JP2009267714A - Demodulator circuit - Google Patents

Demodulator circuit Download PDF

Info

Publication number
JP2009267714A
JP2009267714A JP2008114213A JP2008114213A JP2009267714A JP 2009267714 A JP2009267714 A JP 2009267714A JP 2008114213 A JP2008114213 A JP 2008114213A JP 2008114213 A JP2008114213 A JP 2008114213A JP 2009267714 A JP2009267714 A JP 2009267714A
Authority
JP
Japan
Prior art keywords
phase
circuit
error
modulation signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008114213A
Other languages
Japanese (ja)
Other versions
JP4985535B2 (en
Inventor
Shuichi Hayashi
修一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008114213A priority Critical patent/JP4985535B2/en
Publication of JP2009267714A publication Critical patent/JP2009267714A/en
Application granted granted Critical
Publication of JP4985535B2 publication Critical patent/JP4985535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such problems that frequency synchronization information and phase synchronization information need to be observed so as to eliminate frequency uncertainty by an AFC circuit and a CR circuit in a demodulator circuit for achieving synchronous detection, and thus, a gain adjustable parameter is added and convergence time of feedback loop gain is lengthened so as to reflect the observation result to the gain of the feedback loop. <P>SOLUTION: The AFC circuit 2 and the CR circuit 3 in the demodulator circuit are converged while a phase error remains behind. In the converged state, a reception modulating signal and a given pattern are correlated by a phase uncertainty elimination circuit 4 so that the remaining phase error is detected, and the detected phase error is corrected. Therefore, the adjustable parameter with respect to the feedback loop is reduced, and the feedback loop is simplified. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、衛星通信や移動体通信などの無線通信において、同期検波を実現する復調回路に関するものである。   The present invention relates to a demodulation circuit that realizes synchronous detection in wireless communication such as satellite communication and mobile communication.

無線通信装置では、送信装置側の周波数と受信装置側の周波数との間に偏差(誤差)が存在し、この周波数偏差の影響でビット・エラー・レート(BER)特性が劣化することが知られている。そこで、受信側の復調回路では自動周波数制御(AFC:Automatic Frequency Controller)回路などにより、送受信間の周波数偏差を除去している。また、同様に送受信間で位相誤差または位相ずれが存在し、復調回路ではキャリア再生(CR:Carrier Recovery)回路などにより、その位相誤差を除去している。   In wireless communication devices, there is a deviation (error) between the frequency on the transmission device side and the frequency on the reception device side, and it is known that the bit error rate (BER) characteristics deteriorate due to the influence of this frequency deviation. ing. Therefore, the receiving side demodulation circuit removes frequency deviation between transmission and reception by an automatic frequency controller (AFC) circuit or the like. Similarly, there is a phase error or phase shift between transmission and reception, and the demodulation circuit removes the phase error by a carrier recovery (CR) circuit or the like.

このような周波数偏差を除去する方法については、例えば特許文献1に記載されている。図8は、特許文献1に記載された従来の復調回路を概略化して記載したもので、フィードバック型の自動周波数制御回路(以下、AFC回路と称す)2と、フィードバック型のキャリア再生回路(以下、CR回路と称す)3により構成されている。   A method for removing such a frequency deviation is described in Patent Document 1, for example. FIG. 8 schematically shows a conventional demodulation circuit described in Patent Document 1, and includes a feedback type automatic frequency control circuit (hereinafter referred to as an AFC circuit) 2 and a feedback type carrier recovery circuit (hereinafter referred to as an AFC circuit). (Referred to as a CR circuit).

AFC回路2は、入力端子1から入力される受信変調信号の位相を周波数誤差(偏差)成分に応じて複素乗算を行う複素乗算器21と、複素乗算器21の出力信号が有する周波数誤差(偏差)を検出する周波数誤差検出器22と、検出された周波数誤差を積分するループフィルタ23と、積分された周波数誤差に基づいて、その周波数誤差を位相成分とするAFC基準信号を生成する数値制御発振器24と、信号フレームに含まれるユニークワード(UW:Unique Word)などの既知パターンを使って、周波数同期・非同期を検出する同期判定回路26とを備えている。   The AFC circuit 2 includes a complex multiplier 21 that performs complex multiplication on the phase of the received modulation signal input from the input terminal 1 according to a frequency error (deviation) component, and a frequency error (deviation) included in the output signal of the complex multiplier 21. ), A loop filter 23 that integrates the detected frequency error, and a numerically controlled oscillator that generates an AFC reference signal having the frequency error as a phase component based on the integrated frequency error. 24 and a synchronization determination circuit 26 that detects frequency synchronization / asynchronization using a known pattern such as a unique word (UW) included in the signal frame.

CR回路3は、AFC回路2と同様に、AFC回路2の出力信号を位相差に応じて複素乗算を行う複素乗算器31と、複素乗算器31の出力信号に含まれる位相誤差を検出する位相誤差検出器32と、検出された位相誤差を積分するループフィルタ33と、積分された位相誤差に対応するCR基準信号を生成する数値制御発振器34と、信号フレームに含まれるユニークワード(UW:Unique Word)などの既知パターンを使って、位相同期・非同期を検出する同期判定回路37とを備えている。   Similar to the AFC circuit 2, the CR circuit 3 performs complex multiplication on the output signal of the AFC circuit 2 in accordance with the phase difference, and a phase for detecting a phase error included in the output signal of the complex multiplier 31. An error detector 32, a loop filter 33 for integrating the detected phase error, a numerically controlled oscillator 34 for generating a CR reference signal corresponding to the integrated phase error, and a unique word (UW: Unique) included in the signal frame And a synchronization determination circuit 37 that detects phase synchronization / asynchronization using a known pattern such as Word).

図8の構成において、AFC回路2で送受信機間の周波数偏差を補正し、CR回路3で周波数偏差補正後、残留した位相誤差を補正し、出力端子5から復調信号を出力している。
このような構成で、上記のAFC回路2およびCR回路3を動作させると、位相成分に情報が乗せられた変調の場合、受信変調信号において位相誤差を含んだ状態で安定することがある。この状態を位相不確定性と呼び、正確に信号を受信するためには位相誤差を含んだ状態であるかどうかを判定するための回路が必要となる。そのため、図8に示すようにAFC回路2およびCR回路3にそれぞれ同期判定回路26、37を設け、信号フレームに含まれるユニークワード(UW)などの既知パターンを使って、周波数同期および位相同期が確立するようにフィードバックループを制御することで、CR回路3の出力において、位相不確定性が取り除かれた信号を得るようにしている。
In the configuration of FIG. 8, the AFC circuit 2 corrects the frequency deviation between the transceivers, the CR circuit 3 corrects the frequency deviation, corrects the remaining phase error, and outputs a demodulated signal from the output terminal 5.
When the AFC circuit 2 and the CR circuit 3 are operated with such a configuration, in the case of modulation in which information is added to the phase component, the received modulation signal may be stabilized in a state including a phase error. This state is called phase uncertainty, and a circuit for determining whether or not the state includes a phase error is necessary to accurately receive a signal. Therefore, as shown in FIG. 8, synchronization determination circuits 26 and 37 are provided in the AFC circuit 2 and the CR circuit 3, respectively, and frequency synchronization and phase synchronization are performed using a known pattern such as a unique word (UW) included in the signal frame. By controlling the feedback loop so as to be established, a signal from which phase uncertainty has been removed is obtained at the output of the CR circuit 3.

特開2006−217054号公報(図8、図13)JP 2006-217054 A (FIGS. 8 and 13)

以上のように、従来の復調回路は、信号フレーム中の既知パターンを使って周波数同期状態と位相同期状態を観測し、同期が確立するようにAFC回路及びCR回路のフィードバックループのゲインを調整することでCR回路出力として位相不確定性が除去された受信データが得られる。しかしながら、周波数同期状態と位相同期状態を観測し、観測結果をフィードバックループのゲインに反映させるため、ゲイン調整パラメータが増え、フィードバックループゲインの収束時間が長くなるという問題点があった。
また、フィードバックループのゲイン調整パラメータ増大により、フィードバックループの安定性が低下する問題があった。
As described above, the conventional demodulation circuit observes the frequency synchronization state and the phase synchronization state using the known pattern in the signal frame, and adjusts the gains of the feedback loops of the AFC circuit and the CR circuit so that synchronization is established. Thus, received data from which phase uncertainty is removed is obtained as the CR circuit output. However, since the frequency synchronization state and the phase synchronization state are observed and the observation result is reflected in the gain of the feedback loop, there are problems that the gain adjustment parameter increases and the convergence time of the feedback loop gain becomes long.
Further, there is a problem that the stability of the feedback loop is lowered due to an increase in the gain adjustment parameter of the feedback loop.

この発明は上記のような問題点を解決するためになされたもので、フィードバックループのゲイン調整パラメータを減らし、AFC回路およびCR回路におけるフィードバックループ収束時間の短縮とフィードバックループ安定性の向上を実現することを目的とするものである。   The present invention has been made to solve the above-described problems, and reduces the gain adjustment parameter of the feedback loop, and realizes shortening of the feedback loop convergence time and improvement of the feedback loop stability in the AFC circuit and the CR circuit. It is for the purpose.

この発明の復調回路は、受信変調信号に含まれる送信側と受信側との間の搬送波の周波数誤差成分を検出し、受信変調信号から周波数誤差成分を除去する自動周波数制御回路と、この自動周波数制御回路からの出力を入力して、受信変調信号に含まれる送信側と受信側との間の搬送波の位相誤差成分を検出し、受信変調信号から位相誤差成分を除去するキャリア再生回路と、このキャリア再生回路で残留した位相誤差を補正する位相不確定性除去回路とを備えたものである。   The demodulation circuit of the present invention includes an automatic frequency control circuit that detects a frequency error component of a carrier wave between a transmission side and a reception side included in a reception modulation signal and removes the frequency error component from the reception modulation signal, and the automatic frequency A carrier recovery circuit that inputs an output from the control circuit, detects a phase error component of the carrier wave between the transmission side and the reception side included in the reception modulation signal, and removes the phase error component from the reception modulation signal; and And a phase uncertainty removing circuit for correcting a phase error remaining in the carrier reproducing circuit.

この発明によれば、AFC回路およびCR回路は、同期情報を監視せずに位相誤差が残留する状態で収束するようにしたので、フィードバックループゲイン調整パラメータが減ることにより、フィードバックループの収束時間が短縮されるという効果を奏する。また、フィードバックループゲイン調整パラメータが減ることにより、フィードバックループ安定性が向上する。   According to the present invention, since the AFC circuit and the CR circuit converge in a state where the phase error remains without monitoring the synchronization information, the feedback loop gain adjustment parameter is reduced, so that the convergence time of the feedback loop is reduced. There is an effect that it is shortened. Further, the feedback loop stability is improved by reducing the feedback loop gain adjustment parameter.

実施の形態1.
以下、この発明の実施の形態1における復調回路を図面に基づいて説明する。図1はこの発明の実施の形態1における復調回路のブロック図、図2は復調回路を構成するAFC回路における周波数誤差の補正方法を示す図、図3は復調回路を構成するCR回路における位相誤差の補正方法を示す図、図4は復調回路を構成するCR回路の出力である位相不確定性の発生例を示す図、図5は復調回路を構成する位相不確定性除去回路の一構成例を示すブロック図である。
Embodiment 1 FIG.
Hereinafter, a demodulation circuit according to Embodiment 1 of the present invention will be described with reference to the drawings. 1 is a block diagram of a demodulation circuit according to Embodiment 1 of the present invention, FIG. 2 is a diagram showing a method of correcting a frequency error in an AFC circuit constituting the demodulation circuit, and FIG. 3 is a phase error in a CR circuit constituting the demodulation circuit. FIG. 4 is a diagram illustrating an example of occurrence of phase uncertainty, which is an output of a CR circuit that constitutes a demodulation circuit, and FIG. 5 is a configuration example of a phase uncertainty removal circuit that constitutes the demodulation circuit. FIG.

図1に示す復調回路のブロック図において、復調回路は、入力端子1から入力される受信変調信号に含まれる送信側と受信側との間の搬送波の周波数誤差成分を検出し、受信変調信号から周波数誤差成分をゼロに近い状態まで除去する自動周波数制御回路(以下、AFC回路と称す)2と、このAFC回路2からの出力を入力して、受信変調信号に含まれる送信側と受信側との間の搬送波の位相誤差成分を検出し、受信変調信号から位相誤差成分をゼロに近い状態まで除去するキャリア再生回路(以下、CR回路と称す)3と、このCR回路3で残留した位相誤差を補正して出力端子5に出力する位相不確定性除去回路4とを備えている。   In the block diagram of the demodulation circuit shown in FIG. 1, the demodulation circuit detects a frequency error component of the carrier wave between the transmission side and the reception side included in the reception modulation signal input from the input terminal 1, and detects the frequency error component from the reception modulation signal. An automatic frequency control circuit (hereinafter referred to as an AFC circuit) 2 that removes frequency error components to a state close to zero, an output from the AFC circuit 2 is input, and a transmission side and a reception side included in the received modulation signal A carrier recovery circuit (hereinafter referred to as a CR circuit) 3 that detects a phase error component of a carrier wave between the two and removes the phase error component from the received modulation signal to a state close to zero, and a phase error remaining in the CR circuit 3 And a phase uncertainty removing circuit 4 that outputs the output to the output terminal 5.

AFC回路2は、受信変調信号の位相を周波数誤差(偏差)成分に応じて複素乗算を行う複素乗算器21と、複素乗算器21の出力信号に含まれる周波数誤差(偏差)を検出す
る周波数誤差検出器22と、周波数誤差検出器22で検出された周波数誤差を平均化するループフィルタ23と、ループフィルタ23で平均化された周波数誤差を複素数に変換する数値制御発振器(NCO)24とを備えている。
この発明のAFC回路2は、従来の復調回路で設けられていた周波数同期・非同期を検出する同期判定回路は備えられていない。
The AFC circuit 2 includes a complex multiplier 21 that performs complex multiplication on the phase of the received modulation signal according to a frequency error (deviation) component, and a frequency error that detects a frequency error (deviation) included in the output signal of the complex multiplier 21. A detector 22, a loop filter 23 that averages the frequency error detected by the frequency error detector 22, and a numerically controlled oscillator (NCO) 24 that converts the frequency error averaged by the loop filter 23 into a complex number. ing.
The AFC circuit 2 of the present invention is not provided with a synchronization determination circuit for detecting frequency synchronization / asynchronism provided in a conventional demodulation circuit.

CR回路3は、AFC回路2と同様に、AFC回路2の出力信号を位相差に応じて複素乗算を行う複素乗算器31と、複素乗算器31の出力信号に含まれる位相誤差を検出する位相誤差検出器32と、位相誤差検出器32で検出された位相誤差を平均化するループフィルタ33と、ループフィルタ33で平均化された位相誤差を複素数に変換する数値制御発振器(NCO)34とを備えている。
この発明のCR回路3は、従来の復調回路で設けられていた位相同期・非同期を検出する同期判定回路は備えられていない。
Similar to the AFC circuit 2, the CR circuit 3 performs complex multiplication on the output signal of the AFC circuit 2 in accordance with the phase difference, and a phase for detecting a phase error included in the output signal of the complex multiplier 31. An error detector 32; a loop filter 33 that averages the phase error detected by the phase error detector 32; and a numerically controlled oscillator (NCO) 34 that converts the phase error averaged by the loop filter 33 into a complex number. I have.
The CR circuit 3 of the present invention is not provided with a synchronization determination circuit for detecting phase synchronization / asynchronism provided in a conventional demodulation circuit.

次に、AFC回路2の動作について説明する。まず入力端子1に入力されたIチャンネルとQチャンネルの受信変調信号はAFC回路2において周波数誤差がゼロに近づいた状態にまで補正される。ここで、周波数誤差検出器22は例えば入力された最新の受信変調信号とメモリに保存した過去の受信変調信号との比較により1シンボル当たりの位相回転量(周波数誤差)を検出する。次に、ループフィルタ23は入力された周波数誤差を平均化する。次に、数値制御発振器(NCO)24は平均化された周波数誤差をテーブルなどにより複素数に変換する。最後に、複素乗算器21において、入力された受信変調信号と平均化された周波数誤差情報との複素乗算を行い、周波数誤差を補正した受信変調信号を得る。AFC回路2では、上記の動作を繰り返すことにより、補正後の受信変調信号における残留周波数誤差をゼロに近づける。   Next, the operation of the AFC circuit 2 will be described. First, the received modulation signals of the I channel and the Q channel input to the input terminal 1 are corrected by the AFC circuit 2 until the frequency error approaches zero. Here, the frequency error detector 22 detects the amount of phase rotation (frequency error) per symbol by, for example, comparing the latest received received modulation signal inputted with the past received modulation signal stored in the memory. Next, the loop filter 23 averages the input frequency error. Next, the numerically controlled oscillator (NCO) 24 converts the averaged frequency error into a complex number using a table or the like. Finally, the complex multiplier 21 performs complex multiplication of the received reception modulation signal and the averaged frequency error information to obtain a reception modulation signal in which the frequency error is corrected. In the AFC circuit 2, the residual frequency error in the received modulation signal after correction is brought close to zero by repeating the above operation.

図2はAFC回路2における周波数誤差の補正方法を示す図で、ここではQPSK変調を例に説明する。受信シンボルを複素平面で表現したとき、理想時は図2(a)に示すように第1象限から第4象限において受信シンボルは4点に収束するが、AFC前の周波数誤差が存在する状態では図2(b)に示すとおり、シンボル点の回転速度が速く、短時間観測しただけでも円状に信号が並んだように見える。一方、AFC回路2において周波数誤差を補正することにより、シンボル点の回転速度が下がるため、監視時間をAFC前と同一とした場合、図2(c)に示すとおり、AFC前に比べて回転量が小さくなる。   FIG. 2 is a diagram showing a method for correcting a frequency error in the AFC circuit 2. Here, QPSK modulation will be described as an example. When the received symbols are represented by a complex plane, the received symbols converge to four points in the first quadrant to the fourth quadrant as shown in FIG. 2A in an ideal time, but in a state where a frequency error before AFC exists. As shown in FIG. 2B, the rotation speed of the symbol points is high, and it appears that the signals are arranged in a circle even when observed for a short time. On the other hand, by correcting the frequency error in the AFC circuit 2, the rotation speed of the symbol point is reduced. Therefore, when the monitoring time is the same as that before AFC, as shown in FIG. Becomes smaller.

次に、CR回路3の動作について説明する。AFC回路2において周波数誤差を補正された受信変調信号は、CR回路3に入力される。AFC後も周波数誤差が残留するため、受信シンボル点がゆっくりと回転し、特性の劣化を招く。そこで、CR回路3において、残留した周波数誤差(位相誤差)の補正が行われる。
まず、位相誤差検出器32は入力された周波数誤差補正後の受信変調信号と基準点(受信シンボルが第1象限から第4象限において4点に収束した状態)との比較を行い、受信変調信号と基準点との位相誤差を算出する。次に、ループフィルタ33は入力された位相誤差を平均化する。続いて、数値制御発振器(NCO)34は平均化された位相誤差をテーブルなどにより複素数に変換する。最後に、複素乗算器31において、入力された受信変調信号と平均化された位相誤差情報との複素乗算を行い、残留位相誤差を補正した受信変調信号を得る。CR回路3では、上記の動作を繰り返すことにより、補正後の受信変調信号における残留位相誤差をゼロに近づける。
Next, the operation of the CR circuit 3 will be described. The received modulation signal whose frequency error has been corrected in the AFC circuit 2 is input to the CR circuit 3. Since the frequency error remains even after AFC, the received symbol point rotates slowly, resulting in deterioration of characteristics. Therefore, the remaining frequency error (phase error) is corrected in the CR circuit 3.
First, the phase error detector 32 compares the inputted received modulation signal after frequency error correction with a reference point (a state where received symbols converge to four points in the first quadrant to the fourth quadrant), and receives the received modulated signal. And the phase error between the reference point and the reference point is calculated. Next, the loop filter 33 averages the input phase error. Subsequently, the numerically controlled oscillator (NCO) 34 converts the averaged phase error into a complex number using a table or the like. Finally, the complex multiplier 31 performs complex multiplication of the received reception modulation signal and the averaged phase error information to obtain a reception modulation signal in which the residual phase error is corrected. The CR circuit 3 repeats the above operation to bring the residual phase error in the received modulated signal after correction close to zero.

図3はCR回路3における位相誤差の補正方法を示す図で、図3に示すようにCR回路3においては位相誤差を補正する際に、受信信号と基準点との比較を行う。図3は基準点として4点の候補のうち第1象限にある(1)を選択した例を示す。このとき、受信信号は基準点(1)に近づくように補正されるが、この受信信号の理想点が必ず基準点(1)にあると
は限らず、本受信信号の理想点が基準点(1)〜(4)のいずれであるかはCR回路動作時には確定しない。
FIG. 3 is a diagram showing a method of correcting the phase error in the CR circuit 3. As shown in FIG. 3, the CR circuit 3 compares the received signal with the reference point when correcting the phase error. FIG. 3 shows an example in which (1) in the first quadrant is selected as a reference point from among four candidates. At this time, the received signal is corrected so as to approach the reference point (1), but the ideal point of the received signal is not always at the reference point (1), and the ideal point of the received signal is not the reference point (1). Which of 1) to 4) is not determined when the CR circuit is operating.

即ち、AFC回路2の出力において周波数誤差が残留していることから、CR回路3で位相誤差を補正した際に、完全に位相誤差が無い状態でCR回路3から出力されることはない。したがって、CR回路3の出力信号は、後で説明する図4に示すように位相が確定しない位相不確定性(位相誤差)を有し、この位相不確定性を取り除く必要がある。この位相不確定性を取り除く回路が図1に示す位相不確定性除去回路4である。   That is, since the frequency error remains in the output of the AFC circuit 2, when the phase error is corrected by the CR circuit 3, it is not output from the CR circuit 3 without any phase error. Therefore, the output signal of the CR circuit 3 has a phase uncertainty (phase error) in which the phase is not fixed as shown in FIG. 4 described later, and it is necessary to remove this phase uncertainty. A circuit for removing this phase uncertainty is a phase uncertainty removing circuit 4 shown in FIG.

図4は、QPSK変調波を受信した際のCR回路3の出力である位相不確定性を有する位相誤差発生例を示す図である。図4の左図は伝送路における歪みがない送信時の状態、真中の図は伝送路における歪みのため位相不確定性が発生している状態、右図は位相不確定性除去回路4の出力で、位相不確定性が除去された状態を示したものである。
また図4の各象限にある黒丸は、受信信号をシンボルレート(伝送速度)周波数でサンプリングしたものを複素平面で表現したもので、シンボル点である。
FIG. 4 is a diagram illustrating an example of occurrence of a phase error having phase uncertainty, which is an output of the CR circuit 3 when a QPSK modulated wave is received. The left figure in FIG. 4 shows a transmission state without distortion in the transmission line, the middle figure shows a state in which phase uncertainty is generated due to distortion in the transmission line, and the right figure shows the output of the phase uncertainty removal circuit 4. This shows a state where the phase uncertainty is removed.
Also, the black circles in each quadrant of FIG. 4 represent a sampled received signal sampled at a symbol rate (transmission rate) frequency and expressed in a complex plane, and are symbol points.

AFC回路2およびCR回路3の動作後、CR回路3の出力信号は、(1)位相回転なし、(2)位相π/2回転、(3)位相π回転、(4)位相3π/2回転の4状態のうちいずれかで安定する。ここで、受信変調信号中にユニークワードなどの既知パターンを含んでいる場合、既知パターンと実際の受信変調信号との相関を取ることで実際の受信変調信号が基準点に対してどれだけの位相誤差を含んでいるかを推定することが可能である。図1に示す位相不確定性除去回路4は、既知パターンと受信変調信号との相関を取り、位相誤差量を推定する。そして推定した位相誤差量を補正することで位相不確定性を取り除くものである。   After the operation of the AFC circuit 2 and the CR circuit 3, the output signal of the CR circuit 3 is (1) no phase rotation, (2) phase π / 2 rotation, (3) phase π rotation, (4) phase 3π / 2 rotation It is stable in any of the four states. Here, if the received modulation signal contains a known pattern such as a unique word, the phase of the actual received modulation signal relative to the reference point can be determined by correlating the known pattern with the actual received modulation signal. It is possible to estimate whether an error is included. The phase uncertainty removal circuit 4 shown in FIG. 1 takes a correlation between the known pattern and the received modulation signal and estimates the phase error amount. Then, the phase uncertainty is removed by correcting the estimated phase error amount.

ここで、既知パターンと実際の受信変調信号との相関を取るとは、既知パターン、既知パターンをπ/2回転させたもの、既知パターンをπ回転させたもの、既知パターンを3π/2回転させたものを準備し、各々の既知パターンと受信変調信号との複素乗算の演算を行うもので、このとき、相関が最も大きいものが演算結果の実数部が最大となる。
また、位相誤差量を推定するとは、(1)位相回転なし、(2)位相π/2回転、(3)位相π回転、(4)位相3π/2回転の4状態のうち、いずれか1つを推定することである。
また、推定した位相誤差量を補正するとは、理想点に対する回転量(位相誤差量)が推定できたとき、受信変調信号を位相誤差量分だけ逆回転すれば理想の受信信号が得られ、この処理が「推定した位相誤差量を補正する」処理である。位相誤差量の補正は通常複素乗算により行うが、この発明の実施形態では、位相誤差量の補正は、回転なし、−π/2回転、−π回転、−3π/2回転のいずれかとなるので、後述するように選択回路と反転回路で実現している。
Here, taking the correlation between the known pattern and the actual received modulation signal means that the known pattern, the known pattern rotated by π / 2, the known pattern rotated by π, or the known pattern rotated by 3π / 2. Are prepared and the complex multiplication of each known pattern and the received modulation signal is performed. At this time, the real part of the calculation result is maximized for the one having the largest correlation.
The phase error amount is estimated by any one of four states of (1) no phase rotation, (2) phase π / 2 rotation, (3) phase π rotation, and (4) phase 3π / 2 rotation. Is to estimate one.
Also, correcting the estimated phase error amount means that when the rotation amount (phase error amount) with respect to the ideal point can be estimated, the ideal reception signal can be obtained by rotating the reception modulation signal by the amount of the phase error. The process is a process of “correcting the estimated phase error amount”. The correction of the phase error amount is usually performed by complex multiplication, but in the embodiment of the present invention, the correction of the phase error amount is any one of no rotation, −π / 2 rotation, −π rotation, and −3π / 2 rotation. As will be described later, this is realized by a selection circuit and an inverting circuit.

以下、位相不確定性除去回路4の詳細を図5に示すブロック図に基づいて説明する。図5において、位相不確定性除去回路4は、IチャンネルとQチャンネルの受信変調信号を反転する反転回路41a〜41dと、既知パターンと実際の受信変調信号との相関を取る相関回路42と、相関回路42で取られた相関に基づき受信変調信号およびその反転信号のいずれかを選択する選択回路(セレクタ)43a、43bを備えている。受信変調信号はQPSK変調波を例に挙げ説明する。   Hereinafter, the details of the phase uncertainty removing circuit 4 will be described with reference to the block diagram shown in FIG. In FIG. 5, the phase uncertainty removing circuit 4 includes inverting circuits 41a to 41d that invert the received modulation signals of the I channel and the Q channel, a correlation circuit 42 that correlates the known pattern and the actual received modulation signal, Selection circuits (selectors) 43a and 43b are provided for selecting either the received modulated signal or its inverted signal based on the correlation taken by the correlation circuit. The received modulation signal will be described by taking a QPSK modulated wave as an example.

次に、位相不確定性除去回路4の動作について説明する。まず、相関回路42において、既知パターンと受信変調信号との相関をとることで、(1)位相回転なし、(2)位相π/2回転、(3)位相π回転、(4)位相3π/2回転のいずれであるかを推定する。つぎに反転回路41a〜41dおよび選択回路43a、43bを用いて、推定した位相回転量を補正する。位相不確定性除去回路4の入力をIin、Qin、出力をIout、Qoutとすると、位相回転量=0のとき(Iout,Qout)=(Iin,Qin)、位相回転量=+π/2のとき(Iout,Qout)=(Qin,−Iin)、位相回転量=+πのとき(Iout,Qout)=(−Iin,−Qin)、位相回転量=+3π/2のとき(Iout,Qout)=(−Qin,Iin)となるように選択回路43a、43bを動作させればよい。
即ち、位相回転量=0のとき、選択回路43a、43bは両方とも端子「1」を選択、位相回転量=+π/2のとき、選択回路43a、43bは両方とも端子「2」を選択、位相回転量=+πのとき、選択回路43a、43bは両方とも端子「3」を選択、位相回転量=+3π/2のとき、選択回路43a、43bは両方とも端子「4」を選択する。
Next, the operation of the phase uncertainty removal circuit 4 will be described. First, the correlation circuit 42 correlates the known pattern and the received modulation signal to (1) no phase rotation, (2) phase π / 2 rotation, (3) phase π rotation, (4) phase 3π / Estimate which of the two rotations. Next, the estimated phase rotation amount is corrected using the inverting circuits 41a to 41d and the selection circuits 43a and 43b. When the input of the phase uncertainty removal circuit 4 is Iin, Qin, and the output is Iout, Qout, when the phase rotation amount = 0 (Iout, Qout) = (Iin, Qin), when the phase rotation amount = + π / 2 (Iout, Qout) = (Qin, −Iin), phase rotation amount = + π (Iout, Qout) = (− Iin, −Qin), phase rotation amount = + 3π / 2 (Iout, Qout) = ( The selection circuits 43a and 43b may be operated so that −Qin, Iin).
That is, when the phase rotation amount = 0, both the selection circuits 43a and 43b select the terminal “1”, and when the phase rotation amount = + π / 2, both the selection circuits 43a and 43b select the terminal “2”. When the phase rotation amount = + π, both the selection circuits 43a and 43b select the terminal “3”, and when the phase rotation amount = + 3π / 2, both the selection circuits 43a and 43b select the terminal “4”.

以上の説明において、受信変調信号がQPSK変調波の場合を例に説明したが、既知パターンとしてQPSK変調波を用いれば、既知パターン以外のデータが別の変調方式であっても、同じ位相不確定性除去回路を用いることが可能である。   In the above description, the case where the received modulation signal is a QPSK modulated wave has been described as an example. However, if a QPSK modulated wave is used as a known pattern, the same phase indeterminacy is obtained even if data other than the known pattern is in another modulation scheme It is possible to use a sex removal circuit.

以上説明したように、この実施の形態1の発明は、まず信号フレーム中の既知パターンを使って、AFC回路2およびCR回路3を動作させ、一旦、位相不確定性(位相誤差)が残留した状態にAFC回路2及びCR回路3を収束させる。次にCR回路3の後段に設けた位相不確定性除去回路4により、既知パターンと収束結果の相関を取ることにより残留位相誤差を観測し、残留位相誤差を打ち消すように位相回転して位相不確定性を取り除くようにしている。
したがって、この発明によれば、AFC回路2やCR回路3におけるフィードバックループに対するパラメータが減り、フィードバックループ収束時間の短縮とフィードバックループ安定性の向上を同時に実現することができる。
As described above, according to the first embodiment, the AFC circuit 2 and the CR circuit 3 are first operated using the known pattern in the signal frame, and the phase uncertainty (phase error) once remains. The AFC circuit 2 and the CR circuit 3 are converged to the state. Next, the residual phase error is observed by correlating the known pattern with the convergence result by the phase uncertainty removing circuit 4 provided at the subsequent stage of the CR circuit 3, and the phase rotation is performed so as to cancel the residual phase error. The determinism is removed.
Therefore, according to the present invention, the parameters for the feedback loop in the AFC circuit 2 and the CR circuit 3 are reduced, and the feedback loop convergence time can be shortened and the feedback loop stability can be improved at the same time.

実施の形態2.
次に、この発明の実施の形態2における復調回路を図面に基づいて説明する。図6はこの発明の実施の形態2における復調回路のブロック図である。
実施の形態1の発明では、AFC回路としてフィードバック型回路を用いていたが、実施の形態2における発明はフィードバック型AFC回路の代わりに、フィードフォワード型AFC回路を用いたものである。
Embodiment 2. FIG.
Next, a demodulation circuit according to Embodiment 2 of the present invention will be described with reference to the drawings. FIG. 6 is a block diagram of a demodulation circuit according to the second embodiment of the present invention.
In the invention of the first embodiment, the feedback type circuit is used as the AFC circuit, but the invention in the second embodiment uses a feedforward type AFC circuit instead of the feedback type AFC circuit.

図6に示す復調回路のブロック図において、復調回路は実施の形態1の発明と同様に、入力端子1から入力される受信変調信号に含まれる送信側と受信側との間の搬送波の周波数誤差成分をゼロに近い状態まで除去するAFC回路2と、このAFC回路2からの出力を入力して、受信変調信号に含まれる送信側と受信側との間の搬送波の位相誤差成分をゼロに近い状態まで除去するCR回路3と、このCR回路3で残留した位相誤差を補正して出力端子5に出力する位相不確定性除去回路4とを備えている。   In the block diagram of the demodulating circuit shown in FIG. 6, the demodulating circuit is a frequency error of the carrier wave between the transmitting side and the receiving side included in the received modulation signal input from the input terminal 1, as in the first embodiment. The AFC circuit 2 that removes the component to near zero and the output from the AFC circuit 2 are input, and the phase error component of the carrier wave between the transmitting side and the receiving side included in the received modulation signal is close to zero. A CR circuit 3 that removes the state, and a phase uncertainty removing circuit 4 that corrects a phase error remaining in the CR circuit 3 and outputs the corrected phase error to the output terminal 5.

ここで、AFC回路2は、図1に示す実施の形態1のAFC回路2における周波数誤差検出器22およびループフィルタ23の代わりに、周波数偏差推定回路25を設け、AFC回路2をフィードバックループではなく、フィードフォワードループとして動作させるようにしている。
周波数偏差推定回路25は、例えば、受信変調信号における最新のシンボルと、記憶した過去のシンボルとの遅延検波を実施することで、最新シンボルと過去シンボルとの位相差を検出し、検出した位相差を1シンボルあたりの位相差に変換することで周波数偏差を推定する。なお、複素乗算器21および数値制御発振器(NCO)24は、実施の形態1の発明と同じにつき、説明は省略する。この実施の形態2における発明のAFC回路2も、従来の復調回路で設けられていた周波数同期・非同期を検出する同期判定回路は備えられていない。
また、CR回路3および位相不確定性除去回路4も、実施の形態1の発明と同じにつき、説明は省略する。
Here, the AFC circuit 2 is provided with a frequency deviation estimation circuit 25 instead of the frequency error detector 22 and the loop filter 23 in the AFC circuit 2 of the first embodiment shown in FIG. 1, and the AFC circuit 2 is not a feedback loop. It is made to operate as a feed forward loop.
For example, the frequency deviation estimation circuit 25 detects the phase difference between the latest symbol and the past symbol by performing delay detection between the latest symbol in the received modulation signal and the stored past symbol, and detects the detected phase difference. Is converted into a phase difference per symbol to estimate the frequency deviation. The complex multiplier 21 and the numerically controlled oscillator (NCO) 24 are the same as those in the first embodiment, and the description thereof is omitted. The AFC circuit 2 of the invention according to the second embodiment also does not include a synchronization determination circuit for detecting frequency synchronization / asynchronism provided in the conventional demodulation circuit.
The CR circuit 3 and the phase uncertainty removing circuit 4 are also the same as those in the first embodiment, and the description thereof is omitted.

次に、AFC回路2の動作について説明する。AFC回路2において、入力端子1に入力されたIチャンネルとQチャンネルの受信変調信号は周波数誤差がゼロに近づいた状態にまで補正される。
まず、周波数偏差推定回路25は、回路内にメモリを設け、入力された受信変調信号を必要分だけ過去に遡って保存できるようにしておく。次に、入力された最新の受信変調信号とメモリに保存しておいた過去の受信変調信号との遅延検波を実施する。ここで過去とはNシンボル前とする。この処理により、Nシンボル前から現在までの時間で位相がどれだけ回転したかを検出できる。検出した位相回転量を1シンボルあたりの位相差に変換することで周波数偏差を推定する。
Next, the operation of the AFC circuit 2 will be described. In the AFC circuit 2, the received modulation signals of the I channel and the Q channel inputted to the input terminal 1 are corrected to a state where the frequency error approaches zero.
First, the frequency deviation estimation circuit 25 is provided with a memory in the circuit so that the input received modulation signal can be stored retroactively by a necessary amount. Next, delayed detection of the latest received modulation signal input and the past received modulation signal stored in the memory is performed. Here, the past is N symbols before. By this processing, it is possible to detect how much the phase has rotated in the time from N symbols before to the present. The frequency deviation is estimated by converting the detected phase rotation amount into a phase difference per symbol.

次に、数値制御発振器(NCO)24は、周波数偏差推定回路25で推定された周波数偏差(誤差)をテーブルなどにより複素数に変換する。最後に、複素乗算器21において、入力された受信変調信号と複素数に変換された周波数偏差情報との複素乗算を行い、周波数偏差(誤差)を補正した受信変調信号を得る。AFC回路2では、上記の動作を繰り返すことにより、補正後の受信変調信号における残留周波数誤差をゼロに近づける。
AFC回路2において周波数誤差がゼロに近づいた状態にまで補正された後、後段のCR回路3に出力される。CR回路3において位相誤差の補正が行なわれ、さらにCR回路3で残留した位相誤差を位相不確定性除去回路4で取り除く動作は実施の形態1と同様である。
Next, the numerically controlled oscillator (NCO) 24 converts the frequency deviation (error) estimated by the frequency deviation estimation circuit 25 into a complex number using a table or the like. Finally, the complex multiplier 21 performs complex multiplication of the received reception modulation signal and the frequency deviation information converted into a complex number to obtain a reception modulation signal in which the frequency deviation (error) is corrected. In the AFC circuit 2, the residual frequency error in the received modulation signal after correction is brought close to zero by repeating the above operation.
After the AFC circuit 2 corrects the frequency error to near zero, it is output to the subsequent CR circuit 3. The operation in which the phase error is corrected in the CR circuit 3 and the phase error remaining in the CR circuit 3 is removed by the phase uncertainty removing circuit 4 is the same as in the first embodiment.

この実施の形態2の発明によれば、周波数誤差情報をフィードバックすることなく周波数偏差を推定するため、フィードバック型AFC回路に比べて収束時間が短縮され、復調回路としての収束時間も短縮することができる。   According to the second embodiment, since the frequency deviation is estimated without feeding back the frequency error information, the convergence time is shortened compared with the feedback type AFC circuit, and the convergence time as the demodulation circuit can be shortened. it can.

実施の形態3.
次に、この発明の実施の形態3における復調回路を図面に基づいて説明する。図7はこの発明の実施の形態3における復調回路のブロック図である。
実施の形態1の発明では、CR回路として位相誤差を検出し、その情報をフィードバックすることで位相誤差を減らしていくフィードバック型CR回路を用いていたが、実施の形態3における発明は適応フィルタを応用したCR回路3を用いたものである。このCR回路3は、位相誤差だけでなく振幅誤差もフィードバックさせることで、位相誤差と同時に振幅誤差を補正する。
Embodiment 3 FIG.
Next, a demodulation circuit according to Embodiment 3 of the present invention will be described with reference to the drawings. FIG. 7 is a block diagram of a demodulation circuit according to Embodiment 3 of the present invention.
In the invention of the first embodiment, the feedback type CR circuit that detects the phase error as the CR circuit and reduces the phase error by feeding back the information is used. However, the invention in the third embodiment uses an adaptive filter. The applied CR circuit 3 is used. The CR circuit 3 corrects the amplitude error simultaneously with the phase error by feeding back not only the phase error but also the amplitude error.

図7に示す復調回路のブロック図において、復調回路は実施の形態1の発明と同様に、入力端子1から入力される受信変調信号に含まれる送信側と受信側との間の搬送波の周波数誤差成分をゼロに近い状態まで除去するAFC回路2と、このAFC回路2からの出力を入力して、受信変調信号に含まれる送信側と受信側との間の搬送波の位相誤差成分をゼロに近い状態まで除去するCR回路3と、このCR回路3で残留した位相誤差を補正して出力端子5に出力する位相不確定性除去回路4とを備えている。   In the block diagram of the demodulating circuit shown in FIG. 7, the demodulating circuit is a frequency error of the carrier wave between the transmitting side and the receiving side included in the received modulation signal input from the input terminal 1, as in the first embodiment. The AFC circuit 2 that removes the component to near zero and the output from the AFC circuit 2 are input, and the phase error component of the carrier wave between the transmitting side and the receiving side included in the received modulation signal is close to zero. A CR circuit 3 that removes the state, and a phase uncertainty removing circuit 4 that corrects a phase error remaining in the CR circuit 3 and outputs the corrected phase error to the output terminal 5.

ここで、CR回路3は、図1に示す実施の形態1のCR回路3における位相誤差検出器32およびループフィルタ33の代わりに、基準点との比較回路35および適応フィルタ36を備えている。基準点との比較回路35は、既知パターンを基準点とし、実際の受信変調信号との位相誤差および振幅誤差を同時に検出する。また適応フィルタ36は、基準点との比較回路35にて検出された振幅誤差および位相誤差をゼロに近づけるための振幅補正値および位相補正値を生成する。   Here, the CR circuit 3 includes a reference point comparison circuit 35 and an adaptive filter 36 instead of the phase error detector 32 and the loop filter 33 in the CR circuit 3 of the first embodiment shown in FIG. The reference point comparison circuit 35 uses the known pattern as a reference point, and simultaneously detects the phase error and amplitude error from the actual received modulation signal. The adaptive filter 36 generates an amplitude correction value and a phase correction value for bringing the amplitude error and the phase error detected by the reference point comparison circuit 35 close to zero.

なお、複素乗算器31は、実施の形態1の発明と同じにつき、説明は省略する。この実施の形態3における発明のCR回路3も、従来の復調回路で設けられていた位相同期・非
同期を検出する同期判定回路は備えられていない。
また、AFC回路2は実施の形態2の発明と同じものを用いているが、実施の形態1のAFC回路を用いてもよい。更に位相不確定性除去回路4も実施の形態1と同じにつき、それらの説明は省略する。
The complex multiplier 31 is the same as that of the first embodiment and will not be described. The CR circuit 3 of the invention according to the third embodiment also does not include a synchronization determination circuit for detecting phase synchronization / asynchronism provided in the conventional demodulation circuit.
Further, although the same AFC circuit 2 as that of the invention of the second embodiment is used, the AFC circuit of the first embodiment may be used. Further, since the phase uncertainty removing circuit 4 is the same as that of the first embodiment, the description thereof is omitted.

次に、CR回路3の動作について説明する。図7に示した構成において、AFC回路2において周波数誤差がゼロに近づいた状態にまで補正された後、後段のCR回路3に出力される。CR回路3では、基準点との比較回路35において、既知パターンを基準点とし、実際の受信信号との位相誤差および振幅誤差を同時に検出する。   Next, the operation of the CR circuit 3 will be described. In the configuration shown in FIG. 7, after the AFC circuit 2 corrects the frequency error to near zero, it is output to the CR circuit 3 in the subsequent stage. In the CR circuit 3, the comparison circuit 35 with the reference point detects the phase error and the amplitude error with respect to the actual received signal at the same time using the known pattern as the reference point.

つづいて、適応フィルタ36において、基準点との比較回路35にて検出された受信信号と基準点との振幅誤差および位相誤差をゼロに近づけるための振幅補正値および位相補正値を生成する。ここで、適応フィルタ36におけるアルゴリズムとしてLMSアルゴリズムを用いることとし、適応フィルタ36は受信フレーム中の既知パターン領域のみで動作させることとする。適応フィルタ36が収束するに従い、複素乗算器31の出力として、固定の位相回転量を有する信号が得られる。この固定の位相回転量が位相不確定性(位相誤差)であり、次の位相不確定性除去回路4で取り除く。CR回路3で残留した位相誤差を位相不確定性除去回路4で取り除く動作は実施の形態1と同様であるので、説明は省略する。   Subsequently, the adaptive filter 36 generates an amplitude correction value and a phase correction value for making the amplitude error and phase error between the received signal detected by the reference point comparison circuit 35 and the reference point close to zero. Here, the LMS algorithm is used as the algorithm in the adaptive filter 36, and the adaptive filter 36 is operated only in the known pattern region in the received frame. As the adaptive filter 36 converges, a signal having a fixed amount of phase rotation is obtained as the output of the complex multiplier 31. This fixed amount of phase rotation is phase uncertainty (phase error), which is removed by the next phase uncertainty removal circuit 4. Since the operation of removing the phase error remaining in the CR circuit 3 by the phase uncertainty removing circuit 4 is the same as that of the first embodiment, the description thereof is omitted.

この実施の形態3の発明によれば、CR回路3において、基準点と受信変調信号との位相誤差だけなく振幅誤差を検出し、位相誤差および振幅誤差がゼロに近づくように動作するので、振幅方向への誤差を含んだ伝送路において、その振幅方向への変動に追従することができ、受信特性の改善を実現できる。   According to the third embodiment of the present invention, the CR circuit 3 detects not only the phase error between the reference point and the received modulation signal but also the amplitude error, and operates so that the phase error and the amplitude error approach zero. In a transmission line including an error in the direction, it is possible to follow the fluctuation in the amplitude direction, and it is possible to improve reception characteristics.

この発明の実施の形態1における復調回路のブロック図である。It is a block diagram of the demodulation circuit in Embodiment 1 of this invention. この発明の復調回路を構成するAFC回路における周波数誤差の補正方法を示す図である。It is a figure which shows the correction method of the frequency error in the AFC circuit which comprises the demodulation circuit of this invention. この発明の復調回路を構成するCR回路における位相誤差の補正方法を示す図である。It is a figure which shows the correction method of the phase error in CR circuit which comprises the demodulation circuit of this invention. この発明の復調回路を構成するCR回路の出力である位相不確定性の発生例を示す図である。It is a figure which shows the example of generation | occurrence | production of the phase uncertainty which is an output of CR circuit which comprises the demodulation circuit of this invention. この発明の復調回路を構成する位相不確定性除去回路の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the phase uncertainty removal circuit which comprises the demodulation circuit of this invention. この発明の実施の形態2における復調回路のブロック図である。It is a block diagram of the demodulation circuit in Embodiment 2 of this invention. この発明の実施の形態3における復調回路のブロック図である。It is a block diagram of the demodulation circuit in Embodiment 3 of this invention. 従来の復調回路の一構成例を示す概略ブロック図である。It is a schematic block diagram which shows the example of 1 structure of the conventional demodulation circuit.

符号の説明Explanation of symbols

1.入力端子、 2.AFC回路、
3.CR回路、 4.位相不確定性除去回路、
5.出力端子、 21.複素乗算器、
22.周波数誤差検出器、 23.ループフィルタ、
24.数値制御発振器(NCO)、 25.周波数偏差推定回路、
31.複素乗算器、 32.位相誤差検出器、
33.ループフィルタ、 34.数値制御発振器(NCO)、
35.基準点との比較回路、 36.適応フィルタ。
1. 1. Input terminal AFC circuit,
3. CR circuit, 4. Phase uncertainty removal circuit,
5. Output terminal, 21. Complex multiplier,
22. Frequency error detector, 23. Loop filter,
24. Numerically controlled oscillator (NCO), 25. Frequency deviation estimation circuit,
31. Complex multiplier, 32. Phase error detector,
33. Loop filter, 34. Numerically controlled oscillator (NCO),
35. 35. Comparison circuit with reference point Adaptive filter.

Claims (7)

受信変調信号に含まれる送信側と受信側との間の搬送波の周波数誤差成分を検出し、前記受信変調信号から周波数誤差成分を除去する自動周波数制御回路と、この自動周波数制御回路からの出力を入力して、前記受信変調信号に含まれる送信側と受信側との間の搬送波の位相誤差成分を検出し、前記受信変調信号から位相誤差成分を除去するキャリア再生回路と、このキャリア再生回路で残留した位相誤差を補正する位相不確定性除去回路とを備えたことを特徴とする復調回路。   An automatic frequency control circuit that detects a frequency error component of a carrier wave between the transmission side and the reception side included in the reception modulation signal and removes the frequency error component from the reception modulation signal, and an output from the automatic frequency control circuit A carrier recovery circuit that detects a phase error component of a carrier wave between the transmission side and the reception side included in the reception modulation signal and removes the phase error component from the reception modulation signal; and A demodulation circuit comprising: a phase uncertainty removing circuit that corrects a residual phase error. 位相不確定性除去回路は、受信変調信号に含まれる既知パターンと受信変調信号との相関を取ることで位相誤差量を推定し、この推定した位相誤差量を補正することで位相不確定性を除去するようにした請求項1に記載の復調回路。   The phase uncertainty removal circuit estimates the phase error amount by correlating the known pattern included in the received modulation signal with the received modulation signal, and corrects the estimated phase error amount to correct the phase uncertainty. 2. The demodulation circuit according to claim 1, wherein the demodulation circuit is eliminated. 位相不確定性除去回路は、受信変調信号に含まれる既知パターンと受信変調信号との相関を取り、1)位相回転なし、2)位相π/2回転、3)位相π回転、4)位相3π/2回転の4つの位相誤差量を推定する相関回路と、この相関回路で推定した位相誤差量に基づき、前記受信変調信号およびこの受信変調信号を反転した反転受信変調信号から推定した位相誤差量を補正して出力する選択回路とを備えてなる請求項2に記載の復調回路。   The phase uncertainty removing circuit correlates the known pattern included in the received modulation signal with the received modulation signal, 1) no phase rotation, 2) phase π / 2 rotation, 3) phase π rotation, and 4) phase 3π. A correlation circuit that estimates four phase error amounts of two rotations, and a phase error amount estimated from the received modulation signal and an inverted reception modulation signal obtained by inverting the received modulation signal based on the phase error amount estimated by the correlation circuit The demodulation circuit according to claim 2, further comprising: a selection circuit that corrects and outputs the signal. 自動周波数制御回路は、入力された受信変調信号と過去の受信変調信号との比較により1シンボル当たりの周波数誤差を検出する周波数誤差検出器と、この周波数誤差検出器で検出された周波数誤差を平均化するループフィルタと、このループフィルタで平均化された周波数誤差を複素数に変換する数値制御発振器と、前記入力された受信変調信号と前記数値制御発振器で変換された複素数の平均化周波数誤差との複素乗算を行い、前記周波数誤差を補正する複素乗算器とを備えてなる請求項1または請求項2に記載の復調回路。   The automatic frequency control circuit detects a frequency error per symbol by comparing the input received modulation signal with a past received modulation signal, and averages the frequency error detected by the frequency error detector. A loop filter to be converted, a numerically controlled oscillator that converts a frequency error averaged by the loop filter into a complex number, and an input received modulation signal and a complex averaged frequency error converted by the numerically controlled oscillator. The demodulation circuit according to claim 1, further comprising a complex multiplier that performs complex multiplication and corrects the frequency error. 自動周波数制御回路は、入力された受信変調信号における最新のシンボルと過去の受信変調信号におけるシンボルとの遅延検波を実施して、最新シンボルと過去シンボルとの位相差を検出し、この検出した位相差を1シンボル当たりの位相差に変換することで周波数誤差を推定する周波数偏差推定回路と、この周波数偏差推定回路で推定した周波数誤差を複素数に変換する数値制御発振器と、前記入力された受信変調信号と前記数値制御発振器で複素数に変換された周波数誤差との複素乗算を行い、前記周波数誤差を補正する複素乗算器とを備えてなる請求項1または請求項2に記載の復調回路。   The automatic frequency control circuit detects the phase difference between the latest symbol and the past symbol by performing delay detection between the latest symbol in the input received modulation signal and the symbol in the past received modulation signal. A frequency deviation estimation circuit that estimates a frequency error by converting a phase difference into a phase difference per symbol, a numerically controlled oscillator that converts a frequency error estimated by the frequency deviation estimation circuit into a complex number, and the received reception modulation The demodulation circuit according to claim 1, further comprising: a complex multiplier that performs complex multiplication of a signal and a frequency error converted into a complex number by the numerically controlled oscillator, and corrects the frequency error. キャリア再生回路は、入力された周波数誤差補正後の受信変調信号と基準点との比較を行い、前記受信変調信号と基準点との位相誤差を算出する位相誤差検出器と、この位相誤差検出器で算出された位相誤差を平均化するループフィルタと、このループフィルタで平均化された位相誤差を複素数に変換する数値制御発振器と、前記入力された周波数誤差補正後の受信変調信号と前記数値制御発振器で変換された複素数の平均化位相誤差との複素乗算を行い、前記位相誤差を補正する複素乗算器とを備えてなる請求項1または請求項2に記載の復調回路。   The carrier recovery circuit compares the input received modulation signal after frequency error correction with a reference point, calculates a phase error between the received modulation signal and the reference point, and the phase error detector A loop filter that averages the phase error calculated in step (b), a numerically controlled oscillator that converts the phase error averaged by the loop filter into a complex number, the received reception signal after frequency error correction, and the numerical control The demodulation circuit according to claim 1, further comprising a complex multiplier that performs complex multiplication with an averaged phase error of a complex number converted by an oscillator and corrects the phase error. キャリア再生回路は、入力された周波数誤差補正後の受信変調信号と基準点との比較を行い、前記受信変調信号と基準点との位相誤差および振幅誤差を検出する比較回路と、この比較回路で検出された前記受信変調信号と基準点との位相誤差および振幅誤差をゼロに近づけるための位相補正値および振幅補正値を生成する適応フィルタと、この適応フィルタで生成した位相補正値および振幅補正値と前記入力された周波数誤差補正後の受信変調信号との複素乗算を行い、前記位相誤差および振幅誤差を補正する複素乗算器とを備えてなる請求項1または請求項2に記載の復調回路。   The carrier recovery circuit compares the received modulated signal after frequency error correction with a reference point and detects a phase error and an amplitude error between the received modulated signal and the reference point. An adaptive filter for generating a phase correction value and an amplitude correction value for bringing the detected phase error and amplitude error between the received modulation signal and a reference point close to zero, and a phase correction value and an amplitude correction value generated by the adaptive filter The demodulation circuit according to claim 1, further comprising: a complex multiplier that performs complex multiplication between the received frequency-corrected received modulation signal and the phase error and amplitude error.
JP2008114213A 2008-04-24 2008-04-24 Demodulator circuit Active JP4985535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114213A JP4985535B2 (en) 2008-04-24 2008-04-24 Demodulator circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114213A JP4985535B2 (en) 2008-04-24 2008-04-24 Demodulator circuit

Publications (2)

Publication Number Publication Date
JP2009267714A true JP2009267714A (en) 2009-11-12
JP4985535B2 JP4985535B2 (en) 2012-07-25

Family

ID=41393013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114213A Active JP4985535B2 (en) 2008-04-24 2008-04-24 Demodulator circuit

Country Status (1)

Country Link
JP (1) JP4985535B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018148327A (en) * 2017-03-03 2018-09-20 株式会社モバイルテクノ Radio communication device and frequency offset compensation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102633143B1 (en) 2016-12-23 2024-02-02 삼성전자주식회사 Automatic frequency controller for adjusting digital loop filter gain based on wireless channel classification, wireless communication device including the same, automatic frequency controlling method, and wireless communicating method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222745A (en) * 1986-02-20 1987-09-30 Fujitsu Ltd Demodulator
JPS63232664A (en) * 1987-03-20 1988-09-28 Fujitsu Ltd Demodulation device using multivalued qam modulating and demodulating system
JPH0642686B2 (en) * 1989-03-28 1994-06-01 日本電気エンジニアリング株式会社 Demodulator for offset QPSK system
JPH08251244A (en) * 1995-03-11 1996-09-27 Nec Corp Carrier regenerating circuit
JP2000151732A (en) * 1998-11-09 2000-05-30 Mitsubishi Electric Corp Carrier phase estimation device and demodulator using the estimation device
JP2002217992A (en) * 2001-01-17 2002-08-02 Matsushita Electric Ind Co Ltd Modulation device and modulation method
JP2004328420A (en) * 2003-04-25 2004-11-18 Sanyo Electric Co Ltd Reception method and device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222745A (en) * 1986-02-20 1987-09-30 Fujitsu Ltd Demodulator
JPS63232664A (en) * 1987-03-20 1988-09-28 Fujitsu Ltd Demodulation device using multivalued qam modulating and demodulating system
JPH0642686B2 (en) * 1989-03-28 1994-06-01 日本電気エンジニアリング株式会社 Demodulator for offset QPSK system
JPH08251244A (en) * 1995-03-11 1996-09-27 Nec Corp Carrier regenerating circuit
JP2000151732A (en) * 1998-11-09 2000-05-30 Mitsubishi Electric Corp Carrier phase estimation device and demodulator using the estimation device
JP2002217992A (en) * 2001-01-17 2002-08-02 Matsushita Electric Ind Co Ltd Modulation device and modulation method
JP2004328420A (en) * 2003-04-25 2004-11-18 Sanyo Electric Co Ltd Reception method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018148327A (en) * 2017-03-03 2018-09-20 株式会社モバイルテクノ Radio communication device and frequency offset compensation method

Also Published As

Publication number Publication date
JP4985535B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4264585B2 (en) Synchronous circuit and control method thereof
CN101005480B (en) Demodulation circuit and demodulation method
US8938037B1 (en) High speed gain and phase recovery in presence of phase noise
US20150098714A1 (en) Optical communication receiving device and frequency offset compensation method
JP2007027987A (en) Radio receiver
JP2020527006A (en) Systems and methods for reducing interference in wireless communication
JP5046114B2 (en) Multilevel QAM demodulator, demodulating method thereof, and radio communication system
JP2007174620A (en) Psk receiver, psk demodulating circuit, communication apparatus and psk receiving method
JP4985535B2 (en) Demodulator circuit
JPWO2009075144A1 (en) Wireless communication apparatus and DC offset adjustment method
CN110445735B (en) Burst short data carrier synchronization method based on signal backtracking
JP2007201729A (en) Adaptive equalizer and receiver
EP2704385B1 (en) Systems and methods for selection of loop filter bandwidth for carrier phase recovery
JP5213769B2 (en) Receiving machine
JP4268498B2 (en) Phase error correction circuit, receiving apparatus using the same, and phase error correction method
JP4139814B2 (en) Frequency error detection method, reception method, and transmission / reception method
JP2020178212A (en) Frequency deviation detection circuit, receiver including the same, frequency deviation detection method, and frequency deviation detection program
JP4967977B2 (en) Receiving apparatus and receiving method
JP6643770B2 (en) Frequency offset estimation device and wireless communication device
EP3079321B1 (en) Memory misalignment correction
JP4438581B2 (en) Demodulator and demodulation method
JP4467397B2 (en) Frequency control apparatus, radio communication apparatus, and frequency control method
JP2008205703A (en) Afc controller, afc control method, afc control program, and mobile communication apparatus
JP4143619B2 (en) AFC control method, AFC circuit, and mobile communication device
JP2000216842A (en) Circuit and method for demodulating digital signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R151 Written notification of patent or utility model registration

Ref document number: 4985535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250