JP2009268978A - Hc adsorption catalyst - Google Patents

Hc adsorption catalyst Download PDF

Info

Publication number
JP2009268978A
JP2009268978A JP2008122195A JP2008122195A JP2009268978A JP 2009268978 A JP2009268978 A JP 2009268978A JP 2008122195 A JP2008122195 A JP 2008122195A JP 2008122195 A JP2008122195 A JP 2008122195A JP 2009268978 A JP2009268978 A JP 2009268978A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
layer
adsorption
catalyst carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008122195A
Other languages
Japanese (ja)
Inventor
Shinji Nigorikawa
慎司 濁川
Setsuo Katagiri
節男 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008122195A priority Critical patent/JP2009268978A/en
Publication of JP2009268978A publication Critical patent/JP2009268978A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an HC (Hydro Carbon) adsorption catalyst having a high cleaning efficiency of HC components. <P>SOLUTION: The HC adsorption catalyst 1 includes a catalyst carrier 10, a catalyst layer 20 carried on the catalyst carrier 10, and an adsorption layer 30 temporarily adsorbing hydrocarbon components of exhaust gas. The catalyst carrier 10 is composed of an exhaust gas-permeable member, the adsorption layer 30 is disposed at the exhaust gas inlet side of the catalyst carrier 10, and the catalyst layer 20 is disposed at the outlet side of the exhaust gas, respectively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車等に用いられる内燃機関の排気ガスを浄化するための触媒に関し、より詳細には、HC成分の浄化効率が高いHC吸着触媒に関するものである。   The present invention relates to a catalyst for purifying exhaust gas of an internal combustion engine used in an automobile or the like, and more particularly to an HC adsorption catalyst having high HC component purification efficiency.

一般的に自動車等のエンジンの排気系には、排気ガスを浄化するための触媒が配置されている。触媒は、金属やセラミックによるハニカム構造からなる触媒担体が用いられ、触媒担体の表面に触媒が担持されている。   Generally, a catalyst for purifying exhaust gas is disposed in an exhaust system of an engine such as an automobile. As the catalyst, a catalyst carrier having a honeycomb structure made of metal or ceramic is used, and the catalyst is supported on the surface of the catalyst carrier.

従来、触媒担体の温度が低いと触媒が活性化されないため、コールドスタートでは充分な浄化が行われないという問題があった。特に、コールドスタート時には始動性を良くするために燃料濃度の高い混合気が供給されるため、未燃焼の炭化水素(HC)成分が排気ガス中に含まれる割合が多くなる。   Conventionally, since the catalyst is not activated when the temperature of the catalyst carrier is low, there has been a problem that sufficient purification cannot be performed by cold start. In particular, since an air-fuel mixture having a high fuel concentration is supplied to improve startability during a cold start, the ratio of unburned hydrocarbon (HC) components contained in the exhaust gas increases.

これに対して、触媒担体に貴金属触媒層とHC吸着材により構成される吸着層とを配置して、低温時は吸着層においてHCを吸着させておき、高温となったときに吸着されたHCを放出して貴金属触媒層により浄化を行うように構成された排ガス浄化用触媒が知られている(特許文献1、参照。)。
特開2002−320856号公報
On the other hand, a noble metal catalyst layer and an adsorption layer composed of an HC adsorbent are arranged on the catalyst carrier so that HC is adsorbed in the adsorption layer at a low temperature and adsorbed at a high temperature. There is known an exhaust gas purifying catalyst that is configured to release the gas and perform purification with a noble metal catalyst layer (see Patent Document 1).
JP 2002-320856 A

前述の特許文献1のような従来の触媒担体では、ハニカム構造中に排気ガス経路が形成されており、排気ガス中のHC成分の一部は、触媒層に触れることなくそのまま下流へと流れて排出されてしまう。また、HC吸着層に吸着されたHCの一部は、HC吸着層内部や、担体壁内を通過して、そのまま下流へと流れて排出されてしまう。   In the conventional catalyst carrier such as Patent Document 1 described above, an exhaust gas path is formed in the honeycomb structure, and a part of the HC component in the exhaust gas flows downstream without touching the catalyst layer. It will be discharged. Further, a part of the HC adsorbed on the HC adsorption layer passes through the inside of the HC adsorption layer and the inside of the carrier wall, and then flows downstream and is discharged.

このように、従来の触媒担体では、HC成分のすべてが触媒に接触せず、その一部が未浄化のまま排出されてしまうという問題があった。   Thus, the conventional catalyst carrier has a problem that not all of the HC component comes into contact with the catalyst, and a part of the HC component is discharged without being purified.

本発明は、このような問題点に着目してなされたものであり、HC成分の浄化効率が高いHC吸着触媒を提供することを目的とする。   The present invention has been made paying attention to such problems, and an object thereof is to provide an HC adsorption catalyst having high HC component purification efficiency.

本発明は、触媒担体10と、触媒担体10に担持される触媒層20と、排気ガスの炭化水素成分を一時的に吸着する吸着層30と、を備えるHC吸着触媒1において、触媒担体10は排気ガスが通過可能な部材で構成され、触媒担体10の排気ガス入口側に吸着層20を、排気ガスの出口側に触媒層30を、それぞれ配置したことを特徴とする。   The present invention relates to an HC adsorption catalyst 1 comprising a catalyst carrier 10, a catalyst layer 20 supported on the catalyst carrier 10, and an adsorption layer 30 that temporarily adsorbs a hydrocarbon component of exhaust gas. The exhaust gas is formed of a member that can pass through, and an adsorption layer 20 is disposed on the exhaust gas inlet side of the catalyst carrier 10 and a catalyst layer 30 is disposed on the exhaust gas outlet side.

本発明によると、排気ガスが触媒担体10を通過する過程で、確実に吸着層20と触媒層30とを通過するので、吸着層20がHC成分を効率よく吸着できると共に、一時的に吸着されたHC成分が触媒層30において効率よく浄化されるので、排気ガス中のHC成分の浄化効率を高めることができる。   According to the present invention, the exhaust gas surely passes through the adsorption layer 20 and the catalyst layer 30 in the process of passing through the catalyst carrier 10, so that the adsorption layer 20 can adsorb HC components efficiently and is adsorbed temporarily. Since the HC component is efficiently purified in the catalyst layer 30, the purification efficiency of the HC component in the exhaust gas can be increased.

以下に、本発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

自動車のエンジンの排気ガス中の一酸化炭素(以下、「CO」と呼ぶ)、酸化窒素化合物(以下、「NOx」と呼ぶ)成分や炭化水素(以下、「HC」と呼ぶ)成分を浄化するために、貴金属元素を主成分とする三元触媒が一般的に用いられている。三元触媒は、適切な温度において排気ガス浄化効率が最も高くなる。そこで、触媒が低温時には吸着材によりHC成分を吸着しておき、触媒が所定温度以上となったときにこの吸着されたHC成分を放出して周囲の触媒と反応することで排気ガスを浄化する、いわゆるHC吸着触媒が開発されている。   Purifies carbon monoxide (hereinafter referred to as “CO”), nitric oxide compound (hereinafter referred to as “NOx”) components and hydrocarbon (hereinafter referred to as “HC”) components in the exhaust gas of automobile engines. For this reason, a three-way catalyst containing a noble metal element as a main component is generally used. The three-way catalyst has the highest exhaust gas purification efficiency at an appropriate temperature. Therefore, the HC component is adsorbed by the adsorbent when the catalyst is at a low temperature, and when the catalyst reaches a predetermined temperature or more, the adsorbed HC component is released and reacts with the surrounding catalyst to purify the exhaust gas. So-called HC adsorption catalysts have been developed.

ところで、従来のHC吸着触媒における触媒担体は、ハニカム構造などにより、通過する排気ガスに対する表面積を拡大して排気ガス浄化効率を向上している。また、触媒は排気ガスと直接触れる必要があるため、吸着材は触媒担体と触媒との間に配置される。このような構造により、排気ガス中のHC成分のうち、一部は吸着材に吸着されないまま排出されてしまう。また、吸着材に吸着されたHC成分のうち、一部は吸着材内部や触媒担体の壁部を通過して、触媒と反応することなく排出されてしまう。   By the way, the catalyst carrier in the conventional HC adsorption catalyst has a honeycomb structure or the like to increase the surface area with respect to the passing exhaust gas and improve the exhaust gas purification efficiency. In addition, since the catalyst needs to be in direct contact with the exhaust gas, the adsorbent is disposed between the catalyst carrier and the catalyst. With such a structure, some of the HC components in the exhaust gas are discharged without being adsorbed by the adsorbent. In addition, some of the HC components adsorbed by the adsorbent pass through the adsorbent and the wall of the catalyst carrier and are discharged without reacting with the catalyst.

そのため、従来のHC吸着触媒は、HC成分の約25%が未浄化のまま排出されるという問題があった。   Therefore, the conventional HC adsorption catalyst has a problem that about 25% of the HC component is discharged without being purified.

そこで本願は、以下に説明するような特徴的な構造によって、HC成分の浄化効率を高めることのできるHC吸着触媒を構成した。   Therefore, the present application has configured an HC adsorption catalyst that can enhance the purification efficiency of HC components by a characteristic structure as described below.

<第1実施形態>
図1は、本発明の第1の実施の形態のHC吸着触媒1の構成を示す説明図である。
<First Embodiment>
FIG. 1 is an explanatory diagram showing the configuration of the HC adsorption catalyst 1 according to the first embodiment of the present invention.

HC吸着触媒1は、触媒担体10と、吸着層20と、触媒層30とによって構成される。   The HC adsorption catalyst 1 includes a catalyst carrier 10, an adsorption layer 20, and a catalyst layer 30.

触媒担体10は、排気ガスが通過可能な材質で構成される壁部11と、前記壁部11によって排気ガス流れ方向に形成されるガス流路12と、排気ガスを流通不可能な材質で構成され、ガス流路12の入口側及び出口側を交互に目封じする封止部13とにより構成される。   The catalyst carrier 10 is composed of a wall portion 11 made of a material through which exhaust gas can pass, a gas flow path 12 formed by the wall portion 11 in the exhaust gas flow direction, and a material incapable of circulating the exhaust gas. And a sealing portion 13 that alternately seals the inlet side and the outlet side of the gas flow path 12.

なお、壁部11は、例えば多孔質のセラミックスや、金属ワイヤーや繊維質によるメッシュ構造等によって構成され、排気ガスが通過可能に構成される。   In addition, the wall part 11 is comprised, for example by the porous ceramics, the metal mesh, the mesh structure by a fiber, etc., and is comprised so that exhaust gas can pass through.

また、触媒担体10は、ガスの流れ方向に対して直角の断面がハニカム構造を有し、複数の壁部11により複数のガス流路12が構成される。   Further, the catalyst carrier 10 has a honeycomb structure in a cross section perpendicular to the gas flow direction, and a plurality of gas passages 12 are constituted by the plurality of wall portions 11.

吸着層20は、触媒担体10の壁部11のうち、排気ガスの入口側に連通する面に密着して配置される。吸着層20は、多孔質のHC吸着材(例えば、ケイ素酸化物、アルミニウム酸化物を主成分とするゼオライト)によって構成される。   The adsorption layer 20 is disposed in close contact with a surface of the wall portion 11 of the catalyst carrier 10 that communicates with the exhaust gas inlet side. The adsorption layer 20 is composed of a porous HC adsorbent (for example, zeolite mainly composed of silicon oxide and aluminum oxide).

吸着層20は、このHC吸着材によってHC成分を一時的に吸着する。具体的には、吸着層20は、低温では通過する排気ガスの炭化水素(HC)成分を吸着し、所定温度以上に上昇したときに、吸着したHC成分を分離する。   The adsorption layer 20 temporarily adsorbs the HC component by this HC adsorbent. Specifically, the adsorption layer 20 adsorbs the hydrocarbon (HC) component of the exhaust gas that passes therethrough at a low temperature, and separates the adsorbed HC component when it rises above a predetermined temperature.

触媒層30は、触媒担体10の壁部11のうち、排気ガスの出口側に連通する面に密着して配置される。触媒層30は、プラチナ、パラジウム、ロジウム等の貴金属を含む三元触媒によって構成される。触媒層30は、通過する排気ガス中のCO、HC成分、及びNOx成分を、無害な水、二酸化炭素、窒素に酸化又は還元させる反応を促進する。   The catalyst layer 30 is disposed in close contact with a surface of the wall 11 of the catalyst carrier 10 that communicates with the exhaust gas outlet side. The catalyst layer 30 is composed of a three-way catalyst containing a noble metal such as platinum, palladium, or rhodium. The catalyst layer 30 promotes a reaction that oxidizes or reduces CO, HC components, and NOx components in the passing exhaust gas into harmless water, carbon dioxide, and nitrogen.

このように構成されたHC吸着触媒1では、入口側から導入された排気ガスは、吸着層20、壁部11、触媒層30の順に通過して、出口側へと排出される。   In the HC adsorption catalyst 1 configured as described above, the exhaust gas introduced from the inlet side passes through the adsorption layer 20, the wall portion 11, and the catalyst layer 30 in this order, and is discharged to the outlet side.

このとき、エンジン始動時など触媒担体10が十分に加熱されていない場合には、吸着層20は、排気ガス中のHC成分を吸着する。排気ガスは、触媒担体10を通過する過程で確実に吸着層20を経由するので、HC成分の吸着効率が高まる。   At this time, when the catalyst carrier 10 is not sufficiently heated, such as when the engine is started, the adsorption layer 20 adsorbs the HC component in the exhaust gas. Since the exhaust gas reliably passes through the adsorption layer 20 in the process of passing through the catalyst carrier 10, the adsorption efficiency of the HC component is increased.

また、排気ガスにより触媒担体10が十分に加熱され、吸着層20の温度が所定温度以上となると、吸着層20に吸着されたHC成分が吸着層20から分離する。このとき、分離されたHC成分は、排気ガスの排圧によって確実に触媒層30を経由するので、触媒層30においてHC成分の酸化反応が促進されて、浄化されたガスとして大気中に排出される。   Further, when the catalyst carrier 10 is sufficiently heated by the exhaust gas and the temperature of the adsorption layer 20 becomes equal to or higher than a predetermined temperature, the HC component adsorbed on the adsorption layer 20 is separated from the adsorption layer 20. At this time, the separated HC component reliably passes through the catalyst layer 30 due to the exhaust gas exhaust pressure, so that the oxidation reaction of the HC component is promoted in the catalyst layer 30 and is discharged into the atmosphere as a purified gas. The

以上のような構成によって、本発明の第1の実施の形態は、排気ガスが確実に吸着層20と触媒層30とを通過するので、吸着層20が、HC成分を効率よく吸着できると共に、一時的に吸着されたHC成分が触媒層30において効率よく浄化されるので、排気ガス中のHC成分の浄化効率を高めることができる。   With the configuration as described above, in the first embodiment of the present invention, since the exhaust gas reliably passes through the adsorption layer 20 and the catalyst layer 30, the adsorption layer 20 can adsorb HC components efficiently, Since the temporarily adsorbed HC component is efficiently purified in the catalyst layer 30, the purification efficiency of the HC component in the exhaust gas can be increased.

<第2実施形態>
前述の第1の実施の形態では、触媒担体10において、排気ガス入口側に吸着層20を、排気ガス出口側に触媒層30を配置した。
Second Embodiment
In the first embodiment described above, in the catalyst carrier 10, the adsorption layer 20 is disposed on the exhaust gas inlet side, and the catalyst layer 30 is disposed on the exhaust gas outlet side.

これに対して、第2の実施の形態では、壁部11の排気ガス入口側に第1の吸着層20aと第1の触媒層30aとをガスの流れ方向に積層して配置し、壁部11の排気ガス出口側に第2の吸着層20bと第2の触媒層30bとをガスの流れ方向に積層して配置した。   On the other hand, in the second embodiment, the first adsorbing layer 20a and the first catalyst layer 30a are stacked in the gas flow direction on the exhaust gas inlet side of the wall portion 11, and the wall portion is arranged. The second adsorption layer 20b and the second catalyst layer 30b are stacked in the gas flow direction on the 11 exhaust gas outlet side.

図2は、本発明の第2の実施の形態の触媒担体10の説明図である。なお、第1の実施の形態と同一の構成には同一の符号を付し、その説明は省略する。   FIG. 2 is an explanatory diagram of the catalyst carrier 10 according to the second embodiment of this invention. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and the description is abbreviate | omitted.

図2に示すように、触媒担体10の壁部11のうち、排気ガスの入口側に連通する面には第1の触媒層30aが密着して配置され、この第1の触媒層30aの外側に第1の吸着層20aが配置される。また、触媒担体10の壁部11のうち、排気ガスの出口側に連通する面には、第2の吸着層20bが密着して配置され、この第2の吸着層20bの外側に触媒層30bが配置される。   As shown in FIG. 2, the first catalyst layer 30a is disposed in close contact with the surface of the wall portion 11 of the catalyst carrier 10 that communicates with the exhaust gas inlet side, and the outside of the first catalyst layer 30a. The first adsorption layer 20a is disposed on the first. The second adsorption layer 20b is disposed in close contact with the surface of the wall 11 of the catalyst carrier 10 that communicates with the exhaust gas outlet side, and the catalyst layer 30b is disposed outside the second adsorption layer 20b. Is placed.

このように構成されたHC吸着触媒1では、入口側から導入された排気ガスは、第1の吸着層20a、第1の触媒層30a、壁部11、第2の吸着層20b、第2の触媒層30bの順に通過して、出口側へと排出される。   In the HC adsorption catalyst 1 configured as described above, the exhaust gas introduced from the inlet side includes the first adsorption layer 20a, the first catalyst layer 30a, the wall portion 11, the second adsorption layer 20b, and the second adsorption layer. It passes through the catalyst layer 30b in this order and is discharged to the outlet side.

このとき、エンジン始動時など触媒担体10が十分に加熱されていない場合には、まず第1の吸着層20aにおいて排気ガス中のHC成分を吸着する。また、第1の吸着層20aに吸着されず、第1の触媒層30aにおいて反応しなかったHC成分は、第2の吸着層20bに吸着される。このように、排気ガスは、触媒担体10を通過する過程で第1の吸着層20a及び第2の吸着層20bを確実に経由するので、HC成分の吸着効率が高まる。   At this time, when the catalyst carrier 10 is not sufficiently heated, such as when the engine is started, the HC component in the exhaust gas is first adsorbed in the first adsorption layer 20a. In addition, HC components that are not adsorbed by the first adsorption layer 20a and have not reacted in the first catalyst layer 30a are adsorbed by the second adsorption layer 20b. Thus, the exhaust gas reliably passes through the first adsorption layer 20a and the second adsorption layer 20b in the process of passing through the catalyst carrier 10, so that the adsorption efficiency of the HC component is increased.

また、排気ガスにより触媒担体10が十分に加熱され、第1の吸着層20a及び第2の吸着層20bの温度が所定温度以上となると、第1の吸着層20a及び第2の吸着層20bに吸着されたHC成分が分離する。このとき、分離されたHC成分は、排気ガスと共に確実に第1の触媒層30a及び第2の触媒層30bを経由するので、触媒層30においてHC成分の酸化反応が促進されて、浄化されたガスとして大気中に排出される。   Further, when the catalyst carrier 10 is sufficiently heated by the exhaust gas, and the temperature of the first adsorption layer 20a and the second adsorption layer 20b is equal to or higher than a predetermined temperature, the first adsorption layer 20a and the second adsorption layer 20b The adsorbed HC component is separated. At this time, since the separated HC component surely passes through the first catalyst layer 30a and the second catalyst layer 30b together with the exhaust gas, the oxidation reaction of the HC component is promoted and purified in the catalyst layer 30. It is discharged into the atmosphere as a gas.

本発明の第2の実施の形態では、このように構成することによって、前述の第1の実施の形態と同様に、排気ガスが確実に第1の吸着層20a及び第2の吸着層20bと第1の触媒層30a及び第2の触媒層30bとを通過するので、吸着層20に吸着されたHC成分が触媒層30においてHC成分の酸化・還元反応が促進され、排気ガス中のHC成分の浄化効率が高まる。   In the second embodiment of the present invention, by configuring in this way, the exhaust gas is reliably transmitted to the first adsorption layer 20a and the second adsorption layer 20b, as in the first embodiment described above. Since it passes through the first catalyst layer 30a and the second catalyst layer 30b, the HC component adsorbed on the adsorption layer 20 promotes the oxidation / reduction reaction of the HC component in the catalyst layer 30, and the HC component in the exhaust gas. The purification efficiency increases.

特に、第2の実施の形態では、排気ガスの入口側に第1の吸着層20aと第1の触媒層30aとを配置したので、低温時にも、排気ガス入口側の第1の触媒層30aは、第2の触媒層30bよりも先に反応熱によって昇温する。また、触媒層30が2層あるので、これらの反応熱によって昇温する。これにより、第1の触媒層30a及び第2の触媒層30bの昇温を早めることができるので、第1の触媒層30a及び第2の触媒層30bをより早く活性化することができる。   In particular, in the second embodiment, since the first adsorption layer 20a and the first catalyst layer 30a are arranged on the exhaust gas inlet side, the first catalyst layer 30a on the exhaust gas inlet side even at low temperatures. Is raised by the heat of reaction prior to the second catalyst layer 30b. Moreover, since there are two catalyst layers 30, the temperature is raised by these reaction heats. Thereby, since temperature rising of the 1st catalyst layer 30a and the 2nd catalyst layer 30b can be advanced, the 1st catalyst layer 30a and the 2nd catalyst layer 30b can be activated earlier.

本発明の第1の実施の形態のHC吸着触媒の説明図である。It is explanatory drawing of the HC adsorption catalyst of the 1st Embodiment of this invention. 本発明の第2の実施の形態のHC吸着触媒の説明図である。It is explanatory drawing of the HC adsorption catalyst of the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 HC吸着触媒
10 触媒担体
11 壁部
12 ガス流路
13 封止部
20 吸着層
30 触媒層
DESCRIPTION OF SYMBOLS 1 HC adsorption catalyst 10 Catalyst carrier 11 Wall part 12 Gas flow path 13 Sealing part 20 Adsorption layer 30 Catalyst layer

Claims (4)

触媒担体と、前記触媒担体に担持される触媒層と、排気ガスの炭化水素成分を一時的に吸着する吸着層と、を備えるHC吸着触媒において、
前記触媒担体は排気ガスが通過可能な部材で構成され、
前記触媒担体の排気ガス入口側に前記吸着層を、排気ガスの出口側に前記触媒層を、それぞれ配置したことを特徴とするHC吸着触媒。
In an HC adsorption catalyst comprising a catalyst carrier, a catalyst layer supported on the catalyst carrier, and an adsorption layer that temporarily adsorbs a hydrocarbon component of exhaust gas,
The catalyst carrier is composed of a member through which exhaust gas can pass,
An HC adsorption catalyst, wherein the adsorption layer is disposed on an exhaust gas inlet side of the catalyst carrier, and the catalyst layer is disposed on an exhaust gas outlet side.
前記触媒担体は、排気ガスが通過可能な複数の壁部と、前記壁部によって形成されるガス流路と、前記ガス流路を、前記壁部で仕切られる入口側と出口側とを交互に目封じする封止部とによって構成され、
前記吸着層は、前記壁部の排気ガスの入口側に連通する側に配置され、前記触媒層は、前記壁部の排気ガスの出口側に連通する側に配置されることを特徴とする請求項1に記載のHC吸着触媒。
The catalyst carrier includes a plurality of wall portions through which exhaust gas can pass, a gas flow path formed by the wall portions, and an inlet side and an outlet side that are partitioned by the wall portions alternately. It is comprised by the sealing part to seal,
The adsorbing layer is disposed on a side communicating with an exhaust gas inlet side of the wall portion, and the catalyst layer is disposed on a side communicating with an exhaust gas outlet side of the wall portion. Item 4. The HC adsorption catalyst according to Item 1.
触媒担体と、前記触媒担体に担持される触媒層と、排気ガスの炭化水素成分を一時的に吸着する吸着層と、を備えるHC吸着触媒において、
前記触媒担体は排気ガスが通過可能な部材で構成され、
前記触媒担体の排気ガス入口側と排気ガスの出口側とに、それぞれ前記触媒層及び前記吸着層を配置したことを特徴とするHC吸着触媒。
In an HC adsorption catalyst comprising a catalyst carrier, a catalyst layer supported on the catalyst carrier, and an adsorption layer that temporarily adsorbs a hydrocarbon component of exhaust gas,
The catalyst carrier is composed of a member through which exhaust gas can pass,
An HC adsorption catalyst, wherein the catalyst layer and the adsorption layer are arranged on an exhaust gas inlet side and an exhaust gas outlet side of the catalyst carrier, respectively.
前記触媒担体は、排気ガスが通過可能な複数の壁部と、前記壁部によって形成される排気ガス流路と、前記ガス流路を、前記壁部で仕切られる入口側と出口側とを交互に目封じする封止部とによって構成され、
前記吸着層は、前記壁部の排気ガスの入口側に連通する側に配置される第1の吸着層と、前記壁部の排気ガスの出口側に連通する側に配置される第2の吸着層とからなり、
前記触媒層は、前記壁部の排気ガスの入口側に連通する側に配置される第1の触媒層と、前記壁部の排気ガスの出口側に連通する側に配置される第2の触媒層とからなり、
前記第1の吸着層及び前記第1の触媒層と、前記第2の吸着層及び前記第2の触媒層とが、排気ガス流れ方向に積層されていることを特徴とする請求項3に記載のHC吸着触媒。
The catalyst carrier includes a plurality of wall portions through which exhaust gas can pass, an exhaust gas passage formed by the wall portions, and an inlet side and an outlet side that are partitioned by the wall portion. And a sealing portion for sealing,
The adsorption layer includes a first adsorption layer disposed on a side communicating with the exhaust gas inlet side of the wall portion, and a second adsorption layer disposed on a side communicating with the exhaust gas outlet side of the wall portion. Consists of layers,
The catalyst layer includes a first catalyst layer disposed on a side of the wall portion that communicates with an exhaust gas inlet side, and a second catalyst disposed on a side of the wall portion that communicates with an exhaust gas outlet side. Consists of layers,
The said 1st adsorption layer and said 1st catalyst layer, and said 2nd adsorption layer and said 2nd catalyst layer are laminated | stacked on the exhaust gas flow direction. HC adsorption catalyst.
JP2008122195A 2008-05-08 2008-05-08 Hc adsorption catalyst Pending JP2009268978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008122195A JP2009268978A (en) 2008-05-08 2008-05-08 Hc adsorption catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008122195A JP2009268978A (en) 2008-05-08 2008-05-08 Hc adsorption catalyst

Publications (1)

Publication Number Publication Date
JP2009268978A true JP2009268978A (en) 2009-11-19

Family

ID=41435996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008122195A Pending JP2009268978A (en) 2008-05-08 2008-05-08 Hc adsorption catalyst

Country Status (1)

Country Link
JP (1) JP2009268978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206106A (en) * 2011-03-15 2012-10-25 Toshiba Corp Resin composite, filter aid for water treatment, precoat material for water treatment, and water treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206106A (en) * 2011-03-15 2012-10-25 Toshiba Corp Resin composite, filter aid for water treatment, precoat material for water treatment, and water treatment method

Similar Documents

Publication Publication Date Title
US9657626B2 (en) Emissions reduction system
JP5256881B2 (en) Exhaust gas purification device
JP4507901B2 (en) Exhaust gas purification system and exhaust gas purification method thereof
JP2010048111A (en) Exhaust emission control system and exhaust emission control method
JP2007009718A (en) Exhaust emission control device
JP2020045860A (en) Exhaust emission control device
JP2000045751A (en) Exhaust emission control device for internal combustion engine
JP5003042B2 (en) Exhaust gas purification system
JP2009268978A (en) Hc adsorption catalyst
JP2013245606A (en) Exhaust gas purification system
JP4507018B2 (en) Exhaust gas purification device for internal combustion engine
JP2009167844A (en) Exhaust emission control catalyst device
JP2019157739A (en) Exhaust purifying device for internal combustion engine
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP4770132B2 (en) HC adsorption catalyst and exhaust gas purification apparatus using the same
JP3419310B2 (en) Exhaust gas purification device for internal combustion engine
JP2020045861A (en) Exhaust emission control device
JP2014152661A (en) Diesel engine exhaust gas purification device
JP2014062501A (en) Exhaust emission control system
JP3402132B2 (en) Engine exhaust purification device
JP2014155888A5 (en)
JP2009127585A (en) Exhaust emission control device
EP2123872B1 (en) Exhaust gas control apparatus for internal combustion engine
JP2009216021A (en) Exhaust emission control device
JP6699113B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification catalyst