JP2009278654A - Resonator - Google Patents

Resonator Download PDF

Info

Publication number
JP2009278654A
JP2009278654A JP2009189652A JP2009189652A JP2009278654A JP 2009278654 A JP2009278654 A JP 2009278654A JP 2009189652 A JP2009189652 A JP 2009189652A JP 2009189652 A JP2009189652 A JP 2009189652A JP 2009278654 A JP2009278654 A JP 2009278654A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
electrode
substrate
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009189652A
Other languages
Japanese (ja)
Other versions
JP4684343B2 (en
Inventor
Atsuo Kishu
淳雄 旗手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009189652A priority Critical patent/JP4684343B2/en
Publication of JP2009278654A publication Critical patent/JP2009278654A/en
Application granted granted Critical
Publication of JP4684343B2 publication Critical patent/JP4684343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small and lightweight resonator having a simple structure and mountable with high-precision mounting accuracy. <P>SOLUTION: This resonator includes: a piezoelectric substrate 2 having an excitation electrode 1; a protective base body 14 arranged to face the piezoelectric substrate 2 through a space 17; a sealing material 12 sealing the space 17; and extraction electrodes 13 electrically connected to the excitation electrode 1. The extraction electrodes 13 penetrate the protective base body 14 and are extracted to the outside, and the sealing material 12 is interposed between the piezoelectric substrate 2 and the protective base body 14. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば自動車電話や携帯電話等の移動体無線機器に内蔵される共振器及び周波数帯域フィルタに使用可能な弾性表面波装置に関する。   The present invention relates to a surface acoustic wave device that can be used for a resonator and a frequency band filter built in a mobile wireless device such as a car phone or a mobile phone.

近年、電波を利用し通信を行なう電子機器用の帯域通過フィルタ等の周波数フィルタ(以下、フィルタという)、遅延線、発信器等の電子部品として、多くのSAW 共振子やSAWフィルタが用いられている。特に、移動体通信分野において、携帯電話等の携帯端末装置のRF(Radio Frequency :無線周波数あるいは高周波)ブロック及びIF(Intermediate Frequency:中間周波数)ブロックのフィルタとして多用されている。今後、自動車電話及び携帯電話等の移動体無線機器を使用した通信システム上、部品の軽量化や小型化が望まれている。   In recent years, many SAW resonators and SAW filters have been used as electronic components such as frequency filters (hereinafter referred to as filters), delay lines, transmitters, etc. for electronic devices that communicate using radio waves. Yes. In particular, in the field of mobile communication, it is frequently used as a filter for RF (Radio Frequency: radio frequency or high frequency) blocks and IF (Intermediate Frequency) blocks of mobile terminal devices such as mobile phones. In the future, it is desired to reduce the weight and size of parts in a communication system using mobile wireless devices such as automobile phones and mobile phones.

従来の弾性表面波(Surface Acoustic Wave で、以下、SAW と略す)装置の基本構成は、圧電基板の表面に一対の櫛歯状の励振電極(Inter Digital Transducer、IDT 電極)を複数配置してある素子を、セラミック製の筐体内に載置した構造となっている。   The basic structure of a conventional surface acoustic wave (hereinafter abbreviated as SAW) device is that multiple pairs of comb-shaped excitation electrodes (Inter Digital Transducer, IDT electrodes) are placed on the surface of the piezoelectric substrate. The element is placed in a ceramic casing.

図6に従来の弾性表面波装置の一例を示す。励振電極1は、例えば36°Y カットX 伝搬タンタル酸リチウム単結晶等からなる圧電基板2上に、蒸着法、スパッタ法等によりAl、Al-Cu 合金等の導電膜を成膜した後、フォトリソグラフィ法により微細な電極となるよう導電膜をパターニングして形成される。さらに、励振電極1を形成した圧電基板2をダイシングソーで切断することにより、弾性表面波素子3が作製される。また、この素子をセラミックで作製した筐体4内に載置し接着樹脂5にて固着させ、筐体4の入出力電極6または接地電極7をそれぞれの引き出し電極8、9にワイヤ10で接続する。そして、耐候性を持たせるために、筐体4と蓋体11をシーム溶接または半田または樹脂の封止材12により封止する。   FIG. 6 shows an example of a conventional surface acoustic wave device. The excitation electrode 1 is formed by forming a conductive film such as an Al or Al-Cu alloy on a piezoelectric substrate 2 made of, for example, 36 ° Y cut X propagating lithium tantalate single crystal by vapor deposition, sputtering, etc. The conductive film is formed by patterning so as to be a fine electrode by lithography. Furthermore, the surface acoustic wave element 3 is manufactured by cutting the piezoelectric substrate 2 on which the excitation electrode 1 is formed with a dicing saw. Further, this element is placed in a case 4 made of ceramic and fixed with an adhesive resin 5, and the input / output electrode 6 or the ground electrode 7 of the case 4 is connected to the respective lead electrodes 8 and 9 by wires 10. To do. And in order to give weather resistance, the housing | casing 4 and the cover body 11 are sealed with the sealing material 12 of seam welding or solder, or resin.

このように、従来の弾性表面波装置では、軽量化,小型化が要求されているにもかかわらず、素子に比較して筐体の大きさが大きく、また、ワイヤボンドにより筐体内に空間を確保する必要があるため、弾性表面波装置が大型化するという問題があった。   As described above, in the conventional surface acoustic wave device, although the weight and size are required, the size of the casing is larger than that of the element, and a space is formed in the casing by wire bonding. There is a problem that the surface acoustic wave device is increased in size because it is necessary to ensure it.

これに対し、近年、バンプを用いたフリップチップ接続を行なって、装置を軽量小型化する提案がなされている(例えば、特許文献1を参照)。この方法によれば、電気的接続をフリップチップ接続で行なうことにより、ワイヤボンドで必要となる空間を確保する必要が無くなる。このため、従来のワイヤ接続による弾性表面波装置より小型の弾性表面波装置を提供することが出来る。   On the other hand, in recent years, proposals have been made to reduce the size and weight of the device by performing flip chip connection using bumps (see, for example, Patent Document 1). According to this method, it is not necessary to secure a space required for wire bonding by performing electrical connection by flip-chip connection. Therefore, it is possible to provide a surface acoustic wave device that is smaller than the conventional surface acoustic wave device using wire connection.

特開平11−150440号公報JP-A-11-150440

しかし、上記のいずれの場合においても、弾性表面波装置に耐候性を持たせるため、IDT電極が外気にさらされないように、IDT電極が装置外部と電気的接続をとりつつIDT電極を密封しなければならない。   However, in any of the above cases, in order to provide the weather resistance to the surface acoustic wave device, the IDT electrode must be sealed while being electrically connected to the outside of the device so that the IDT electrode is not exposed to the outside air. I must.

図6に示す弾性表面波装置では、筐体に蓋体をかぶせた後、筐体と蓋体をシーム溶接または半田または樹脂で封止することになる。この場合、蓋体などの部材が必要であり、工程が煩雑になるという問題があった。   In the surface acoustic wave device shown in FIG. 6, after covering the casing with the lid, the casing and the lid are sealed with seam welding, solder, or resin. In this case, there is a problem that a member such as a lid is necessary and the process becomes complicated.

また、上記フリップチップによる方法では、フリップチップにより接続した後に封止樹脂でチップの周辺を封止する必要がある。この場合はさらに、IDT電極が樹脂と接触するとフィルタの特性が劣化するため、封止樹脂がIDT電極のある部分まで入り込まないように樹脂塗布工程を細かく制御する必要があり、やはり、工程が煩雑になるという問題があった。   In the flip-chip method, it is necessary to seal the periphery of the chip with a sealing resin after the flip-chip connection. In this case, if the IDT electrode comes into contact with the resin, the characteristics of the filter deteriorate. Therefore, it is necessary to finely control the resin application process so that the sealing resin does not enter the IDT electrode, and the process is complicated. There was a problem of becoming.

さらに、いずれの場合においても高い実装精度が要求される。特に、図6に示す弾性表面波装置では、筐体に対する弾性表面波素子の位置精度は、素子を筐体にダイボンドするときの実装精度に依存する。筐体に対する素子の位置が変動すれば、ボンディングワイヤの形状が変動することになり、弾性表面波装置の特性も変動してしまう。このため、筐体に対する素子の位置が一定になるよう、高精度に実装する必要がある。また、上記フリップチップの方法では、素子のバンプと実装基板上のバンプが重ならなければバンプ接合が出来なくなるため、やはり、素子を高精度に実装する必要がある。   Furthermore, high mounting accuracy is required in any case. In particular, in the surface acoustic wave device shown in FIG. 6, the positional accuracy of the surface acoustic wave element with respect to the housing depends on the mounting accuracy when the element is die-bonded to the housing. If the position of the element with respect to the housing changes, the shape of the bonding wire will change, and the characteristics of the surface acoustic wave device will also change. For this reason, it is necessary to mount with high accuracy so that the position of the element with respect to the housing is constant. In the flip-chip method, bump bonding cannot be performed unless the bumps of the element and the bumps on the mounting substrate overlap, so that it is necessary to mount the elements with high accuracy.

本発明の目的は、非常に簡便な構造で、高精度な実装精度で実装することが出来る、小型、軽量な弾性表面波装置を提供することにある。   It is an object of the present invention to provide a small and lightweight surface acoustic wave device that can be mounted with a very simple structure and high mounting accuracy.

上記目的を達成するために、本発明は、励振電極を有する圧電基板と、該圧電基板に対し空間を介して対向するように配置される保護基体と、前記空間を封止する封止材と、前記励振電極と電気的に接続される引き出し電極と、を備え、前記引き出し電極は前記保護基体を貫通して外部に引き出されており、前記封止材が前記圧電基板および前記保護基体間に介在されているものである。   To achieve the above object, the present invention provides a piezoelectric substrate having an excitation electrode, a protective base disposed so as to face the piezoelectric substrate through a space, and a sealing material for sealing the space. A lead electrode electrically connected to the excitation electrode, wherein the lead electrode passes through the protective base and is drawn to the outside, and the sealing material is interposed between the piezoelectric substrate and the protective base. It is something that is intervened.

また本発明は、前記封止材がエポキシ系樹脂またはSi系樹脂からなる。   In the present invention, the sealing material is made of epoxy resin or Si resin.

また本発明は、前記励振電極が2重モード共振器型フィルタを構成する。   In the present invention, the excitation electrode constitutes a double mode resonator type filter.

また本発明は、前記保護基体がSi基板からなる。   In the present invention, the protective base is made of a Si substrate.

本発明によれば共振器を小型化することができる。   According to the present invention, the resonator can be reduced in size.

本発明に係る弾性表面波装置が外部回路基板に実装された様子を模式的に説明する端面図である。1 is an end view schematically illustrating a state in which a surface acoustic wave device according to the present invention is mounted on an external circuit board. 本発明に係る弾性表面波装置が外部回路基板に実装された様子を模式的に説明する上面透視図である。FIG. 3 is a top perspective view schematically illustrating a state in which the surface acoustic wave device according to the present invention is mounted on an external circuit board. 本発明に係る他の弾性表面波装置が外部回路基板に実装された様子を模式的に説明する端面図である。FIG. 6 is an end view schematically illustrating a state in which another surface acoustic wave device according to the present invention is mounted on an external circuit board. 本発明に係る他の弾性表面波装置が外部回路基板に実装された様子を模式的に説明する端面図である。FIG. 6 is an end view schematically illustrating a state in which another surface acoustic wave device according to the present invention is mounted on an external circuit board. 本発明に係る他の弾性表面波装置が外部回路基板に実装された様子を模式的に説明する端面図である。FIG. 6 is an end view schematically illustrating a state in which another surface acoustic wave device according to the present invention is mounted on an external circuit board. 従来の弾性表面波装置を模式的に説明する端面図である。It is an end elevation which explains the conventional surface acoustic wave device typically.

本発明に係る弾性表面波装置の実施形態を図面に基づき詳細に説明する。   An embodiment of a surface acoustic wave device according to the present invention will be described in detail with reference to the drawings.

図1に本発明に係る弾性表面波装置S1の端面図を示す。図2に外部回路基板16に実装されている状態の本発明に係る弾性表面波装置の上面透視図を示す。なお、図1は図2におけるA−A'線上の端面図である。   FIG. 1 shows an end view of a surface acoustic wave device S1 according to the present invention. FIG. 2 shows a top perspective view of the surface acoustic wave device according to the present invention mounted on the external circuit board 16. FIG. 1 is an end view taken along the line AA ′ in FIG.

弾性表面波装置S1は、圧電基板2上に励振電極1を形成した弾性表面波素子3と保護基体14とから成るものであって、保護基体14に異方性エッチングにより凹部14aを形成するとともに、この凹部14aに弾性表面波素子3の励振電極1を対向させ、励振電極1の振動空間17を確保している。   The surface acoustic wave device S1 includes a surface acoustic wave element 3 in which an excitation electrode 1 is formed on a piezoelectric substrate 2 and a protective base 14, and a concave portion 14a is formed on the protective base 14 by anisotropic etching. The excitation electrode 1 of the surface acoustic wave element 3 is opposed to the recess 14a, and the vibration space 17 of the excitation electrode 1 is secured.

また、圧電基板2の外周部が、保護基体14の凹部14aの周囲に形成された段差部18において接合されている。保護基体14の周縁部に、外部回路基板16上に配設するための接続用導体である引き出し電極13を形成し、引き出し電極13が励振電極1に電気的に接続されている。そして、この引き出し電極13は外部回路基板16の導体パターン21と半田等の接合部材20を介して接続されている。   Further, the outer peripheral portion of the piezoelectric substrate 2 is joined at a stepped portion 18 formed around the concave portion 14 a of the protective base 14. An extraction electrode 13, which is a connection conductor for disposing on the external circuit substrate 16, is formed on the peripheral portion of the protective base 14, and the extraction electrode 13 is electrically connected to the excitation electrode 1. The lead electrode 13 is connected to the conductor pattern 21 of the external circuit board 16 through a bonding member 20 such as solder.

また、圧電基板2上に励振電極1と保護基体14への引き出し電極が形成されており、保護基体14の引き出し電極13と弾性表面波素子3の接合には半田バンプやAu−Sn半田、Ag含エポキシ樹脂導電性ペーストの導電性接着材15で接着されている。   An excitation electrode 1 and a lead electrode to the protective base 14 are formed on the piezoelectric substrate 2, and solder bumps, Au—Sn solder, Ag, etc. are used to join the lead electrode 13 of the protective base 14 and the surface acoustic wave element 3. Bonded with a conductive adhesive 15 of an epoxy-containing resin conductive paste.

保護基体14においては、単結晶基板の異方性エッチングによりある傾斜角を有する(シリコン単結晶であれば、(100)面を異方性エッチングすることにより(111)面が傾斜面となる)、2段の段差を形成することで、図に示すような励振電極1の振動空間17を形成することができる。また、この段差部18上に引き出し電極13を配設することで、段差部分で途切れの無い、電気導通の取れる構造とすることができる。また、導電性接着剤15に半田バンプやAu−Sn半田を用いることで半田のセルフアライメント効果を生じ、素子が高精度に配設可能である。   The protective substrate 14 has a certain inclination angle by anisotropic etching of a single crystal substrate (in the case of silicon single crystal, the (111) plane becomes an inclined plane by anisotropic etching of the (100) plane). By forming two steps, the vibration space 17 of the excitation electrode 1 as shown in the figure can be formed. Further, by providing the extraction electrode 13 on the stepped portion 18, it is possible to obtain a structure in which electric conduction can be obtained without interruption at the stepped portion. Further, by using solder bumps or Au—Sn solder for the conductive adhesive 15, a self-alignment effect of the solder is produced, and the elements can be arranged with high accuracy.

また、保護基体14の作製において、保護基板の凹部形成、電極およびバンプのパターニングすべてがウェハプロセスで行なえ、これにより、工程が簡略化され、高精度なパターニングが行える。ひいては高精度な弾性表面波素子3の載置が行えるという利点がある。弾性表面波素子3と保護基体14の固着及び封止は、素子と保護基体を導通させた後行い、弾性表面波素子3の外周部をエポキシ系樹脂またはSi系樹脂の封止材12で包囲する。   Further, in the production of the protective substrate 14, the formation of the concave portion of the protective substrate and the patterning of the electrodes and the bumps can all be performed by a wafer process, thereby simplifying the process and performing highly accurate patterning. As a result, there is an advantage that the surface acoustic wave element 3 can be mounted with high accuracy. The surface acoustic wave element 3 and the protective substrate 14 are fixed and sealed after the element and the protective substrate are electrically connected, and the outer peripheral portion of the surface acoustic wave element 3 is surrounded by an epoxy resin or Si resin sealing material 12. To do.

他の弾性表面波装置の実施形態を図3の端面図にて示す。なお図1と同様な部材については同一符号を付し説明を省略する。この弾性表面波装置S2においては、封止材12が振動空間17に浸入しないように、弾性表面波素子3の周囲の封止箇所と振動空間17の間の段差部に樹脂ダム19を設けており、弾性表面波素子3と保護基体14の固着及び封止を充分に行うことができ、樹脂の充填を多くし、気密性を向上させることができる。   An embodiment of another surface acoustic wave device is shown in the end view of FIG. Note that members similar to those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted. In the surface acoustic wave device S <b> 2, a resin dam 19 is provided at a step portion between the sealing portion around the surface acoustic wave element 3 and the vibration space 17 so that the sealing material 12 does not enter the vibration space 17. In addition, the surface acoustic wave element 3 and the protective substrate 14 can be sufficiently fixed and sealed, and the resin filling can be increased to improve the airtightness.

さらに他の弾性表面波装置の実施形態を図4の端面図にて示す。なお図1と同様な部材については同一符号を付し説明を省略する。この弾性表面波装置S3においては、凹部と素子載置部を上にし、保護基体14の周縁部の端面に沿って引き出し電極13を配設する構造としている。   Yet another embodiment of the surface acoustic wave device is shown in the end view of FIG. Note that members similar to those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted. The surface acoustic wave device S3 has a structure in which the lead electrode 13 is disposed along the end surface of the peripheral portion of the protective base 14 with the concave portion and the element mounting portion facing upward.

さらに他の弾性表面波装置の実施形態を図5の端面図にて示す。なお図1と同様な部材については同一符号を付し説明を省略する。この弾性表面波装置S4は、保護基体14の周縁部における弾性表面波素子3の電気接続部位にスルーホールを施して導通をとるように構成したものである。   Yet another embodiment of the surface acoustic wave device is shown in the end view of FIG. Note that members similar to those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted. This surface acoustic wave device S4 is configured to provide conduction by providing a through hole in the electrical connection portion of the surface acoustic wave element 3 at the peripheral edge of the protective base 14.

尚、圧電基板はタンタル酸リチウム単結晶、ニオブ酸リチウム単結晶、水晶、4ほう酸リチウム単結晶、ランガサイト系単結晶、ニオブ酸カリウム単結晶、ガリ砒素が主に適用できる。また、IDT電極材はアルミ、アルミ・銅合金、アルミ・チタン合金、アルミ・珪素合金、金、銀、銀・パラディウム合金が主に適用できる。また、引き出し電極材は主材にアルミ、アルミ・銅合金、アルミ・チタン合金、アルミ・珪素合金、金、銀、銀・パラディウム合金が主に適用でき、電極の密着度向上や電気抵抗の削減のため下地材が必要な場合には、クロム、チタン、銅が主に適用できる。   As the piezoelectric substrate, lithium tantalate single crystal, lithium niobate single crystal, crystal, lithium tetraborate single crystal, langasite single crystal, potassium niobate single crystal, and gallium arsenide are mainly applicable. As the IDT electrode material, aluminum, aluminum / copper alloy, aluminum / titanium alloy, aluminum / silicon alloy, gold, silver, silver / palladium alloy can be mainly applied. In addition, aluminum, aluminum / copper alloy, aluminum / titanium alloy, aluminum / silicon alloy, gold, silver, silver / palladium alloy can be mainly used as the lead electrode material, improving electrode adhesion and reducing electrical resistance. Therefore, when a base material is required, chromium, titanium, and copper can be mainly applied.

また、弾性表面波素子3上に電気ショート防止のための保護膜を形成しても構わない。保護膜材料として、SiO2 、SiN、Si、DLC(Diamond Like Carbon )、ZnO、ポリイミド、フッ素系樹脂、オレフィン系樹脂、またウエハプロセスに使用されるポジ型レジストのような感光性硬化樹脂が主に適用できる。 Further, a protective film for preventing an electrical short may be formed on the surface acoustic wave element 3. As a protective film material, SiO 2, SiN, Si, DLC (Diamond Like Carbon), ZnO, polyimide, fluorine resin, olefin resin, also photosensitive curable resin such as a positive resist used in the wafer process is mainly Applicable to.

また、図2では励振電極を共振器梯子型フィルタの構成図を示したが、共振器格子型フィルタや2重モード共振器型フィルタ、マルチIDT電極型フィルタまたはこれらの複合された構成で行っても構わない。   2 shows the configuration diagram of the resonator ladder filter as the excitation electrode, but the resonator electrode type filter, the dual mode resonator type filter, the multi-IDT electrode type filter, or a combination thereof is used. It doesn't matter.

さらに、本発明は上記の実施形態に限定されるものでなく、SAWフィルタだけでなく、SAWデュプレクサにも本発明が適用でき、本発明の要旨を逸脱しない範囲で種々の変更は何等差し支えない。   Further, the present invention is not limited to the above-described embodiment, and the present invention can be applied not only to the SAW filter but also to the SAW duplexer, and various modifications can be made without departing from the gist of the present invention.

厚さ0.35mmの3インチ42° YカットX 伝搬タンタル酸リチウム単結晶圧電基板に、電極膜としてAl−Cu合金をスパッタ法にて膜厚2000Åで成膜した。その上に、ポジ型レジストを1μm の厚さでスピンコート法により塗布した。その後、露光、現像を行ないレジストのパターニングを行ない、ドライエッチング法で電極をエッチングし、アッシングでレジストを除去し、電極パターニングを完了した。   An Al—Cu alloy was deposited as an electrode film on a 3-inch 42 ° Y-cut X-propagating lithium tantalate single crystal piezoelectric substrate having a thickness of 0.35 mm to a thickness of 2000 mm by sputtering. On top of this, a positive resist was applied by a spin coating method with a thickness of 1 μm. Thereafter, exposure and development were performed to pattern the resist, the electrode was etched by dry etching, the resist was removed by ashing, and the electrode patterning was completed.

その後、SiO2 膜をCVD法により250Å成膜し、ポジ型レジストを1μm の厚さでスピンコート法により塗布し、露光、現像を行ないレジストのパターニングを行ない、ドライエッチング法で電極をエッチングし、アッシングでレジストを除去して、IDT上に保護膜をパターニングした。 Thereafter, a 250-nm thick SiO 2 film is formed by CVD, a positive resist is applied by spin coating with a thickness of 1 μm, exposure and development are performed, resist patterning is performed, and electrodes are etched by dry etching. The resist was removed by ashing, and a protective film was patterned on the IDT.

その後、ポジ型レジストを2μm の厚さでスピンコート法により塗布し、露光、現像を行ないレジストのパターニングを行なった後、Ti/Pt/Au膜(下層/上層)を蒸着により2000Å成膜し、剥離液に浸漬してレジストおよび余分なTi/Pt/Au膜を除去し、引き出し電極の形成を行なった。   Thereafter, a positive resist is applied by a spin coating method with a thickness of 2 μm, and after exposure and development, the resist is patterned, and a Ti / Pt / Au film (lower layer / upper layer) is formed by evaporation to form a 2000 mm thick film. The resist and excess Ti / Pt / Au film were removed by immersion in a stripping solution, and a lead electrode was formed.

その後、ポジ型レジストを3μm の厚さでスピンコート法により塗布し、露光、現像を行ないレジストのパターニングを行なった後、SiO2 膜をCVD法により5000Å成膜し、剥離液に浸漬してレジストおよび余分なSiO2 膜を除去し、SiO2 からなる囲みの下部を形成した。その後、ポジ型レジストを3μm の厚さでスピンコート法により塗布し、露光、現像を行ないレジストのパターニングを行なった。その後、Au−Sn合金膜を蒸着により2μm成膜し、剥離液に浸漬してレジストおよび余分なAu−Sn合金膜を除去し、Au−Su合金膜からなる囲みの上部および接続回路基板との接続のためのバンプを形成した。 Thereafter, a positive resist is applied by a spin coating method with a thickness of 3 μm, exposed and developed to perform resist patterning. After that, a SiO 2 film is formed in a thickness of 5000 μm by a CVD method and immersed in a stripping solution. The excess SiO 2 film was removed, and the lower part of the enclosure made of SiO 2 was formed. Thereafter, a positive resist was applied by a spin coating method to a thickness of 3 μm, and exposure and development were performed to pattern the resist. Thereafter, an Au—Sn alloy film is formed by vapor deposition to a thickness of 2 μm, immersed in a stripping solution to remove the resist and excess Au—Sn alloy film, and the upper part of the enclosure made of the Au—Su alloy film and the connection circuit board. Bumps for connection were formed.

このとき、引き出し電極とIDT電極を形成しているAl−Cu合金から成る電極の接合部を囲みの内側に入れてしまうことにより、圧電基板上の電極のうちで耐候性のあるTi/Pt/Au電極のみが外気にさらされる部分になり、水分に対して腐食性のあるAl−Cu合金電極を囲みによる密封空間に閉じ込めることが出来るため、弾性表面波装置も耐候性を得る。   At this time, by putting the joint portion of the electrode made of the Al—Cu alloy forming the extraction electrode and the IDT electrode inside the enclosure, among the electrodes on the piezoelectric substrate, Ti / Pt / Since only the Au electrode is exposed to the outside air and the Al—Cu alloy electrode corrosive to moisture can be confined in the enclosed sealed space, the surface acoustic wave device also has weather resistance.

次に、(100)面を主面とする厚さ0.75mmの3インチSi単結晶基板に、ポジ型レジストを1μm の厚さでスピンコート法により塗布し、露光、現像を行ないレジストのパターニングを行なった。この基板を水酸化カリウム水溶液に20時間浸漬することにより、Si基板に深さ0.4mmの凹部を形成し、剥離液に浸漬してレジストを除去した。その後、同様にフォトリソ工程を用いて中央部に振動空間をエッチング時間5時間、深さ0.05mmの凹部を作製した。また、エッチングより得られた傾斜面は(111)面となる。   Next, a positive resist is applied with a thickness of 1 μm to a 0.75 mm-thick 3 inch Si single crystal substrate having a (100) plane as a main surface, and exposure and development are performed to pattern the resist. Was done. The substrate was immersed in an aqueous potassium hydroxide solution for 20 hours to form a recess having a depth of 0.4 mm on the Si substrate, and immersed in a stripping solution to remove the resist. Thereafter, similarly, using a photolithography process, a concave portion having a depth of 0.05 mm and an oscillation space of 5 hours in the central portion was produced. Further, the inclined surface obtained by etching is a (111) plane.

その後、ポジ型レジストを2μm の厚さでスピンコート法により塗布し、露光、現像を行ないレジストのパターニングを行なった後、Ti/Pt/Au膜を蒸着により2000Å成膜し、剥離液に浸漬してレジストおよび余分なTi/Pt/Au膜を除去し、接続回路の形成を行なった。   After that, a positive resist is applied by a spin coating method to a thickness of 2 μm, exposed and developed to perform resist patterning, and then a Ti / Pt / Au film is deposited by evaporation to form a 2000-mm film and immersed in a stripping solution. Then, the resist and the extra Ti / Pt / Au film were removed, and a connection circuit was formed.

その後、ポジ型レジストを3μm の厚さでスピンコート法により塗布し、露光、現像を行ないレジストのパターニングを行なった後、Au−Sn合金膜を蒸着により5000Å成膜し、剥離液に浸漬してレジストおよび余分なAu−Sn合金膜を除去し、圧電基板上の囲みの上部と接合するSi基板上のAu−Su合金のバンプを形成した。   After that, a positive resist is applied by a spin coating method to a thickness of 3 μm, and after exposure and development, the resist is patterned, and an Au—Sn alloy film is deposited by evaporation to form a 5000 μm film and immersed in a stripping solution. The resist and the excess Au—Sn alloy film were removed, and Au—Su alloy bumps on the Si substrate were formed to be bonded to the upper part of the enclosure on the piezoelectric substrate.

その後、ポジ型レジストを3μm の厚さでスピンコート法により塗布し、露光、現像を行ないレジストのパターニングを行なった後、Au−Sn合金膜を蒸着により2μm成膜し、剥離液に浸漬してレジストおよび余分なAu−Sn合金膜を除去し、外部回路基板との接続のためのバンプを形成した。   After that, a positive resist is applied by a spin coating method to a thickness of 3 μm, exposure and development are performed to pattern the resist, and then an Au—Sn alloy film is formed to 2 μm by vapor deposition and immersed in a stripping solution. The resist and excess Au—Sn alloy film were removed, and bumps for connection to an external circuit board were formed.

次に、ダイシングソーを用い、タンタル酸リチウム単結晶基板をダイシングして、1mm角のSAWフィルタのチップにした。また、Si基板をダイシングして2mm角の接続回路基板のチップにした。   Next, using a dicing saw, the lithium tantalate single crystal substrate was diced into a 1 mm square SAW filter chip. Further, the Si substrate was diced into 2 mm square connected circuit board chips.

次に、マウンターを用いて、SAWフィルタのチップを上下反転して、接続回路基板のチップの凹部に載せ、定圧力をかけながら温度を250度に昇温してAu−Sn膜を溶融させ、囲みにおける封止とバンプにおける接続を完成させた。このとき、外部接続回路との接続用バンプは半球状になり、バンプとして用いられる。   Next, using a mounter, the SAW filter chip is turned upside down, placed on the concave portion of the chip of the connection circuit board, the temperature is raised to 250 degrees while applying constant pressure, and the Au-Sn film is melted. The enclosure seal and bump connection were completed. At this time, the bump for connection with the external connection circuit is hemispherical and used as a bump.

この後、封止材を弾性表面波素子3の周囲に充填し、封止を行った。   Thereafter, a sealing material was filled around the surface acoustic wave element 3 to perform sealing.

以上説明したように、高精度な素子の載置ができ、ひいては電気特性の偏差の小さい、幅2mm×奥2mm×高さ0.8mmの小型な弾性表面波装置を作製することができた。   As described above, a small surface acoustic wave device having a width of 2 mm, a depth of 2 mm, and a height of 0.8 mm, in which a highly accurate element can be placed and the deviation of electrical characteristics is small, can be manufactured.

以上詳述したように、本発明の弾性表面波装置によれば、保護基体を精度良く作製することが可能で、弾性表面波素子の載置精度が良好であり、大量に作製した場合の電気特性の偏差を小さくすることができる。   As described above in detail, according to the surface acoustic wave device of the present invention, it is possible to manufacture the protective substrate with high accuracy, the mounting accuracy of the surface acoustic wave element is good, The deviation of characteristics can be reduced.

また、弾性表面波素子と保護基体のみの簡単な構造であり、非常に簡便かつ迅速に実装することができ、保護基体によって励振電極の振動空間が密閉されるため、耐候性も十分に期待することができる。   In addition, it has a simple structure consisting only of a surface acoustic wave element and a protective substrate, and can be mounted very simply and quickly. Since the vibration space of the excitation electrode is sealed by the protective substrate, sufficient weather resistance is expected. be able to.

さらに、弾性表面波装置の高さは保護基体の厚みに依存するので、小型化、軽量化が可能となる。   Furthermore, since the height of the surface acoustic wave device depends on the thickness of the protective substrate, it is possible to reduce the size and weight.

以上のように、非常に簡便な構造で、高精度な実装精度で実装することが出来る、小型化,軽量化が可能で信頼性にも優れた弾性表面波装置を提供できる。   As described above, it is possible to provide a surface acoustic wave device that has a very simple structure, can be mounted with high accuracy, can be reduced in size and weight, and has excellent reliability.

1:励振電極
2:圧電基板
3:弾性表面波素子
4:筐体(ケーシング)
5:接着樹脂
6:入出力電極
7:接地電極
8:入出力電極の引き出し電極
9:接地電極の引き出し電極
10:ワイヤ
11:蓋体
12:封止材
13:保護基体上引き出し電極
14:保護基体
15:導電性接着剤
16:外部回路基板
17:振動空間
18:保護基体の段差
19:樹脂ダム
S1〜S4:弾性表面波装置
1: Excitation electrode 2: Piezoelectric substrate 3: Surface acoustic wave element 4: Case (casing)
5: adhesive resin 6: input / output electrode 7: ground electrode 8: lead electrode for input / output electrode 9: lead electrode for ground electrode 10: wire 11: lid 12: sealing material 13: lead electrode 14 on the protective substrate 14: protection Base 15: Conductive adhesive 16: External circuit board 17: Vibration space 18: Step difference 19 of the protective base: Resin dams S1 to S4: Surface acoustic wave device

Claims (4)

励振電極を有する圧電基板と、該圧電基板に対し空間を介して対向するように配置される保護基体と、前記空間を封止する封止材と、前記励振電極と電気的に接続される引き出し電極と、を備え、
前記引き出し電極は前記保護基体を貫通して外部に引き出されており、
前記封止材は前記圧電基板および前記保護基体間に介在されている共振器。
A piezoelectric substrate having an excitation electrode, a protective base disposed so as to face the piezoelectric substrate through a space, a sealing material for sealing the space, and a drawer electrically connected to the excitation electrode An electrode,
The extraction electrode penetrates the protective base and is extracted to the outside;
A resonator in which the sealing material is interposed between the piezoelectric substrate and the protective substrate.
前記封止材はエポキシ系樹脂またはSi系樹脂からなる請求項1に記載の共振器。   The resonator according to claim 1, wherein the sealing material is made of epoxy resin or Si resin. 前記励振電極は、2重モード共振器型フィルタを構成する請求項1または2に記載の共振器。   The resonator according to claim 1, wherein the excitation electrode constitutes a double mode resonator type filter. 前記保護基体は、Si基板からなる請求項1乃至3のいずれかに記載の共振器。   The resonator according to claim 1, wherein the protective base is made of a Si substrate.
JP2009189652A 2009-08-19 2009-08-19 Surface acoustic wave device Expired - Lifetime JP4684343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009189652A JP4684343B2 (en) 2009-08-19 2009-08-19 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009189652A JP4684343B2 (en) 2009-08-19 2009-08-19 Surface acoustic wave device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24792799A Division JP2001077658A (en) 1999-09-01 1999-09-01 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2009278654A true JP2009278654A (en) 2009-11-26
JP4684343B2 JP4684343B2 (en) 2011-05-18

Family

ID=41443579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009189652A Expired - Lifetime JP4684343B2 (en) 2009-08-19 2009-08-19 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP4684343B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236387A (en) * 2013-06-03 2014-12-15 太陽誘電株式会社 Acoustic wave device and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257212A (en) * 1986-04-30 1987-11-09 Toyo Commun Equip Co Ltd Idt resonator filter
JPH05121989A (en) * 1991-10-25 1993-05-18 Seiko Epson Corp Package for piezoelectric element
JPH07321583A (en) * 1994-05-20 1995-12-08 Kokusai Electric Co Ltd Surface acoustic wave device and manufacture thereof
JPH10303690A (en) * 1997-04-25 1998-11-13 Mitsubishi Electric Corp Surface acoustic wave device and its manufacture
JPH11103228A (en) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd Production of surface acoustic wave element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257212A (en) * 1986-04-30 1987-11-09 Toyo Commun Equip Co Ltd Idt resonator filter
JPH05121989A (en) * 1991-10-25 1993-05-18 Seiko Epson Corp Package for piezoelectric element
JPH07321583A (en) * 1994-05-20 1995-12-08 Kokusai Electric Co Ltd Surface acoustic wave device and manufacture thereof
JPH10303690A (en) * 1997-04-25 1998-11-13 Mitsubishi Electric Corp Surface acoustic wave device and its manufacture
JPH11103228A (en) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd Production of surface acoustic wave element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236387A (en) * 2013-06-03 2014-12-15 太陽誘電株式会社 Acoustic wave device and method of manufacturing the same
US9751109B2 (en) 2013-06-03 2017-09-05 Taiyo Yuden Co., Ltd. Acoustic wave device and method of fabricating the same

Also Published As

Publication number Publication date
JP4684343B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP5865944B2 (en) Method for manufacturing acoustic wave device
JP6290850B2 (en) Elastic wave device and elastic wave module
JP4510982B2 (en) Surface acoustic wave device
JP4460612B2 (en) Surface acoustic wave device and manufacturing method thereof
US8749114B2 (en) Acoustic wave device
US20100045145A1 (en) Piezoelectric component and manufacturing method thereof
JP4468436B2 (en) Elastic wave device and manufacturing method thereof
JP2004129222A (en) Piezoelectric component and manufacturing method thereof
JP2000261284A (en) Surface acoustic wave device and its production
JP2004129223A (en) Piezoelectric component and manufacturing method thereof
KR20060128640A (en) Semiconductor device, manufacturing method for semiconductor device, electronic component, circuit substrate, and electronic apparatus
JP2007318058A (en) Electronic component and manufacturing method thereof
JP2008135971A (en) Elastic wave device
JP2004129224A (en) Piezoelectric component and manufacturing method thereof
JP2007081555A (en) Surface acoustic wave device
JP2005130341A (en) Piezoelectric component and its manufacturing method, communications equipment
JP4823336B2 (en) Surface acoustic wave device and mounting structure
US20230223916A1 (en) Acoustic wave device
JP2001345673A (en) Surface acoustic wave device
JP4684343B2 (en) Surface acoustic wave device
JP2003283289A (en) Surface acoustic wave device
JP2009183008A (en) Method of manufacturing piezoelectric component
JP2001077658A (en) Surface acoustic wave device
JP5263529B2 (en) Method for manufacturing piezoelectric vibrator
JP2004207674A (en) Method for producing electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term