JP2009279824A - Anticorrosive steel material having excellent weldability - Google Patents

Anticorrosive steel material having excellent weldability Download PDF

Info

Publication number
JP2009279824A
JP2009279824A JP2008133581A JP2008133581A JP2009279824A JP 2009279824 A JP2009279824 A JP 2009279824A JP 2008133581 A JP2008133581 A JP 2008133581A JP 2008133581 A JP2008133581 A JP 2008133581A JP 2009279824 A JP2009279824 A JP 2009279824A
Authority
JP
Japan
Prior art keywords
mass
zinc
pigment
steel material
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008133581A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Harada
佳幸 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008133581A priority Critical patent/JP2009279824A/en
Publication of JP2009279824A publication Critical patent/JP2009279824A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a specialized primer having excellent weldability with few welding defects. <P>SOLUTION: An anticorrosive steel material having excellent weldability is coated with a film which consists of 10-30 mass% of a condensate derived from an alkyl silicate, 10-30 mass% of a zinc alloy powder consisting of 5-20 mass% of aluminum and remaining zinc and 10-60 mass% of a pigment consisting of a conductive pigment and a filler in a ratio of the conductive pigment to the total of the pigments of ≥50 mass%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、溶接後の溶接ビード中の欠陥が非常に少ない溶接性に優れた防錆鋼材に関する。   The present invention relates to a rust-proof steel material having excellent weldability with very few defects in a weld bead after welding.

一般に、船舶、橋梁、プラント等の鉄鋼構造物を製造する場合、加工、組み立て期間中の鋼材の発錆を防止するために防錆処理が行われる。ごく一般的な防錆処理としては、加工前の鋼材をブラスト処理などで表面清浄した後、一次防錆プライマーを塗装することなどが挙げられる。   Generally, when manufacturing steel structures, such as a ship, a bridge, and a plant, a rust prevention process is performed in order to prevent the rusting of the steel material during a process and an assembly period. As a very general rust prevention treatment, the surface of a steel material before processing is cleaned by blasting or the like, and then a primary rust prevention primer is applied.

こうした一次防錆プライマーに求められる機能としては、従来から、(1)得られた塗膜が少なくとも3か月程度の暴露防食性を有すること、(2)塗膜が鋼材と強固に密着し、さらに上塗り塗料との付着性にも優れること、などに加え、(3)鋼材溶接時に、ピット、ブローホール等の溶接欠陥を生じさせないことが挙げられる。   Conventionally, as a function required for such a primary rust preventive primer, conventionally, (1) the obtained coating film has an anticorrosion property of at least about 3 months, and (2) the coating film is firmly adhered to the steel material, Furthermore, in addition to being excellent in adhesion with the top coat, etc., (3) it does not cause welding defects such as pits and blowholes when welding steel materials.

このような一次防錆プライマーとしては、従来より、防錆性に優れるジンクリッチプライマーが多く用いられてきた。一般のジンクリッチプライマーは、多量の亜鉛粉末を、有機系又は無機系の結合剤と混合して得られるものであり、塗膜中の亜鉛と鋼材面との間の電気化学作用による犠牲防食作用、亜鉛の酸化生成物被膜層による酸素、水等の遮断作用により、優れた防錆効果をもたらすものである。   As such a primary rust preventive primer, a zinc rich primer having excellent rust preventive properties has been conventionally used. A general zinc rich primer is obtained by mixing a large amount of zinc powder with an organic or inorganic binder, and sacrificial anticorrosive action due to the electrochemical action between zinc in the coating and the steel surface. The zinc oxide product coating layer provides an excellent antirust effect due to the blocking action of oxygen, water, and the like.

しかしながら、このジンクリッチプライマーには、次のような欠点があった。すなわち、まず、皮膜中の亜鉛粉末含有量が30〜95質量%と多いため、溶接時に亜鉛ヒュームが多く発生し、このガスにより、ブローホール、ピット等の溶接欠陥が発生するということである。この溶接欠陥の抑制を目的とする検討は、これまでにも多くなされており、それらの技術についても開示されている。   However, this zinc rich primer has the following drawbacks. That is, first, since the zinc powder content in the film is as high as 30 to 95% by mass, a large amount of zinc fume is generated during welding, and this gas causes welding defects such as blow holes and pits. Many studies for the purpose of suppressing this welding defect have been made so far, and those techniques are also disclosed.

特許文献1には、珪酸エステル初期縮合物、亜鉛粉末、及び、モリブデン含有顔料を含有し、防錆性と溶接性に優れたピット、ブローホールが非常に少ない無機ジンクショッププライマー塗膜が開示されているが、該塗膜においては、ピット、ブローホールの発生を完全には抑制できていない。   Patent Document 1 discloses an inorganic zinc shop primer coating film containing a silicate ester initial condensate, zinc powder, and a molybdenum-containing pigment, which has excellent rust prevention and weldability and has very few pits and blowholes. However, in the coating film, generation of pits and blowholes cannot be completely suppressed.

特許文献2には、塗膜の密着性、耐熱性に優れ、溶接時の高温にさらされても防錆性が低下しない耐熱性一次防錆プライマー組成物を得ることを目的し、アルキルシリケートの加水分解縮合物からなる結合剤、亜鉛粉末、フェロシリコンを配合してなる、耐熱性一次防錆プライマー組成物が開示されているが、該組成物は、耐熱防錆性を主たる目的としているため、溶接欠陥の抑制については、充分な効果を有していない。   Patent Document 2 aims to obtain a heat-resistant primary rust-preventing primer composition that is excellent in adhesion and heat resistance of a coating film and does not deteriorate in rust prevention even when exposed to high temperatures during welding. A heat-resistant primary rust preventive primer composition comprising a binder composed of hydrolysis condensate, zinc powder, and ferrosilicon is disclosed, but the composition is mainly intended for heat-resistant rust preventive properties. The suppression of weld defects does not have a sufficient effect.

特開平5−339521号公報JP-A-5-339521 特開平5−117553号公報JP-A-5-117553

従来のジンクリッチプライマーは、屋外での防錆性と溶接性を両立させることを目的としたものであるが、特に、防錆性が重視されており、溶接性に関しては、必ずしも充分な性能が得られていたわけではない。   Conventional zinc-rich primers are intended to achieve both outdoor rust prevention and weldability, but in particular, rust prevention is emphasized and sufficient performance is not necessarily achieved with regard to weldability. It was not obtained.

一方、実際に使用される全ての用途でプライマーに優れた防性能が求められるわけではない。例えば、橋梁製作の多くがそうであるように、屋内で構造材の組み立が行われるような場合には、従来から用いられているジンクリッチプライマーの防性能は過剰である。   On the other hand, excellent protection performance is not required for the primer in all practical applications. For example, in the case where structural materials are assembled indoors, as is the case with many bridge fabrications, the prevention performance of the zinc rich primer used conventionally is excessive.

このような用途では、溶接性の向上に対する要求が強いことから、本発明は、溶接欠陥がほとんど出ることのない優れた溶接性に特化したプライマーを提供することを目的とする。   In such applications, since there is a strong demand for improvement in weldability, an object of the present invention is to provide a primer specialized in excellent weldability in which almost no weld defects appear.

上記目的を達成する本発明の要旨は、以下のとおりである。
(1)アルキルシリケート由来の縮合物:10〜30質量%と、亜鉛アルミ合金粉末の組成:10〜30質量%と、顔料:10〜60質量%と、からなるプライマー層を表面に有する防錆鋼材において、
前記亜鉛アルミ合金粉末が、5〜20質量%のアルミニウムと残部亜鉛からなり、かつ、
前記顔料が、50質量%以上の導電性顔料と残部体質顔料からなる
ことを特徴とする溶接性に優れた防錆鋼材。
The gist of the present invention for achieving the above object is as follows.
(1) Rust-proofing having a primer layer on the surface comprising a condensate derived from alkyl silicate: 10-30% by mass, composition of zinc aluminum alloy powder: 10-30% by mass, and pigment: 10-60% by mass In steel,
The zinc aluminum alloy powder is composed of 5 to 20% by mass of aluminum and the balance zinc;
A rust-proof steel material excellent in weldability, wherein the pigment is composed of a conductive pigment of 50% by mass or more and the remaining extender pigment.

(2)前記導電性顔料が、リン鉄とフェロシリコンのいずれか一方又は両方であることを特徴とする前記(1)に記載の溶接性に優れた鋼材。   (2) The steel material having excellent weldability according to (1), wherein the conductive pigment is one or both of phosphorous iron and ferrosilicon.

(3)前記体質顔料が、シリカ、酸化チタン、酸化亜鉛、酸化鉄のいずれか1種又は2種以上であることを特徴とする前記(1)又は(2)に記載の溶接性に優れた防錆鋼材。   (3) The extender is excellent in weldability according to (1) or (2), wherein the extender pigment is one or more of silica, titanium oxide, zinc oxide, and iron oxide. Rust-proof steel.

本発明による溶接性に優れた防錆鋼材は、屋内環境の組み立て作業に用いることができ、従来のジンクリッチプライマーを用いた鋼材に比べ溶接性に優れ、溶接欠陥が非常に少なく、また、手入れ補修作業機会が減るために、効率よく溶接作業を行なうことができる。   The rust-proof steel material having excellent weldability according to the present invention can be used for assembling work in an indoor environment, has superior weldability compared to a steel material using a conventional zinc rich primer, has very few welding defects, and is maintained. Since the repair work opportunities are reduced, the welding work can be performed efficiently.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明者は、溶接時の欠陥を発生させるガスの生成を抑制することが重要であると考え、ガス発生の原因となる亜鉛とバインダー樹脂に着目し、亜鉛粉末ではなく、亜鉛−アルミ合金粉末を用いることで亜鉛含有量を低減させ、また、水素や炭素元素含有量の少ないバインダー樹脂の選定、樹脂含有量の抑制、などについて検討するとともに、亜鉛量の低下による導電性低下と防食性の低下を補うための代替添加剤等についても鋭意検討し、本発明の構成を見出した。   The present inventor considers that it is important to suppress the generation of gas that generates defects during welding, paying attention to zinc and binder resin that cause gas generation, not zinc powder but zinc-aluminum alloy powder In addition to reducing the zinc content, selecting a binder resin with a low hydrogen or carbon element content, and controlling the resin content, etc. The present inventors have intensively studied alternative additives for compensating for the decrease, and found the configuration of the present invention.

本発明のプライマーには、バインダー樹脂として、アルキルシリケート由来の縮合物を用いる。アルキルシリケート由来の縮合物を用いることで、他の有機物、高分子組成物を用いる場合と比べ、プライマー塗膜中の水素と炭素の含有量を低くすることができ、溶接時におけるガス発生量を抑制し、溶接時の欠陥を防止することができる。   In the primer of the present invention, a condensate derived from alkyl silicate is used as a binder resin. By using a condensate derived from an alkyl silicate, the content of hydrogen and carbon in the primer coating can be reduced compared to the case of using other organic materials and polymer compositions, and the amount of gas generated during welding can be reduced. It can suppress and prevent the defect at the time of welding.

本発明に使用されるアルキルシリケート由来の縮合物としては、テトラアルコキシシリケート、例えば、テトラメトキシシリケート、テトラエトキシシリケート、テトラプロポキシシリケート、テトライソプロポキシシリケート、テトラブトキシシリケートなどに由来の縮合物が使用可能である。   As the condensate derived from an alkyl silicate used in the present invention, a condensate derived from a tetraalkoxy silicate such as tetramethoxy silicate, tetraethoxy silicate, tetrapropoxy silicate, tetraisopropoxy silicate, tetrabutoxy silicate, etc. can be used. It is.

これらアルキルシリケートの単量体又は部分縮合体を、水、及び、塩酸、硫酸、硝酸、酢酸等の触媒のもとで縮合反応させた反応物を使用することができる。その中でも、テトラエトキシシリケート、テトラプロポキシシリケートを由来とする縮合物が、特に、安定性に優れ、さらに、水素量、炭素量が少ないため好適である。   A reaction product obtained by subjecting these alkyl silicate monomers or partial condensates to a condensation reaction with water and a catalyst such as hydrochloric acid, sulfuric acid, nitric acid, or acetic acid can be used. Among them, a condensate derived from tetraethoxysilicate or tetrapropoxysilicate is particularly preferable because of excellent stability and a small amount of hydrogen and carbon.

アルキルシリケート由来の縮合物の使用量は、形成される塗膜中において、10〜30質量%、好ましくは15〜30質量%である。10質量%未満では、十分な塗装容易性、塗膜形成性が得られず、また、30質量%を超えると、耐熱性、防錆性が低下し、溶接時のガス発生によるブローホールなどの欠陥が多くなり、好ましくない。   The usage-amount of the condensate derived from an alkyl silicate is 10-30 mass% in the coating film formed, Preferably it is 15-30 mass%. If it is less than 10% by mass, sufficient coating ease and coating film formability cannot be obtained, and if it exceeds 30% by mass, heat resistance and rust resistance are lowered, and blow holes due to gas generation during welding Defects increase, which is not preferable.

安定した溶接性を確保するためには、塗膜中の亜鉛は少ない方が有利であるが、防錆性確保のための最低量は確保する必要がある。本発明における亜鉛アルミ合金粉末の塗膜中の含有量は、10〜30質量%である。10質量%未満では、十分な防錆性が得られず、また、30質量%を超えると、溶接時に、亜鉛蒸発による溶接欠陥が多くなるので、好ましくない。   In order to ensure stable weldability, it is advantageous that there is less zinc in the coating film, but it is necessary to ensure the minimum amount for ensuring rust prevention. Content in the coating film of the zinc aluminum alloy powder in this invention is 10-30 mass%. If it is less than 10% by mass, sufficient rust preventive properties cannot be obtained, and if it exceeds 30% by mass, welding defects due to zinc evaporation increase during welding, which is not preferable.

本発明に使用する亜鉛アルミ合金粉末の組成は、アルミニウムが5〜20質量%で残部が亜鉛である。安定的に塗布可能な塗膜厚10〜20μmにおいて、アルミニウムが5質量%未満では、前記塗膜中の亜鉛アルミ合金粉末の含有量でも、亜鉛の蒸発による溶接欠陥の抑制効果が十分ではなく、一方、アルミニウムが20質量%を超えると、亜鉛による犠牲防食性が低下し、溶接後の強度低下の可能性がある。   The composition of the zinc aluminum alloy powder used in the present invention is 5 to 20% by mass of aluminum and the balance is zinc. In a coating thickness of 10 to 20 μm that can be stably applied, if the aluminum content is less than 5% by mass, the effect of suppressing welding defects due to evaporation of zinc is not sufficient even with the content of zinc-aluminum alloy powder in the coating film, On the other hand, when aluminum exceeds 20 mass%, the sacrificial corrosion resistance by zinc falls and there exists a possibility of the strength fall after welding.

すなわち、作業性の良い塗膜厚みと防食性及び溶接性を適確に満足するためには、塗膜中の亜鉛合金粉末の含有量と、亜鉛アルミ合金中のアルミニウム含有量を、適正な上記範囲内に調整する必要がある。   That is, in order to accurately satisfy the coating thickness, corrosion resistance, and weldability with good workability, the content of zinc alloy powder in the coating film and the aluminum content in zinc-aluminum alloy should be set appropriately. It is necessary to adjust within the range.

亜鉛アルミ合金粉末の大きさは、平均粒径で2〜20μmが望ましい。2μm未満では、亜鉛合金粉末の体積に対する表面積割合が大きくなるため、表面酸化し易くなり、防食性が劣化する。20μmを超えると、塗装厚みが増し、ガス発生量が増え、溶接欠陥が増大する。   The size of the zinc-aluminum alloy powder is desirably 2 to 20 μm in terms of average particle size. If it is less than 2 μm, the surface area ratio with respect to the volume of the zinc alloy powder increases, so that surface oxidation is likely to occur, and the corrosion resistance deteriorates. If it exceeds 20 μm, the coating thickness increases, the amount of gas generation increases, and the weld defects increase.

亜鉛アルミ合金粉末の製造方法は、アトマイズ法でも粉砕法でもよいが、アトマイズ法では、形状が球状、又は、楕円球状の粉末を容易に製造することができ、粉砕法では、形状が不ぞろいとなり易いので、アトマイズ法が適当である。   The method for producing the zinc-aluminum alloy powder may be an atomizing method or a pulverizing method. However, the atomizing method can easily produce a spherical or oval spherical powder, and the pulverizing method tends to be uneven in shape. Therefore, the atomizing method is appropriate.

本発明では、顔料として、導電性顔料と体質顔料を用いる。導電性顔料は、本発明の亜鉛アルミ合金粉末だけでは不十分な溶接に必要な導電性を確保するために必要である。導電性顔料は、体質顔料とともに添加され、その粒径は、いずれも、平均粒径で1〜20μmが望ましい。1μm未満では、顔料同士が凝集し易く、20μmを超えると、塗膜強度が低下するので、好ましくない。   In the present invention, a conductive pigment and an extender pigment are used as the pigment. The conductive pigment is necessary for ensuring the conductivity required for welding which is insufficient with the zinc-aluminum alloy powder of the present invention alone. The conductive pigment is added together with the extender pigment, and the particle size is preferably 1 to 20 μm in average particle size. If it is less than 1 μm, the pigments tend to aggregate together, and if it exceeds 20 μm, the coating film strength decreases, which is not preferable.

導電性顔料及び体質顔料の使用量は、10〜60質量%であり、顔料のうちの導電性顔料の割合が50質量%以上である必要がある。顔料中の導電性顔料割合が50質量%未満では、前記の亜鉛アルミ合金量での塗膜の導電性が低下して、溶接時のスパッタや欠陥が多くなる原因となる。   The usage-amount of a conductive pigment and an extender pigment is 10-60 mass%, and the ratio of the conductive pigment of a pigment needs to be 50 mass% or more. When the proportion of the conductive pigment in the pigment is less than 50% by mass, the conductivity of the coating film with the amount of the zinc-aluminum alloy is lowered, which causes the increase in spatter and defects during welding.

体質顔料は、塗膜中の亜鉛アルミ合金と導電性顔料の含有割合を調整するとともに、骨材として用いられる。   The extender pigment is used as an aggregate while adjusting the content ratio of the zinc aluminum alloy and the conductive pigment in the coating film.

導電性顔料としては、分解温度が高く溶接欠陥が出難いものを用いることが好ましく、特に、フェロシリコン、リン鉄が好適である。   As the conductive pigment, it is preferable to use a pigment having a high decomposition temperature and hardly causing welding defects, and ferrosilicon and iron phosphate are particularly preferable.

体質顔料としては、溶接欠陥の出難い熱的に安定な顔料が望ましく、シリカ、酸化チタン、酸化亜鉛、酸化鉄、モリブデン酸亜鉛などを用いることができる。   As the extender pigment, a thermally stable pigment that hardly causes welding defects is desirable, and silica, titanium oxide, zinc oxide, iron oxide, zinc molybdate, and the like can be used.

前記成分のうち、バインダーを含む液状成分と、それ以外の粉末成分を混ぜて保存すると、粉末が凝集したままで分散し難くなるため、別容器に保存しておくことが好ましい。   Among the above components, if a liquid component containing a binder and other powder components are mixed and stored, the powder remains agglomerated and is difficult to disperse, so it is preferable to store it in a separate container.

本発明の鋼材は、使用直前に両者塗料成分を混合したものを、エアレススプレー、エアースプレー、刷毛等の通常の塗装手段で鋼材に塗付することで得ることができる。   The steel material of the present invention can be obtained by applying a mixture of both paint components immediately before use to the steel material by ordinary coating means such as airless spray, air spray, and brush.

以下、本発明を実施例に基づいて、具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

テトラエトキシシリケート〔「エチルシリケート40」(日本コルコート社製商品名)〕36質量%とイソプロピルアルコール64質量%を40℃で攪拌混合した混合攪拌物を作製し、次いで、この混合攪拌物96質量%に対し、1N−塩酸25質量%と水75質量%からなる混合物4質量%を90分かけて滴下し、滴下後、40℃で、さらに4時間攪拌して、テトラエトキシシリケート加水分解縮合物溶液を得た。   Tetraethoxysilicate [“Ethyl silicate 40” (trade name, manufactured by Nippon Colcoat Co., Ltd.)] 36 mass% and isopropyl alcohol 64 mass% were mixed and stirred at 40 ° C., and then 96 mass% of the mixed stirred material. On the other hand, 4% by mass of a mixture consisting of 25% by mass of 1N hydrochloric acid and 75% by mass of water was added dropwise over 90 minutes. After the addition, the mixture was further stirred at 40 ° C. for 4 hours to give a tetraethoxysilicate hydrolysis condensate solution. Got.

これと、アルミニウムの含有量を変化させて作製した亜鉛アルミ合金をアトマイズ(噴霧)法で粉末した平均粒径8μmのもの、市販のフェロシリコン、リン鉄、シリカ、酸化亜鉛、酸化鉄の粉末をイソプロピルアルコール、キシレン添加して充分分散させえて粘度調整したもの、とを混ぜて塗布溶液とした。   A zinc aluminum alloy produced by changing the aluminum content and powdered by atomization (spraying) and having an average particle size of 8 μm, commercially available ferrosilicon, phosphorous iron, silica, zinc oxide, iron oxide powder A solution prepared by adding isopropyl alcohol and xylene and sufficiently dispersing to adjust the viscosity was mixed to obtain a coating solution.

この塗布溶液を、乾燥膜厚で15μmになるように、鋼材にスプレー塗布して、試験に供した。   This coating solution was spray-coated on a steel material so as to have a dry film thickness of 15 μm and used for the test.

次に、このようにして得られた各試料について、下記の試験を行ない、結果を表1に示した。   Next, the following test was performed on each sample thus obtained, and the results are shown in Table 1.

(1)防錆性試験
試験材として、70×150×4mmのサンドブラスト厚鋼板(JIS SM490相当)を用い、各試料を、エアースプレーによって、乾燥膜厚15μmになるように塗装し、JIS K 5600−7−1の耐中性塩水噴霧噴霧性に従って試験を行ない、耐食性はそれほど重視しないという観点から、72時間後の白錆発生率(%)を評価した。
(1) Rust prevention test A 70 × 150 × 4 mm sandblasted thick steel plate (equivalent to JIS SM490) was used as a test material, and each sample was coated with air spray to a dry film thickness of 15 μm, and JIS K 5600 The test was conducted according to the neutral resistance salt spray sprayability of -7-1, and the white rust occurrence rate (%) after 72 hours was evaluated from the viewpoint that the corrosion resistance is not so important.

(3)溶接性試験
試験材として、100×500×12mmのショットブラスト厚鋼板を用い、各試料を、エアースプレーによって乾燥膜厚15μmになるように塗装し、20℃で1週間乾燥させた。次いで、このようにして得られた2枚の試験板を一組とし、下記の溶接条件で水平隅肉溶接を行なった。
(3) Weldability test As a test material, a shot blast thick steel plate of 100 × 500 × 12 mm was used, and each sample was coated by air spray so as to have a dry film thickness of 15 μm and dried at 20 ° C. for one week. Next, the two test plates obtained in this way were used as a set, and horizontal fillet welding was performed under the following welding conditions.

溶接は、第1ビードを溶接後放冷して第2ビードを溶接する方法で行ない、第2溶接ビードについて、ピットの発生数を数えた後、X線透過撮影を行って、溶接ビード内のブローホール発生率を調べ、ピット発生率(個/m)とブローホール発生率(溶接部破断面における全気泡断面の最大幅の合計長さ/溶接長さ×100%)を評価した。   Welding is performed by a method in which the first bead is allowed to cool after being welded and the second bead is welded. After counting the number of pits generated for the second weld bead, X-ray transmission photography is performed, The blow hole generation rate was examined, and the pit generation rate (pieces / m) and the blow hole generation rate (total length of the maximum width of all the bubble cross sections at the weld fracture surface / welding length × 100%) were evaluated.

(溶接条件)
溶接ワイヤー:SF−1 φ1.4mm,フラックス入(日鐵住金溶接工業(株)商品名)
溶接方法 :炭酸ガスシールドアーク溶接
溶接速度 :1000mm/min
電 流 :350A
電 圧 :35V
(Welding conditions)
Welding wire: SF-1 φ1.4mm, with flux (Nippon Steel & Sumikin Welding Co., Ltd. trade name)
Welding method: Carbon dioxide shielded arc welding Welding speed: 1000 mm / min
Current: 350A
Voltage: 35V

表1より,亜鉛アルミ合金粉末とシリケート、導電性顔料 、顔料の適当な組み合わせにより、良好な耐食性と溶接性が達成できることがわかる。   From Table 1, it can be seen that good corrosion resistance and weldability can be achieved by an appropriate combination of zinc aluminum alloy powder and silicate, conductive pigment, and pigment.

Figure 2009279824
Figure 2009279824

平均粒径の異なる亜鉛合金粉末、乾燥膜厚を種々に変化させて鋼板にスプレー塗布して試験に供した結果を、表2に示す。   Table 2 shows the results obtained by subjecting the zinc alloy powders having different average particle diameters to various tests of the dry film thickness and spray coating on the steel sheet for the test.

Figure 2009279824
Figure 2009279824

実施例25〜実施例29に示すように、皮膜が厚み薄いと防食性が低下し、被覆厚みが高いと溶接欠陥が増大する傾向がある。また、実施例30〜31に示すように、亜鉛合金粉末の大きさが大きくなると、溶接時のピットが発生しやすくなる傾向がある。しかしながら、従来技術の比較例10〜11と比較すると、同程度の皮膜厚みにおいて、耐食性(72時間の短期の耐食性試験)及び溶接性に優れているのがわかる。   As shown in Examples 25 to 29, when the film is thin, the corrosion resistance is lowered, and when the coating thickness is high, the weld defect tends to increase. Moreover, as shown in Examples 30 to 31, when the size of the zinc alloy powder is increased, pits during welding tend to be generated. However, when compared with Comparative Examples 10 to 11 of the prior art, it is understood that the corrosion resistance (short-term corrosion resistance test for 72 hours) and weldability are excellent at the same film thickness.

本発明による溶接性に優れた鋼材においては、溶接性に優れるために溶接欠陥が非常に少なく、手入れ補修作業機会が減るので、屋内環境の組み立てで多くの溶接を必要とする鋼構造物用鋼材として用いることができる。よって、本発明は、鋼構造物製造産業において利用可能性が高いものである。   In the steel material excellent in weldability according to the present invention, since the weldability is excellent, there are very few welding defects and the maintenance repair work opportunities are reduced. Therefore, the steel material for steel structures that requires a lot of welding in the assembly of the indoor environment. Can be used as Therefore, the present invention has high applicability in the steel structure manufacturing industry.

Claims (3)

アルキルシリケート由来の縮合物:10〜30質量%と、亜鉛アルミ合金粉末:10〜30質量%と、顔料:10〜60質量%と、からなるプライマー層を表面に有する防錆鋼材において、
前記亜鉛アルミ合金粉末が、5〜20質量%のアルミニウムと残部亜鉛からなり、かつ、
前記顔料が、50質量%以上の導電性顔料と残部体質顔料からなる
ことを特徴とする溶接性に優れた防錆鋼材。
In the rust-proof steel material having a primer layer formed on the surface thereof, the condensate derived from alkyl silicate: 10 to 30% by mass, zinc aluminum alloy powder: 10 to 30% by mass, and pigment: 10 to 60% by mass,
The zinc aluminum alloy powder is composed of 5 to 20% by mass of aluminum and the balance zinc;
A rust-proof steel material having excellent weldability, wherein the pigment is composed of a conductive pigment of 50% by mass or more and the remaining extender pigment.
前記導電性顔料が、リン鉄とフェロシリコンのいずれか一方又は両方であることを特徴とする請求項1に記載の溶接性に優れた防錆鋼材。   The rust-proof steel material with excellent weldability according to claim 1, wherein the conductive pigment is one or both of phosphorous iron and ferrosilicon. 前記体質顔料が、シリカ、酸化チタン、酸化亜鉛、酸化鉄のいずれか1種又は2種以上であることを特徴とする請求項1又は2に記載の溶接性に優れた防錆鋼材。   The rust-proof steel material having excellent weldability according to claim 1 or 2, wherein the extender pigment is one or more of silica, titanium oxide, zinc oxide, and iron oxide.
JP2008133581A 2008-05-21 2008-05-21 Anticorrosive steel material having excellent weldability Pending JP2009279824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133581A JP2009279824A (en) 2008-05-21 2008-05-21 Anticorrosive steel material having excellent weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133581A JP2009279824A (en) 2008-05-21 2008-05-21 Anticorrosive steel material having excellent weldability

Publications (1)

Publication Number Publication Date
JP2009279824A true JP2009279824A (en) 2009-12-03

Family

ID=41450807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133581A Pending JP2009279824A (en) 2008-05-21 2008-05-21 Anticorrosive steel material having excellent weldability

Country Status (1)

Country Link
JP (1) JP2009279824A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225299A (en) * 2010-04-15 2011-11-10 Ihi Corp Conveyor trough structure
US20120240489A1 (en) * 2011-03-24 2012-09-27 Rivera Angel M Flat roof solar racking system
CN103084760A (en) * 2013-02-22 2013-05-08 大连理工大学 Welding stick used for welding aluminum alloy/ steel dissimilar metal
CN103741158A (en) * 2013-12-20 2014-04-23 吴江邻苏精密机械有限公司 Normal-temperature cleaning antirust agent and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129070A (en) * 1982-01-29 1983-08-01 Mitsui Mining & Smelting Co Ltd Rust preventing coating material composition
JPS59221361A (en) * 1983-05-31 1984-12-12 Nippon Steel Corp Heat-resistant corrosion-proofing paint
JPH05117553A (en) * 1991-10-25 1993-05-14 Nippon Oil & Fats Co Ltd Heat resistant primary rust proof primer composition
JPH0860039A (en) * 1994-08-22 1996-03-05 Chugoku Marine Paints Ltd Temporary anticorrosive coating composition
JP2001164194A (en) * 1999-12-13 2001-06-19 Nippon Steel Corp Zinc-rich coating excellent in corrosion-resistant property and coated metal plate
JP2002172363A (en) * 2000-12-06 2002-06-18 Sumitomo Metal Ind Ltd Organic coating-bearing surface treated steel plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129070A (en) * 1982-01-29 1983-08-01 Mitsui Mining & Smelting Co Ltd Rust preventing coating material composition
JPS59221361A (en) * 1983-05-31 1984-12-12 Nippon Steel Corp Heat-resistant corrosion-proofing paint
JPH05117553A (en) * 1991-10-25 1993-05-14 Nippon Oil & Fats Co Ltd Heat resistant primary rust proof primer composition
JPH0860039A (en) * 1994-08-22 1996-03-05 Chugoku Marine Paints Ltd Temporary anticorrosive coating composition
JP2001164194A (en) * 1999-12-13 2001-06-19 Nippon Steel Corp Zinc-rich coating excellent in corrosion-resistant property and coated metal plate
JP2002172363A (en) * 2000-12-06 2002-06-18 Sumitomo Metal Ind Ltd Organic coating-bearing surface treated steel plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225299A (en) * 2010-04-15 2011-11-10 Ihi Corp Conveyor trough structure
US20120240489A1 (en) * 2011-03-24 2012-09-27 Rivera Angel M Flat roof solar racking system
US8572909B2 (en) * 2011-03-24 2013-11-05 Solar Mounting Solutions, LLC Flat roof solar racking system
CN103084760A (en) * 2013-02-22 2013-05-08 大连理工大学 Welding stick used for welding aluminum alloy/ steel dissimilar metal
CN103741158A (en) * 2013-12-20 2014-04-23 吴江邻苏精密机械有限公司 Normal-temperature cleaning antirust agent and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5905097B2 (en) Primary rust preventive coating composition and use thereof
JP5600992B2 (en) Surface-treated corrosion-resistant steel with excellent weather resistance
WO2019088155A1 (en) Anti-rust coating composition and use thereof
JP4585224B2 (en) High corrosion resistance zinc-based alloy coated steel coating
JP2009279824A (en) Anticorrosive steel material having excellent weldability
JP2010269497A (en) Steel material having at least one primer layer and primer composition for steel material
JP2009256781A (en) Hot-dip galvanized steel sheet having chromate-free coating excellent in corrosion resistance
JPH0873777A (en) Rust preventive coating composition
JP5066913B2 (en) Laser cutting steel
JP6510670B2 (en) Water-based surface treatment agent for galvanized steel or zinc-based alloy plated steel, coating method and coated steel
JP2007070572A (en) Coating composition and fuel tank
JP5262369B2 (en) Steel structure coated with Al alloy and its anticorrosion coating method
JP2012082473A (en) Anticorrosive steel material
JP2009167246A (en) Paste for highly anticorrosive rust-preventive coating exhibiting excellent processability in service, highly anticorrosive rust-preventive coating, highly anticorrosive steel coated with the coating, and steel structure
JP2009113389A (en) Precoated steel sheet
JP4893293B2 (en) Laser cutting steel and coating composition therefor
JPH11116856A (en) Rustproofing coating composition
JP6155006B2 (en) Aqueous chromium-free treatment solution
JP4806995B2 (en) Laser cutting steel and coating composition therefor
JPS58185660A (en) Primary rust-resisting paint composition
JP2014152268A (en) Paint and painted article
JP2006160776A (en) Water-based zinc-rich coating
JP2005336432A (en) Coating for steel material and steel material having excellent corrosion resistance and rust preventing property
JPS62275173A (en) Primary rust-resisting paint composition
JPH05117553A (en) Heat resistant primary rust proof primer composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Effective date: 20111216

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120