JP2009270901A - Method for measuring highly accurately three-dimensional position of passive rfid tag - Google Patents

Method for measuring highly accurately three-dimensional position of passive rfid tag Download PDF

Info

Publication number
JP2009270901A
JP2009270901A JP2008120850A JP2008120850A JP2009270901A JP 2009270901 A JP2009270901 A JP 2009270901A JP 2008120850 A JP2008120850 A JP 2008120850A JP 2008120850 A JP2008120850 A JP 2008120850A JP 2009270901 A JP2009270901 A JP 2009270901A
Authority
JP
Japan
Prior art keywords
rfid tag
interrogator
distance
radio wave
interrogators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008120850A
Other languages
Japanese (ja)
Inventor
Yoichi Kaneko
陽一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008120850A priority Critical patent/JP2009270901A/en
Publication of JP2009270901A publication Critical patent/JP2009270901A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To measure highly accurately a three-dimensional position of a passive RFID tag. <P>SOLUTION: A distance from an interrogator is determined from synthesis of a distance determined from an arrival time difference between a radio wave A from the interrogator and a response radio wave B of the RFID tag and a distance in one wavelength determined from a phase difference between the radio wave A and the radio wave B. By using three interrogators, the three-dimensional position is measured highly accurately, and an error caused by a characteristic difference of an RFID tag is written into the RFID tag as individual information, and a measurement result having higher accuracy is obtained by using it as correction information. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、質問器からの電波AとRFIDタグの応答電波Bの到達時間差から求まる距離と、電波Aと電波Bの位相差から求まる1波長内の距離との合成から、質問器からの距離を求め、3台の質問器を使用する事で、3次元位置を高精度で計測する方法である。 The present invention provides a distance from the interrogator by combining the distance obtained from the arrival time difference between the radio wave A from the interrogator and the response radio wave B of the RFID tag and the distance within one wavelength obtained from the phase difference between the radio wave A and the radio wave B. The three-dimensional position is measured with high accuracy by using three interrogators.

製造ロットで異なるRFIDタグの応答する迄の時間の差は、位相差に影響し、RFIDタグを交換した時の測定距離の誤差の原因となる為、RFIDタグに特性データを書き込み、質問器が読み取る事で補正を行う。 The difference in time until the response of different RFID tags in the production lot affects the phase difference and causes an error in the measurement distance when the RFID tag is replaced. Correct by reading.

従来から、質問器からの電波とRFIDタグの応答電波の到達時間差から距離を求める方法は有ったが、波長より短い距離を計測するには、波長を必要な精度に分割するクロックが必要で、2.45GHz帯を超えてのディジタルカウントは、事実上不可能である。この波長内距離を求める為に、送信波と応答波の位相差を検出し、位相差に応じた長さを、時間差で求まる距離と合成する事で、波長より短い距離精度で位置計測を可能にするもので有る。尚、位相差だけでは、1波長を越えての位置は計測出来ないので、到達時間から求まる距離との合成が必要である。 Conventionally, there has been a method for obtaining the distance from the difference in arrival time between the radio wave from the interrogator and the response radio wave of the RFID tag. Digital counting beyond the 2.45 GHz band is virtually impossible. In order to determine the distance within the wavelength, the phase difference between the transmitted wave and the response wave is detected, and the length corresponding to the phase difference is combined with the distance determined by the time difference, enabling position measurement with a distance accuracy shorter than the wavelength. There is something to do. In addition, since the position beyond one wavelength cannot be measured only by the phase difference, it is necessary to combine with the distance obtained from the arrival time.

3台の質問器の1つから送信し、RFIDタグは受信したら、信号を連続送信する。3台の質問器の受信機は、RFIDタグからの応答を受信し、時間差と位相差から、それぞれの位置からRFIDタグ迄の距離を算出する。 When transmitted from one of the three interrogators and received by the RFID tag, the signal is continuously transmitted. The receivers of the three interrogators receive the response from the RFID tag, and calculate the distance from each position to the RFID tag from the time difference and the phase difference.

1台の質問器からの送信で距離の計測は可能で有るが、RFIDタグには指向性が有る為、3台の質問器が順に送信を行う事で、指向性による無応答を回避する。 Although it is possible to measure the distance by transmission from one interrogator, since the RFID tag has directivity, the three interrogators sequentially transmit, thereby avoiding no response due to directivity.

質問器1の座標をP1とし、RFIDタグまでの距離をR1とすると、RFIDタグは、P1を中心とする半径R1の球上に位置していると考えられる。同様に質問器2と3の球を求める。これら3つの球の重なる点から、地震の震源を算出するのと同じ原理で、3次元空間上のRFIDタグの位置を決定出来る。これは、水平平面上に質問器を配置しても、高低を含めて、位置の決定が行える事を意味している。 If the coordinate of the interrogator 1 is P1 and the distance to the RFID tag is R1, the RFID tag is considered to be located on a sphere having a radius R1 centered on P1. Similarly, the balls of the interrogators 2 and 3 are obtained. From the overlapping point of these three spheres, the position of the RFID tag in the three-dimensional space can be determined by the same principle as that for calculating the epicenter of the earthquake. This means that even if the interrogator is arranged on a horizontal plane, the position can be determined including the height.

応答電波の強度で位置計測を行うのでは無い為、RFIDタグの送信レベルや障害物による電波の減衰は、問題とされない。 Since position measurement is not performed based on the intensity of the response radio wave, the transmission level of the RFID tag and the attenuation of the radio wave due to an obstacle are not a problem.

RFIDタグにその個体識別IDコードを質問器から発信し、その識別IDコードのRFIDだけが応答するので、複数のRFIDタグの位置計測が可能で有る。 Since the individual identification ID code is transmitted from the interrogator to the RFID tag and only the RFID of the identification ID code responds, the position of a plurality of RFID tags can be measured.

RFIDタグ内の処理回路の遅れ時間の個体差が、応答時間や位相差に影響し、画一的条件では、誤差として現れてしまう。この対策として、RFIDタグの固有情報をRFIDタグ内に記録し、質問器で情報を読み取る事で補正を行い、RFIDタグの個体差を無くす事が可能である。 The individual difference in the delay time of the processing circuit in the RFID tag affects the response time and the phase difference, and appears as an error under uniform conditions. As a countermeasure, it is possible to record the unique information of the RFID tag in the RFID tag, read the information with an interrogator, perform correction, and eliminate individual differences among the RFID tags.

変調方式は、位相差の検出を行う都合上、ASK方式を採用する。周波数を変調するFSKやMSK及び位相変調のPSKでは位相差が求められない為、使用出来ない。 As the modulation method, the ASK method is adopted for the purpose of detecting the phase difference. FSK and MSK that modulate frequency and PSK that uses phase modulation cannot be used because a phase difference cannot be obtained.

2.45GHz帯で行う場合は、無線LAN、携帯電話や電子レンジの周波数帯と同じで有り、原理上これ等の干渉を防ぐ事が不可能な関係上、電磁的に遮断された場所で行う必要が有る。又、水分や金属の影響を受け易いので、考慮する必要がある。
特許公開2002−39714 特許公開平7−218634 特許公開2007−127503 特許公開2006−343309 RF/IFゲインおよび位相検出器 AD8302 アナログデバイセス 地球科学ハンドブック 力武常次著 聖文社 震源の位置と断層運動の推定 防災科学技術研究所 http://www.hinet.bosai.go.jp/about_earthquake/sec3.1.htm
When performing in the 2.45 GHz band, it is the same as the frequency band of wireless LAN, mobile phone, and microwave oven, and in principle it is impossible to prevent such interference, so it is performed in an electromagnetically blocked place. There is a need. Moreover, since it is easy to receive the influence of a water | moisture content or a metal, it needs to consider.
Patent Publication 2002-39714 Patent Publication No. Hei 7-218634 Patent Publication 2007-127503 Patent Publication 2006-343309 RF / IF Gain and Phase Detector AD8302 Analog Devices Earth Science Handbook Tsuneji Rikitake Seibunsha Estimation of hypocenter location and fault motion National Research Institute for Earth Science and Disaster Prevention http://www.hinet.bosai.go.jp/about_earthquake/sec3.1.htm

計測は次の手順で行われる。
3台の質問器の1台からRFIDタグ識別コードとそれに続いて連続波を送信する。
自分の識別コードを検出したRFIDタグは、連続波を応答送信する。
RFIDタグからの応答波を受信した3台の質問器は、発信した質問器のタイミングに同期して応答時間を計測する。
応答時間からRFIDタグ固有の処理時間を差し引き、実際の電波の往復時間とする。往復時間の半分から距離を求める。
同時に、送信波と応答波の位相を検出し、360度を100%とする位相度数の割合から、1波長の位相分の長さを求める。
求められた距離と長さを加算して、質問器とRFIDタグ間の距離とする。
距離が求まると、質問器からの連続波を停止する。
連続波の停止は、RFIDタグの指向性による無応答が考えられるので、タイムアウトでも停止する。
続いて、次の質問器が働き、同様の測定を順に繰り返す。
質問器が1台だけの場合、距離は求まるが、質問器からの距離を半径とする球面上の何所かであり、座標を特定する事は出来ない為、3台の質問器を使用する。
The measurement is performed according to the following procedure.
An RFID tag identification code followed by a continuous wave is transmitted from one of the three interrogators.
The RFID tag that has detected its own identification code transmits a continuous wave as a response.
The three interrogators that have received the response wave from the RFID tag measure the response time in synchronization with the timing of the transmitted interrogator.
The processing time specific to the RFID tag is subtracted from the response time to obtain the actual round-trip time of the radio wave. Find the distance from half of the round trip time.
At the same time, the phases of the transmission wave and the response wave are detected, and the length corresponding to the phase of one wavelength is obtained from the ratio of the phase frequency with 360 degrees as 100%.
The obtained distance and length are added to obtain the distance between the interrogator and the RFID tag.
When the distance is determined, the continuous wave from the interrogator is stopped.
Since the continuous wave is stopped due to the non-response due to the directivity of the RFID tag, the continuous wave is stopped even at time-out.
Subsequently, the next interrogator works and repeats the same measurement in order.
If there is only one interrogator, the distance is obtained, but it is some place on the sphere whose radius is the distance from the interrogator, and the coordinates cannot be specified, so three interrogators are used. .

求まった3台の質問器からRFIDタグまでの距離から、RFIDタグの位置を特定する。
3台の質問器の座標値を、P1(X1、Y1、Z1)、P2(X2、Y2、Z2)、P2(X3、Y3、Z3)とする。
3台の質問器からRFIDタグ迄の距離をR1、R2、R3とする。
P1を中心とする半径R1の球とP2を中心とする半径R2の球とP3を中心とする半径R3の球の3つの球の交点が求まるRFIDタグの座標値となる。
次式の解が求める座標値P0(X、Y、Z)となる。
(X−X1)^2+(Y−Y1)^2+(Z−Z1)^2=R1^2
(X−X2)^2+(Y−Y2)^2+(Z−Z2)^2=R2^2
(X−X3)^2+(Y−Y3)^2+(Z−Z3)^2=R3^2
但し、^2は二乗を表す。
この3つの式は、R1、R2、R3に誤差の無い場合に成立し、測定誤差を含む実測値には、適用出来ない。この式で解くには、右辺と左辺の差が極小となる様に、多数の測定点から最少二乗法で求めなければならない。
質問器は3台と、最小構成としていて、最小二乗法では解く事が出来ない為、下記手順で、RFIDタグの位置を求める。
図1を参考にして説明する。
3台の質問器の座標値を含む面Sを作成する。
半径R1、R2、R3の大円を平面Sに描く。
半径R1とR2の円と円の2箇所の交点を結ぶ平面S上の線をL1とする。
半径R2とR3の円と円の2箇所の交点を結ぶ平面S上の線をL2とする。
L1とL2の交点をPc(Xc、Yc、Zc)とする。
Pcから面Sの法線を延ばし、半径R3の球と交わる点P0を求める。P0が求めるRFIDタグとなる。
半径R3とR1の2箇所の円と円の交点を結ぶ平面S上の線をL3としても、L1とL2とL3の交点は一箇所に集まる事は証明されているので、2線の交点だけを求めれば済む。
L1又はL2の求まらない場合は、L3をL1又はL2と入れ換えて求める。
R1、R2、R3が小さく、2つ以上の交点を結ぶ線が求められなかった場合は、2半径に定数を掛けて半径を大きくして求める。比率が同じで有れば、2円の交点を通る直線は変わらない事から、半径を大きくした状態で円と円の交点2箇所から、平面S上の線を求める。但し、法線と交わる球の半径は原寸を使用する。
Pcからの法線と交わる球の交点P0は、平面Sの表と裏の2箇所有り、どちらの点であるか特定は出来ない。
本発明では、面の表裏どちらか片方で計測を行わなければならない制限が有る。
この制限は、質問器の配置を測定対象構造体の最下面なり最上面、又は側面に配置する事で、それを越えての測定は必要無いので、実用上問題とは成らない。
The position of the RFID tag is identified from the distance from the obtained three interrogators to the RFID tag.
The coordinate values of the three interrogators are P1 (X1, Y1, Z1), P2 (X2, Y2, Z2), and P2 (X3, Y3, Z3).
The distances from the three interrogators to the RFID tag are R1, R2, and R3.
The coordinate value of the RFID tag is obtained as an intersection of three spheres, a sphere having a radius R1 centered on P1, a sphere having a radius R2 centered on P2, and a sphere having a radius R3 centered on P3.
A coordinate value P0 (X, Y, Z) to be obtained by a solution of the following equation is obtained.
(X−X1) ^ 2 + (Y−Y1) ^ 2 + (Z−Z1) ^ 2 = R1 ^ 2
(X−X2) ^ 2 + (Y−Y2) ^ 2 + (Z−Z2) ^ 2 = R2 ^ 2
(X−X3) ^ 2 + (Y−Y3) ^ 2 + (Z−Z3) ^ 2 = R3 ^ 2
However, ^ 2 represents a square.
These three formulas are established when there is no error in R1, R2, and R3, and cannot be applied to actual measurement values including measurement errors. In order to solve with this equation, the least square method must be obtained from a large number of measurement points so that the difference between the right side and the left side is minimized.
Since there are three interrogators, which have a minimum configuration and cannot be solved by the least square method, the position of the RFID tag is obtained by the following procedure.
This will be described with reference to FIG.
A surface S including the coordinate values of the three interrogators is created.
A great circle with radii R1, R2, and R3 is drawn on the plane S.
A line on the plane S connecting the circles with the radii R1 and R2 and two intersections of the circles is defined as L1.
A line on the plane S connecting the circles having the radii R2 and R3 and two intersections of the circles is defined as L2.
Let the intersection of L1 and L2 be Pc (Xc, Yc, Zc).
A normal line of the surface S is extended from Pc, and a point P0 intersecting with a sphere having a radius R3 is obtained. This is the RFID tag that P0 seeks.
Even if the line on the plane S that connects the intersections of the two circles with the radii R3 and R1 and the circle is L3, the intersection of L1, L2, and L3 has been proven to be gathered in one place, so only the intersection of the two lines If you ask for.
If L1 or L2 cannot be obtained, L3 is replaced with L1 or L2.
When R1, R2, and R3 are small and a line connecting two or more intersections cannot be obtained, the radius is obtained by multiplying the two radii by a constant. If the ratio is the same, the straight line passing through the intersection of the two circles does not change, so a line on the plane S is obtained from two intersections between the circle and the circle with the radius increased. However, the radius of the sphere that intersects with the normal uses the full size.
There are two intersections P0 of the sphere that intersect the normal line from Pc on the front and back of the plane S, and it is not possible to specify which point is.
In the present invention, there is a limitation that the measurement must be performed on either the front or back side.
This limitation is not a problem in practice because the interrogator is arranged on the lowermost surface, the uppermost surface, or the side surface of the structure to be measured, and measurement beyond that is not necessary.

個体情報のRFIDタグへの記録は次の手順で行われる。
RFIDタグを質問器の前に置き、3次元実距離を測定して置く。
質問器から距離測定コマンドを送り、応答時間と位相差から距離を算出する。
算出した距離と実距離を比較し、誤差が有れば、定数変更コマンドを送り、RFIDタグの個体情報を書き換え、再度距離を算出する。
これを繰り返して、最適値を求める。
定数変更時、RFIDタグは固定したままで、動かす必要は無い。
この一連の作業は、最適化プログラムを組む事で、自動的に行われる。
Recording of individual information to the RFID tag is performed in the following procedure.
Place the RFID tag in front of the interrogator and measure the 3D actual distance.
A distance measurement command is sent from the interrogator, and the distance is calculated from the response time and the phase difference.
The calculated distance is compared with the actual distance, and if there is an error, a constant change command is sent, the individual information of the RFID tag is rewritten, and the distance is calculated again.
This is repeated to find the optimum value.
When changing the constant, the RFID tag remains fixed and does not need to be moved.
This series of operations is automatically performed by creating an optimization program.

発明実施の形態を、図面を参照して説明する。 Embodiments of the invention will be described with reference to the drawings.

図1において、1、2、3の質問器P1、P2、P3は、実験構造物の下面に設置され、6の集中制御装置MCから、伝送特性の揃った、同じ長さのケーブルにより、発振周波数と制御線及び通信線が接続されている。
P1、P2、P3の質問器を中心とした円は、3台の質問器の座標を含む平面上に広がる、RFIDタグまでの距離を半径R1、R2、R3とした大円である。
質問器は、集中制御装置の指示で、距離測定コマンドを送信する。
実験動物に取り付けたRFIDタグ4が応答すると、質問器は、応答までの時間と電波の位相差から、各質問器とRFIDタグまでの距離を算出し、集中制御装置に送る。
集中制御装置は、3台の質問器から距離を収集し、RFIDタグの3次元座標を決定して、パソコン等の解析システムに送信する。
集中制御装置は、次の質問器に送信指示を行い、順に測定を繰り返す。
In FIG. 1, the interrogators P1, P2, and P3 of 1, 2, and 3 are installed on the lower surface of the experimental structure, and are oscillated from the central control device MC of 6 by cables of the same length with uniform transmission characteristics. The frequency, the control line, and the communication line are connected.
A circle centered on the interrogators P1, P2, and P3 is a great circle having a radius R1, R2, and R3 that are spread on a plane that includes the coordinates of the three interrogators.
The interrogator transmits a distance measurement command in accordance with an instruction from the central control apparatus.
When the RFID tag 4 attached to the experimental animal responds, the interrogator calculates the distance between each interrogator and the RFID tag from the time until response and the phase difference between the radio waves, and sends the distance to the central control device.
The central control apparatus collects distances from the three interrogators, determines the three-dimensional coordinates of the RFID tag, and transmits it to an analysis system such as a personal computer.
The central control apparatus issues a transmission instruction to the next interrogator and repeats the measurement in order.

図2を参照して、質問器の動作原理を説明する。
3台の質問器は、図3の集中制御装置から27と28の通信ポートでカスケード接続されている。
3台の質問器は、それぞれ独自のデバイスコードを持ち、集中制御装置から選択され、コマンドに従い動作する。
25と26のSW1及びSW2は、外部OSCと外部START信号を使用するか、質問器内蔵の11のOSC及び22のμCPUのSTART信号を使用するかを切り換えるスイッチである。システム構成時は、どちらか片方だけで、両信号を同時に使用する事は無い。集中制御装置側にすると、3台の質問器の距離測定の同時性が保証され、高速移動物体の測定が行える。質問器内蔵側にすると、同時性は失われるが、数時間掛けて低速移動する腸内カプセル監視等に、低価格で構成する事が出来る。
外部でも内蔵でもOSCは常時発振している。
The operation principle of the interrogator will be described with reference to FIG.
The three interrogators are cascade-connected with 27 and 28 communication ports from the centralized control device of FIG.
Each of the three interrogators has its own device code, is selected from the centralized control device, and operates according to the command.
SW1 and SW2 of 25 and 26 are switches for switching between using the external OSC and the external START signal, or using the 11 OSC built in the interrogator and the 22 μCPU START signal. When configuring the system, only one of them is used, and both signals are not used simultaneously. On the central control device side, the simultaneous measurement of the distance of the three interrogators is guaranteed, and the high-speed moving object can be measured. When the interrogator is built-in, the synchrony is lost, but it can be configured at a low price for monitoring an intestinal capsule that moves slowly over several hours.
The OSC constantly oscillates both externally and internally.

17のPH1及び18のPH2の位相差検出器は、非特許文献1のICで、2入力信号の位相差と振幅比を出力する2つの機能を持つ。PH2では、振幅比出力は使用しない。 The phase difference detectors of 17 PH1 and 18 PH2 are ICs of Non-Patent Document 1 and have two functions of outputting a phase difference and an amplitude ratio of two input signals. In PH2, the amplitude ratio output is not used.

集中制御装置から通信ポートで発信指定された質問器は、連続送信要求とRFIDタグのIDを含む送信コードを、10のシフトレジスタSRに設定する。
START信号は、CNTをリセットすると共に、シフトレジスタSRのシフトを開始し、OSCの周波数に同期してレジスタ内容を9の振幅変調器MDに送り出す。ベースバンド変調された信号は、7のアンテナATから送信される。
The interrogator that is designated for transmission from the central control device through the communication port sets a transmission code including the continuous transmission request and the ID of the RFID tag in the ten shift registers SR.
The START signal resets the CNT and starts shifting the shift register SR, and sends the register contents to the amplitude modulator MD of 9 in synchronization with the frequency of the OSC. The baseband modulated signal is transmitted from 7 antennas AT.

同時に13のカウンタCNTがOSCに同期してカウントアップし、時間計測を始める。12のSH1及び15のSH2は、アナログ信号をディジタル信号に変換する回路である。 At the same time, the 13 counters CNT count up in synchronization with the OSC and start measuring time. 12 SH1 and 15 SH2 are circuits for converting an analog signal into a digital signal.

RFIDタグからの応答信号がアンテナATで受信されると、8のサーキュレータで信号分離され、14の増幅器AMPを通して、カウンタCNTをSTOPさせる。 When the response signal from the RFID tag is received by the antenna AT, the signal is separated by 8 circulators, and the counter CNT is stopped through 14 amplifiers AMP.

17の位相差検出器PH1の振幅比の出力電圧は、20のAD2でディジタル値に変換されてμCPUに読み込まれる。この振幅比は、SH2でのディジタル変換時に、受信波の減衰状態で、信号検出レベルに波形が達するまでの時間に違いが出る事を、補正する為に参照される。 The output voltage of the amplitude ratio of the 17 phase difference detector PH1 is converted into a digital value by 20 AD2 and read into the μCPU. This amplitude ratio is referred to in order to correct the difference in the time until the waveform reaches the signal detection level in the attenuation state of the received wave during digital conversion in SH2.

OSCとAMPの出力信号は、17の位相差検出器PH1で送信波と受信波の位相差が取り出される。位相差は19のAD1で波長内距離計算用としてディジタル値に変換されてμCPUに取り込まれる。 From the output signals of OSC and AMP, the phase difference between the transmission wave and the reception wave is extracted by 17 phase difference detector PH1. The phase difference is converted into a digital value for calculating the distance within the wavelength by 19 AD1, and is taken into the μCPU.

OSCの位相を16のPSの移相器で90度位相をずらし、18の位相差検出器PH2で送信波と受信波の位相差を取り出し、21のAD3でAD1と同様に、波長内距離計算用としてディジタル値に変換して、μCPUに取り込む。この値と、PH1と合わせる事で、位相検出範囲が180度までの制限の有る特性を360度に拡張し、かつ0度又は180度近辺での非直線性を相補する。 The phase of the OSC is shifted 90 degrees with 16 PS phase shifters, the phase difference between the transmitted wave and the received wave is extracted with 18 phase difference detector PH2, and in-wavelength calculation is performed with AD3 of 21 as with AD1. For use, it is converted into a digital value and loaded into the μCPU. By combining this value with PH1, the characteristic of the phase detection range limited to 180 degrees is expanded to 360 degrees, and the non-linearity around 0 degrees or around 180 degrees is complemented.

μCPUは、STOP信号を受けると、CNT、AD1、AD2及びAD3のデータからRFIDタグ迄の距離を計算し、集中制御装置に送信する。 Upon receiving the STOP signal, the μCPU calculates the distance from the data of CNT, AD1, AD2, and AD3 to the RFID tag and transmits it to the centralized control device.

集中制御装置から発信指定されなかった質問器は、START信号でCNTをリセットする。
受信信号は、発信指定された質問器と同じ処理がされる。
The interrogator that is not designated for transmission from the centralized control device resets the CNT with the START signal.
The received signal is processed in the same manner as the interrogator designated for transmission.

内部信号を用いる場合は、図3の集中制御装置で指定された質問器だけが、内蔵OSCと内蔵START信号で送受信し、他の2台の質問器は、送受信処理を行わない。集中制御装置は、3台の質問器を順に指定して、RFIDタグまでの距離を、R01、R02、R03、R11,R12、R13・・・の順に測定すると、RFIDタグの3次元位置の計算は、(R01、R02、R03)→(R02、R03、R11)→(R03、R11、R12)と、質問器の順送りで求める事で、3データ単位での計算に比べ、高速にRFIDタグの移動に追従出来る様になる。 When the internal signal is used, only the interrogator specified by the centralized control device in FIG. 3 transmits and receives with the built-in OSC and the built-in START signal, and the other two interrogators do not perform transmission / reception processing. When the central controller designates three interrogators in order and measures the distance to the RFID tag in the order of R01, R02, R03, R11, R12, R13,..., It calculates the three-dimensional position of the RFID tag. (R01, R02, R03) → (R02, R03, R11) → (R03, R11, R12) You can follow the movement.

小動物にRFIDタグを取り付ける事で、その生態行動を暗視下でも記録し、調べる実験が行える。従来から電波の発信機や蛍光発光体を付けての実験は行われていたが、小動物に付けるには、形状及び重量に問題が有った。2.45GHzのパッシブRFIDタグは、ミリ単位のサイズであり、電池も不要である為、実験動物への負担が軽減出来る。 By attaching an RFID tag to a small animal, the ecological behavior can be recorded and examined even under night vision. Conventionally, experiments using radio wave transmitters and fluorescent light emitters have been carried out, but there are problems in shape and weight when attached to small animals. Since the 2.45 GHz passive RFID tag has a size in millimeters and does not require a battery, the burden on the experimental animal can be reduced.

小動物に限らず、昆虫など虫の行動にも対応可能である。 Not only small animals but also insects and other insect behaviors can be handled.

同時に複数のRFIDタグの使用が可能なので、動物の前後に取り付けると、移動方向だけでなく、向きを変えた場合の回転の様子が観察出来る。 Since a plurality of RFID tags can be used at the same time, when attached to the front and back of an animal, not only the direction of movement but also the state of rotation when the direction is changed can be observed.

同時に複数のRFIDタグの使用が可能なので、複数の動物に取り付ける事で、群行動の観察が行える。 Since multiple RFID tags can be used at the same time, group behavior can be observed by attaching to multiple animals.

3次元方向の位置が測定出来るので、平面的な経路だけでなく、立体的行動範囲の実験が可能となる。 Since the position in the three-dimensional direction can be measured, not only a planar route but also a three-dimensional action range can be experimented.

電波障害の無い環境で有れば、動物に限らず、開放及び隠蔽場所内の移動物体の3次元的行動監視が可能となる。 If the environment is free from radio interference, it is possible to monitor three-dimensional behavior of moving objects in open and concealed places, not limited to animals.

実験構造物の構造図と重ね合わせる事で、現在位置をリアルタイムで知る事ができるので、その場面に対応する操作が行える。 By superimposing it with the structural drawing of the experimental structure, the current position can be known in real time, and operations corresponding to the scene can be performed.

本装置の実施構成図である。It is an implementation block diagram of this apparatus. 質問器の構成図である。It is a block diagram of an interrogator. 集中制御装置の構成図である。It is a block diagram of a centralized control apparatus. RFIDタグ内の処理フローチャートである。It is a process flowchart in a RFID tag.

符号の説明Explanation of symbols

1 質問器1番 (P1)
2 質問器2番 (P2)
3 質問器3番 (P3)
4 実験動物に取り付けたRFIDタグ (P0)
5 実験構造物
6 集中制御装置 (MC)
7 アンテナ (AT)
8 サーキュレータ
9 変調器 (MD)
10 シフトレジスタ (SR)
11 搬送波発振器 (OSC)
12 波形整形器 (SH1)
13 時間測定カウンタ (CNT)
14 増幅器 (AMP)
15 波形整形器 (SH2)
16 90度移相器 (PS)
17 位相差+振幅値検出器 1 (PH1)
18 位相差+振幅値検出器 2 (PH2)
19 位相差用AD変換機 1 (AD1)
20 ゲイン補正AD変換機 (AD2)
21 位相差用AD変換機 2 (AD3)
22 マイクロコンピュータ (μCPU)
23 外部START入力ポート
24 外部OSC入力ポート
25 内蔵OSC・外部OSC切換スイッチ (SW1)
26 内部START・外部START切換スイッチ (SW2)
27 カスケード通信入力ポート
28 カスケード通信出力ポート
29 質問器間通信ポート
30 PC間通信ポート
31 外部START出力ポート(3台の質問器へ)
32 外部出力用OSC (OSC)
33 外部OSC出力ポート(3台の質問器へ)
34 マイクロコンピュータ (μCPU)





















1 Interrogator 1 (P1)
2 Interrogator No. 2 (P2)
3 Interrogator No. 3 (P3)
4 RFID tags attached to experimental animals (P0)
5 Experimental structure 6 Central control device (MC)
7 Antenna (AT)
8 Circulator 9 Modulator (MD)
10 Shift register (SR)
11 Carrier wave oscillator (OSC)
12 Waveform shaper (SH1)
13 hour counter (CNT)
14 Amplifier (AMP)
15 Waveform shaper (SH2)
16 90 degree phase shifter (PS)
17 Phase difference + amplitude value detector 1 (PH1)
18 Phase difference + Amplitude value detector 2 (PH2)
19 AD converter for phase difference 1 (AD1)
20 Gain correction AD converter (AD2)
21 Phase difference AD converter 2 (AD3)
22 Microcomputer (μCPU)
23 External START input port 24 External OSC input port 25 Built-in OSC / external OSC selector switch (SW1)
26 Internal START / External START switch (SW2)
27 Cascade communication input port 28 Cascade communication output port 29 Interrogator communication port 30 Intercomputer communication port 31 External START output port (to 3 interrogators)
32 OSC for external output (OSC)
33 External OSC output port (to 3 interrogators)
34 Microcomputer (μCPU)





















Claims (2)

質問器から送信した電波に対する、パッシブRFIDタグの応答電波を質問器で受信し、反射時間と位相差の合成により距離を出し、3台の質問器を使う事で、RFIDタグの三次元位置を高精度に計測する方法。 The response radio wave of the passive RFID tag to the radio wave transmitted from the interrogator is received by the interrogator, the distance is obtained by combining the reflection time and the phase difference, and the three-dimensional position of the RFID tag is determined by using three interrogators. A highly accurate measurement method. RFIDタグの応答遅延時間情報をタグ自身に記録し、質問器で読み取り補正する事で、RFIDタグの個体差をなくする方法。 A method of eliminating individual differences between RFID tags by recording response delay time information of RFID tags on the tag itself, and reading and correcting it with an interrogator.
JP2008120850A 2008-05-07 2008-05-07 Method for measuring highly accurately three-dimensional position of passive rfid tag Pending JP2009270901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008120850A JP2009270901A (en) 2008-05-07 2008-05-07 Method for measuring highly accurately three-dimensional position of passive rfid tag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008120850A JP2009270901A (en) 2008-05-07 2008-05-07 Method for measuring highly accurately three-dimensional position of passive rfid tag

Publications (1)

Publication Number Publication Date
JP2009270901A true JP2009270901A (en) 2009-11-19

Family

ID=41437593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008120850A Pending JP2009270901A (en) 2008-05-07 2008-05-07 Method for measuring highly accurately three-dimensional position of passive rfid tag

Country Status (1)

Country Link
JP (1) JP2009270901A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012094825A1 (en) * 2011-01-14 2012-07-19 西门子公司 Method for locating tag by radio frequency identifying reader and radio frequency identifying reader
CN107861100A (en) * 2017-11-10 2018-03-30 西京学院 A kind of indoor orientation method based on three-dimensional wave beam
CN112083407A (en) * 2020-09-17 2020-12-15 电子科技大学 External radiation source three-dimensional positioning method using time difference and one-dimensional azimuth measurement
JP7377599B2 (en) 2017-08-02 2023-11-10 エアバス・ディフェンス・アンド・スペース・ゲーエムベーハー System and method for calibrating a transmitting unit and ship equipped with a system for calibrating a transmitting unit

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340891A (en) * 1986-08-05 1988-02-22 Nec Corp Distance measuring instrument for artificial satellite tracking station
JPH07111985A (en) * 1993-10-18 1995-05-02 Olympus Optical Co Ltd Capsule apparatus for medical treatment
JPH09138269A (en) * 1995-11-14 1997-05-27 Mitsubishi Electric Corp Position confirmation system
JPH09197036A (en) * 1996-01-12 1997-07-31 Syst:Kk Distance measuring method
JP2001177469A (en) * 1999-10-12 2001-06-29 Lucent Technol Inc Method for specifying position of mobile station in wireless network having a plurality of base stations
JP2002323556A (en) * 2001-04-27 2002-11-08 Nec Corp Distance measuring device
JP2003518261A (en) * 1999-12-22 2003-06-03 イノベイティブ テクノロジー ライセンシング エルエルシー Position confirmation system for tracking with relay assist
JP2003533704A (en) * 2000-05-18 2003-11-11 シーメンス アクチエンゲゼルシヤフト Method and apparatus for wirelessly detecting the location and / or orientation of at least one object
JP2004041709A (en) * 2002-05-16 2004-02-12 Olympus Corp Capsule medical care device
JP2005164361A (en) * 2003-12-02 2005-06-23 Nippon Super Map Kk Position detection by means of intelligent gps and of ic tag intercommunication, and processing by gis
JP2005535376A (en) * 2002-08-08 2005-11-24 ユニバーシティ オブ ローザンヌ System and method for monitoring and stimulating GI tract movement
JP2006075269A (en) * 2004-09-08 2006-03-23 Olympus Corp Capsule type medical treatment device
JP2006512109A (en) * 2002-08-01 2006-04-13 ザ ジョンズ ホプキンズ ユニバーシティ Identification technology of molecular structure using fluorescent light emission, and treatment technology of cell types lined inside the body lumen
WO2006064502A2 (en) * 2004-12-14 2006-06-22 E-Pill Pharma, Ltd. Local delivery of drugs or substances using electronic permeability increase
JP2006181359A (en) * 2004-12-03 2006-07-13 Pentax Corp Method to determine receiving element and signal processor
JP2007521474A (en) * 2003-03-11 2007-08-02 メナーチェ エルエルシー Radio frequency motion tracking system and method
JP2008017947A (en) * 2006-07-11 2008-01-31 Osaka Univ Sleeping posture monitoring system and spacial position measuring system
JP2008506419A (en) * 2003-12-17 2008-03-06 チェック キャップ エルエルシー Detection of intraluminal polyps

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340891A (en) * 1986-08-05 1988-02-22 Nec Corp Distance measuring instrument for artificial satellite tracking station
JPH07111985A (en) * 1993-10-18 1995-05-02 Olympus Optical Co Ltd Capsule apparatus for medical treatment
JPH09138269A (en) * 1995-11-14 1997-05-27 Mitsubishi Electric Corp Position confirmation system
JPH09197036A (en) * 1996-01-12 1997-07-31 Syst:Kk Distance measuring method
JP2001177469A (en) * 1999-10-12 2001-06-29 Lucent Technol Inc Method for specifying position of mobile station in wireless network having a plurality of base stations
JP2003518261A (en) * 1999-12-22 2003-06-03 イノベイティブ テクノロジー ライセンシング エルエルシー Position confirmation system for tracking with relay assist
JP2003533704A (en) * 2000-05-18 2003-11-11 シーメンス アクチエンゲゼルシヤフト Method and apparatus for wirelessly detecting the location and / or orientation of at least one object
JP2002323556A (en) * 2001-04-27 2002-11-08 Nec Corp Distance measuring device
JP2004041709A (en) * 2002-05-16 2004-02-12 Olympus Corp Capsule medical care device
JP2006512109A (en) * 2002-08-01 2006-04-13 ザ ジョンズ ホプキンズ ユニバーシティ Identification technology of molecular structure using fluorescent light emission, and treatment technology of cell types lined inside the body lumen
JP2005535376A (en) * 2002-08-08 2005-11-24 ユニバーシティ オブ ローザンヌ System and method for monitoring and stimulating GI tract movement
JP2007521474A (en) * 2003-03-11 2007-08-02 メナーチェ エルエルシー Radio frequency motion tracking system and method
JP2005164361A (en) * 2003-12-02 2005-06-23 Nippon Super Map Kk Position detection by means of intelligent gps and of ic tag intercommunication, and processing by gis
JP2008506419A (en) * 2003-12-17 2008-03-06 チェック キャップ エルエルシー Detection of intraluminal polyps
JP2006075269A (en) * 2004-09-08 2006-03-23 Olympus Corp Capsule type medical treatment device
JP2006181359A (en) * 2004-12-03 2006-07-13 Pentax Corp Method to determine receiving element and signal processor
WO2006064502A2 (en) * 2004-12-14 2006-06-22 E-Pill Pharma, Ltd. Local delivery of drugs or substances using electronic permeability increase
JP2008017947A (en) * 2006-07-11 2008-01-31 Osaka Univ Sleeping posture monitoring system and spacial position measuring system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012094825A1 (en) * 2011-01-14 2012-07-19 西门子公司 Method for locating tag by radio frequency identifying reader and radio frequency identifying reader
US9195862B2 (en) 2011-01-14 2015-11-24 Siemens Aktiengesellschaft Radio frequency identification reader and a method for locating a tag by the radio frequency identification reader
JP7377599B2 (en) 2017-08-02 2023-11-10 エアバス・ディフェンス・アンド・スペース・ゲーエムベーハー System and method for calibrating a transmitting unit and ship equipped with a system for calibrating a transmitting unit
CN107861100A (en) * 2017-11-10 2018-03-30 西京学院 A kind of indoor orientation method based on three-dimensional wave beam
CN112083407A (en) * 2020-09-17 2020-12-15 电子科技大学 External radiation source three-dimensional positioning method using time difference and one-dimensional azimuth measurement
CN112083407B (en) * 2020-09-17 2022-03-29 电子科技大学 External radiation source three-dimensional positioning method using time difference and one-dimensional azimuth measurement

Similar Documents

Publication Publication Date Title
US11054511B2 (en) Phasor approach to signal to noise ratio measurement evaluation of physiological signals
JP2013096828A (en) Doppler radar system and object detection method
CN102520388A (en) Positioning device using phased array principle and in combination with RSSI (Received Signal Strength Indicator) range measuring
KR101374589B1 (en) Method of tracking position and apparatus performing the same
US20150308861A1 (en) Wireless position sensing using magnetic field of two transmitters
JP2009270901A (en) Method for measuring highly accurately three-dimensional position of passive rfid tag
CN108307397A (en) Network coverage evaluation method and system
Salman et al. A mobile security robot equipped with UWB-radar for super-resolution indoor positioning and localisation applications
JP2011215001A (en) Position estimation device and method of estimating position
CN108291956A (en) For the system of position detection, control device and method
CN103969625A (en) Wireless positioning method
WO2019013673A1 (en) Magnetic flaw detector for diagnostics of underground steel pipelines
CN107192473B (en) Surface acoustic wave temperature detection system and detection method based on phased array antenna
Wielandt et al. Experimental evaluation of a single anchor multipath assisted indoor angle of arrival localization system in the 2.4 GHz and 5 GHz band
Ma et al. Fine-grained RFID localization via ultra-wideband emulation
Galajda et al. Wireless UWB sensor system for robot gripper monitoring in non-cooperative environments
Wielandt et al. Evaluation of angle of arrival estimation for localization in multiple indoor environments
Grzechca et al. Indoor location and idetification of objects with video survillance system and WiFi module
KR20140065165A (en) System for measuring displacement of the slope using a uwb radar and method thereof
CN103983947A (en) Wireless positioning system and method based on ultrasonic waves
CN103154767B (en) Distance measurement apparatus
JP2008008851A (en) Information processor, information processing method, and program
Shiigi et al. Temperature compensation method using base-station for spread spectrum sound-based positioning system in green house
Švecová et al. TOA complementing method for target localization by UWB radar systems
Amendolare et al. Transactional array reconciliation tomography for precision indoor location

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110503

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130412