JP2009264728A - Blocking prevention method for pig iron storing furnace groove type induction heating device - Google Patents

Blocking prevention method for pig iron storing furnace groove type induction heating device Download PDF

Info

Publication number
JP2009264728A
JP2009264728A JP2009036092A JP2009036092A JP2009264728A JP 2009264728 A JP2009264728 A JP 2009264728A JP 2009036092 A JP2009036092 A JP 2009036092A JP 2009036092 A JP2009036092 A JP 2009036092A JP 2009264728 A JP2009264728 A JP 2009264728A
Authority
JP
Japan
Prior art keywords
induction heating
heating device
scrap
flow path
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009036092A
Other languages
Japanese (ja)
Inventor
Toshio Yamada
敏雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009036092A priority Critical patent/JP2009264728A/en
Publication of JP2009264728A publication Critical patent/JP2009264728A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Furnace Details (AREA)
  • General Induction Heating (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blocking prevention method for a pig iron storing furnace groove type induction heating device, capable of preventing blocking of a flow passage due to adhesion of foreign matter, such as oxide released from a scrap into molten pig iron, on a flow passage, in heating molten pig iron to melt the scrap by using the groove type induction heating device having the groove type flow passage. <P>SOLUTION: In charging and melting a scrap by the pig iron storing furnace 10 having the induction heating device 12 with the groove type flow passage, a cover having an opening part only on the side opposite to the position for charging and melting the scrap 24 is provided in an inlet portion of the flow passage of the induction heating device, to prevent metal oxide included in the molten scrap from entering to the flow passage of the induction heating device 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高炉から出銑された溶銑を転炉で精錬する前に一旦貯蔵するための貯銑炉に設置される、貯銑炉溝型誘導加熱装置の閉塞防止方法に関するものである。   The present invention relates to a method for preventing clogging of a storage furnace groove type induction heating apparatus that is installed in a storage furnace for temporarily storing hot metal discharged from a blast furnace before refining in a converter.

高炉から出銑された溶銑は、トーピードカーや溶銑鍋などの溶銑搬送容器で受銑され、必要に応じて脱硫処理、脱燐処理などの予備処理が施された後に転炉へ輸送され、転炉で脱炭精錬が行われている。このとき、高炉からの出銑タイミングや転炉における処理量の変動などによって生ずる溶銑の過不足を調整するために、転炉で脱炭精錬する前に溶銑を一旦貯銑炉に貯蔵する場合がある。   The hot metal discharged from the blast furnace is received in a hot metal transfer container such as a torpedo car or hot metal ladle, and after being subjected to preliminary treatment such as desulfurization treatment and dephosphorization treatment as necessary, it is transported to the converter. Decarburization and refining is carried out. At this time, the hot metal may be temporarily stored in the storage furnace before decarburization and refining in the converter in order to adjust the excess and deficiency of the hot metal that occurs due to the timing of brewing from the blast furnace and fluctuation of the processing amount in the converter. is there.

さらに近年、鋼材のリサイクルのために鉄源としてスクラップを使用する場合があり、その際にはスクラップを溶解する必要があるが、この溶解を貯銑炉で行う場合がある。貯銑炉内の溶銑は、出銑口などの開口部からの放熱、耐火物からの抜熱及びスクラップの融解熱によって温度低下を招くため、溶銑の加熱が必要になっている。   Furthermore, in recent years, scrap may be used as an iron source for recycling steel materials. In this case, it is necessary to melt the scrap, but this melting may be performed in a storage furnace. Since the hot metal in the storage furnace causes a temperature drop due to heat radiation from an opening such as a spout, heat removal from the refractory, and heat of melting of the scrap, it is necessary to heat the hot metal.

この溶銑の加熱は、溝型の流路を有する誘導加熱装置(以下、「溝型誘導加熱装置」ともいう)を貯銑炉に設け、この溝型誘導加熱装置によって行われている。   The hot metal is heated by an induction heating device (hereinafter also referred to as “groove type induction heating device”) having a groove type flow path provided in a storage furnace.

一般に、溝型誘導加熱装置流路内の溶銑中に生ずる誘導電流により、流路内の溶銑には流路の断面を収縮させる方向のローレンツ力が作用する。この作用は、一般にピンチ力と称され、このピンチ作用によって流路内の溶銑が収縮し、ピンチ力が大きい場合には流路内の溶銑が切断される状態になる。ピンチ作用によって流路内の溶銑が収縮し、更に収縮によって流路内の溶銑が切断される現象をピンチ現象と称している。このようなピンチ現象が発生すると、鉄心に巻いた誘導コイルに流れる電流の変動が激しくなり、溶銑の加熱に必要な電力を安定して供給することができなくなるとともに、電源の負荷が増大し電気回路が損傷することもある。   Generally, the Lorentz force in the direction of contracting the cross section of the flow path acts on the hot metal in the flow path due to the induction current generated in the hot metal in the flow path of the groove type induction heating device. This action is generally referred to as a pinch force, and the hot metal in the flow path contracts by this pinch action, and when the pinch force is large, the hot metal in the flow path is cut. The phenomenon in which the hot metal in the flow path contracts due to the pinch action and the hot metal in the flow path is cut by the contraction is called a pinch phenomenon. When such a pinch phenomenon occurs, the current flowing through the induction coil wound around the iron core fluctuates severely, making it impossible to stably supply the power necessary for heating the hot metal, increasing the load on the power source and The circuit may be damaged.

また、溶銑中に巻き込まれた炉内のスラグ、スクラップ中に含まれていた酸化物が溶解に伴い溶銑中に放出されたものが異物として流路の内壁に付着することから、流路の縮小や時には流路の閉塞が発生する。これにより、流路の断面積が狭くなるため、断面積当たりの溶銑に流れる誘導電流が増加し、ピンチ現象がより一層発生しやすくなるという問題が生ずる。異物の付着は、コイルに近いほど誘導電流密度が高く電磁力が大きくなることから、誘導コイルと対向する流路面で生じやすい。   In addition, since the slag in the furnace entrained in the hot metal and the oxide contained in the scrap are released into the hot metal as it melts, it adheres to the inner wall of the flow path as a foreign substance. Occasionally, the flow path is blocked. As a result, the cross-sectional area of the flow path becomes narrow, so that the induced current flowing in the hot metal per cross-sectional area increases, and the problem that the pinch phenomenon is more likely to occur occurs. Adhesion of foreign substances tends to occur on the flow path surface facing the induction coil because the closer to the coil, the higher the induced current density and the greater the electromagnetic force.

この対策として、例えば特許文献1には、鉄心に巻いた誘導コイルに、高出力の通電と低出力の通電とを交互に供給し、これによって異物による流路の閉塞を抑制する方法が開示されている。   As a countermeasure, for example, Patent Document 1 discloses a method of alternately supplying high-power energization and low-power energization to an induction coil wound around an iron core, thereby suppressing blockage of a flow path due to foreign matter. ing.

特開2004−218038号公報JP 2004-218038 A

しかしながら、上述した特許文献1に開示されている方法には、以下の問題点がある。即ち、特許文献1の方法は、液体である溶銑の流速の強度を変更して異物を洗い流すという方法であるため、比較的付着力の弱い異物しか洗い流すことはできず、流路の閉塞を十分には抑制することができずにピンチ現象が発生して電源を損傷してしまう場合があるという問題点がある。   However, the method disclosed in Patent Document 1 described above has the following problems. That is, the method of Patent Document 1 is a method in which the strength of the flow rate of the hot metal, which is a liquid, is changed to wash out foreign matter, so that only foreign matter with relatively weak adhesion can be washed away, and the flow path is sufficiently blocked. However, there is a problem that the power supply may be damaged due to a pinch phenomenon that cannot be suppressed.

本発明は、このような問題を鑑みなされたものであり、溝型の流路を有する溝型誘導加熱装置を用いて溶銑を加熱してスクラップを溶解するに当たり、スクラップから溶銑中に放出された酸化物などの異物が流路に付着して流路の閉塞を防止することのできる、貯銑炉溝型誘導加熱装置の閉塞防止方法を提供することを目的とする。   The present invention has been made in view of such a problem, and when the hot metal was heated and melted by using a groove type induction heating device having a groove type flow channel, the scrap was discharged from the scrap into the hot metal. It is an object of the present invention to provide a method for preventing clogging of a storage furnace groove type induction heating apparatus, in which foreign substances such as oxides can adhere to the channel and prevent the clogging of the channel.

本発明の請求項1に係る発明は、溝型の流路を有する誘導加熱装置を備えた貯銑炉でスクラップを投入して溶解するにあたって、前記誘導加熱装置の流路の入り口部分に、スクラップを投入して溶解する位置とは反対側にのみ開口部を有するカバーを設けることにより、溶解したスクラップに含まれていた金属酸化物が前記誘導加熱装置の流路に進入しにくくすることを特徴とする溝型誘導加熱装置の閉塞防止方法である。   In the invention according to claim 1 of the present invention, when scrap is introduced and melted in a storage furnace equipped with an induction heating device having a groove-type flow path, a scrap is formed at an inlet portion of the flow path of the induction heating apparatus. By providing a cover having an opening only on the side opposite to the position where the molten metal is charged and melted, the metal oxide contained in the melted scrap is less likely to enter the flow path of the induction heating device. It is the blockage | prevention prevention method of a groove type induction heating apparatus.

また本発明の請求項2に係る発明は、溝型の流路を有する誘導加熱装置を備えた貯銑炉でスクラップを投入して溶解するにあたって、スクラップを投入して溶解する位置と前記誘導加熱装置の間に、しきりを設けることにより、溶解したスクラップに含まれていた金属酸化物が前記誘導加熱装置の流路に進入しにくくすることを特徴とする溝型誘導加熱装置の閉塞防止方法である。   Further, according to the second aspect of the present invention, when the scrap is charged and melted in a storage furnace equipped with an induction heating device having a groove-type flow path, the position where the scrap is charged and melted and the induction heating A clogging prevention method for a groove-type induction heating device, characterized in that a metal oxide contained in melted scrap does not easily enter the flow path of the induction heating device by providing a crevice between the devices. is there.

また本発明の請求項3に係る発明は、請求項2に記載の溝型誘導加熱装置の閉塞防止方法において、前記しきりは、前記誘導加熱装置の流出入口の内、流入口だけを分離する形状であることを特徴とする溝型誘導加熱装置の閉塞防止方法である。   The invention according to claim 3 of the present invention is the method for preventing clogging of the grooved induction heating device according to claim 2, wherein the threshold is a shape that separates only the inflow port from the outflow port of the induction heating device. This is a clogging prevention method for a grooved induction heating device.

本発明によれば、カバーまたはしきりを設けるようにしたので、スクラップに含まれていた金属酸化物等が該誘導加熱装置の流路に進入することが抑制され、流路の閉塞を防止して正常な状態に維持することができ、ピンチ現象を抑制することが可能となる。その結果、電流のハンチングに起因する電源設備のトラブルを回避することができる、及び、溶銑の加熱効率が向上するなど安定した昇熱操業が達成され、工業上有益な効果がもたらされる。   According to the present invention, since the cover or squeeze is provided, the metal oxide or the like contained in the scrap is prevented from entering the flow path of the induction heating device, and the blockage of the flow path is prevented. The normal state can be maintained, and the pinch phenomenon can be suppressed. As a result, troubles in the power supply equipment due to current hunting can be avoided, and stable heating operation such as improvement in the heating efficiency of the hot metal can be achieved, resulting in an industrially beneficial effect.

本発明を適用する溝型誘導加熱装置を備えた加熱式貯銑炉の概略平面を示す図である。It is a figure which shows the schematic plane of the heating type storage furnace provided with the groove type induction heating apparatus to which this invention is applied. 図1のX−X’矢視による概略断面を示す図である。It is a figure which shows the schematic cross section by the X-X 'arrow of FIG. 図1に示す溝型誘導加熱装置の概略断面を示す図である。It is a figure which shows the schematic cross section of the groove type induction heating apparatus shown in FIG. 図3のY−Y’矢視による概略断面を示す図である。It is a figure which shows the schematic cross section by the Y-Y 'arrow of FIG. 図1のZ−Z’矢視による概略断面図であり、本発明の実施の形態1を示す図である。It is a schematic sectional drawing by Z-Z 'arrow of FIG. 1, and is a figure which shows Embodiment 1 of this invention. 図1のZ−Z’矢視による概略断面図であり、本発明の実施の形態2を示す図である。It is a schematic sectional drawing by Z-Z 'arrow of FIG. 1, and is a figure which shows Embodiment 2 of this invention. 本発明の実施の形態3を示す図である。It is a figure which shows Embodiment 3 of this invention.

以下、図面を参照しながら、本発明を具体的に説明してゆく。図1は、本発明を適用する溝型誘導加熱装置を備えた加熱式貯銑炉の概略平面図、図2は、図1のX−X’矢視による概略断面図、図3は、図1に示す溝型誘導加熱装置の概略断面図、図4は、図3のY−Y’矢視による概略断面図、図5は、図1のZ−Z’矢視による概略断面図であり、本発明の実施の形態1を示す図、図6は、図1のZ−Z’矢視による概略断面図であり、本発明の実施の形態2を示す図、および図7は、本発明の実施の形態3を示す図を、それぞれ表している。   Hereinafter, the present invention will be specifically described with reference to the drawings. 1 is a schematic plan view of a heating-type storage furnace equipped with a grooved induction heating apparatus to which the present invention is applied, FIG. 2 is a schematic cross-sectional view taken along the line XX ′ of FIG. 1, and FIG. 4 is a schematic cross-sectional view of the grooved induction heating apparatus shown in FIG. 1, FIG. 4 is a schematic cross-sectional view taken along arrow YY ′ of FIG. 3, and FIG. 5 is a schematic cross-sectional view taken along arrow ZZ ′ of FIG. FIG. 6 is a diagram showing Embodiment 1 of the present invention, FIG. 6 is a schematic sectional view taken along the line ZZ ′ of FIG. 1, FIG. 6 is a diagram showing Embodiment 2 of the present invention, and FIG. The figures showing Embodiment 3 are shown respectively.

また図中の符号、10は貯銑炉、11は鉄皮、12は溝型誘導加熱装置、14は受銑口兼スクラップ投入口、15は出銑口、18は溶銑、19は耐火物、20は誘導コイル、21は鉄心、22は異物、23は流路、24はスクラップ、25はカバー、26はしきり、27は流入口、および28は流出口をそれぞれ表している。   In the figure, 10 is a storage furnace, 11 is an iron shell, 12 is a grooved induction heating device, 14 is a receiving port and scrap input port, 15 is a spout, 18 is hot metal, 19 is a refractory, Reference numeral 20 denotes an induction coil, 21 denotes an iron core, 22 denotes foreign matter, 23 denotes a flow path, 24 denotes scrap, 25 denotes a cover, 26 denotes a threshold, 27 denotes an inlet, and 28 denotes an outlet.

図1及び図2に示すように、円筒状の貯銑炉10は、外殻を鉄皮11とし、この鉄皮11の内側に耐火物19が施工されていて、溶銑鍋やトーピードカーなどの溶銑搬送容器(図示せず)から溶銑18を受銑するための受銑口兼スクラップ24の投入口14、及び、貯蔵した溶銑18を装入鍋などの溶銑保持容器(図示せず)に排出するための出銑口15が貯銑炉10の側壁に設置されている。   As shown in FIGS. 1 and 2, the cylindrical storage furnace 10 has an outer shell made of an iron shell 11, and a refractory 19 is constructed inside the iron shell 11, and a hot metal such as a hot metal ladle or a torpedo car. The receiving port / scrap 24 for receiving the hot metal 18 from the transfer container (not shown), and the stored hot metal 18 are discharged into a hot metal holding container (not shown) such as a charging pan. For this purpose, an outlet 15 is installed on the side wall of the storage furnace 10.

貯銑炉10の側壁下部には、4基の溝型誘導加熱装置12が配置されている。貯銑炉10からの出銑時は貯銑炉10を傾動し、出銑口15から溶銑18を出銑する。   Four groove-type induction heating devices 12 are arranged in the lower portion of the side wall of the storage furnace 10. At the time of extraction from the storage furnace 10, the storage furnace 10 is tilted and the molten iron 18 is output from the outlet 15.

また、図5に示すように、貯銑炉10の内部に耐火物でできた、溝型誘導加熱装置12の流路の入り口部分に、スクラップ24を投入して溶解する位置とは反対側にのみ開口部を有するカバー25が設置され、投入されたスクラップ24が溶解して生じた溶銑が溝型誘導加熱装置の流路に直接入ることがないようになっている。なお、カバー25は溝型誘導加熱装置12と一体となっていてもよい。   Further, as shown in FIG. 5, the storage furnace 10 is made of a refractory material and is placed on the side opposite to the position where the scrap 24 is introduced and melted into the inlet portion of the flow path of the grooved induction heating device 12. A cover 25 having only an opening is installed so that the hot metal produced by melting the charged scrap 24 does not directly enter the flow path of the groove type induction heating device. The cover 25 may be integrated with the grooved induction heating device 12.

さらに、図6に示すように、貯銑炉10の内部に耐火物でできた、しきり26がスクラップ24を投入して溶解する位置と溝型誘導加熱装置12の間に設置され、投入されたスクラップ24は、このしきり26の間で溶解される。しきり26は、貯銑炉10の内部を完全に仕切るのでなく、堰のように溶銑18がしきり26の上を移動できるようにする。   Furthermore, as shown in FIG. 6, the threshold 26 made of a refractory inside the storage furnace 10 is placed between the position where the scrap 24 is charged and melted and the grooved induction heating device 12 and is charged. The scrap 24 is melted between the thresholds 26. The threshold 26 does not completely partition the inside of the storage furnace 10 but allows the hot metal 18 to move on the threshold 26 like a weir.

溝型誘導加熱装置12は、図3及び図4に示すように、溶銑18が通るための径路となる流路23を形成する耐火物製の箱体に、誘導コイルの巻かれた鉄心21を配置した構成であり、流路23は貯銑炉10の内部と連通している。誘導コイルに交流電流を流すことによって、ループ状の流路23と鎖交する交流磁束を生じさせ、ループ状の流路23の内部の溶銑18に誘導電流を発生させ、この誘導電流により発生するジュール熱によって溶銑18を加熱する。   As shown in FIGS. 3 and 4, the groove-type induction heating device 12 includes an iron core 21 around which an induction coil is wound in a box made of a refractory material that forms a flow path 23 that serves as a path for the hot metal 18 to pass. The flow path 23 communicates with the inside of the storage furnace 10. By passing an alternating current through the induction coil, an alternating magnetic flux interlinking with the loop-shaped flow path 23 is generated, and an induction current is generated in the hot metal 18 inside the loop-shaped flow path 23, which is generated by this induced current. The hot metal 18 is heated by Joule heat.

また、この誘導電流と、誘導コイルによる交流磁束とによって流路23の内部の溶銑18にはローレンツ力が働き、溶銑18は流路23の内部を移動し、それにより流路23の流入口23Aから流出口23Bに向かう流れが形成される。つまり、加熱された溶銑18は流出口23Bから排出され、代わって貯銑炉10の内部の溶銑18が流入口23Aから溝型誘導加熱装置12に流入して、溶銑18は順次加熱される。尚、図3における流路内の矢印は溶銑13の流れの方向を示している。   Also, the Lorentz force acts on the hot metal 18 inside the flow path 23 due to this induced current and the AC magnetic flux generated by the induction coil, and the hot metal 18 moves inside the flow path 23, thereby the inlet 23 </ b> A of the flow path 23. A flow toward the outlet 23B is formed. That is, the heated hot metal 18 is discharged from the outlet 23B, and instead, the hot metal 18 inside the storage furnace 10 flows into the grooved induction heating device 12 from the inlet 23A, and the hot metal 18 is sequentially heated. In addition, the arrow in the flow path in FIG. 3 has shown the flow direction of the hot metal 13. FIG.

このように構成される貯銑炉10を用い、以下のようにして本発明を実施する。即ち、高炉から出銑された溶銑18を、受銑口兼スクラップ投入口14から貯銑炉10に装入し、必要に応じてスクラップ24を投入して、溝型誘導加熱装置12で加熱しながら溶解、貯蔵する。   Using the storage furnace 10 configured as described above, the present invention is carried out as follows. That is, the hot metal 18 discharged from the blast furnace is charged into the storage furnace 10 through the receiving port / scrap charging port 14, and scrap 24 is charged as necessary, and heated by the grooved induction heating device 12. Dissolve and store.

溝型誘導加熱装置12によって溶銑18を加熱し、スクラップ溶解する際には、スクラップに含まれていた酸化物が溶銑18中に放出される。スクラップ由来の酸化物は流路23の内壁に付着堆積して異物22を形成し、流路23が縮小したり、時には閉塞したりする場合もある。スクラップ24が溝型誘導加熱装置6の近くで溶解すると、そのままでは高濃度の酸化物が流路に入ることになり、付着堆積が起こりやすくなる。   When the hot metal 18 is heated by the grooved induction heating device 12 and the scrap is melted, the oxide contained in the scrap is released into the hot metal 18. Oxide derived from scrap adheres and accumulates on the inner wall of the flow path 23 to form the foreign matter 22, and the flow path 23 may be reduced or sometimes clogged. If the scrap 24 is melted near the groove-type induction heating device 6, if it is left as it is, a high-concentration oxide enters the flow path, and adhesion deposition is likely to occur.

そこで、図5に示す実施の形態1では、カバー25を設けることにより酸化物が流路23に直接到達することを防止できる。一般にスクラップに含まれる金属酸化物は溶銑18よりも軽いため時間の経過とともに浮上し、溶銑18の上に存在するスラグ20に取り込まれて除去されるなどするため、流路23に到達し難くなる。   Therefore, in Embodiment 1 shown in FIG. 5, it is possible to prevent the oxide from directly reaching the flow path 23 by providing the cover 25. In general, since the metal oxide contained in the scrap is lighter than the hot metal 18, it floats with time and is taken in and removed by the slag 20 existing on the hot metal 18, making it difficult to reach the flow path 23. .

また、図6に示す実施の形態2では、酸化物が流路23に到達するには一旦しきり26の上部を通過する必要があり、一般にスクラップに含まれる金属酸化物は溶銑18よりも軽いため浮上し、溶銑18の上に存在するスラグ20に取り込まれて除去されるなどして流路23に到達し難くなる。   In the second embodiment shown in FIG. 6, it is necessary for the oxide to pass through the upper part of the threshold 26 in order to reach the flow path 23, and the metal oxide contained in the scrap is generally lighter than the hot metal 18. It rises and is taken in and removed by the slag 20 existing on the hot metal 18 so that it becomes difficult to reach the flow path 23.

さらに、図7に示す実施の形態3では、溝型誘導加熱装置の流出入口の内、酸化物が流入しやすい流入口だけを分離するしきりの例を示している。図5および図6と同様の断面図である図7(a)のW−W’矢視による概略断面図を、図7(b)は表している。スクラップ24に含まれる金属酸化物が流入口27に直接入らないように分離する、3次元形状のしきり26を設置するものである。   Furthermore, Embodiment 3 shown in FIG. 7 shows an example of a threshold that separates only the inlet into which oxide easily flows out of the outlet of the groove type induction heating apparatus. FIG. 7B shows a schematic cross-sectional view taken along the line W-W ′ of FIG. 7A, which is a cross-sectional view similar to FIGS. 5 and 6. A threshold 26 having a three-dimensional shape is installed to separate the metal oxide contained in the scrap 24 so as not to directly enter the inlet 27.

以上説明したように、本発明によれば、スクラップ24の溶解に伴い放出された酸化物は、カバー25に妨げられて流路23に直接入ることができなくなり、または、しきり26の上部を通過しなければならなくなり、時間の経過とともに浮上しスラグに取り込まれて除去されるので、スクラップ由来の酸化物が流路23の内壁に付着堆積することを減らし、流路23の閉塞を防止して正常な状態に維持することができ、ピンチ現象を抑制することが可能となる。   As described above, according to the present invention, the oxide released with the dissolution of the scrap 24 cannot be directly entered into the flow path 23 due to the cover 25 or passes through the upper part of the threshold 26. Since it has to be lifted over time and is taken in and removed by the slag, it is possible to reduce the deposit and deposition of scrap-derived oxides on the inner wall of the flow path 23 and prevent the flow path 23 from being blocked. The normal state can be maintained, and the pinch phenomenon can be suppressed.

10 貯銑炉
11 鉄皮
12 溝型誘導加熱装置
14 受銑口兼スクラップ投入口
15 出銑口
18 溶銑
19 耐火物
20 誘導コイル
21 鉄心
22 異物
23 流路
24 スクラップ
25 カバー
26 しきり
27 流入口
28 流出口
DESCRIPTION OF SYMBOLS 10 Storage furnace 11 Iron skin 12 Groove type induction heating apparatus 14 Receptacle inlet / scrap inlet 15 Outlet outlet 18 Hot metal 19 Refractory 20 Inductive coil 21 Iron core 22 Foreign material 23 Channel 24 Scrap 25 Cover 26 Clear 27 Inlet 28 Outlet

Claims (3)

溝型の流路を有する誘導加熱装置を備えた貯銑炉でスクラップを投入して溶解するにあたって、
前記誘導加熱装置の流路の入り口部分に、スクラップを投入して溶解する位置とは反対側にのみ開口部を有するカバーを設けることにより、溶解したスクラップに含まれていた金属酸化物が前記誘導加熱装置の流路に進入しにくくすることを特徴とする溝型誘導加熱装置の閉塞防止方法。
In putting and melting scrap in a storage furnace equipped with an induction heating device having a groove-shaped channel,
By providing a cover having an opening only on the side opposite to the position where the scrap is introduced and melted at the inlet portion of the flow path of the induction heating device, the metal oxide contained in the melted scrap is converted into the induction A clogging prevention method for a groove-type induction heating device, characterized by making it difficult to enter a flow path of a heating device.
溝型の流路を有する誘導加熱装置を備えた貯銑炉でスクラップを投入して溶解するにあたって、
スクラップを投入して溶解する位置と前記誘導加熱装置の間に、しきりを設けることにより、溶解したスクラップに含まれていた金属酸化物が前記誘導加熱装置の流路に進入しにくくすることを特徴とする溝型誘導加熱装置の閉塞防止方法。
In putting and melting scrap in a storage furnace equipped with an induction heating device having a groove-shaped channel,
By providing a gap between the position where the scrap is charged and melted and the induction heating device, the metal oxide contained in the melted scrap is less likely to enter the flow path of the induction heating device. A method for preventing clogging of a grooved induction heating apparatus.
請求項2に記載の溝型誘導加熱装置の閉塞防止方法において、
前記しきりは、
前記誘導加熱装置の流出入口の内、流入口だけを分離する形状であることを特徴とする溝型誘導加熱装置の閉塞防止方法。
In the clogging prevention method of the groove type induction heating device according to claim 2,
The threshold is
A clogging prevention method for a grooved induction heating device, wherein only the inflow port is separated from the outflow ports of the induction heating device.
JP2009036092A 2008-04-01 2009-02-19 Blocking prevention method for pig iron storing furnace groove type induction heating device Pending JP2009264728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009036092A JP2009264728A (en) 2008-04-01 2009-02-19 Blocking prevention method for pig iron storing furnace groove type induction heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008094506 2008-04-01
JP2009036092A JP2009264728A (en) 2008-04-01 2009-02-19 Blocking prevention method for pig iron storing furnace groove type induction heating device

Publications (1)

Publication Number Publication Date
JP2009264728A true JP2009264728A (en) 2009-11-12

Family

ID=41390787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009036092A Pending JP2009264728A (en) 2008-04-01 2009-02-19 Blocking prevention method for pig iron storing furnace groove type induction heating device

Country Status (1)

Country Link
JP (1) JP2009264728A (en)

Similar Documents

Publication Publication Date Title
RU2532213C2 (en) Method and device for control of flow speed and delay of non-ferromagnetic conducting fluids and molten metals flow
CN201239793Y (en) Improved molten iron pouring ladle
EP0857932A1 (en) Apparatus for discharging molten matter from cold crucible induction melting furnace
JP2009264728A (en) Blocking prevention method for pig iron storing furnace groove type induction heating device
HU205291B (en) Separator for separating metal-slag mixture
JP2008100248A (en) Continuously casting tundish, and method of continuous casting
JP5521285B2 (en) Method for removing coagulated mass in cold crucible melting furnace
JP5380775B2 (en) Hot water discharge method using electromagnetic nozzle device for hot water of cold crucible melting furnace
JP2009024941A (en) Power source damage preventive method for groove type induction heating device
JP2007070726A (en) Method for preventing clogging of flowing passage in groove type induction heating apparatus
JP2013231210A (en) Method for preventing blockage of flow passage in induction heating device and heating-type molten pig iron storing furnace
EP0132280A1 (en) Method of heating molten steel in tundish for continuous casting apparatus
JP4216610B2 (en) Hot metal heating method using a grooved induction heating device
JP2010264485A (en) Tundish for continuous casting, and method for continuous casting
JPH03199322A (en) Method and device for rapid melting and tapping by cold supply of aluminum ingot
JP2017194234A (en) Bottom molten metal nozzle and bottom molten metal nozzle type melting furnace
KR101104798B1 (en) Controlling apparatus for molten steel
JP2007046075A (en) Method for preventing clogging of flowing passage in groove type induction heating apparatus
JPS5930468A (en) Removing method of clogging in nozzle
JP3789984B2 (en) Blast furnace excavation
US5282608A (en) Induction heated metal pouring apparatus
JP2013231211A (en) Method for preventing blockage of flow passage in induction heating device and heating-type molten pig iron storing furnace
JP6150972B2 (en) Method for melting cold iron source using hot metal in storage furnace equipped with heating device
KR101568601B1 (en) Apparatus for controlling tapping velocity using electromagnetic force
JP7174235B2 (en) Cold Crucible Melting Furnace and Method for Removing Concrete in Cold Crucible Melting Furnace