには影響されないことがわかる。ただし、(5)式のITは偏光子や分光器の波長特性を除くために被測定物がないときの値I0(0),I0(45)で除したものである。
Therefore, after calculating I (0) / I 0 (0) and I (45) / I 0 (45), the sum of them is I T. T is expressed as follows.
I T = (C + 3) / 2 (5)
From equation (5), it is understood that I T is determined by C, that is, the phase difference R and the measurement wavelength λ, and is not affected by the orientation angle φ of the object to be measured. However, I T in equation (5) is divided by values I 0 (0) and I 0 (45) when there is no object to be measured in order to exclude the wavelength characteristics of the polarizer and the spectroscope.

例えば2000nmの位相差Rをもつ被測定物を波長λが590nmの測定光による平行ニコル回転法で測定した場合、被測定物を配向角φが0°の状態に配置したときの検出光強度図形と被測定物を配向角φが20°の状態に配置したときの検出光強度図形を示すと図1のようになる。φが0°の場合とφが20°の場合とでは、I(0)とI(45)は異なるが、(5)式の結果によればI(0)+I(45)はφによらず一定ということを意味している。図1においても、I(0)+I(45)はφが0°の場合とφが20°の場合とで等しくなることが窺われる。   For example, when a measurement object having a phase difference R of 2000 nm is measured by the parallel Nicol rotation method using a measurement light having a wavelength λ of 590 nm, the detected light intensity diagram when the measurement object is arranged in a state where the orientation angle φ is 0 ° FIG. 1 shows a detected light intensity diagram when the object to be measured is arranged in a state where the orientation angle φ is 20 °. When φ is 0 ° and φ is 20 °, I (0) and I (45) are different, but according to the result of equation (5), I (0) + I (45) depends on φ. It means that it is constant. Also in FIG. 1, it can be seen that I (0) + I (45) is equal when φ is 0 ° and when φ is 20 °.

このことは1つの波長についてだけではなく、すべての波長に対して成立するので、分光スペクトルについても同様のことが成り立つ。また、Cが取り得る範囲は−1〜1であるから、α=1のときITは1〜2の範囲の値になる。 Since this is true not only for one wavelength but for all wavelengths, the same is true for the spectral spectrum. Further, since the range in which C is possible is -1 to 1, I T when alpha = 1 becomes a value in the range of 1-2.

そこで、図10に示されるように、本発明の位相差分布測定装置は、演算処理部10として、分光スペクトル保持部102、合算スペクトル算出部104及び位相差算出部106を備えている。   Therefore, as illustrated in FIG. 10, the phase difference distribution measuring apparatus of the present invention includes a spectral spectrum holding unit 102, a combined spectrum calculating unit 104, and a phase difference calculating unit 106 as the arithmetic processing unit 10.

分光スペクトル保持部102は、位相差を異ならせて算出された複数の合算スペクトルIT(=(C+3)/2)(ただし、C=cos(2πR(λ)/λである。)を保持する。 The spectral spectrum holding unit 102 holds a plurality of combined spectra I T (= (C + 3) / 2) (where C = cos (2πR (λ) / λ)) calculated with different phase differences. .

合算スペクトル算出部104は、位相差測定部において被測定物がない状態での偏光子と検光子による偏光方位が0°と45°のときの分光器が測定光を取り込む一直線上の位置ごとのそれぞれの透過光分光スペクトルI0(0),I0(45)と、被測定物を位相差測定部に対して相対的に移動させたときの偏光子と検光子による偏光方位が0°と45°のときの前記一直線上の位置ごとのそれぞれの透過光分光スペクトルI(0),I(45)とから前記一直線上の各位置での合算スペクトル実測値IT’(ただし、IT’=I(0)/I0(0)+I(45)/I0(45)である。)を算出する。 The total spectrum calculation unit 104 is provided for each position on the straight line where the spectroscope takes in the measurement light when the polarization direction by the polarizer and the analyzer in the state where there is no object to be measured in the phase difference measurement unit is 0 ° and 45 °. The transmitted light spectral spectra I 0 (0), I 0 (45) and the polarization direction by the polarizer and the analyzer when the object to be measured is moved relative to the phase difference measuring unit are 0 °. 45 ° each of the transmitted light spectrum I for each position on the line when the (0), summed spectral Found I T at each position on the line from the I (45) '(although, I T' = I (0) / I 0 (0) + I (45) / I 0 (45)).

具体的に示すと、被測定物を位相差測定部に対して相対的に移動させて合算スペクトル実測値IT’を得るためには、偏光子と検光子の偏光方位を0°にして被測定物を位相差測定部に対して一方向に移動させて前記一直線上の位置ごとでのそれぞれの透過光分光スペクトルI(0)を測定する動作と、偏光子と検光子の偏光方位を45°にして被測定物を位相差測定部に対して一方向に移動させて前記一直線上の位置ごとのそれぞれの透過光分光スペクトルI(45)を測定する動作を行う。I(0)とI(45)は前記一直線上の各位置(x)と被測定物の位相差測定部に対する相対的移動距離(y)の関数となる。そこで、I(0),I(45)を位置の関数としてIxy(0),Ixy(45)と表すことができる。一方、I0(0)とI0(45)は被測定物がない状態での分光スペクトルであるので、位相差測定部の場所的な不均一を反映して前記一直線上の各位置xの関数であるが、被測定物の位相差測定部に対する相対的移動方向には依存しない。そこで、I0(0),I0(45)を位置の関数としてI0x(0),I0x(45)と表すことができる。合算スペクトル実測値IT’は被測定物上の各位置についてのIxy(0),Ixy(45)を用いて、
T’=Ixy(0)/I0x(0)+Ixy(45)/I0x(45)
として算出される。
More specifically, in order to obtain the combined spectrum measured value I T ′ by moving the object to be measured relative to the phase difference measuring unit, the polarization direction of the polarizer and the analyzer is set to 0 ° and the object to be measured is measured. An operation of moving the measurement object in one direction with respect to the phase difference measurement unit to measure each transmitted light spectrum I (0) at each position on the straight line, and the polarization direction of the polarizer and the analyzer to 45 The measurement object is moved in one direction with respect to the phase difference measuring unit at an angle, and the transmitted light spectrum I (45) for each position on the straight line is measured. I (0) and I (45) are functions of each position (x) on the straight line and the relative movement distance (y) of the object to be measured with respect to the phase difference measuring unit. Therefore, I (0) and I (45) can be expressed as Ixy (0) and Ixy (45) as a function of position. On the other hand, I 0 (0) and I 0 (45) are spectral spectra in a state where there is no object to be measured. Although it is a function, it does not depend on the relative movement direction of the object to be measured with respect to the phase difference measuring unit. Therefore, I 0 (0), I 0 (45) can be expressed as I 0 x (0), I 0 x (45) as a function of position. The combined spectrum actual measurement value I T ′ is obtained by using Ixy (0) and Ixy (45) for each position on the object to be measured.
I T ′ = Ixy (0) / I 0 x (0) + Ixy (45) / I 0 x (45)
Is calculated as

位相差算出部106は、被測定物上の位置ごとに、分光スペクトル保持部102に保持された計算値ITと合算スペクトル算出部104で算出された実測値IT’の差が最小になるITを求めてそのITに該当する位相差R(λ)をその被測定物の各位置での位相差Rm(λ)とすることにより、前記一直線と被測定物の相対的移動距離とから定まる面積内での被測定物の位相差分布を求める。 The phase difference calculation unit 106 minimizes the difference between the calculated value I T held in the spectral spectrum holding unit 102 and the actual measurement value I T ′ calculated by the combined spectrum calculation unit 104 for each position on the object to be measured. by phase difference corresponding to that I T seeking I T R a (lambda) and the phase difference Rm (lambda) at each position of the object to be measured, the relative movement distance of the line with the object to be measured The phase difference distribution of the object to be measured within the area determined from is obtained.

さらに、演算処理部10は、位相差をR(λ)として波長分散を次式で表し、あらかじめ式中の係数a、b、cを材料ごとに区別して登録しておくことができる(非特許文献1参照)。
R(λ)=a+b/(λ2−c2) (6)
a、b、cの各係数の値は、例えば王子計測機器(株)製の位相差測定装置KOBRA−WRを用いれば容易に求めることができる。
Further, the arithmetic processing unit 10 can express the chromatic dispersion by the following equation using the phase difference as R (λ), and can preliminarily register the coefficients a, b, and c in the equation separately for each material (non-patent). Reference 1).
R (λ) = a + b / (λ 2 −c 2 ) (6)
The values of the coefficients a, b, and c can be easily obtained by using, for example, a phase difference measuring device KOBRA-WR manufactured by Oji Scientific Instruments.

ここで、基準波長をλ0とすると、(6)式より基準波長λ0に対する任意の波長λでの分散比率R(λ)/R(λ0)は容易に求まる。基準波長は任意に定めることができる。フィルムの延伸倍率の違いや厚さの違いによって位相差R(λ)が異なる場合も、この分散比率R(λ)/R(λ0)は材料ごとにほぼ等しくなることがよく知られている。図2(A)は5種のPETフィルムの位相差R(λ)の波長依存性を示したものであり、(B)はその分散比率R(λ)/R(λ0)の波長依存性を示したグラフであるが、実際に分散比率R(λ)/R(λ0)はほぼ1本の曲線に重なっている。したがって、(6)式の各係数を設定して波長分散式を登録しておくことにより、基準波長に対する分散比率も求まり、計算上R(λ0)を所定の範囲だけ所定の刻みで変化させれば、その都度任意の波長に対してR(λ)も容易に計算できる。すなわち、被測定物の位相差の波長分散式が既知であれば基準波長に対する位相差を任意に変化させながら、そのときの(5)式のITに相当する分光スペクトルを自由に計算できることを意味している。 Here, when the reference wavelength is λ 0 , the dispersion ratio R (λ) / R (λ 0 ) at an arbitrary wavelength λ with respect to the reference wavelength λ 0 can be easily obtained from the equation (6). The reference wavelength can be arbitrarily determined. It is well known that the dispersion ratio R (λ) / R (λ 0 ) is substantially equal for each material even when the phase difference R (λ) varies depending on the difference in the stretching ratio and thickness of the film. . FIG. 2A shows the wavelength dependence of the retardation R (λ) of five types of PET films, and FIG. 2B shows the wavelength dependence of the dispersion ratio R (λ) / R (λ 0 ). In practice, the dispersion ratio R (λ) / R (λ 0 ) substantially overlaps one curve. Therefore, by setting each coefficient of equation (6) and registering the chromatic dispersion equation, the dispersion ratio with respect to the reference wavelength can also be obtained, and R (λ 0 ) is changed by a predetermined range within a predetermined range in calculation. Then, R (λ) can be easily calculated for an arbitrary wavelength each time. That is, while arbitrarily changing the phase difference with respect to the reference wavelength if known wavelength dispersion type retardation of the object, that the spectrum equivalent to I T of the equation (5) at that time can be freely calculated I mean.

そこで、本発明の好ましい形態では、図10に示されるように、演算処理部10は被測定物についての位相差R(λ)の波長分散式から基準波長λ0に対する位相差の分散比率R(λ)/R(λ0)を計算する分散比率算出部108をさらに備え、分光スペクトル保持部102に保持されているIT分光スペクトルは、R(λ0)を複数に変化させたときの対応するR(λ)から算出されたものであり、位相差算出部106は計算値ITと実測値IT’の差が最小になるITに該当する位相差として基準波長λ0での位相差Rm(λ0)を求め、分散比率を用いて任意の波長λでの位相差Rm(λ)を求めるものとすることができる。 Therefore, in a preferred embodiment of the present invention, as shown in FIG. 10, the arithmetic processing unit 10 calculates the phase difference dispersion ratio R (with respect to the reference wavelength λ 0 from the wavelength dispersion formula of the phase difference R (λ) for the device under test. The dispersion ratio calculation unit 108 for calculating λ) / R (λ 0 ) is further provided, and the I T spectral spectrum held in the spectral spectrum holding unit 102 corresponds to a case where R (λ 0 ) is changed to a plurality. The phase difference calculation unit 106 calculates the phase difference at the reference wavelength λ 0 as a phase difference corresponding to I T at which the difference between the calculated value I T and the measured value I T ′ is minimized. The phase difference Rm (λ 0 ) is obtained, and the phase difference Rm (λ) at an arbitrary wavelength λ can be obtained using the dispersion ratio.

位相差の測定値を分布図として表示するときは、表示したい波長を予め設定しておく。その表示波長として基準波長λ0を割り当てておけば、位相差算出部106で求められた基準波長λ0での位相差Rm(λ0)を用いて分布図を表示すればよい。分散比率を用いて求められる任意の波長λでの位相差Rm(λ)は、次の段階で配向角φmを求めるときに使用される。 When displaying the measured value of the phase difference as a distribution diagram, the wavelength to be displayed is set in advance. If the reference wavelength λ 0 is assigned as the display wavelength, the distribution map may be displayed using the phase difference Rm (λ 0 ) at the reference wavelength λ 0 obtained by the phase difference calculator 106. The phase difference Rm (λ) at an arbitrary wavelength λ obtained using the dispersion ratio is used when obtaining the orientation angle φm in the next step.

次に、2つの光学主軸方向の振幅透過率比αが1ではない場合を検討する。α≠1のときの(5)式に相当する値をIT’とすると、IT’は位相差Rと測定波長λだけでなく、被測定物の配向角φや振幅透過率比αによって変わる。例えばPETフィルムを仮定し、基準波長λ0=590nmでの位相差Rを2000nm、配向角φ=20°及び振幅透過率比α=0.95としたとき、I(0)/I0(0)、I(45)/I0(45)及びIT’は図3のようになり、IT’の最大値は2にはならない。図3においてITはα=1のときの分光スペクトルである。 Next, a case where the amplitude transmittance ratio α in the two optical principal axis directions is not 1 will be considered. When the value corresponding to the equation (5) when α ≠ 1 is I T ′, I T ′ is determined not only by the phase difference R and the measurement wavelength λ, but also by the orientation angle φ of the object to be measured and the amplitude transmittance ratio α. change. For example, assuming a PET film, when the phase difference R at the reference wavelength λ 0 = 590 nm is 2000 nm, the orientation angle φ = 20 °, and the amplitude transmittance ratio α = 0.95, I (0) / I 0 (0 ), I (45) / I 0 (45) and I T ′ are as shown in FIG. 3, and the maximum value of I T ′ is not 2. In FIG. 3, I T is a spectral spectrum when α = 1.

さらに、同じPETフィルムの条件で配向角φ及び振幅透過率比αの値を変えたときのIT’の最大値を調べ、その結果をグラフにすると図4のようになり、IT’の最大値はφとαのいずれの影響も受けることがわかる。また、位相差Rが変わればこれらの関係も変わる。α≠1のときにφやRがどのような値であっても、測定されたIT’の情報から精度よくRとφを求めるために、α=1のときにITの最大値が2になることを考慮に入れて、β1=2/(IT’の最大値)とし、β1×IT’の分光スペクトルを考える。図3のα=0.95のときのIT’についてこの処理を行うと、図5のようになり、α=1としたときのITの分光スペクトルと近い曲線が得られる。したがって、I(0)/I0(0)、I(45)/I0(45)を合計したIT’の分光スペクトルを実測し、IT’の最大値から上記のβ1を求めた後、β1×IT’の分光スペクトルを測定値とし、一方で登録した波長分散式と(5)式を利用した前述の計算方法によってITの分光スペクトルを算出し、β1×IT’とITの2つの分光スペクトルの差が最小になるときの基準波長に対する位相差Rm(λ0)を決定する。 Furthermore, I T when changing the value of the orientation angle φ and amplitude transmittance ratio α in the condition of the same PET film 'examining the maximum, is shown in Figure 4 when the result in a graph, I T' of It can be seen that the maximum value is affected by both φ and α. Further, if the phase difference R changes, these relationships also change. Whatever value φ or R when the alpha ≠ 1, in order to determine the accuracy R and φ from the information of the measured I T ', the maximum value of I T when alpha = 1 is Considering the fact that it becomes 2, let β1 = 2 / (the maximum value of I T ′) and consider the spectrum of β1 × I T ′. When this process is performed for I T ′ when α = 0.95 in FIG. 3, a curve close to the spectrum of I T when α = 1 is obtained as shown in FIG. Therefore, after measuring the spectrum of I T ′ obtained by adding I (0) / I 0 (0) and I (45) / I 0 (45) and obtaining the above β1 from the maximum value of I T ′ , Β1 × I T ′ is taken as a measured value, and on the other hand, the spectrum of I T is calculated by the above-described calculation method using the registered chromatic dispersion formula and formula (5), and β1 × I T ′ and I The phase difference Rm (λ 0 ) with respect to the reference wavelength when the difference between the two spectral spectra of T is minimized is determined.

そこで、本発明の他の好ましい形態では、図10に示されるように、演算処理部10は補正係数β1として2/(IT’の最大値)を計算する補正係数算出部110をさらに備え、位相差算出部106は計算値ITと比較する実測値IT'としてβ1で補正された補正実測値分光スペクトルβ1×IT'を用いるようにすることができる。 Therefore, in another preferred embodiment of the present invention, as shown in FIG. 10, the arithmetic processing unit 10 further includes a correction coefficient calculation unit 110 that calculates 2 / (maximum value of I T ′) as the correction coefficient β1, The phase difference calculation unit 106 can use the corrected measured value spectrum β1 × I T ′ corrected by β1 as the measured value I T ′ to be compared with the calculated value I T.

この場合も、位相差算出部106が位相差として基準波長λ0での位相差Rm(λ0)を求めるようにした場合には、分散比率を用いて任意の波長λでの位相差Rm(λ)を求めることができる。 Also in this case, when the phase difference calculating unit 106 obtains the phase difference Rm (λ 0 ) at the reference wavelength λ 0 as the phase difference, the phase difference Rm (at any wavelength λ using the dispersion ratio). λ) can be determined.

また、さらに他の好ましい形態として、位相差算出部106は計算値ITと実測値IT’の差として波長ごとの残差2乗和を計算するようにすることができる。 As yet another preferred mode, the phase difference calculation unit 106 can calculate the residual sum of squares for each wavelength as the difference between the calculated value I T and the actually measured value I T ′.

次に、被測定物の配向角φを決定する方法を説明する。配向角φを決定するために、本発明のさらに他の好ましい形態では、図10に示されるように、演算処理部10は配向角算出部112をさらに備えている。配向角算出部112は、偏光子と検光子の偏光方位が0°又は45°のいずれかの状態における透過光分光スペクトル実測値I(0)又はI(45)と、求められた位相差Rm(λ)を用い実測時と同じ偏光方位について被測定物の光学主軸φを変化させて計算した複数の透過光分光スペクトル計算値I(0)又はI(45)とを比較し、その差が最小になるときの光学主軸φを被測定物の各位置での配向角φmとする。   Next, a method for determining the orientation angle φ of the object to be measured will be described. In order to determine the orientation angle φ, in still another preferred embodiment of the present invention, the arithmetic processing unit 10 further includes an orientation angle calculation unit 112 as shown in FIG. The orientation angle calculation unit 112 calculates the transmitted light spectrum spectrum measured value I (0) or I (45) when the polarization orientation of the polarizer and the analyzer is 0 ° or 45 °, and the obtained phase difference Rm. Using (λ), a plurality of transmitted light spectral spectrum calculation values I (0) or I (45) calculated by changing the optical principal axis φ of the object to be measured with respect to the same polarization azimuth as the actual measurement are compared. The optical principal axis φ at the minimum is the orientation angle φm at each position of the object to be measured.

配向角算出部112は、透過光分光スペクトル実測値I(0)又はI(45)に代えてIS’としてI(0)/I0(0)又はI(45)/I0(45)を使用し、透過光分光スペクトル計算値I(0)又はI(45)に代えてISとして{2+(C−1)sin22φ}/2又は{2+(C−1)cos22φ}/2を使用するようにしてもよい。 The orientation angle calculation unit 112 uses I (0) / I 0 (0) or I (45) / I 0 (45) as I S ′ instead of the actually measured transmitted light spectrum spectrum value I (0) or I (45). , {2+ (C−1) sin 2 2φ} / 2 or {2+ (C−1) cos 2 2φ} as I S instead of the transmitted light spectral spectrum calculation value I (0) or I (45) / 2 may be used.

I(0)/I0(0)、I(45)/I0(45)の分光スペクトルの最大値はα=1のときはいずれも1になるが、α≠1のときの最大値は1にはならない。そこで、配向角算出部112はIS’の最大値が1になるように補正をした上で透過光分光スペクトル計算値ISと比較するものとしてもよい。 The maximum value of the spectrum of I (0) / I 0 (0) and I (45) / I 0 (45) is 1 when α = 1, but the maximum value when α ≠ 1 is It will not be 1. Therefore, the orientation angle calculation unit 112 may perform correction so that the maximum value of I S ′ becomes 1 and compare it with the transmitted light spectral spectrum calculation value I S.

また、偏光子・検光子方位が0°と45°の2つの角度のみに着目しているため、配向角φ=22.5°及び−67.5°のときには、必ずI(0)=I(45)となる。配向角φを決定するにはI(0)/I0(0)、I(45)/I0(45)のいずれか一方の分光スペクトルを利用すればよいが、できるだけ波長に対して変化の大きい方のスペクトルを採用した方が計算値との一致が判断しやすい。そこで、α≠1のときのI(0)/I0(0)、I(45)/I0(45)それぞれの最大値をI0max、I45maxとし、φの値を−90°〜90°の範囲で変えて両者の大小を調べると、次のような結果が得られた。
−90°≦φ<−67.5°のときI0max>I45max
−67.5°≦φ<22.5°のときI0max≦I45max
22.5°≦φ≦90°のときI0max≧I45max
Also, since the polarizer / analyzer orientation focuses only on two angles of 0 ° and 45 °, when the orientation angles φ = 22.5 ° and −67.5 °, I (0) = I (45). In order to determine the orientation angle φ, one of the spectral spectra of I (0) / I 0 (0) and I (45) / I 0 (45) may be used. It is easier to judge the coincidence with the calculated value by adopting the larger spectrum. Therefore, I when the α ≠ 1 (0) / I 0 (0), I (45) / I 0 (45) , respectively of the maximum value I 0max, and I 45max, -90 ° the value of phi to 90 The following results were obtained when the magnitude of both was examined in the range of °.
When −90 ° ≦ φ <−67.5 °, I 0max > I 45max
When −67.5 ° ≦ φ <22.5 °, I 0max ≦ I 45max
I 0max ≧ I 45max when 22.5 ° ≦ φ ≦ 90 °

さらに、I0max、I45maxのうち大きい値に対応した方の分光スペクトルが波長に対する変化が大きいことも分かった。したがって、まずI0max、I45maxのいずれが大きいかを調べた後、大きい方の分光スペクトルに着目すればよい。 It was also found that the spectrum corresponding to the larger value of I 0max and I 45max has a large change with respect to the wavelength. Therefore, after investigating which of I 0max and I 45max is larger, attention should be paid to the larger spectral spectrum.

例としてI(0)/I0(0)に着目する場合について考える。β2=1/I0maxを求めてIS’=β2×I(0)/I0(0)を測定値の分光スペクトルとする。一方、計算でφを−90°≦φ<−67.5°及び22.5°≦φ≦90°の範囲を所定の刻みで変化させながら、先に決定したRm(λ)と(3)式とを利用して、α=1のときのIS=I(0)/I0(0)の分光スペクトルを算出し、測定値IS’と計算値ISの2つの分光スペクトルの残差2乗和が最小になるときの配向角φmを決定する。 As an example, consider the case where attention is paid to I (0) / I 0 (0). β2 = 1 / I 0max is obtained, and I S ′ = β2 × I (0) / I 0 (0) is taken as the spectrum of the measured value. On the other hand, while changing φ in the range of −90 ° ≦ φ <−67.5 ° and 22.5 ° ≦ φ ≦ 90 ° by calculation, Rm (λ) and (3) previously determined The spectral spectrum of I S = I (0) / I 0 (0) when α = 1 is calculated using the equation, and the remaining two spectral spectra of the measured value I S ′ and the calculated value I S are calculated. The orientation angle φm when the difference sum of squares is minimized is determined.

I(45)/I0(45)に着目する場合は、β2=1/I45maxとし、(3)式の代わりに(4)式を利用し、−67.5°≦φ<22.5°の範囲でφを変化させて配向角φmを決定する。 When paying attention to I (45) / I 0 (45), β2 = 1 / I 45max, and instead of the equation (3), the equation (4) is used and −67.5 ° ≦ φ <22.5 The orientation angle φm is determined by changing φ in the range of °.

図6は上記に示した位相差Rm(λ)の決定手順で最も好ましい方法をまとめて示したフローチャートであり、図7は上記に示した配向角φmの決定手順で最も好ましい方法をまとめて示したフローチャートである。   FIG. 6 is a flowchart summarizing the most preferable method in the procedure for determining the phase difference Rm (λ) described above, and FIG. 7 collectively shows the most preferable method in the procedure for determining the orientation angle φm described above. It is a flowchart.

本発明によれば、被測定物がない状態での前記偏光子と検光子による偏光方位が0°と45°のときの透過光分光スペクトルI0(0),I0(45)と、被測定物を位相差測定部に対して相対的に移動させたときの偏光子と検光子による偏光方位が0°と45°のときの被測定物上の位置ごとのそれぞれの透過光分光スペクトルI(0),I(45)とから被測定物上の各位置での合算スペクトル実測値IT’を算出し、位相差を異ならせて算出された複数の合算スペクトルITとの比較を被測定物上の位置ごとに行ってその差が最小になるITを求めてそのITに該当する位相差R(λ)をその被測定物の各位置での位相差Rm(λ)とするようにしたので、広範囲にわたる位相差変化がある被測定物であってもその位相差分布を測定することができるようになる。 According to the present invention, the transmitted light spectrums I 0 (0) and I 0 (45) when the polarization directions of the polarizer and the analyzer in the state where there is no object to be measured are 0 ° and 45 °, Transmitted light spectrum I for each position on the object to be measured when the polarization direction by the polarizer and the analyzer when the object is moved relative to the phase difference measuring unit is 0 ° and 45 °. From (0) and I (45), a combined spectrum actual measurement value I T ′ at each position on the object to be measured is calculated and compared with a plurality of combined spectra I T calculated with different phase differences. phase difference corresponding to that I T the difference went to each position on the measured object seeking I T which minimizes R a (lambda) and the phase difference Rm (lambda) at each position of the object to be measured As a result, even if the DUT has a wide range of phase difference, its phase difference distribution can be measured. become able to.

さらに、透過光分光スペクトル実測値I(0)又はI(45)と、求められた位相差Rm(λ)を用い実測と同じ偏光方位について被測定物の光学主軸φを変化させて計算した複数の透過光分光スペクトル計算値I(0)又はI(45)とを比較し、その差が最小になるときの光学主軸φを被測定物の配向角φmとするようにすれば、配向角φmも精度よく、しかも短時間に測定することができるので、配向角φmの分布も測定できるようになる。   Further, a plurality of values calculated by changing the optical principal axis φ of the object to be measured for the same polarization direction as the actual measurement using the actually measured transmitted light spectrum spectrum value I (0) or I (45) and the obtained phase difference Rm (λ). If the optical principal axis φ when the difference is minimized is taken as the orientation angle φm of the object to be measured, the calculated value I (0) or I (45) of the transmitted light spectrum is compared. Since the measurement can be performed with high accuracy and in a short time, the distribution of the orientation angle φm can also be measured.

図8は、本発明の位相差分布測定装置の第1の実施例の概略構成図であり、位相差測定部と、位相差測定部で測定された透過光分光スペクトルから被測定物の位相差と配向角を算出する演算処理部10を備えている。演算処理部10と被測定物5を除く部分が位相差測定部を構成している。   FIG. 8 is a schematic configuration diagram of the first embodiment of the phase difference distribution measuring apparatus of the present invention, in which the phase difference of the object to be measured is measured from the phase difference measuring unit and the transmitted light spectrum measured by the phase difference measuring unit. And an arithmetic processing unit 10 for calculating the orientation angle. A portion excluding the arithmetic processing unit 10 and the DUT 5 constitutes a phase difference measuring unit.

位相差測定部において、被測定物5を支持し一方向(Y方向)に移動させるために自動一軸テーブル4が設けられている。   In the phase difference measuring unit, an automatic uniaxial table 4 is provided to support the object to be measured 5 and move it in one direction (Y direction).

光源1は例えばハロゲンランプであり、多波長成分を含む測定光として白色光を供給するものである。光源1としては白色LED(発光ダイオード)を用いた光源であってもよい。光源1からの光を広い面積の照射光とするために、被測定物5に対向するように面照射素子2が配置されており、光源1からの光がライトガイドによって面照射素子2に導かれている。   The light source 1 is, for example, a halogen lamp, and supplies white light as measurement light including multiple wavelength components. The light source 1 may be a light source using a white LED (light emitting diode). In order to convert the light from the light source 1 into a large area of irradiation light, the surface irradiation element 2 is disposed so as to face the object to be measured 5, and the light from the light source 1 is guided to the surface irradiation element 2 by the light guide. It has been.

被測定物5に直線偏光の測定光を照射するために被測定物5の一方の面と面照射素子2の間に偏光子3が配置されている。被測定物5の他方の面側には被測定物5を挟んで偏光子3に対向するように検光子6が配置されている。   In order to irradiate the measurement object 5 with linearly polarized measurement light, a polarizer 3 is disposed between one surface of the measurement object 5 and the surface irradiation element 2. An analyzer 6 is arranged on the other surface side of the device under test 5 so as to face the polarizer 3 with the device under test 5 interposed therebetween.

偏光子3と検光子6は平行ニコルの状態に配置され、平行ニコルの状態を維持して回転可能に支持されている。偏光子3と検光子6の回転範囲は、基準方位に対する偏光方位(θ)が0°となる方位と45°となる方位を含む角度範囲である。基準方位はMD方向(被測定物5の移動方向であるY方向)に設定してもよく、それに直交するX方向としてもよい。   The polarizer 3 and the analyzer 6 are arranged in a parallel Nicol state, and are rotatably supported while maintaining the parallel Nicol state. The rotation range of the polarizer 3 and the analyzer 6 is an angle range including an orientation in which the polarization orientation (θ) with respect to the reference orientation is 0 ° and an orientation in which it is 45 °. The reference azimuth may be set in the MD direction (Y direction, which is the moving direction of the DUT 5), or may be the X direction orthogonal thereto.

検光子6を透過した測定光は顕微鏡又はCCDカメラ用レンズ7を経てイメージング分光器8に取り込まれる。顕微鏡又はレンズ7の倍率と、イメージング分光器8に含まれるCCD素子の大きさ及びそのX方向画素数とによって、取り込めるX方向の視野寸法と空間分解能が定まる。また、被測定物5の移動方向であるY方向の視野寸法は被測定物5の移動量によって決まり、Y方向の空間分解能は被測定物の移動ステップ量によって定まる。   The measurement light transmitted through the analyzer 6 is taken into the imaging spectroscope 8 through a microscope or a CCD camera lens 7. The size of the visual field and the spatial resolution that can be captured are determined by the magnification of the microscope or lens 7, the size of the CCD element included in the imaging spectroscope 8, and the number of pixels in the X direction. Further, the visual field dimension in the Y direction, which is the moving direction of the object to be measured 5, is determined by the moving amount of the object to be measured 5, and the spatial resolution in the Y direction is determined by the moving step amount of the object to be measured.

被測定物5の寸法が大きい場合で、かつ全面の分布を取る必要がある場合は自動一軸テーブル4の代わりに、自動XYテーブルを使用してまず被測定物5をY方向に移動して一連のデータ処理が終わった後、所定の寸法だけX方向に被測定物5を移動し、1回目と同じ方法で繰り返して測定を行えば、必要な面積全体の分布を得ることができる。   When the dimension of the object to be measured 5 is large and it is necessary to obtain a distribution over the entire surface, the object to be measured 5 is first moved in the Y direction by using an automatic XY table instead of the automatic uniaxial table 4. After the data processing is completed, if the object to be measured 5 is moved in the X direction by a predetermined dimension and measurement is repeated in the same manner as the first time, the distribution of the entire required area can be obtained.

イメージング分光器8は、図9のような構成になっており、スリット8aを介してX方向の線状の光を受光し、グレーティング8bで分光してモノクロCCDカメラ8cで受光する。グレーティング8bはX方向の線上の各位置の光をY'方向(被測定物5の移動方向であるY方向と区別するためにY'方向とする。)に分光する。イメージング分光器8としては、具体的には、ImSpector V8(JFEテクノリサーチ株式会社の製品)が利用できる。   The imaging spectroscope 8 is configured as shown in FIG. 9, receives linear light in the X direction through the slit 8a, splits it with the grating 8b, and receives it with the monochrome CCD camera 8c. The grating 8b splits the light at each position on the line in the X direction into the Y ′ direction (Y ′ direction to distinguish it from the Y direction that is the moving direction of the DUT 5). As the imaging spectroscope 8, specifically, ImSpector V8 (product of JFE Techno-Research Corporation) can be used.

イメージング分光器8によって分光され検出された透過光強度は演算処理部10に取り込まれて、上に述べたように、被測定物5の位相差Rm(λ)と配向角φmが算出される。演算処理部10は専用のコンピュータ又は汎用のパーソナルコンピュータにより実現される。   The transmitted light intensity separated and detected by the imaging spectroscope 8 is taken into the arithmetic processing unit 10, and the phase difference Rm (λ) and the orientation angle φm of the object to be measured 5 are calculated as described above. The arithmetic processing unit 10 is realized by a dedicated computer or a general-purpose personal computer.

被測定物5を図8のY方向に移動させることにより、被測定物5の2次元領域内の各位置に対する検出光Ixy(θ)の分光スペクトルを得ることができる。この個々のIxy(θ)について、θが0°と45°のときの区別をしながら図6及び図7のフローチャートに示した手順で実測値の処理及び計算を実行して、被測定物5の各位置に対応した位相差Rm(λ)と配向角φmを求める。図6及び図7では求まった位相差と配向角をそれぞれRm(λ)、φmと表しているが、各位置に対応した値はRmxy(λ)、φmxyとなり、それらの値を二次元的な分布グラフにして図示する。   By moving the DUT 5 in the Y direction in FIG. 8, it is possible to obtain a spectrum of the detection light Ixy (θ) for each position in the two-dimensional region of the DUT 5. For each Ixy (θ), processing and calculation of actual measurement values are executed according to the procedure shown in the flowcharts of FIGS. 6 and 7 while distinguishing when θ is 0 ° and 45 °, and the object to be measured 5 A phase difference Rm (λ) and an orientation angle φm corresponding to each position are obtained. In FIGS. 6 and 7, the obtained phase difference and orientation angle are represented as Rm (λ) and φm, respectively, but the values corresponding to the respective positions are Rmxy (λ) and φmxy, and these values are two-dimensional. A distribution graph is shown.

平行ニコル回転法においてある位相差をもつ被測定物をある測定波長で測定したときの検出光強度を示す図である。It is a figure which shows the detected light intensity when the to-be-measured object which has a certain phase difference in a parallel Nicol rotation method is measured with a certain measurement wavelength. (A)はPETフィルムを測定したときの位相差の波長依存性を示す図、(B)は同じく分散比率の波長依存性を示す図である。(A) is a figure which shows the wavelength dependence of retardation when a PET film is measured, (B) is a figure which similarly shows the wavelength dependence of a dispersion ratio. 本発明で扱う検出光の分光スペクトルの例を示す図である。It is a figure which shows the example of the spectrum of the detection light handled by this invention. 被測定物の振幅透過率比αと検出光の分光スペクトルIT'の最大値との関係を示す図である。It is a figure which shows the relationship between the amplitude transmittance | permeability ratio (alpha) of a to-be-measured object, and the maximum value of the spectral spectrum IT 'of detection light. 検出光の分光スペクトルIT'を補正したものとα=1のときの分光スペクトルITとを比較した図である。Shows a comparison of the spectrum I T when the as obtained by correcting the spectrum I T of the detection light 'alpha = 1. 本発明における位相差Rm(λ)の決定手順で最も好ましい方法を示すフローチャートである。It is a flowchart which shows the most preferable method in the determination procedure of phase difference Rm ((lambda)) in this invention. 本発明における配向角φmの決定手順で最も好ましい方法を示すフローチャートである。It is a flowchart which shows the most preferable method in the determination procedure of orientation angle | corner (phi) m in this invention. 一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example. イメージング分光器を示す概略斜視図である。It is a schematic perspective view which shows an imaging spectroscope. 同実施例における演算処理部を示すブロック図である。It is a block diagram which shows the arithmetic processing part in the Example. 平行ニコル回転法におけるCと位相差Rの関係、及び検出光強度図形の関係を示す図である。It is a figure which shows the relationship between C and phase difference R in a parallel Nicol rotation method, and the relationship of a detected light intensity figure. 位相差が大きく変化している被測定物(○印)を平行ニコル回転法で測定した場合の結果(▲印)を示すグラフである。It is a graph which shows the result (▲ mark) at the time of measuring the to-be-measured object (circle mark) from which the phase difference is changing greatly by the parallel Nicol rotation method.

符号の説明Explanation of symbols

1 光源
2 面照射素子
3 偏光子
4 自動一軸テーブル
6 検光子
7 顕微鏡又はレンズ
8 イメージング分光器
8a スリット
8b グレーティング
8c CCDカメラ
9 CCD素子
10 演算処理部
102 分光スペクトル保持部
104 合算スペクトル算出部
106 位相差算出部
108 分散比率算出部
110 補正係数算出部
112 配向角算出部
DESCRIPTION OF SYMBOLS 1 Light source 2 Surface irradiation element 3 Polarizer 4 Automatic uniaxial table 6 Analyzer 7 Microscope or lens 8 Imaging spectroscope 8a Slit 8b Grating 8c CCD camera 9 CCD element 10 Arithmetic processing part 102 Spectral spectrum holding part 104 Total spectrum calculation part 106th place Phase difference calculation unit 108 Dispersion ratio calculation unit 110 Correction coefficient calculation unit 112 Orientation angle calculation unit

Claims (7)

多波長成分を含む測定光が被測定物に偏光子を通して照射され、被測定物を透過した測定光が検光子を通して分光器に入射して透過光分光スペクトルが測定される位相差測定部であって、被測定物を該位相差測定部に対して相対的に移動させる移動機構を備え、前記偏光子及び検光子は平行ニコルの状態を維持して基準方位に対する偏光方位が少なくとも0°と45°の間で回転可能に支持されており、前記分光器は分散素子と二次元検出器を備えて被測定物の相対的移動方向に直交する一直線上の測定光を取り込み分光して透過光分光スペクトルを検出するイメージング分光器である位相差測定部と、
前記位相差測定部で測定された透過光分光スペクトルから被測定物の位相差分布を少なくとも算出する演算処理部と、を備え、
前記演算処理部は、位相差を異ならせて算出された複数の合算スペクトルIT(=(C+3)/2)(ただし、C=cos(2πR(λ)/λである。)を保持する分光スペクトル保持部と、
前記位相差測定部において被測定物がない状態での前記偏光子と検光子による偏光方位が0°と45°のときの前記一直線上の位置ごとのそれぞれの透過光分光スペクトルI0(0),I0(45)と、被測定物を該位相差測定部に対して相対的に移動させたときの前記偏光子と検光子による偏光方位が0°と45°のときの被測定物上の位置ごとのそれぞれの透過光分光スペクトルI(0),I(45)とから被測定物上の各位置での合算スペクトル実測値IT’(ただし、IT’=I(0)/I0(0)+I(45)/I0(45)である。)を算出する合算スペクトル算出部と、
被測定物上の位置ごとに、前記分光スペクトル保持部に保持された計算値ITと前記合算スペクトル算出部で算出された実測値IT’の差が最小になるITを求めてそのITに該当する位相差R(λ)をその被測定物の各位置での位相差Rm(λ)とすることにより、前記一直線と被測定物の相対的移動距離とから定まる面積内での被測定物の位相差分布を求める位相差算出部を備えている位相差分布測定装置。
This is a phase difference measuring unit that irradiates measurement light containing multi-wavelength components to the object to be measured through a polarizer, and the measurement light that has passed through the object to be measured enters the spectrometer through the analyzer to measure the transmitted light spectrum. And a moving mechanism for moving the object to be measured relative to the phase difference measuring unit, wherein the polarizer and the analyzer maintain a parallel Nicol state, and the polarization direction with respect to the reference direction is at least 0 ° and 45 °. The spectroscope is provided with a dispersive element and a two-dimensional detector so as to be able to capture and spectrally transmit measurement light on a straight line perpendicular to the relative movement direction of the object to be measured. A phase difference measurement unit that is an imaging spectrometer for detecting a spectrum;
An arithmetic processing unit that calculates at least the phase difference distribution of the object to be measured from the transmitted light spectrum measured by the phase difference measuring unit,
The arithmetic processing unit is a spectroscope that holds a plurality of combined spectra I T (= (C + 3) / 2) (where C = cos (2πR (λ) / λ)) calculated with different phase differences. A spectrum holding unit;
Transmitted light spectrum I 0 (0) for each position on the straight line when the polarization direction by the polarizer and the analyzer in the state where there is no object to be measured in the phase difference measuring unit is 0 ° and 45 °. , I 0 (45) and on the object to be measured when the directions of polarization by the polarizer and the analyzer are 0 ° and 45 ° when the object to be measured is moved relative to the phase difference measuring unit. From the respective transmitted light spectral spectra I (0) and I (45) for each position, the combined spectrum actual value I T ′ at each position on the object to be measured (where I T ′ = I (0) / I 0 (0) + I (45) / I 0 (45).)
For each position on the object to be measured, an I T that minimizes the difference between the calculated value I T held in the spectral spectrum holding unit and the measured value I T ′ calculated by the combined spectrum calculating unit is obtained. By setting the phase difference R (λ) corresponding to T as the phase difference Rm (λ) at each position of the object to be measured, the object within the area determined from the straight line and the relative movement distance of the object to be measured. A phase difference distribution measuring apparatus including a phase difference calculating unit for obtaining a phase difference distribution of a measurement object.
前記演算処理部は被測定物についての位相差R(λ)の波長分散式から基準波長λ0に対する位相差の分散比率R(λ)/R(λ0)を計算する分散比率算出部をさらに備え、
前記分光スペクトル保持部に保持されているIT分光スペクトルは、R(λ0)を複数に変化させたときの対応するR(λ)から算出されたものであり、
前記位相差算出部は計算値ITと実測値IT’の差が最小になるITに該当する位相差として基準波長λ0での位相差Rm(λ0)を求め、分散比率を用いて任意の波長での位相差Rm(λ)を求めるものである請求項1に記載の位相差分布測定装置。
The arithmetic processing unit further includes a dispersion ratio calculating unit that calculates a dispersion ratio R (λ) / R (λ 0 ) of the phase difference with respect to the reference wavelength λ 0 from the wavelength dispersion formula of the phase difference R (λ) of the object to be measured. Prepared,
The I T spectral spectrum held in the spectral spectrum holding unit is calculated from the corresponding R (λ) when R (λ 0 ) is changed to a plurality of values,
The phase difference calculation unit obtains a phase difference Rm (λ 0 ) at the reference wavelength λ 0 as a phase difference corresponding to I T at which the difference between the calculated value I T and the measured value I T ′ is minimized, and uses the dispersion ratio. The phase difference distribution measuring apparatus according to claim 1, wherein the phase difference Rm (λ) at an arbitrary wavelength is obtained.
前記演算処理部は補正係数β1として2/(IT’の最大値)を計算する補正係数算出部をさらに備え、
前記位相差算出部は計算値ITと比較する実測値IT’としてβ1で補正された補正実測値分光スペクトルβ1×IT’を用いる請求項1又は2に記載の位相差分布測定装置。
The arithmetic processing unit further includes a correction coefficient calculation unit that calculates 2 / (maximum value of I T ′) as the correction coefficient β1;
3. The phase difference distribution measuring apparatus according to claim 1, wherein the phase difference calculation unit uses a corrected actual measurement value spectral spectrum β1 × I T ′ corrected by β1 as an actual measurement value I T ′ to be compared with the calculated value I T.
前記位相差算出部は計算値ITと実測値IT’の差として波長ごとの残差2乗和を計算するものである請求項1から3のいずれか一項に記載の位相差分布測定装置。 4. The phase difference distribution measurement according to claim 1, wherein the phase difference calculation unit calculates a residual sum of squares for each wavelength as a difference between a calculated value I T and an actual measurement value I T ′. 5. apparatus. 前記演算処理部は、前記偏光子と検光子の偏光方位が0°又は45°のいずれかの状態における透過光分光スペクトル実測値I(0)又はI(45)と、求められた位相差Rm(λ)を用い実測時と同じ偏光方位について被測定物の光学主軸φを変化させて計算した複数の透過光分光スペクトル計算値I(0)又はI(45)とを比較し、その差が最小になるときの光学主軸φを被測定物の各位置での配向角φmとする配向角算出部をさらに備えている請求項1から4のいずれか一項に記載の位相差分布測定装置。   The arithmetic processing unit is configured to measure the transmitted light spectrum spectrum measured value I (0) or I (45) when the polarization direction of the polarizer and the analyzer is 0 ° or 45 °, and the obtained phase difference Rm. Using (λ), a plurality of transmitted light spectral spectrum calculation values I (0) or I (45) calculated by changing the optical principal axis φ of the object to be measured with respect to the same polarization azimuth as the actual measurement are compared. 5. The phase difference distribution measuring apparatus according to claim 1, further comprising an orientation angle calculation unit that sets an optical principal axis φ at a minimum to an orientation angle φm at each position of the object to be measured. 前記配向角算出部は透過光分光スペクトル実測値I(0)又はI(45)に代えてIS’としてI(0)/I0(0)又はI(45)/I0(45)を使用し、
透過光分光スペクトル計算値I(0)又はI(45)に代えてISとして{2+(C−1)sin22φ}/2又は{2+(C−1)cos22φ}/2を使用するものである請求項5に記載の位相差分布測定装置。
The orientation angle calculation unit substitutes I (0) / I 0 (0) or I (45) / I 0 (45) as I S ′ instead of the measured values I (0) or I (45) of the transmitted light spectrum. use,
{2+ (C-1) sin 2 2φ} / 2 or {2+ (C-1) cos 2 2φ} / 2 is used as I S instead of the transmitted light spectral spectrum calculation value I (0) or I (45) The phase difference distribution measuring apparatus according to claim 5.
前記配向角算出部はIS’の最大値が1になるように補正をした上で透過光分光スペクトル計算値ISと比較するものである請求項6に記載の位相差分布測定装置。 The phase difference distribution measuring apparatus according to claim 6, wherein the orientation angle calculation unit corrects the maximum value of I S ′ to be 1, and compares the corrected value with a transmitted light spectral spectrum calculation value I S.
JP2008132360A 2008-05-20 2008-05-20 Phase difference distribution measuring device Active JP5115928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132360A JP5115928B2 (en) 2008-05-20 2008-05-20 Phase difference distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132360A JP5115928B2 (en) 2008-05-20 2008-05-20 Phase difference distribution measuring device

Publications (2)

Publication Number Publication Date
JP2009281787A true JP2009281787A (en) 2009-12-03
JP5115928B2 JP5115928B2 (en) 2013-01-09

Family

ID=41452399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132360A Active JP5115928B2 (en) 2008-05-20 2008-05-20 Phase difference distribution measuring device

Country Status (1)

Country Link
JP (1) JP5115928B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050381A (en) * 2011-08-31 2013-03-14 Fujifilm Corp Defect inspection device and method for patterned retardation film, and method for manufacturing patterned retardation film
JP2013050393A (en) * 2011-08-31 2013-03-14 Fujifilm Corp Device and method for detecting defect of patterned retardation film, and method for manufacturing patterned retardation film
WO2013191133A1 (en) * 2012-06-18 2013-12-27 富士フイルム株式会社 Inspection device and inspection method for pattern phase difference filter
JP2014052317A (en) * 2012-09-07 2014-03-20 Oji Holdings Corp Method and device for measuring birefringence of uniaxially oriented article

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489553A (en) * 1990-07-31 1992-03-23 Kanzaki Paper Mfg Co Ltd Double refraction measuring apparatus
JPH06229912A (en) * 1993-01-29 1994-08-19 New Oji Paper Co Ltd Orientation measuring apparatus
JP2000111472A (en) * 1998-09-30 2000-04-21 Mitsui Chemicals Inc Device for measuring birefringence and device for measuring orientation of film
JP2001141602A (en) * 1999-11-12 2001-05-25 Unie Opt:Kk System and method for evaluating double refraction
JP2003172691A (en) * 2001-12-06 2003-06-20 Unie Opt:Kk Instrument and method for measuring birefringence taking wavelength dependency into account
JP2004037137A (en) * 2002-07-01 2004-02-05 Canon Inc Birefringence measuring device, strain removing device, polarization state detecting device and exposing device
JP2005257508A (en) * 2004-03-12 2005-09-22 Nokodai Tlo Kk Double refraction characteristic measuring device and double refraction characteristic measuring method
JP2009276079A (en) * 2008-05-12 2009-11-26 Oji Keisoku Kiki Kk On-line phase difference measuring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489553A (en) * 1990-07-31 1992-03-23 Kanzaki Paper Mfg Co Ltd Double refraction measuring apparatus
JPH06229912A (en) * 1993-01-29 1994-08-19 New Oji Paper Co Ltd Orientation measuring apparatus
JP2000111472A (en) * 1998-09-30 2000-04-21 Mitsui Chemicals Inc Device for measuring birefringence and device for measuring orientation of film
JP2001141602A (en) * 1999-11-12 2001-05-25 Unie Opt:Kk System and method for evaluating double refraction
JP2003172691A (en) * 2001-12-06 2003-06-20 Unie Opt:Kk Instrument and method for measuring birefringence taking wavelength dependency into account
JP2004037137A (en) * 2002-07-01 2004-02-05 Canon Inc Birefringence measuring device, strain removing device, polarization state detecting device and exposing device
JP2005257508A (en) * 2004-03-12 2005-09-22 Nokodai Tlo Kk Double refraction characteristic measuring device and double refraction characteristic measuring method
JP2009276079A (en) * 2008-05-12 2009-11-26 Oji Keisoku Kiki Kk On-line phase difference measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050381A (en) * 2011-08-31 2013-03-14 Fujifilm Corp Defect inspection device and method for patterned retardation film, and method for manufacturing patterned retardation film
JP2013050393A (en) * 2011-08-31 2013-03-14 Fujifilm Corp Device and method for detecting defect of patterned retardation film, and method for manufacturing patterned retardation film
WO2013191133A1 (en) * 2012-06-18 2013-12-27 富士フイルム株式会社 Inspection device and inspection method for pattern phase difference filter
JP5828040B2 (en) * 2012-06-18 2015-12-02 富士フイルム株式会社 Pattern retardation filter inspection apparatus and inspection method
JPWO2013191133A1 (en) * 2012-06-18 2016-05-26 富士フイルム株式会社 Pattern retardation filter inspection apparatus and inspection method
JP2014052317A (en) * 2012-09-07 2014-03-20 Oji Holdings Corp Method and device for measuring birefringence of uniaxially oriented article

Also Published As

Publication number Publication date
JP5115928B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
Snik et al. Spectral modulation for full linear polarimetry
JP5116345B2 (en) Phase difference measuring method and apparatus
TWI457550B (en) An apparatus for quantifying unknown stress and residual stress of a material and a method thereof
US9316539B1 (en) Compact spectrometer
US9316540B1 (en) Compact spectrometer
US20130265576A1 (en) Device and method for polarimetric measurement with microscopic resolution, polarimetry accessory for a microscope, ellipsomicroscope and ellipsometric contrast microscope
KR101497695B1 (en) Apparatus for measuring phase difference using spectrometer
JP5115928B2 (en) Phase difference distribution measuring device
JPH10332533A (en) Birefringence evaluation system
US20160091416A1 (en) Unambiguous retardance measurement
TWI615604B (en) Calibration method for wide-band achromatic composite wave plate
JP2009042040A (en) Polarization analyzer utilizing polarization imaging camera
US20130242303A1 (en) Dual angles of incidence and azimuth angles optical metrology
US9194798B2 (en) Imaging based refractometer for hyperspectral refractive index detection
Berezhna et al. Dynamic photometric imaging polarizer-sample-analyzer polarimeter: instrument for mapping birefringence and optical rotation
JP2000509830A (en) Rotation compensator-type spectroscopic ellipsometer system with regression calibration with photoarray detector
Fei et al. Error analysis and correction of a photoelastic method based on a pixelated polarization camera
JP5041508B2 (en) Optical characteristic measuring apparatus and method
Ibrahim et al. Angle resolved Mueller polarimetry with a high numerical aperture and characterization of transparent biaxial samples
JP5060388B2 (en) Online phase difference measuring device
JP5991226B2 (en) Polarization analyzer for evaluating depolarization effect
JP5991230B2 (en) Phase difference measuring method and apparatus
KR20190034795A (en) Apparatus for inspecting surfaceusing using spectroscopic ellipsometer
CN113654996A (en) Device and method for measuring phase retardation of composite achromatic wave plate
JP2012122768A (en) Method for measuring thin film element using optical multi-wavelength interferometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

R150 Certificate of patent or registration of utility model

Ref document number: 5115928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250