JP2009279507A - Emulsification device - Google Patents

Emulsification device Download PDF

Info

Publication number
JP2009279507A
JP2009279507A JP2008133549A JP2008133549A JP2009279507A JP 2009279507 A JP2009279507 A JP 2009279507A JP 2008133549 A JP2008133549 A JP 2008133549A JP 2008133549 A JP2008133549 A JP 2008133549A JP 2009279507 A JP2009279507 A JP 2009279507A
Authority
JP
Japan
Prior art keywords
liquid
flow path
channel
mixing
continuous phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008133549A
Other languages
Japanese (ja)
Other versions
JP4798174B2 (en
Inventor
Erika Katayama
絵里香 片山
Tetsuo Miyamoto
哲郎 宮本
Kiju Endo
喜重 遠藤
Morinori Togashi
盛典 富樫
Mio Suzuki
美緒 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2008133549A priority Critical patent/JP4798174B2/en
Priority to CN2009101410943A priority patent/CN101584972B/en
Priority to EP09006861A priority patent/EP2123349B1/en
Publication of JP2009279507A publication Critical patent/JP2009279507A/en
Application granted granted Critical
Publication of JP4798174B2 publication Critical patent/JP4798174B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4338Mixers with a succession of converging-diverging cross-sections, i.e. undulating cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/434Mixing tubes comprising cylindrical or conical inserts provided with grooves or protrusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/50Pipe mixers, i.e. mixers wherein the materials to be mixed flow continuously through pipes, e.g. column mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers

Abstract

<P>PROBLEM TO BE SOLVED: To provide an emulsification device in which (1) emulsion droplets can be made fine in diameter without the reduction of a channel width, which may cause degradation of productivity, and (2) the disperse phase can be prevented from sticking to the channel to permit longer time use while providing uniform emulsion particles in the emulsification device for mixing two kinds of liquid which are indissoluble to each other. <P>SOLUTION: The emulsification device comprises: a channel 211 for first liquid; a channel 210 for second liquid for second liquid; and a mixing channel 304 for combining the first liquid with the second liquid. In the mixing channel 304, the first liquid has a swirling component with respect to the mainstream direction, the channel of the second liquid is connected to the central part of the mixing channel, and the second liquid flows at the swirling central part of the swirling first liquid. Thereby, a continuous phase forms a stream swirling around the disperse phase. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、乳化装置に係り、特に、連続相となる液体に対し連続相に溶解しない第2の液体を分散相として連続相中に均一に分散させて乳化するに好適な乳化装置に関する。   The present invention relates to an emulsifying device, and more particularly to an emulsifying device suitable for emulsifying a second liquid that does not dissolve in a continuous phase as a dispersed phase in a continuous phase.

エマルションは、一般的には水と油のように互いに混ざり合わない2液に対し、剪断力を加えることによって一方の液体を微細化させ、もう一方の液体中に分散させることにより作製される。   Emulsions are generally produced by applying a shearing force to two liquids that do not mix with each other, such as water and oil, so that one liquid is refined and dispersed in the other liquid.

従来のエマルション形成法としては、分散法を用いたバッチ式の方法が知られている。これは大型の容器に水と油を投入し、回転・攪拌機構により一度に大量のエマルションを得るものだが、この方法では剪断力が液体に対し均一に加わらないことから作製されるエマルションの粒子径が不均一であること、また、作製に時間を要するという問題があった。ここで、エマルション粒子の粒径が不均一の状態では、その効果・性能にバラツキが生じ品質低下の原因となる。   As a conventional emulsion forming method, a batch method using a dispersion method is known. In this method, water and oil are put into a large container, and a large amount of emulsion is obtained at once by a rotating / stirring mechanism. Are non-uniform, and it takes time to manufacture. Here, in the state where the particle size of the emulsion particles is not uniform, the effect / performance varies, which causes the quality to deteriorate.

これに対し、近年、マイクロ液体チップを用いたエマルション作製が提唱されている。マイクロ流体チップは、幅及び深さが数μmから数百μmの微小流路に液体を供給し、乳化を微小流路内で行うものである。   On the other hand, in recent years, preparation of emulsion using a micro liquid chip has been proposed. A microfluidic chip supplies liquid to a microchannel having a width and a depth of several μm to several hundreds of μm, and emulsification is performed in the microchannel.

具体的には、水と油を多数の流れに分割し、それらを交互に配することで液体間の接触面積を高め、流路を段階的に絞りこむことで流路壁面との間に生じる液体せん速度を利用したものが知られている(例えば、特許文献1参照)。   Specifically, water and oil are divided into a large number of flows, and these are alternately arranged to increase the contact area between the liquids, and the flow path is narrowed in steps to create a space between the flow path walls. The thing using the liquid spiral velocity is known (for example, refer patent document 1).

また、分散相を内側、連続相を外側とした層流状態のシースフローを形成することでエマルションを作製する方法がある。これは、連続相の送液速度を制御することにより、連続相と分散相の界面に剪断力を掛け、その直後に急拡大部を設け急激に圧力を低下させることにより、分散相を分断するものが知られている(例えば、特許文献2参照)。   There is also a method of preparing an emulsion by forming a laminar flow sheath flow with the dispersed phase on the inside and the continuous phase on the outside. This is because by controlling the liquid feeding speed of the continuous phase, a shearing force is applied to the interface between the continuous phase and the dispersed phase, and immediately after that, a sudden expansion portion is provided to rapidly reduce the pressure, thereby dividing the dispersed phase. Those are known (for example, see Patent Document 2).

特開2004−81924号公報JP 2004-81924 A 特開2004−98225号公報JP 2004-98225 A

しかしながら、特許文献1に記載の乳化方法では、エマルションの粒径分布についてはバッチ式よりは改善するものの、ある程度の広がりがでる。   However, in the emulsification method described in Patent Document 1, although the particle size distribution of the emulsion is improved as compared with the batch type, it spreads to some extent.

一方、特許文献2に示すものでは、エマルション粒子を1つ1つ作製していくため、粒子径を分散値20%以内の均一に揃えることが可能である。しかしながらシースフロー構造では、エマルション粒子の粒子径を微細化する場合、マイクロ流路の直径dを小さく取る必要がある。しかし、流路幅を小さくすることによって、圧力損失はdの4乗に反比例して大きくなり、流せる流量が少なくなるという問題があった。更に、特許文献2記載のシースフロー構造では、連続相の流入する二方向では分散相の外側を連続相が流れるため、分散相が直接流路に触れることは無いが、他方の二方向では流路に直接分散相が接触する構造となっている。そのため、長時間使用すると分散相が流路内に付着し、液滴径のばらつきの原因となることが分かっている。   On the other hand, in the one shown in Patent Document 2, since emulsion particles are produced one by one, the particle diameter can be made uniform within a dispersion value of 20%. However, in the sheath flow structure, when the particle diameter of the emulsion particles is reduced, it is necessary to reduce the diameter d of the microchannel. However, by reducing the channel width, the pressure loss increases in inverse proportion to the fourth power of d, and there is a problem that the flow rate that can flow is reduced. Furthermore, in the sheath flow structure described in Patent Document 2, since the continuous phase flows outside the dispersed phase in the two directions into which the continuous phase flows, the dispersed phase does not directly contact the flow path, but the flow in the other two directions. The structure is such that the dispersed phase is in direct contact with the road. For this reason, it has been found that when used for a long time, the dispersed phase adheres to the flow path and causes variations in droplet diameter.

本発明の目的は、互いに溶解しない2液を混合させる乳化装置において、(1)生産性低下の原因となる流路幅を縮小せずに、エマルション粒子の粒子径を微細化でき、(2)分散相の流路付着を回避し、長時間使用が可能で、均一なエマルション粒子を得られる乳化装置を提供することにある。   The object of the present invention is to provide an emulsifying apparatus for mixing two liquids that do not dissolve each other. (1) The particle diameter of emulsion particles can be reduced without reducing the width of the flow path that causes a decrease in productivity. An object of the present invention is to provide an emulsifying device which can avoid the adhesion of the dispersed phase to the flow path, can be used for a long time, and obtain uniform emulsion particles.

(1)上記目的を達成するために、本発明は、互いに溶解しない2種類の液体を混合し、乳化する乳化装置であって、第一の液体の流路と、第二の液体の流路と、前記第一の液体と前記第二の液体が合流する混合流路とを備え、前記混合流路において、前記第一の液体は主流方向に対し旋回成分を有し、前記第二の液体の流路は前記混合流路の中央部に接続され、前記第二の液体は、旋回する前記第一の液体の旋回中心部を流れるようにしたものである。
かかる構成により、互いに溶解しない2液を混合させる乳化装置において、生産性低下の原因となる流路幅を縮小せずに、エマルション粒子の粒子径を微細化でき、また、分散相の流路付着を回避し、長時間使用が可能で、均一なエマルション粒子を得られるものとなる。
(1) In order to achieve the above object, the present invention is an emulsifying device for mixing and emulsifying two kinds of liquids that do not dissolve each other, and includes a first liquid channel and a second liquid channel. And a mixing channel in which the first liquid and the second liquid merge, wherein the first liquid has a swirling component in the main flow direction, and the second liquid The flow path is connected to the central portion of the mixing flow path, and the second liquid flows through the swirling center of the swirling first liquid.
With this configuration, in an emulsifying apparatus that mixes two liquids that do not dissolve each other, the particle diameter of the emulsion particles can be reduced without reducing the width of the flow path, which causes a decrease in productivity, and the flow path of the dispersed phase is attached. Can be used for a long time, and uniform emulsion particles can be obtained.

(2)上記(1)において、好ましくは、前記第一の流体の流路の中心軸は、前記混合流路の中心軸に対して、オフセットされて配置されているものである。   (2) In the above (1), preferably, the central axis of the flow path of the first fluid is offset with respect to the central axis of the mixing flow path.

(3)上記(2)において、好ましくは、前記第一の流体の流路は、複数本から形成され、前記複数本の第一の流体の流路は、それぞれ、前記混合流路の中心軸に対し、軸対称に配置されるものである。   (3) In the above (2), preferably, the first fluid channel is formed of a plurality of channels, and each of the plurality of first fluid channels is a central axis of the mixing channel. On the other hand, they are arranged symmetrically about the axis.

(4)上記(1)において、好ましくは、前記第二の液体の流路の中心軸は、前記混合流路の投影面内に配置されるものである。   (4) In the above (1), preferably, the central axis of the flow path of the second liquid is disposed within the projection plane of the mixing flow path.

(5)上記(1)において、好ましくは、前記混合流路は、その壁面にらせん状の凸部を備え、前記第一の液体に旋回力を発生させるものである。   (5) In the above (1), preferably, the mixing channel is provided with a spiral convex portion on a wall surface thereof to generate a turning force in the first liquid.

(6)上記(1)において、好ましくは、前記第一の流体の流路は、前記第二の流体の流路の周りに配置される二重管形状で形成され、前記第一の流体の流路内に配置された回転翼と、前記回転翼を駆動する回転機構とを備えるようにしたものである。   (6) In the above (1), preferably, the flow path of the first fluid is formed in a double tube shape disposed around the flow path of the second fluid, A rotating blade disposed in the flow path and a rotating mechanism for driving the rotating blade are provided.

本発明によれば、互いに溶解しない2液を混合させる乳化装置において、(1)生産性低下の原因となる流路幅を縮小せずに、エマルション粒子の粒子径を微細化でき、(2)分散相の流路付着を回避し、長時間使用が可能で、均一なエマルション粒子を得られるものとなる。   According to the present invention, in an emulsifying apparatus that mixes two liquids that do not dissolve each other, (1) the particle diameter of emulsion particles can be refined without reducing the width of the flow path that causes a decrease in productivity, and (2) This prevents the dispersed phase from adhering to the flow path, can be used for a long time, and uniform emulsion particles can be obtained.

以下、図1〜図7を用いて、本発明の第1の実施形態による乳化装置の構成及び動作について説明する。
最初に、図1を用いて、本実施形態による乳化装置を含むシステムの構成について説明する。
図1は、本発明の第1の実施形態による乳化装置を含むシステムの構成を示すシステム構成図である。
Hereinafter, the configuration and operation of the emulsification apparatus according to the first embodiment of the present invention will be described with reference to FIGS.
Initially, the structure of the system containing the emulsification apparatus by this embodiment is demonstrated using FIG.
FIG. 1 is a system configuration diagram showing the configuration of a system including an emulsification apparatus according to the first embodiment of the present invention.

原料タンク101Aには、水が貯留されている。また、原料タンク101Bには、油が貯留されている。原料タンク101Aに貯留された水は、ポンプ102Aにより、乳化装置104に送液される。また、原料タンク101Bに貯留された油は、ポンプ102Bにより、乳化装置104に送液される。ここで、ポンプ102A,102Bは、目的に応じ、シリンジポンプあるいはギアポンプなど使い分けることが好ましい。   Water is stored in the raw material tank 101A. In addition, oil is stored in the raw material tank 101B. The water stored in the raw material tank 101A is sent to the emulsifying device 104 by the pump 102A. The oil stored in the raw material tank 101B is sent to the emulsifying device 104 by the pump 102B. Here, it is preferable that the pumps 102A and 102B are selectively used, such as a syringe pump or a gear pump, depending on the purpose.

ポンプ102A,102Bによって送液された各液体は、導入チューブ103Aおよび103Bを通じて乳化装置104に流入し、この乳化装置104においてエマルションが作製される。作製されたエマルションは、導入チューブ105を通じてエマルションタンク106に貯留される。   Each liquid sent by the pumps 102A and 102B flows into the emulsifying device 104 through the introduction tubes 103A and 103B, and an emulsion is produced in the emulsifying device 104. The produced emulsion is stored in the emulsion tank 106 through the introduction tube 105.

なお、エマルション作製にあたり温度調整が必要な場合には、例えば恒温槽107内に乳化装置104を設置して恒温槽107内部を熱媒で満たし温度調整を行うことができる。あるいは乳化装置104の外側にペルチェ素子を設置してもよいものである。   In addition, when temperature adjustment is needed for emulsion preparation, the emulsification apparatus 104 can be installed in the thermostat 107, for example, the thermostat 107 can be filled with a heat medium, and temperature control can be performed. Alternatively, a Peltier element may be installed outside the emulsifying device 104.

次に、図2〜図6を用いて、本実施形態による乳化装置の構成について説明する。
図2及び図3は、本発明の第1の実施形態による乳化装置の構成を示す分解斜視図である。なお、図2は、乳化装置104の分解構造を連続相および分散相の導入部側から示したものであり、図3は、エマルション導出部側から示したものである。
Next, the configuration of the emulsification apparatus according to the present embodiment will be described with reference to FIGS.
2 and 3 are exploded perspective views showing the configuration of the emulsification apparatus according to the first embodiment of the present invention. FIG. 2 shows the decomposition structure of the emulsifying device 104 from the continuous phase and dispersed phase introduction side, and FIG. 3 shows the emulsion lead-out side.

また、図4は、本発明の第1の実施形態による乳化装置の構成を示す要部拡大図である。なお、図4(A)は、図2の破線丸Bで囲った領域の拡大部を液体導入部側から見た平面図であり、図4(B)は、図2の破線丸Bで囲った領域の拡大部を液体導入部側から見た斜視図である。図5は、本発明の第1の実施形態による乳化装置の構成を示す断面図である。なお、図5は、分散相の流れ方向に平行に中心を通る断面を示している。図6は、本発明の第1の実施形態による乳化装置における乳化の説明図である。   FIG. 4 is an enlarged view of a main part showing the configuration of the emulsification apparatus according to the first embodiment of the present invention. 4A is a plan view of an enlarged portion of a region surrounded by a broken line B in FIG. 2 as viewed from the liquid introduction unit side, and FIG. 4B is surrounded by a broken line B in FIG. FIG. FIG. 5 is a cross-sectional view showing the configuration of the emulsification apparatus according to the first embodiment of the present invention. FIG. 5 shows a cross section passing through the center in parallel with the flow direction of the dispersed phase. FIG. 6 is an explanatory diagram of emulsification in the emulsification apparatus according to the first embodiment of the present invention.

図2及び図3に示すように、乳化装置104は、液体導入部201と、合流流路部202と、混合流路部203と、液体導出部204とから構成される。液体導入部201の4隅には、貫通しているねじ穴205が形成されている。また、合流流路部202と、混合流路部203と、液体導出部204のそれぞれにも、液体導入部201のねじ穴205と同じ位置に、4個のねじ穴が形成されている。液体導出部204には、有底の位置決めピン穴213が2個形成されている。図3に示すように、液体導入部201にも、液体導出部204の位置決めピン穴213と同じ位置に、2個の有底の位置決めピン穴が形成されている。したがって、位置決めピン穴213に位置決めピン(図示せず)を刺すことで精密に位置決めが行え、ネジ穴205を貫通するねじ(図示せず)を用いて締結する。図5は、図2及び図3に示した液体導入部201と、合流流路部202と、混合流路部203と、液体導出部204とをねじ(図示せず)により締結した状態を示している。   As shown in FIGS. 2 and 3, the emulsifying device 104 includes a liquid introduction unit 201, a merging channel unit 202, a mixing channel unit 203, and a liquid outlet unit 204. At the four corners of the liquid introduction part 201, penetrating screw holes 205 are formed. In addition, four screw holes are formed at the same position as the screw hole 205 of the liquid introducing unit 201 in each of the merging channel unit 202, the mixing channel unit 203, and the liquid outlet unit 204. The liquid lead-out portion 204 is formed with two bottomed positioning pin holes 213. As shown in FIG. 3, two bottomed positioning pin holes are also formed in the liquid introducing portion 201 at the same position as the positioning pin holes 213 of the liquid outlet portion 204. Accordingly, positioning can be performed precisely by inserting a positioning pin (not shown) into the positioning pin hole 213, and fastening is performed using a screw (not shown) penetrating the screw hole 205. FIG. 5 shows a state in which the liquid introduction unit 201, the merging channel unit 202, the mixing channel unit 203, and the liquid outlet unit 204 shown in FIGS. 2 and 3 are fastened by screws (not shown). ing.

また、図2に示すように、液体導出部204には、エマルション導出流路212の周囲に、シール用溝206Aが形成されている。また、図3に示すように、液体導入部201には、連続相導入流路301の周囲に、シール用溝206Bが形成され、分散相導入流路302の周囲に、シール用溝206Cが形成されている。さらに、合流流路部202には、連続相分岐流路303の周囲に、シール用溝206Dが形成されている。シール用溝206にシール部材(図示せず)を挟み込むことによって各部材間の密着性が向上し、液体の漏れを防止することが可能である。必要に応じて各部材間を接着あるいは接合させて使用してもよいものである。   As shown in FIG. 2, a seal groove 206 </ b> A is formed in the liquid outlet portion 204 around the emulsion outlet passage 212. As shown in FIG. 3, in the liquid introduction unit 201, a sealing groove 206 </ b> B is formed around the continuous phase introduction flow path 301, and a sealing groove 206 </ b> C is formed around the dispersed phase introduction flow path 302. Has been. Further, a sealing groove 206 </ b> D is formed around the continuous phase branch flow path 303 in the merge flow path section 202. By sandwiching a seal member (not shown) in the seal groove 206, the adhesion between the members can be improved, and liquid leakage can be prevented. If necessary, the members may be bonded or joined together.

乳化装置104を構成する各部材の材質については、送液する液体の種類に応じ、金属あるいは樹脂、ガラス等が用いられる。また、各部材の材質はすべて同一である必要はなく、加工の特性、熱伝導性などに応じて部材ごとに材質を変えてもよいものである。   As the material of each member constituting the emulsifying device 104, metal, resin, glass or the like is used according to the type of liquid to be fed. Moreover, the material of each member does not need to be the same, and the material may be changed for each member in accordance with processing characteristics, thermal conductivity, and the like.

図2に示す液体導入部201の連続相導入口207は、図3に示す液体導入部201の連続相導入流路301に連通している。図2に示す液体導入部201の分散相導入口208は、図3に示す液体導入部201の分散相導入流路302に連通している。   The continuous phase introduction port 207 of the liquid introduction part 201 shown in FIG. 2 communicates with the continuous phase introduction flow path 301 of the liquid introduction part 201 shown in FIG. A dispersed phase introduction port 208 of the liquid introduction unit 201 shown in FIG. 2 communicates with the dispersed phase introduction flow path 302 of the liquid introduction unit 201 shown in FIG.

図2に示す合流流路部202の連続相垂直流路209は、図3に示す合流流路部202の連続相分岐流路303に連通している。連続相分岐流路303は、直線部と、分散相垂直流路210の近傍において、二股に分岐した流路から構成されている。図2に示す合流流路部202の連続相垂直流路209は、連続相分岐流路303の直線部の端部に連通している。図2に示す合流流路部202の分散相垂直流路210は、図3に示す合流流路部202の分散相垂直流路210に連通している。    The continuous phase vertical flow path 209 of the merge flow path section 202 shown in FIG. 2 communicates with the continuous phase branch flow path 303 of the merge flow path section 202 shown in FIG. The continuous phase branch flow path 303 is composed of a straight line and a flow path bifurcated in the vicinity of the dispersed phase vertical flow path 210. The continuous phase vertical flow path 209 of the merge flow path section 202 shown in FIG. 2 communicates with the end of the straight line portion of the continuous phase branch flow path 303. 2 is in communication with the dispersed phase vertical channel 210 of the merged channel unit 202 shown in FIG.

図2に示す混合流路部203の連続相水平流路211は、図3に示す混合流路部203の混合流路304に連通している。なお、連続相水平流路211の詳細構成については、図4を用いて後述する。   The continuous-phase horizontal channel 211 of the mixing channel unit 203 shown in FIG. 2 communicates with the mixing channel 304 of the mixing channel unit 203 shown in FIG. The detailed configuration of the continuous phase horizontal channel 211 will be described later with reference to FIG.

図2に示す液体導出部204のエマルション導出流路212は、図3に示す液体導出部204のエマルション導出口305に連通している。   The emulsion outlet channel 212 of the liquid outlet 204 shown in FIG. 2 communicates with the emulsion outlet 305 of the liquid outlet 204 shown in FIG.

図4(A)に示すように、混合流路部203の連続相水平流路211は、連続相水平流路211A,211Bと、円筒形の旋回流路211Zとから構成されている。旋回流路211Zに中心軸に対して、連続相水平流路211Aは、一方向にオフセットして配置され、連続相水平流路211Bは、他方向にオフセットして配置されている。すなわち、連続相水平流路211A,211Bは、旋回流路211Zに対して軸対称にオフセットさせて配置されている。   As shown in FIG. 4A, the continuous phase horizontal channel 211 of the mixing channel unit 203 is composed of continuous phase horizontal channels 211A and 211B and a cylindrical swirl channel 211Z. The continuous phase horizontal flow channel 211A is arranged offset in one direction with respect to the central axis in the swirl flow channel 211Z, and the continuous phase horizontal flow channel 211B is arranged offset in the other direction. That is, the continuous phase horizontal flow paths 211A and 211B are arranged so as to be offset symmetrically with respect to the swirl flow path 211Z.

図3に示した連続相分岐流路303の二股に分岐した流路の内、一方の流路が、連続相水平流路211Aの端部に接続され、旋回流路211Zに向かう流れが形成される。図3に示した連続相分岐流路303の二股に分岐した流路の内、他方の流路が、連続相水平流路211Bの端部に接続され、旋回流路211Zに向かう流れが形成される。連続相水平流路211Aの端部から旋回流路211Zに向かう流れと、連続相水平流路211Bの端部から、旋回流路211Zに向かう流れは、旋回流路211Zにおいて、旋回流となる。   One of the bifurcated channels of the continuous phase branch channel 303 shown in FIG. 3 is connected to the end of the continuous phase horizontal channel 211A, and a flow toward the swirl channel 211Z is formed. The Of the flow paths branched into two branches of the continuous phase branch flow path 303 shown in FIG. 3, the other flow path is connected to the end of the continuous phase horizontal flow path 211B to form a flow toward the swirl flow path 211Z. The The flow from the end of the continuous phase horizontal flow path 211A toward the swirl flow path 211Z and the flow from the end of the continuous phase horizontal flow path 211B toward the swirl flow path 211Z become a swirl flow in the swirl flow path 211Z.

図4(B)に示すように、旋回流路211Zの中心軸に対して、分散相垂直流路210の中心軸が一致するように配置され、また、混合流路304の中心軸が一致するように配置される。   As shown in FIG. 4B, the central axis of the dispersed phase vertical flow path 210 is arranged so as to coincide with the central axis of the swirling flow path 211Z, and the central axis of the mixing flow path 304 coincides. Are arranged as follows.

次に、図5を用いて、乳化装置104における全体的な液体の流れについて説明する。   Next, the overall liquid flow in the emulsifying device 104 will be described with reference to FIG.

連続相となる水及び分散相となる油は、それぞれ、連続相導入口207および分散相導入口208より液体導入部201に導入される。連続相導入口207および分散相導入口208には、継ぎ手(図示せず)を用いて、図1に示す導入チューブ103が接続され、ポンプ102によって各液体を乳化装置104内に送液する。   The water that becomes the continuous phase and the oil that becomes the dispersed phase are introduced into the liquid introducing portion 201 from the continuous phase introducing port 207 and the dispersed phase introducing port 208, respectively. The continuous tube inlet 207 and the dispersed phase inlet 208 are connected to the inlet tube 103 shown in FIG. 1 using a joint (not shown), and each liquid is fed into the emulsifier 104 by the pump 102.

乳化装置104内に連続相導入口207より導入された水は、連続相導入流路301及び連続相垂直流路209を経て連続相分岐流路303において分配され、混合流路304に流入する。ここで、連続相が旋回される。   Water introduced from the continuous phase inlet 207 into the emulsifier 104 is distributed in the continuous phase branch channel 303 via the continuous phase inlet channel 301 and the continuous phase vertical channel 209 and flows into the mixing channel 304. Here, the continuous phase is swirled.

一方、分散相導入口208より導入された油は、液体導入部201の積層平面に対し垂直方向となるよう形成された分散相導入流路302及び分散相垂直流路210を経由し、混合流路304の合流地点へと流れ込む。この合流地点において、2液は合流する。   On the other hand, the oil introduced from the dispersed phase introduction port 208 passes through the dispersed phase introduction flow path 302 and the dispersed phase vertical flow path 210 formed so as to be perpendicular to the laminating plane of the liquid introduction portion 201, and is mixed. It flows into the confluence of road 304. At this merging point, the two liquids merge.

図6は、合流地点における2液の挙動を示している。混合流路304で合流した水と油は、水が油の周りを包み込み旋回流れ401を形成する効果により、安定にエマルション粒子601が生成する。   FIG. 6 shows the behavior of the two liquids at the meeting point. Emulsion particles 601 are stably generated by the effect of the water and oil that merged in the mixing channel 304 wraps around the oil and forms a swirl flow 401.

生成したエマルション粒子601は、エマルション導出流路212を経てエマルション導出口305より導入チューブ105を経由して、エマルションタンク106に貯留される。   The generated emulsion particles 601 are stored in the emulsion tank 106 via the emulsion outlet channel 305, the emulsion outlet port 305, and the inlet tube 105.

ここで、各流路形状については本実施例に示す形状で限るものではなく、例えば矩形形状でもよいものである。   Here, the shape of each flow path is not limited to the shape shown in the present embodiment, and may be a rectangular shape, for example.

ここで、本発明に係る実施例について具体的に説明する。   Here, the Example which concerns on this invention is described concretely.

実施例としては、原料タンク101Aに貯留されている水としては、界面活性剤の混入された水とし、原料タンク101Bに貯留されている油としては、シリコンオイルの場合について説明する。   As an example, the case where water stored in the raw material tank 101A is water mixed with a surfactant and the oil stored in the raw material tank 101B is silicon oil will be described.

連続相水平流路211A,211Bの中心軸を、旋回部の中心軸と交わるように連続相の旋回成分を持たせない場合(旋回なし;図示せず)と、連続相水平流路211A,211Bの中心軸を、旋回部の中心軸とオフセットして配置した場合(旋回あり)における実験結果を図10に示す。ここで連続相水平流路211A,211Bを流れる水の流量と、液体導入部201を流れるシリコンオイルの流量を種々に変え、5つの送液条件における結果の比較を行った。この5つの送液条件である図10のcase1からcase5は、送液する連続相と分散相の総流量が大きい順に並べてある。   When the central axis of the continuous phase horizontal flow paths 211A and 211B does not have a continuous phase swirl component so as to intersect the central axis of the swivel section (no swirling; not shown), the continuous phase horizontal flow paths 211A and 211B FIG. 10 shows the experimental results in the case where the center axis is arranged offset from the center axis of the swivel unit (with swivel). Here, the flow rate of the water flowing through the continuous phase horizontal channels 211A and 211B and the flow rate of the silicon oil flowing through the liquid introduction unit 201 were variously changed, and the results were compared under five liquid feeding conditions. These five liquid feeding conditions, case 1 to case 5 in FIG. 10, are arranged in descending order of the total flow rate of the continuous phase and the dispersed phase.

以上の条件で、乳化装置を動作させた場合、製造されるエマルション中におけるエマルション粒子の粒径は、旋回なしの条件に比べ、旋回ありの条件では平均粒径が約10%小さくなった。また、平均分散値は、旋回なしの条件と同程度の10%以内となり、粒径ばらつきが小さいことを確認した。   When the emulsification apparatus was operated under the above conditions, the average particle size of the emulsion particles in the produced emulsion was about 10% smaller under the condition with swirling than under the condition without swirling. Moreover, the average dispersion value was within 10%, which was the same as the condition without turning, and it was confirmed that the particle size variation was small.

次に、図7を用いて、本実施形態による乳化装置におけるエマルション導出流路の他の構成について説明する。
図7は、本発明の第1の実施形態による乳化装置におけるエマルション導出流路の他の構成を示す斜視図である。なお、図4と同一符号は同一部分を示している。
Next, another configuration of the emulsion outlet flow path in the emulsification apparatus according to the present embodiment will be described with reference to FIG.
FIG. 7 is a perspective view showing another configuration of the emulsion outlet flow path in the emulsification apparatus according to the first embodiment of the present invention. The same reference numerals as those in FIG. 4 denote the same parts.

この例では、分散相導入流路210に対し連続相水平流路211を4つ配置し、連続相が4方向から流入する形状を表している。すなわち、図4に示した連続相水平流路211A,211Bと、円筒形の旋回流路211Zとに加えて、連続相水平流路211C,211Dを備えている。連続相水平流路211C,211Dも、旋回流路211Zの中心軸に対して、オフセットして配置されている。すなわち、連続相水平流路211A,211B,211C,211Dは、旋回流路211Zに対して、90度ずつずれた位置に、軸対称にオフセットさせて配置されている。   In this example, four continuous phase horizontal channels 211 are arranged with respect to the dispersed phase introduction channel 210, and the continuous phase flows from four directions. That is, in addition to the continuous phase horizontal channels 211A and 211B and the cylindrical swirl channel 211Z shown in FIG. 4, continuous phase horizontal channels 211C and 211D are provided. The continuous phase horizontal flow paths 211C and 211D are also arranged offset with respect to the central axis of the swirl flow path 211Z. That is, the continuous-phase horizontal flow paths 211A, 211B, 211C, and 211D are arranged so as to be offset axially symmetrically at positions shifted by 90 degrees with respect to the swirl flow path 211Z.

この例のように、4方向から連続相が流入することにより、連続相の旋回力が強まる。また、剪断力が4方向から均等に掛かることにより、2方向から連続相流入する図4に比べ液滴生成を安定化することができる。   As in this example, when the continuous phase flows from four directions, the turning force of the continuous phase is strengthened. Further, when the shear force is applied evenly from the four directions, the droplet generation can be stabilized as compared with FIG. 4 in which the continuous phase flows from the two directions.

なお、図4(B)に示した例では、旋回流路211Zの中心軸に対して、分散相垂直流路210の中心軸が一致するように配置され、また、混合流路304の中心軸が一致するように配置されるものとしたが、分散相垂直流路210の中心軸と、混合流路304の中心軸とは、概略一致すればよいものである。例えば、混合流路304の断面内に、分散相垂直流路210の中心軸が位置するようにすればよいものである。   In the example shown in FIG. 4B, the center axis of the dispersed phase vertical channel 210 is arranged so as to coincide with the center axis of the swirl channel 211Z, and the center axis of the mixing channel 304 However, the central axis of the dispersed phase vertical flow path 210 and the central axis of the mixing flow path 304 need only be substantially coincident with each other. For example, the central axis of the dispersed phase vertical channel 210 may be positioned in the cross section of the mixing channel 304.

以上説明したように、本実施形態によれば、連続相は剪断に旋回の効果を付与することにより、層流状態に比べ連続相と分散相の界面に働く力が相対的に強くなる。そのため、流路幅を縮小せずにエマルション粒子の粒子径を微細化することができる。もしくは、同じ粒径のエマルション粒子を得るためには、流路幅を従来よりも大きく取る事ができ、生産性を向上することができる。さらに、分散相の周りを連続相でつつむことにより、粒子径のばらつきの原因となる分散相の流路付着を回避でき、そのため洗浄せずに長時間均一な乳化が可能となる。   As described above, according to the present embodiment, the continuous phase imparts a swirling effect to the shearing, so that the force acting on the interface between the continuous phase and the dispersed phase is relatively stronger than in the laminar flow state. Therefore, the particle diameter of the emulsion particles can be reduced without reducing the channel width. Or in order to obtain the emulsion particle | grains of the same particle size, a flow path width can be taken larger than before, and productivity can be improved. Further, by clogging the periphery of the dispersed phase with a continuous phase, it is possible to avoid the dispersion phase from adhering to the flow path, which causes the dispersion of the particle diameter, so that uniform emulsification can be performed for a long time without washing.

次に、図8を用いて、本発明の第2の実施形態による乳化装置の構成について説明する。なお、本実施形態による乳化装置を含むシステムの構成は、図1に示したものと同様である。また、本実施形態による乳化装置の構成は、図2及び図3に示したものと同様である。
図8は、本発明の第2の実施形態による乳化装置の構成を示す要部拡大斜視図図である。
Next, the configuration of the emulsification apparatus according to the second embodiment of the present invention will be described with reference to FIG. In addition, the structure of the system containing the emulsification apparatus by this embodiment is the same as that of what was shown in FIG. Moreover, the structure of the emulsification apparatus by this embodiment is the same as that of what was shown in FIG.2 and FIG.3.
FIG. 8 is an essential part enlarged perspective view showing the configuration of the emulsification apparatus according to the second embodiment of the present invention.

図8に示す例は、主として、図2及び図4に示した例における混合流路部203を変更したものである。図8における混合流路304は、流路壁面にらせん状の凸部801を設けたものである。らせん状の凸部801は、雌ネジのように形成される。   The example shown in FIG. 8 is mainly obtained by changing the mixing channel portion 203 in the example shown in FIGS. The mixing channel 304 in FIG. 8 is provided with a spiral convex portion 801 on the channel wall surface. The spiral convex portion 801 is formed like a female screw.

混合流路304の入口側においては、混合流路304の中心軸に対して直交する方向から旋回流路211が接続されている。また、混合流路304の中心軸に対して、分散相垂直流路210の中心軸が一致するように、分散相垂直流路210が接続されている。   On the inlet side of the mixing channel 304, the swirling channel 211 is connected from a direction orthogonal to the central axis of the mixing channel 304. Further, the dispersed phase vertical flow path 210 is connected so that the central axis of the dispersed phase vertical flow path 210 coincides with the central axis of the mixing flow path 304.

このような構成により、旋回流路211から供給される連続相はらせん状に沿った流れ401を、分散相垂直流路210から供給される分散相の外周に形成し、旋回することができる。   With such a configuration, the continuous phase supplied from the swirl flow path 211 can be swirled by forming a flow 401 along the spiral on the outer periphery of the disperse phase supplied from the disperse phase vertical flow path 210.

本実施形態によっても、連続相は剪断に旋回の効果を付与することにより、流路幅を縮小せずにエマルション粒子の粒子径を微細化することができる。もしくは、同じ粒径のエマルション粒子を得るためには、流路幅を従来よりも大きく取る事ができ、生産性を向上することができる。さらに、分散相の周りを連続相でつつむことにより、粒子径のばらつきの原因となる分散相の流路付着を回避でき、そのため洗浄せずに長時間均一な乳化が可能となる。   Also according to the present embodiment, the continuous phase imparts a swirling effect to the shearing, thereby making it possible to refine the particle diameter of the emulsion particles without reducing the channel width. Or in order to obtain the emulsion particle | grains of the same particle size, a flow path width can be taken larger than before, and productivity can be improved. Further, by clogging the periphery of the dispersed phase with a continuous phase, it is possible to avoid the dispersion phase from adhering to the flow path, which causes the dispersion of the particle diameter, so that uniform emulsification can be performed for a long time without washing.

次に、図9を用いて、本発明の第3の実施形態による乳化装置の構成について説明する。なお、本実施形態による乳化装置を含むシステムの構成は、図1に示したものと同様である。また、本実施形態による乳化装置の構成は、図2及び図3に示したものと同様である。
図9は、本発明の第3の実施形態による乳化装置の構成を示す要部拡大斜視図図である。
Next, the configuration of the emulsification apparatus according to the third embodiment of the present invention will be described with reference to FIG. In addition, the structure of the system containing the emulsification apparatus by this embodiment is the same as that of what was shown in FIG. Moreover, the structure of the emulsification apparatus by this embodiment is the same as that of what was shown in FIG.2 and FIG.3.
FIG. 9 is an essential part enlarged perspective view showing the configuration of the emulsification apparatus according to the third embodiment of the present invention.

図8に示す例は、主として、図2及び図4に示した例における混合流路部203を変更したものである。本例は、外部エネルギーを利用して、旋回流を発生させる構造としたものである。具体的には、混合流路304の上流側は、連続相混合流路部垂直流路901を外側、分散相垂直流路210を内側とした二重管構造としている。連続相混合流路部垂直流路901には、回転翼902が備えられている。そして、回転機構903によって回転翼902を回転することで、連続相混合流路部垂直流路901を流れる連続相が旋回力を受け、旋回流を形成したまま混合流路304に流入する。   The example shown in FIG. 8 is mainly obtained by changing the mixing channel portion 203 in the example shown in FIGS. In this example, a swirl flow is generated using external energy. Specifically, the upstream side of the mixing channel 304 has a double tube structure with the continuous phase mixing channel unit vertical channel 901 on the outside and the dispersed phase vertical channel 210 on the inside. The continuous phase mixing channel section vertical channel 901 is provided with a rotary blade 902. Then, by rotating the rotary blade 902 by the rotation mechanism 903, the continuous phase flowing through the continuous phase mixing channel vertical channel 901 receives a swirling force and flows into the mixing channel 304 while forming a swirling flow.

本実施形態によっても、連続相は剪断に旋回の効果を付与することにより、流路幅を縮小せずにエマルション粒子の粒子径を微細化することができる。もしくは、同じ粒径のエマルション粒子を得るためには、流路幅を従来よりも大きく取る事ができ、生産性を向上することができる。さらに、分散相の周りを連続相でつつむことにより、粒子径のばらつきの原因となる分散相の流路付着を回避でき、そのため洗浄せずに長時間均一な乳化が可能となる。   Also according to the present embodiment, the continuous phase imparts a swirling effect to the shearing, thereby making it possible to refine the particle diameter of the emulsion particles without reducing the channel width. Or in order to obtain the emulsion particle | grains of the same particle size, a flow path width can be taken larger than before, and productivity can be improved. Further, by clogging the periphery of the dispersed phase with a continuous phase, it is possible to avoid the dispersion phase from adhering to the flow path, which causes the dispersion of the particle diameter, so that uniform emulsification can be performed for a long time without washing.

また、外部エネルギーを利用することで、連続相の送液流量に依存せず、確実に連続相が旋回することができる。
In addition, by using external energy, the continuous phase can reliably rotate without depending on the liquid flow rate of the continuous phase.

本発明の第1の実施形態による乳化装置を含むシステムの構成を示すシステム構成図である。It is a system configuration figure showing the composition of the system containing the emulsification device by a 1st embodiment of the present invention. 本発明の第1の実施形態による乳化装置の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the emulsification apparatus by the 1st Embodiment of this invention. 本発明の第1の実施形態による乳化装置の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the emulsification apparatus by the 1st Embodiment of this invention. 本発明の第1の実施形態による乳化装置の構成を示す要部拡大図である。It is a principal part enlarged view which shows the structure of the emulsification apparatus by the 1st Embodiment of this invention. 本発明の第1の実施形態による乳化装置の構成を示す断面図である。It is sectional drawing which shows the structure of the emulsification apparatus by the 1st Embodiment of this invention. 本発明の第1の実施形態による乳化装置における乳化の説明図である。It is explanatory drawing of the emulsification in the emulsification apparatus by the 1st Embodiment of this invention. 本発明の第1の実施形態による乳化装置におけるエマルション導出流路の他の構成を示す斜視図である。It is a perspective view which shows the other structure of the emulsion derivation | leading-out channel in the emulsification apparatus by the 1st Embodiment of this invention. 本発明の第2の実施形態による乳化装置の構成を示す要部拡大斜視図図である。It is a principal part expansion perspective view which shows the structure of the emulsification apparatus by the 2nd Embodiment of this invention. 本発明の第3の実施形態による乳化装置の構成を示す要部拡大斜視図図である。It is a principal part expansion perspective view which shows the structure of the emulsification apparatus by the 3rd Embodiment of this invention. 本発明の第1の実施形態による乳化装置を用いた時の、同一送液条件下における連続相を旋回させない場合と旋回させる場合の実験結果の説明図である。It is explanatory drawing of the experimental result in the case where it does not rotate the continuous phase on the same liquid feeding conditions when it uses the emulsification apparatus by the 1st Embodiment of this invention, and when it makes it rotate.

符号の説明Explanation of symbols

101…原料タンク
102…ポンプ
103…導入チューブ
104…乳化装置
105…導入チューブ
106…エマルションタンク
107…恒温槽
201…液体導入部
202…合流流路部
203…混合流路部
204…液体導出部
205…ねじ穴
206…シール用溝
207…連続相導入口
208…分散相導入口
209…連続相垂直流路
210…分散相垂直流路
211…連続相水平流路
212…エマルション導出流路
213…位置決めピン
301…連続相導入流路
302…分散相導入流路
303…連続相分岐流路
304…混合流路
305…エマルション導出口
401…旋回流れ
601…エマルション粒子
801…らせん状の凸部
901…連続相混合流路部垂直流路
902…回転翼
903…回転機構
DESCRIPTION OF SYMBOLS 101 ... Raw material tank 102 ... Pump 103 ... Introducing tube 104 ... Emulsifier 105 ... Introducing tube 106 ... Emulsion tank 107 ... Constant temperature bath 201 ... Liquid introducing part 202 ... Confluence channel part 203 ... Mixing channel part 204 ... Liquid outlet part 205 ... Screw hole 206 ... Sealing groove 207 ... Continuous phase inlet 208 ... Dispersed phase inlet 209 ... Continuous phase vertical channel 210 ... Dispersed phase vertical channel 211 ... Continuous phase horizontal channel 212 ... Emulsion outlet channel 213 ... Positioning Pin 301 ... Continuous phase introduction flow path 302 ... Dispersed phase introduction flow path 303 ... Continuous phase branch flow path 304 ... Mixing flow path 305 ... Emulsion outlet 401 ... Swirling flow 601 ... Emulsion particles 801 ... Spiral convex part 901 ... Continuous Phase mixing channel section vertical channel 902 ... rotating blade 903 ... rotating mechanism

Claims (6)

互いに溶解しない2種類の液体を混合し、乳化する乳化装置であって、
第一の液体の流路と、
第二の液体の流路と、
前記第一の液体と前記第二の液体が合流する混合流路とを備え、
前記混合流路において、前記第一の液体は主流方向に対し旋回成分を有し、
前記第二の液体の流路は前記混合流路の中央部に接続され、前記第二の液体は、旋回する前記第一の液体の旋回中心部を流れることを特徴とする乳化装置。
An emulsifying device for mixing and emulsifying two types of liquids that do not dissolve each other,
A first liquid flow path;
A second liquid flow path;
A mixing channel in which the first liquid and the second liquid merge,
In the mixing flow path, the first liquid has a swirling component with respect to the main flow direction,
The flow path of the second liquid is connected to a central portion of the mixing flow path, and the second liquid flows through a swirling center portion of the swirling first liquid.
請求項1記載の乳化装置において、
前記第一の流体の流路の中心軸は、前記混合流路の中心軸に対して、オフセットされて配置されていることを特徴とする乳化装置。
The emulsifying device according to claim 1,
The emulsifying apparatus, wherein a center axis of the first fluid channel is offset with respect to a center axis of the mixing channel.
請求項2記載の乳化装置において、
前記第一の流体の流路は、複数本から形成され、
前記複数本の第一の流体の流路は、それぞれ、前記混合流路の中心軸に対し、軸対称に配置されることを特徴とする乳化装置。
The emulsifying device according to claim 2,
The flow path of the first fluid is formed from a plurality of lines,
The emulsifying apparatus, wherein the plurality of first fluid channels are arranged symmetrically with respect to a central axis of the mixing channel.
請求項1記載の乳化装置において、
前記第二の液体の流路の中心軸は、前記混合流路の投影面内に配置されることを特徴とする乳化装置。
The emulsifying device according to claim 1,
An emulsifying apparatus, wherein a central axis of the second liquid channel is disposed within a projection plane of the mixing channel.
請求項1記載の乳化装置において、
前記混合流路は、その壁面にらせん状の凸部を備え、前記第一の液体に旋回力を発生させることを特徴とする乳化装置。
The emulsifying device according to claim 1,
The mixing channel includes a spiral convex portion on a wall surface thereof, and generates a turning force in the first liquid.
請求項1記載の乳化装置において、
前記第一の流体の流路は、前記第二の流体の流路の周りに配置される二重管形状で形成され、
前記第一の流体の流路内に配置された回転翼と、
前記回転翼を駆動する回転機構とを備えることを特徴とする乳化装置。
The emulsifying device according to claim 1,
The flow path of the first fluid is formed in a double tube shape disposed around the flow path of the second fluid,
A rotor blade disposed in the flow path of the first fluid;
An emulsifying apparatus comprising: a rotating mechanism that drives the rotating blades.
JP2008133549A 2008-05-21 2008-05-21 Emulsifying device Expired - Fee Related JP4798174B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008133549A JP4798174B2 (en) 2008-05-21 2008-05-21 Emulsifying device
CN2009101410943A CN101584972B (en) 2008-05-21 2009-05-20 Emulsification device
EP09006861A EP2123349B1 (en) 2008-05-21 2009-05-20 Emulsification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133549A JP4798174B2 (en) 2008-05-21 2008-05-21 Emulsifying device

Publications (2)

Publication Number Publication Date
JP2009279507A true JP2009279507A (en) 2009-12-03
JP4798174B2 JP4798174B2 (en) 2011-10-19

Family

ID=41010245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133549A Expired - Fee Related JP4798174B2 (en) 2008-05-21 2008-05-21 Emulsifying device

Country Status (3)

Country Link
EP (1) EP2123349B1 (en)
JP (1) JP4798174B2 (en)
CN (1) CN101584972B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086685A1 (en) 2010-12-22 2012-06-28 独立行政法人国立高等専門学校機構 Fluid mixer and fluid mixing method
US8252239B2 (en) 2009-05-22 2012-08-28 Hitachi, Ltd. Liquid-liquid extraction system
KR101334905B1 (en) 2012-02-13 2013-12-02 인하대학교 산학협력단 Vortex micro T-mixer with non-aligned inputs
CN105148758A (en) * 2015-08-20 2015-12-16 扬州大学 Method for rapidly preparing nano-emulsion
JP6407468B1 (en) * 2018-05-24 2018-10-17 株式会社アペレ Blood coagulation time measurement cartridge and blood coagulation time measurement device
JP6415775B1 (en) * 2018-07-26 2018-10-31 株式会社アペレ Blood coagulation time measurement cartridge and blood coagulation time measurement device
JP2022523117A (en) * 2019-01-31 2022-04-21 モデルナティエックス インコーポレイテッド Vortex mixers and related methods, systems, and equipment
US11543420B2 (en) 2018-01-16 2023-01-03 Apel Co., Ltd Blood clotting time measurement cartridge and blood clotting time measuring device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024313A (en) * 2010-07-23 2012-02-09 Nitto Denko Corp Device for forming droplets, and method for forming droplets
DE102012104053B3 (en) 2012-05-09 2013-09-26 Karlsruher Institut für Technologie emulsifying
GB2555658A (en) * 2016-11-01 2018-05-09 Cambridge Consultants Microparticle production
CN110152516B (en) * 2019-05-30 2021-11-12 河海大学 Liquid-liquid dual continuous preparation device
WO2023193002A1 (en) * 2022-04-01 2023-10-05 Modernatx, Inc. Cross mixers for lipid nanoparticle production, and methods of operating the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56172324U (en) * 1980-05-24 1981-12-19
JP2001062273A (en) * 1999-08-27 2001-03-13 Dow Corning Toray Silicone Co Ltd Continuous mixing device
JP2005288254A (en) * 2004-03-31 2005-10-20 Ube Ind Ltd Micro-device and method for confluence of fluids
JP2006528541A (en) * 2003-07-25 2006-12-21 ウエラ アクチェンゲゼルシャフト Components for stationary micromixers, micromixers constructed from such components, and their use for carrying out mixing, dispersing or chemical reactions
JP2007260569A (en) * 2006-03-28 2007-10-11 Fujifilm Corp Fluid mixing device and fluid mixing method
JP2008012453A (en) * 2006-07-06 2008-01-24 National Institute Of Advanced Industrial & Technology High-temperature high-pressure micromixer

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL75972C (en) * 1950-10-13 1900-01-01
GB1027846A (en) * 1963-08-07 1966-04-27 Kaiser Aluminium Chem Corp Improvements in or relating to the mixing or heating of materials with liquids
CA1018452A (en) * 1973-12-14 1977-10-04 Chem-Trol Pollution Services Centrifugal reactor
DE3400309A1 (en) * 1984-01-05 1985-08-22 Peter Balas Gmbh Injection moulding machine for two-component silicone rubber, specifically of RTV grade
DE3441529A1 (en) * 1984-11-14 1986-05-22 Alfred Kärcher GmbH & Co, 7057 Winnenden DEVICE FOR GENERATING A STABLE EMULSION FOR USE IN CLEANING AND DETOXIFYING DEVICES
DE8906889U1 (en) * 1989-06-05 1989-08-31 Wolf, Hartmut, 6145 Lindenfels, De
DE4137179C2 (en) * 1991-11-12 1997-02-27 Hdc Ag Device for producing a water-in-oil emulsion and use of the device on a diesel engine
FR2732902B1 (en) * 1995-04-13 1997-05-23 Inst Francais Du Petrole DEVICE FOR MIXING HIGH SPEED FLUIDS
DE19821511A1 (en) * 1998-05-13 1999-11-18 Holland Kuehlmoebel K & M Holl Mixer for production of e.g. soft drinks from mixture of fruit concentrate and water
DE29921445U1 (en) * 1999-12-08 2000-05-11 Burdosa Technology Ltd Loop reactor
ATE422171T1 (en) * 2000-10-03 2009-02-15 Emech Control Ltd FLUID COLLECTION ARRANGEMENT AND MIXING SYSTEM
DE10123093A1 (en) * 2001-05-07 2002-11-21 Inst Mikrotechnik Mainz Gmbh Method and static micromixer for mixing at least two fluids
JP3794687B2 (en) 2002-08-23 2006-07-05 株式会社山武 Micro emulsifier
JP4144302B2 (en) 2002-09-10 2008-09-03 東ソー株式会社 Droplet generation method
US7150558B2 (en) * 2004-06-04 2006-12-19 Aaa Commerce Worldwide, Inc. Device for producing emulsions, suspensions and the like
DE602004021861D1 (en) * 2004-08-06 2009-08-13 Campos Carlos Miguel Moreira DEVICE FOR MIXING FLUIDS
JP4992201B2 (en) * 2005-06-07 2012-08-08 富士ゼロックス株式会社 Microfluidic control method, microfluidic device and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56172324U (en) * 1980-05-24 1981-12-19
JP2001062273A (en) * 1999-08-27 2001-03-13 Dow Corning Toray Silicone Co Ltd Continuous mixing device
JP2006528541A (en) * 2003-07-25 2006-12-21 ウエラ アクチェンゲゼルシャフト Components for stationary micromixers, micromixers constructed from such components, and their use for carrying out mixing, dispersing or chemical reactions
JP2005288254A (en) * 2004-03-31 2005-10-20 Ube Ind Ltd Micro-device and method for confluence of fluids
JP2007260569A (en) * 2006-03-28 2007-10-11 Fujifilm Corp Fluid mixing device and fluid mixing method
JP2008012453A (en) * 2006-07-06 2008-01-24 National Institute Of Advanced Industrial & Technology High-temperature high-pressure micromixer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252239B2 (en) 2009-05-22 2012-08-28 Hitachi, Ltd. Liquid-liquid extraction system
WO2012086685A1 (en) 2010-12-22 2012-06-28 独立行政法人国立高等専門学校機構 Fluid mixer and fluid mixing method
US9403132B2 (en) 2010-12-22 2016-08-02 Kochi National College Of Technology, Japan Fluid mixer and fluid mixing method
KR101334905B1 (en) 2012-02-13 2013-12-02 인하대학교 산학협력단 Vortex micro T-mixer with non-aligned inputs
CN105148758A (en) * 2015-08-20 2015-12-16 扬州大学 Method for rapidly preparing nano-emulsion
CN105148758B (en) * 2015-08-20 2017-11-14 扬州大学 A kind of quick method for preparing nanoemulsions
US11543420B2 (en) 2018-01-16 2023-01-03 Apel Co., Ltd Blood clotting time measurement cartridge and blood clotting time measuring device
JP6407468B1 (en) * 2018-05-24 2018-10-17 株式会社アペレ Blood coagulation time measurement cartridge and blood coagulation time measurement device
JP2019203827A (en) * 2018-05-24 2019-11-28 株式会社アペレ Blood coagulation time measurement cartridge and blood coagulation time measurement device
JP6415775B1 (en) * 2018-07-26 2018-10-31 株式会社アペレ Blood coagulation time measurement cartridge and blood coagulation time measurement device
JP2019203872A (en) * 2018-07-26 2019-11-28 株式会社アペレ Blood coagulation time measurement cartridge and blood coagulation time measurement device
JP2022523117A (en) * 2019-01-31 2022-04-21 モデルナティエックス インコーポレイテッド Vortex mixers and related methods, systems, and equipment

Also Published As

Publication number Publication date
CN101584972B (en) 2013-08-21
EP2123349A2 (en) 2009-11-25
JP4798174B2 (en) 2011-10-19
EP2123349B1 (en) 2013-01-02
CN101584972A (en) 2009-11-25
EP2123349A3 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP4798174B2 (en) Emulsifying device
JP5335784B2 (en) Generation of monodisperse droplets
Shui et al. Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics
US6749329B2 (en) Processing product components
JP4193561B2 (en) Microchannel structure, microparticle manufacturing method using the same, and solvent extraction method using microchannel structure
CN106975411B (en) Micro-fluidic chip based on 3D prints and including emulsion generating device of this chip
JP4339163B2 (en) Microdevice and fluid merging method
EP2033706B1 (en) An emulsification apparatus
JP2005144356A (en) Micro flow path structure and method for producing fine particle using the same
EP1913994A2 (en) Emulsification apparatus and fine-grain manufacturing apparatus
JP2011147932A (en) Fluid-mixing device
JP2008037842A (en) Method for producing ceramide microparticle dispersion
JP2011025148A (en) Chemical production apparatus
JP2006263558A (en) Method for producing chemical substance
Paiboon et al. Hydrodynamic control of droplet formation in narrowing jet and tip streaming regime using microfluidic flow-focusing
JP4946180B2 (en) Emulsifying device
Palogan et al. Effect of surface coating on droplet generation in flow-focusing microchannels
JP5146562B2 (en) Microchannel structure and solvent extraction method using microchannel structure
JP4640017B2 (en) Emulsifying device
JP2005279523A (en) Microchannel structure
JP4852968B2 (en) Emulsification method and apparatus
JP2002248328A (en) Emulsifying/dispersing device
Javanmard et al. Effects of topological changes in microchannel geometries on the hydrodynamic formation and breakup of all-aqueous droplets
JP4972726B2 (en) Phase inversion temperature emulsification apparatus and emulsification method
Ganneboyina et al. Multi-helical micro-channels for rapid generation of drops of water in oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees