JP2009264404A - Sealed rolling bearing unit and seal ring - Google Patents

Sealed rolling bearing unit and seal ring Download PDF

Info

Publication number
JP2009264404A
JP2009264404A JP2008111173A JP2008111173A JP2009264404A JP 2009264404 A JP2009264404 A JP 2009264404A JP 2008111173 A JP2008111173 A JP 2008111173A JP 2008111173 A JP2008111173 A JP 2008111173A JP 2009264404 A JP2009264404 A JP 2009264404A
Authority
JP
Japan
Prior art keywords
seal
ring
inner ring
peripheral surface
seal ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008111173A
Other languages
Japanese (ja)
Inventor
Yohei Kashiwakura
洋平 柏倉
Hiroki Sakaguchi
裕樹 坂口
Seisuke Takeda
精介 竹田
Yasushi Amano
靖 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008111173A priority Critical patent/JP2009264404A/en
Publication of JP2009264404A publication Critical patent/JP2009264404A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/768Sealings of ball or roller bearings between relatively stationary parts, i.e. static seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/60Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/388Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with four rows, i.e. four row tapered roller bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a structure capable of preventing the occurrence of a pressure difference between a rolling element arranging space 16 and an external space, even if the bearing temperature changes, in the structure for fluid-tightly blocking up mutual end surfaces in the axial direction of both inner ring elements 11 and 11 by a seal ring 7 installed in a recessed groove 18, by forming the recessed groove 18 on an inner peripheral surface of a butting part of the mutual end surfaces in the axial direction of a pair of inner ring elements 11 and 11. <P>SOLUTION: The seal ring 7 is constituted by combining an annular ring-shaped sealant and an annular ring-shaped or segmental annular ring-shaped core material for reinforcing the sealant. Among these, the sealant is made of a water repellent-oil repellent, ventilating and flexible raw material. In a state of installing the seal ring 7 in the recessed groove 18, the sealant is respectively contacted at an interference over the whole periphery with both sidewall surfaces in at least the axial direction among an inner surface of the recessed groove 18. The problem is solved by adopting such a constitution. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば圧延機を構成するロールの両端部に設けたロールネックを支持装置に対して回転自在に支持する為に使用する密封型転がり軸受ユニットと、この密封型転がり軸受ユニットの転動体設置空間を密封する為に使用するシール環との改良に関する。   The present invention relates to, for example, a sealed rolling bearing unit used for rotatably supporting roll necks provided at both ends of a roll constituting a rolling mill with respect to a support device, and a rolling element of the sealed rolling bearing unit. The present invention relates to an improvement with a seal ring used for sealing an installation space.

金属材料に圧延加工を施す為の、圧延機を構成するロールは、軸方向両端面の中心部に設けたロールネックと呼ばれる円柱部を固定の支持装置に対し、例えば図14に示す様な密封型多列円すいころ軸受により回転自在に支持している。この図14に示した密封型多列円すいころ軸受は、特許文献1に記載されたもので、外輪1と、内輪2と、複数個の円すいころ3、3と、1対の円環状のシールホルダ4、4と、1対の摺接型のシールリング5、5と、1対のOリング6、6と、1個のシール環7とを備える。   A roll constituting a rolling mill for rolling a metal material is sealed as shown in FIG. 14, for example, with respect to a support device that fixes a cylindrical portion called a roll neck provided at the center of both axial end faces. It is rotatably supported by type multi-row tapered roller bearings. The sealed multi-row tapered roller bearing shown in FIG. 14 is described in Patent Document 1, and includes an outer ring 1, an inner ring 2, a plurality of tapered rollers 3, 3, and a pair of annular seals. Holders 4, 4, a pair of sliding contact type seal rings 5, 5, a pair of O-rings 6, 6, and one seal ring 7 are provided.

このうちの外輪1は、軸方向中央部に配置した1個の外輪素子8aと、軸方向両端部に配置した2個の外輪素子8b、8bと、軸方向に関して隣り合う、これら各外輪素子8a、8b同士の間に挟持する状態で設けた、それぞれが短円筒状である2個の外輪間座9、9とから成る。上記軸方向中央部に配置した1個の外輪素子8aの内周面には、それぞれが部分円すい凹面状の外輪軌道10、10を、2列形成している。又、上記軸方向両端部に配置した2個の外輪素子8b、8bの内周面にはそれぞれ、部分円すい凹面状の外輪軌道10を、1列ずつ形成している。従って、上記外輪1の内周面には、4列の外輪軌道10、10が設けられている。   Of these, the outer ring 1 includes one outer ring element 8a disposed in the central portion in the axial direction and two outer ring elements 8b and 8b disposed at both ends in the axial direction, which are adjacent to each other in the axial direction. , 8b, and two outer ring spacers 9, 9 each having a short cylindrical shape. Two rows of outer ring raceways 10 and 10 each having a conical concave shape are formed on the inner peripheral surface of one outer ring element 8a arranged in the central portion in the axial direction. Further, the outer ring raceway 10 having a partially conical concave shape is formed in each row on the inner peripheral surface of the two outer ring elements 8b, 8b arranged at both ends in the axial direction. Therefore, four rows of outer ring raceways 10 and 10 are provided on the inner peripheral surface of the outer ring 1.

又、上記内輪2は、互いの軸方向端面同士を突き当てた、1対の内輪素子11、11から成る。これら両内輪素子11、11の外周面にはそれぞれ、部分円すい凸面状の内輪軌道12、12を、2列ずつ形成している。従って、上記内輪2の外周面には、4列の内輪軌道12、12が設けられている。又、上記各円すいころ3、3は、上記4列の外輪軌道10、10と上記4列の内輪軌道12、12との間に、各列毎に複数個ずつ、保持器13、13により保持した状態で転動自在に設けられている。   The inner ring 2 is composed of a pair of inner ring elements 11, 11 that face each other in the axial direction. Two inner ring raceways 12 and 12 having a partially conical convex shape are formed on the outer peripheral surfaces of both inner ring elements 11 and 11 respectively. Therefore, four rows of inner ring raceways 12 and 12 are provided on the outer peripheral surface of the inner ring 2. The tapered rollers 3 and 3 are held by the cages 13 and 13 between the four rows of outer ring raceways 10 and 10 and the four rows of inner ring raceways 12 and 12, respectively. It is provided so that it can roll freely.

又、上記1対の円環状のシールホルダ4、4は、上記外輪1の軸方向両側に隣接配置している。そして、これら両シールホルダ4、4の内周面と、上記内輪2の軸方向両端部外周面との間に、それぞれ上記両シールリング5、5を組み付けている。これら両シールリング5、5はそれぞれ、円環状の芯金14と、この芯金14の内周縁部分に全周に亙り結合固定した円環状の弾性材15とを備える。そして、このうちの芯金14を上記両シールホルダ4、4に内嵌固定すると共に、上記弾性材15の先端縁を、上記内輪2の軸方向両端部外周面に摺接させている。これにより、上記外輪1の内周面と上記内輪2の外周面との間に存在する、転動体設置空間16の軸方向両端開口を密閉している。又、上記両シールホルダ4、4の外周面には、それぞれ係止溝17、17を全周に亙り形成すると共に、これら各係止溝17、17内に前記各Oリング6、6を係止している。自由状態で、これら各Oリング6、6の外径寸法は、上記各シールホルダ4、4の外径寸法よりも大きくなっている。   The pair of annular seal holders 4, 4 are disposed adjacent to both sides in the axial direction of the outer ring 1. The seal rings 5 and 5 are assembled between the inner peripheral surfaces of the seal holders 4 and 4 and the outer peripheral surfaces of both end portions of the inner ring 2 in the axial direction. Each of the seal rings 5 and 5 includes an annular cored bar 14 and an annular elastic member 15 that is coupled and fixed to the inner peripheral edge of the cored bar 14 over the entire circumference. Of these, the metal core 14 is fitted and fixed to the seal holders 4 and 4, and the leading edge of the elastic material 15 is brought into sliding contact with the outer peripheral surfaces of both end portions in the axial direction of the inner ring 2. Thereby, both axial direction opening of the rolling element installation space 16 which exists between the inner peripheral surface of the said outer ring | wheel 1 and the outer peripheral surface of the said inner ring | wheel 2 is sealed. Further, locking grooves 17 and 17 are formed on the outer peripheral surfaces of the seal holders 4 and 4 over the entire circumference, and the O-rings 6 and 6 are engaged in the locking grooves 17 and 17. It has stopped. In a free state, the outer diameter dimensions of the O-rings 6 and 6 are larger than the outer diameter dimensions of the seal holders 4 and 4.

又、上記両内輪素子11、11の軸方向端面同士の突き当て部の内周面には、これら両内輪素子11、11同士の間に掛け渡す状態で凹溝18を、全周に亙り形成している。そして、この凹溝18内に、前記シール環7を組み付けている。図15に詳示する様に、このシール環7は、ゴムにより全体を円環状に形成したシール材19と、このシール材19を補強する為の、金属製で円環状の芯材22とから成る。このうちのシール材19は、断面略矩形で全体を円環状に形成した基部23と、この基部23の全周から軸方向に延出する状態で形成された、径方向の肉厚が比較的小さい円環状のシールリップ24とを備える。この様なシール環7は、図示の様に凹溝18内に組み付けた状態で、上記シール材19を構成する基部23を、この凹溝18の底面及び軸方向両側壁面のうち、一方(図15の左方)の内輪素子11に対応する部分の全周に弾性的に接触させている。これと共に、上記シール材19を構成するシールリップ24の先端縁を、上記凹溝18の軸方向両側壁面のうち、他方(図15の右方)の内輪素子11に対応する部分の全周に弾性的に接触させている。これにより、上記両内輪素子11、11の軸方向端面同士の間を密閉している。   In addition, a concave groove 18 is formed on the inner peripheral surface of the abutting portion between the axial end surfaces of the inner ring elements 11, 11 so as to extend between the inner ring elements 11, 11. is doing. The seal ring 7 is assembled in the groove 18. As shown in detail in FIG. 15, the seal ring 7 is composed of a seal material 19 formed entirely in an annular shape with rubber, and a metal and annular core material 22 for reinforcing the seal material 19. Become. Of these, the sealing member 19 has a base portion 23 that is substantially rectangular in cross section and formed in an annular shape as a whole, and a radial thickness formed in a state extending in the axial direction from the entire circumference of the base portion 23. And a small annular seal lip 24. Such a seal ring 7 is assembled in the groove 18 as shown in the figure, and the base 23 constituting the seal material 19 is placed on one of the bottom surface and both axial side walls of the groove 18 (see FIG. 15) is elastically brought into contact with the entire circumference of the portion corresponding to the inner ring element 11. At the same time, the tip edge of the seal lip 24 constituting the seal material 19 is placed on the entire circumference of the portion corresponding to the inner ring element 11 on the other side (right side in FIG. 15) of both side walls in the axial direction of the groove 18. It is in elastic contact. Thereby, the space between the axial end surfaces of the inner ring elements 11 and 11 is sealed.

上述の様に構成する密封型多列円すいころ軸受ユニットにより、圧延機を構成するロールの軸方向端面の中心部に設けた円柱状のロールネック(図示せず)を、支持装置を構成するハウジング(図示せず)の内径側に回転自在に支持する場合には、このハウジングに上記外輪1及び1対のシールホルダ4、4を内嵌支持すると共に、上記ロールネックに上記内輪2を外嵌支持する。又、これに伴い、上記各シールホルダ4、4の外周面に形成した係止溝17、17の底面と、上記ハウジングの円筒状の内周面との間で、上記各Oリング6、6を弾性的に圧縮する。これにより、上記各シールホルダ4、4の外周面と上記ハウジングの内周面との間を密閉する。   A cylindrical roll neck (not shown) provided at the center of the axial end surface of the roll constituting the rolling mill by the sealed multi-row tapered roller bearing unit configured as described above is a housing constituting the support device. When the inner ring side (not shown) is rotatably supported, the outer ring 1 and the pair of seal holders 4 and 4 are fitted and supported on the housing, and the inner ring 2 is fitted on the roll neck. To support. Accordingly, the O-rings 6, 6 are provided between the bottom surfaces of the locking grooves 17, 17 formed on the outer peripheral surfaces of the seal holders 4, 4 and the cylindrical inner peripheral surface of the housing. Is elastically compressed. Thereby, the space between the outer peripheral surface of each of the seal holders 4 and 4 and the inner peripheral surface of the housing is sealed.

上述の様な密封型多列円すいころ軸受ユニットは、外部に冷却水や塵芥等の異物が存在する環境下で使用される。又、上述の様な密封型多列円すいころ軸受ユニットの場合、メンテナンス時等の交換性を考慮し、上記ロールネックの外周面と上記内輪2の内周面との嵌め合いは、隙間嵌め(ルーズフィット)にしている。この為、これら両周面同士の間で滑りが起こり、摩耗粉が発生する。従って、これら冷却水、塵芥等の異物、摩耗粉が存在する外部空間と、前記転動体設置空間16との間に存在する複数の連通路を、それぞれ前記1対のシールリング5、5と、上記1対のOリング6、6と、上記1個のシール環7とにより塞ぐ事で、上記転動体設置空間16を密封している。そして、この様な構成を採用する事により、上記外部空間から上記転動体設置空間16内に上記冷却水等が入り込む事を防止すると共に、この転動体設置空間16内に封入した潤滑用のグリースが上記外部空間に漏洩する事を防止している。   The sealed multi-row tapered roller bearing unit as described above is used in an environment where foreign matters such as cooling water and dust are present outside. Further, in the case of the sealed multi-row tapered roller bearing unit as described above, the fit between the outer peripheral surface of the roll neck and the inner peripheral surface of the inner ring 2 is a clearance fit ( Loose fit). For this reason, slip occurs between the two peripheral surfaces, and wear powder is generated. Therefore, a plurality of communication paths existing between the external space in which foreign matter such as cooling water, dust and the like, wear powder exists, and the rolling element installation space 16 are respectively connected to the pair of seal rings 5 and 5. The rolling element installation space 16 is sealed by closing with the pair of O-rings 6 and 6 and the single seal ring 7. Further, by adopting such a configuration, the cooling water or the like is prevented from entering the rolling element installation space 16 from the external space, and the lubricating grease sealed in the rolling element installation space 16 Is prevented from leaking into the external space.

ところで、上述したロールネック用の密封型多列円すいころ軸受ユニットの場合、運転時に高温になる事で、上記転動体設置空間16内の空気が膨張すると、この転動体設置空間16内の空気が、上記1対のシールリング5、5を構成する弾性材15、15の先端縁と上記内輪2の軸方向両端部外周面との摺接部(間部分)や、上記シール環7を構成するシールリップ24の先端縁と上記凹部18の内面との接触部(間部分)を通じて、外部空間に徐々に漏れ出す。尚、上述した従来構造の第1例の場合には、上記内輪2の軸方向両端部外周面に摺接する上記両弾性材15、15の先端縁と、上記凹部18の内面に接触する上記シールリップ24の先端縁とが、それぞれ外部空間側に向いて傾斜している。即ち、上記各摺接部及び上記接触部を通じて、上記転動体設置空間16内の空気が外部空間に漏れ出す傾向となった場合に、上記各摺接部及び上記接触部の一部に隙間が生じ易くなっている。この為、上記空気の漏れ出しは、容易に行われる。   By the way, in the case of the above-described sealed multi-row tapered roller bearing unit for the roll neck, when the air in the rolling element installation space 16 expands due to a high temperature during operation, the air in the rolling element installation space 16 A sliding contact portion (intersection) between the tip edges of the elastic members 15 and 15 constituting the pair of seal rings 5 and 5 and the outer peripheral surfaces of both end portions in the axial direction of the inner ring 2 and the seal ring 7 are constituted. Through the contact portion (intermediate portion) between the tip edge of the seal lip 24 and the inner surface of the concave portion 18, it gradually leaks into the external space. In the case of the first example of the above-described conventional structure, the seals that are in contact with the tip edges of the elastic members 15 and 15 that are in sliding contact with the outer peripheral surfaces of both ends in the axial direction of the inner ring 2 and the inner surfaces of the recesses 18. The tip edge of the lip 24 is inclined toward the outer space side. That is, when the air in the rolling element installation space 16 tends to leak into the external space through each sliding contact portion and the contact portion, there is a gap in each sliding contact portion and part of the contact portion. It tends to occur. For this reason, the leakage of the air is easily performed.

一方、その後、運転を停止して低温になる事で、上記転動体設置空間16内の空気が収縮すると、上記各摺接部及び上記接触部を通じて、外部空間の空気が上記転動体設置空間16内に吸い込まれる傾向となる。ところが、上述した従来構造の第1例の場合には、上記内輪2の軸方向両端部外周面に摺接する上記両弾性材15、15の先端縁と、上記凹部18の内面に接触する上記シールリップ24の先端縁とが、それぞれ外部空間側に向いて傾斜している。即ち、上記各摺接部や上記接触部を通じて、外部空間に存在する空気が上記転動体設置空間16内に吸い込まれる傾向となった場合に、上記各摺接部及び上記接触部の一部に隙間が生じにくくなっている。この為、上記空気の吸い込みが殆ど行われず、上記転動体設置空間16が負圧状態となる。そして、この様に転動体設置空間16が負圧状態となる結果、著しい場合には、上記各摺接部及び上記接触部を通じて、外部空間から上記転動体設置空間16内に上記冷却水が吸い込まれると言った不具合が発生する可能性があった。又、上記転動体設置空間16が負圧状態になると、外部空間の大気圧によって、上記両シールリング5、5を構成する弾性材15、15の先端縁が、上記内輪2の軸方向両端部外周面に強く押し付けられる。この結果、これら両弾性材15、15の先端縁の摩耗が促進され、これら両弾性材15、15のシール機能の低下速度が高まる。従って、その分だけ、上記冷却水が上記両摺接部を通じて上記転動体設置空間16内に、より引き込まれ易くなる。   On the other hand, when the air in the rolling element installation space 16 contracts after the operation is stopped and the temperature is lowered, the air in the external space is passed through the sliding contact part and the contact part. It tends to be sucked in. However, in the case of the first example of the conventional structure described above, the seals that contact the tip edges of the elastic members 15 and 15 that are in sliding contact with the outer peripheral surfaces of both axial ends of the inner ring 2 and the inner surfaces of the recesses 18. The tip edge of the lip 24 is inclined toward the outer space side. That is, when the air existing in the external space tends to be sucked into the rolling element installation space 16 through each sliding contact portion or the contact portion, the sliding contact portion and a part of the contact portion are provided. The gap is less likely to occur. Therefore, the air is hardly sucked, and the rolling element installation space 16 is in a negative pressure state. As a result of the negative pressure state of the rolling element installation space 16 as described above, the cooling water is sucked into the rolling element installation space 16 from the external space through each sliding contact part and the contact part. There was a possibility that a problem that occurred. Further, when the rolling element installation space 16 is in a negative pressure state, the leading edges of the elastic members 15 and 15 constituting the both seal rings 5 and 5 are caused by the atmospheric pressure of the outer space so that both ends of the inner ring 2 in the axial direction. Strongly pressed against the outer peripheral surface. As a result, the wear of the leading edges of both elastic members 15 and 15 is promoted, and the rate of decrease in the sealing function of both elastic members 15 and 15 is increased. Therefore, the cooling water is more easily drawn into the rolling element installation space 16 through the sliding contact portions.

上記冷却水が上記転動体設置空間16内に引き込まれると、この転動体設置空間16に存在するグリースの潤滑性能が損なわれ、軸受寿命が低下する。従って、この様な事態が発生するのを回避すべく、上記冷却水が上記両摺接部を通じて上記転動体設置空間16内に引き込まれる事を、有効に防止する必要がある。この為に具体的には、上記転動体設置空間16が負圧状態となる事を防止できる構造を実現する必要がある。   When the cooling water is drawn into the rolling element installation space 16, the lubrication performance of the grease existing in the rolling element installation space 16 is impaired, and the bearing life is reduced. Therefore, in order to avoid such a situation, it is necessary to effectively prevent the cooling water from being drawn into the rolling element installation space 16 through the sliding contact portions. Therefore, specifically, it is necessary to realize a structure capable of preventing the rolling element installation space 16 from becoming a negative pressure state.

この様な事情に鑑みて、特許文献2には、上述の図15に示したシール環7に代えて、図16に示す様なシール環7aを使用する構造が記載されている。この図16に示した従来構造の第2例を構成するシール環7aは、ゴムにより全体を円環状に形成したシール材19aと、このシール材19aの内周面の幅方向中央部に全周に亙り形成した係止溝20内に係止した、芯材である円環状スプリング21とを備える。そして、このうちのシール材19a(図16では便宜上、自由状態で示している。)の一部を、上記凹溝18の底面の幅方向両側部分及び両側壁面に全周に亙り接触させている。これと共に、上記円環状スプリング21の弾力により、上記シール材19aを上記凹溝18の底面に向け、径方向外方に付勢している。そして、この様な構成を採用する事により、上記シール環7aによって、1対の内輪素子11、11の軸方向端面同士の間を密閉している。これと共に、上記凹溝18の内面に対する上記シール材19aの締め代、並びに、上記円環状スプリング21の弾力を適度に調節する事により、高温時及び低温時にそれぞれ、上記凹溝18の内面と上記シール材19aとの接触部を通じて、転動体設置空間16(図14参照)と外部空間との間で空気のみが出入りできる様にし、その他の異物等が出入りするのを防止できる様にしている。   In view of such circumstances, Patent Document 2 describes a structure in which a seal ring 7a as shown in FIG. 16 is used instead of the seal ring 7 shown in FIG. The seal ring 7a that constitutes the second example of the conventional structure shown in FIG. 16 includes a seal material 19a that is formed into a ring shape entirely from rubber, and an entire circumference in the center in the width direction of the inner peripheral surface of the seal material 19a. And an annular spring 21 serving as a core material, which is locked in a locking groove 20 formed over the surface. A part of the sealing material 19a (shown in a free state for convenience in FIG. 16) is brought into contact with the entire circumference of both sides and both side walls of the bottom surface of the concave groove 18 in the width direction. . At the same time, the elastic force of the annular spring 21 urges the sealing material 19a toward the bottom surface of the concave groove 18 outward in the radial direction. And by employ | adopting such a structure, between the axial direction end surfaces of a pair of inner ring elements 11 and 11 is sealed with the said seal ring 7a. At the same time, by appropriately adjusting the tightening margin of the sealing material 19a with respect to the inner surface of the concave groove 18 and the elasticity of the annular spring 21, the inner surface of the concave groove 18 and the above-mentioned at high temperature and low temperature respectively. Through the contact portion with the sealing material 19a, only air can enter and exit between the rolling element installation space 16 (see FIG. 14) and the external space, and other foreign matters can be prevented from entering and exiting.

この様な従来構造の第2例によれば、上記転動体設置空間16が負圧状態になる事を有効に防止できる為、上述の従来構造の第1例で説明した様な不具合が発生する事を有効に防止できる。ところが、上述の様な従来構造の第2例の場合には、上記凹溝18の内面に対する上記シール材19aの締め代、並びに、上記円環状スプリング21の弾力を適度に調節する事が困難であり、この適度な調整を実現する為に高精度な寸法管理等が必要になる為、製造コストが嵩むと言った問題がある。尚、この調整によって、上記締め代及び弾力が小さくなり過ぎると、上記接触部を通じて外部空間から上記転動体設置空間16内に異物等が入り込み易くなったり、或いは、上記シール環7aの一部が径方向内方に垂れ下がって上記凹溝18外に突出し、メンテナンス時に内輪2の内径側からロールネックを抜き差しする際に、当該突出した部分がこのロールネックに干渉して破損すると言った不具合が発生する。反対に、上記締め代及び弾力が大きくなり過ぎると、低温時の通気性を失って、上述した従来構造の第1例の場合と同様の不具合が発生する。   According to the second example of such a conventional structure, it is possible to effectively prevent the rolling element installation space 16 from being in a negative pressure state, so that the problem described in the first example of the conventional structure described above occurs. Things can be effectively prevented. However, in the case of the second example of the conventional structure as described above, it is difficult to properly adjust the tightening margin of the sealing material 19a against the inner surface of the concave groove 18 and the elasticity of the annular spring 21. In addition, there is a problem that the manufacturing cost increases because highly accurate dimensional management or the like is necessary to realize this appropriate adjustment. In addition, if the tightening allowance and the elasticity are too small due to this adjustment, foreign matter or the like easily enters the rolling element installation space 16 from the external space through the contact portion, or a part of the seal ring 7a is formed. When the roll neck hangs inward in the radial direction and protrudes out of the concave groove 18, and the roll neck is inserted and removed from the inner diameter side of the inner ring 2 during maintenance, the protruding portion interferes with the roll neck and breaks. To do. On the other hand, if the tightening allowance and elasticity are too large, the air permeability at low temperatures is lost and the same problem as in the first example of the conventional structure described above occurs.

又、前記特許文献1には、上述した従来構造の第1例の改良品として、図17に示す様な構造が記載されている。この図17に示した従来構造の第3例の場合には、シール環7′のシール材19′を構成するシールリップ24の軸方向中間部の円周方向複数個所に、それぞれ円形の薄肉部25を形成すると共に、これら各薄肉部25にそれぞれ、これら各薄肉部25を1対の半円形部分に2分割する、直径方向に亙る切れ目26を形成している。自由状態で、これら各切れ目26部分は、それぞれ閉じた状態になっている。この様に構成する従来構造の第3例の場合には、温度変化に伴って転動体設置空間16(図14参照)と外部空間との間に所定の圧力差が生じた場合に、次の様な圧力差の調整機能が働く。即ち、上記両空間同士の間の圧力差が所定値に達すると、この圧力差によって、上記各切れ目26部分が弾性的に広がる。そして、これら各切れ目26部分を通じて、上記両空間同士の間で空気が出入する事により、上記圧力差が上記所定値以下に抑えられる。この為、上記転動体設置空間16が過度な負圧状態になる事を有効に防止できる。従って、上述の従来構造の第1例で説明した不具合が発生する事を有効に防止できる。   Further, Patent Document 1 describes a structure as shown in FIG. 17 as an improved product of the first example of the conventional structure described above. In the case of the third example of the conventional structure shown in FIG. 17, circular thin-walled portions are respectively provided at a plurality of locations in the circumferential direction of the axially intermediate portion of the seal lip 24 constituting the seal material 19 'of the seal ring 7'. 25, and each thin portion 25 is formed with a cut 26 extending in the diametrical direction, which divides each thin portion 25 into a pair of semicircular portions. In the free state, each of the cut portions 26 is in a closed state. In the case of the third example of the conventional structure configured as described above, when a predetermined pressure difference is generated between the rolling element installation space 16 (see FIG. 14) and the external space as the temperature changes, Various pressure differential adjustment functions work. That is, when the pressure difference between the two spaces reaches a predetermined value, each of the cut portions 26 is elastically spread by the pressure difference. Then, air enters and exits between the two spaces through each of the cuts 26, whereby the pressure difference is suppressed to the predetermined value or less. For this reason, it can prevent effectively that the said rolling-element installation space 16 becomes an excessive negative pressure state. Therefore, it is possible to effectively prevent the occurrence of the problems described in the first example of the conventional structure described above.

ところが、この様な従来構造の第3例の場合には、上記シールリップ24の加工が面倒でコストが嵩む。しかも、上記切れ目26部分の開閉を適切に行わせて、上述した圧力差の調整機能を的確に発揮させる為には、凹溝18の内面に対する上記シールリップ24の締め代を適正に管理して、上記切れ目26部分の応力を適正にしておく必要がある。この為に具体的には、上記凹溝18、並びに、上記シールリップ24を含んで構成するシール材19′の寸法精度及び形状精度を、それぞれ十分に確保する必要がある。従って、その分だけ、上記凹溝18を形成する1対の内輪素子11、11の加工コスト、並びに、上記シール材19′を造る為の成形型のコストが嵩む。   However, in the case of the third example having such a conventional structure, the processing of the seal lip 24 is cumbersome and costly. In addition, in order to appropriately open and close the cut portion 26 and to exert the above-described pressure difference adjustment function appropriately, the tightening margin of the seal lip 24 with respect to the inner surface of the groove 18 is appropriately managed. It is necessary to make the stress of the cut portion 26 appropriate. For this purpose, it is necessary to sufficiently secure the dimensional accuracy and shape accuracy of the sealing material 19 ′ including the concave groove 18 and the sealing lip 24. Accordingly, the machining cost of the pair of inner ring elements 11 and 11 forming the concave groove 18 and the cost of the mold for producing the sealing material 19 ′ are increased accordingly.

特開2000−104747号公報JP 2000-104747 A 特開平9−329243号公報Japanese Patent Laid-Open No. 9-329243

本発明の密封型転がり軸受ユニット及びシール環は、上述の様な事情に鑑み、温度変化が生じる状況で、1対の内輪素子の軸方向端面同士の間の液密を保持できると共に、転動体設置空間と外部空間との間の圧力差をなくす事ができ、しかも凹溝を形成する上記各内輪素子の加工コスト、並びに、この凹溝内に組み付けるシール環の製造コストを抑えられる構造を実現すべく発明したものである。   The sealed-type rolling bearing unit and seal ring of the present invention are capable of maintaining liquid-tightness between the axial end faces of a pair of inner ring elements in a situation where temperature changes occur in view of the above-described circumstances, and rolling elements Realizes a structure that can eliminate the pressure difference between the installation space and the external space, and can reduce the processing cost of each inner ring element that forms the groove and the manufacturing cost of the seal ring to be assembled in the groove. Invented as much as possible.

本発明の対象となる密封型転がり軸受ユニットは、内周面に複列又は多列の外輪軌道を有する外輪と、外周面に複列又は多列の内輪軌道を有する内輪と、これら各外輪軌道とこれら各内輪軌道との間に、各列毎に複数個ずつ、転動自在に設けられた転動体と、上記外輪の内周面と上記内輪の外周面との間に存在する転動体設置空間の軸方向両端開口を塞ぐ、1対の摺接型のシールリングとを備える。又、上記内輪は、それぞれがその外周面に上記内輪軌道を1列以上有し、且つ、互いの軸方向端面同士を突き当てた1対の内輪素子を含んで構成している。又、これら両内輪素子の軸方向端面同士の突き当て部の内周面又は外周面に凹溝を、これら両内輪素子に掛け渡す状態で全周に亙り形成している。又、この凹溝内に、上記両内輪素子の軸方向端面同士の間を液密に塞ぐシール環を組み付けている。   A sealed rolling bearing unit that is an object of the present invention includes an outer ring having a double-row or multi-row outer ring raceway on an inner peripheral surface, an inner ring having a double-row or multi-row inner ring raceway on an outer peripheral surface, and each outer ring raceway. Between each of the inner ring raceways and the inner ring raceways, and a plurality of rolling elements provided in a freely rotatable manner for each row, and a rolling element installed between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring. And a pair of sliding contact type seal rings that closes both axial openings of the space. Each of the inner rings includes a pair of inner ring elements each having one or more rows of the inner ring raceways on the outer peripheral surface thereof and abutting each other in the axial direction. Further, a concave groove is formed over the entire circumference in a state where the inner circumferential surface or the outer circumferential surface of the abutting portion between the end faces in the axial direction of both inner ring elements extends over the both inner ring elements. Further, a seal ring for liquid-tightly closing between the axial end surfaces of the inner ring elements is assembled in the concave groove.

特に、請求項1に記載した密封型転がり軸受ユニットに於いては、上記シール環は、撥水撥油性と通気性と弾性等の柔軟性とを有する素材により全体を円環状に構成したシール材と、このシール材を補強する為の円環状又は欠円環状の芯材とを組み合わせる事で、全体を円環状に構成している。又、このシール環を上記凹溝内に組み付けた状態で、上記シール材がこの凹溝の内面のうち少なくとも軸方向両側壁面に、それぞれ全周に亙り締め代を持って軸方向に接触する。これと共に、同じ状態で、上記シール環の全体が上記凹溝内に収まる。   In particular, in the sealed rolling bearing unit according to claim 1, the seal ring is formed of a material having water and oil repellency, air permeability, and flexibility such as elasticity as a whole in an annular shape. And the whole is comprised in the annular | circular shape by combining with the annular | circular shaped or a missing annular | circular shaped core material for reinforcing this sealing material. Further, in a state where the seal ring is assembled in the concave groove, the seal material contacts the axial direction with a tightening margin on the entire circumference at least on both axial side walls of the inner surface of the concave groove. At the same time, in the same state, the entire seal ring is accommodated in the concave groove.

又、請求項2に記載したシール環に於いては、撥水撥油性と通気性と柔軟性とを有する素材により全体を円環状に構成したシール材と、このシール材を補強する為の円環状又は欠円環状の芯材とを組み合わせる事で、全体を円環状に構成している。又、上記凹溝内に組み付けた状態で、上記シール材がこの凹溝の内面のうち少なくとも軸方向両側壁面にそれぞれ全周に亙り締め代を持って軸方向に接触する。これと共に、同じ状態で、全体が上記凹溝内に収まる。   According to a second aspect of the present invention, there is provided a seal ring having a ring shape made of a material having water and oil repellency, breathability and flexibility, and a circle for reinforcing the seal material. The whole is configured in an annular shape by combining an annular or non-circular annular core material. Further, in the state of being assembled in the concave groove, the sealing material contacts in the axial direction with a tightening margin on the entire circumference of at least both axial side walls of the inner surface of the concave groove. At the same time, in the same state, the whole fits in the concave groove.

尚、上記シール材を構成する為の、撥水撥油性と通気性と弾性等の柔軟性とを有する素材としては、例えば、撥水撥油剤を含浸させた耐熱性繊維材料や、コルクチップを固めて成形した、炭化コルクの如き通気性を有するコルク成形物を使用する事ができる。   Examples of materials having water / oil repellency, air permeability, and flexibility such as elasticity for constituting the sealing material include, for example, a heat resistant fiber material impregnated with a water / oil repellent and cork chips. A cork molded product having air permeability such as carbonized cork, which is solidified and molded, can be used.

又、上述の様な本発明を実施する場合に、好ましくは、上記シール環を構成する芯材として、通気性を有するもの(例えば、網目状の金属材又は繊維強化プラスチック材により形成したもの)を使用する。   Further, when the present invention as described above is carried out, it is preferable that the core material constituting the seal ring has air permeability (for example, formed of a mesh-like metal material or fiber reinforced plastic material). Is used.

上述の様に、本発明の密封型転がり軸受ユニット及びシール環の場合には、シール環のシール材を構成する素材が、弾性等の柔軟性を有し、且つ、このシール材が凹溝の内面(少なくとも軸方向両側壁面の全周)に、締め代を持って接触している。これと共に、上記シール材を構成する素材が、撥水撥油性を有している。この為、このシール材と上記凹溝の内面との間部分や、このシール材の内部を通じて、外部空間に存在する冷却水等の水分や摩耗粉スラッジ等の異物が転動体設置空間内に引き込まれたり、この転動体設置空間内に存在する潤滑用グリース等の油分が外部空間に漏洩したりする事を防止できる。   As described above, in the case of the sealed rolling bearing unit and the seal ring of the present invention, the material constituting the seal material of the seal ring has flexibility such as elasticity, and the seal material has a concave groove. The inner surface (at least the entire circumference of both side wall surfaces in the axial direction) is in contact with a tightening margin. At the same time, the material constituting the sealing material has water and oil repellency. For this reason, foreign matters such as water such as cooling water and wear powder sludge existing in the external space are drawn into the rolling element installation space through the portion between the seal material and the inner surface of the groove and the inside of the seal material. Or oil such as lubricating grease existing in the rolling element installation space can be prevented from leaking to the external space.

特に、本発明の場合、上記シール材を構成する素材は、通気性を有する為、このシール材によって空気が遮断される事はない。この為、温度変化に伴い、上記転動体設置空間が陽圧又は負圧になる傾向になった場合に、上記シール材の内部を通じて、上記転動体設置空間と外部空間との間で空気が出入できる。従って、これら両空間同士の間に圧力差が生じる事を防止できる。この結果、上記転動体設置空間が過度な負圧状態になる事や、この転動体設置空間の負圧状態が長時間継続して、1対のシールリングを構成する弾性材の先端縁(相手面に摺接させる端縁)の摩耗が促進される事を防止できる。この為、外部空間に存在する冷却水等が、上記両シールリングを構成する弾性材の先端縁と相手面との摺接部(間部分)を通じて、上記転動体設置空間内に引き込まれ易くなると言った不具合が発生する事を防止できる。
尚、本発明を実施する場合に、上記シール環を構成する芯材として、通気性を有するものを使用すれば、このシール環全体の通気性を向上させる事ができる。
In particular, in the case of the present invention, since the material constituting the sealing material has air permeability, air is not blocked by the sealing material. Therefore, when the rolling element installation space tends to become positive or negative pressure due to temperature change, air enters and exits between the rolling element installation space and the external space through the inside of the sealing material. it can. Therefore, it is possible to prevent a pressure difference from occurring between these two spaces. As a result, the rolling element installation space is in an excessively negative pressure state, or the negative pressure state of the rolling element installation space continues for a long time. It is possible to prevent the wear of the edge) slidably contacting the surface from being accelerated. For this reason, when the cooling water etc. which exist in external space become easy to be drawn in in the said rolling element installation space through the sliding contact part (interposition part) of the front-end edge of the elastic material which comprises the said both seal rings, and the other party surface. It is possible to prevent the above-mentioned trouble from occurring.
In carrying out the present invention, if a material having air permeability is used as the core material constituting the seal ring, the air permeability of the entire seal ring can be improved.

又、本発明の場合、上記シール材を構成する素材は、柔軟性を有する。この為、凹溝に多少の寸法誤差及び形状誤差があったとしても、上記シール材が柔軟に変形する事でこれら各誤差を吸収し、このシール材と上記凹溝の内面との接触状態を適正にできる。従って、この凹溝の寸法精度及び形状精度を厳正に管理する必要がない。又、上記シール材は、大判な繊維素材を切り出して造れる為、このシール材を造る際に高価な成形型を使用する必要がない。従って、上記凹溝を形成する1対の内輪素子の加工コスト、並びに、上記シール環の製造コストを十分に抑えらえる。   Moreover, in the case of this invention, the raw material which comprises the said sealing material has a softness | flexibility. For this reason, even if there are some dimensional errors and shape errors in the groove, the seal material flexibly deforms to absorb these errors, and the contact state between the seal material and the inner surface of the groove is It can be done properly. Therefore, it is not necessary to strictly manage the dimensional accuracy and shape accuracy of the groove. Further, since the sealing material can be produced by cutting out a large fiber material, it is not necessary to use an expensive mold when producing the sealing material. Therefore, the processing cost of the pair of inner ring elements forming the concave grooves and the manufacturing cost of the seal ring can be sufficiently suppressed.

[実施の形態の第1例]
図1〜2は、本発明の実施の形態の第1例を示している。尚、本例の特徴は、1対の内輪素子11a、11aの軸方向端面同士の突き当て部の内周面に形成した凹溝18内に組み付けた、シール環7bにある。その他の部分の構造及び作用は、前述の図14に示した従来構造の第1例の場合とほぼ同様である。この為、重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分、並びに、上記従来構造の第1例と異なる部分を中心に説明する。
[First example of embodiment]
1 and 2 show a first example of an embodiment of the present invention. The feature of this example is the seal ring 7b assembled in the groove 18 formed in the inner peripheral surface of the abutting portion between the axial end surfaces of the pair of inner ring elements 11a, 11a. The structure and operation of the other parts are almost the same as those of the first example of the conventional structure shown in FIG. For this reason, overlapping illustrations and explanations are omitted or simplified, and the following description will focus on features of this example and parts different from the first example of the conventional structure.

本例の場合、上記シール環7bを、撥水撥油剤を含浸させた耐熱性繊維材料により、断面矩形で全体を円環状に形成したシール材19bと、このシール材19bを補強する為の、金属製で短円筒状の芯材22bとを、互いに同心に結合して成る。具体的には、上記シール環7bは、上記シール材19bの内周面の表層部の幅方向中央部に上記芯材22bを埋め込んだ如き状態で、これらシール材19bと芯材22bとを互いに結合して成る。   In the case of this example, the seal ring 7b is made of a heat-resistant fiber material impregnated with a water / oil repellent agent, and a seal member 19b formed in an annular shape with a rectangular cross section, and for reinforcing the seal member 19b, A metallic short core 22b is concentrically coupled to each other. Specifically, the seal ring 7b is formed by connecting the seal material 19b and the core material 22b to each other in a state in which the core material 22b is embedded in the center in the width direction of the surface layer portion of the inner peripheral surface of the seal material 19b. Combining.

そして、図1に示す様に、上記凹溝18内に上記シール環7bを組み付けた状態で、この凹溝18の底面に上記シール材19bの外周面を、この凹溝18の軸方向両側壁面にこのシール材19bの軸方向両側面を、それぞれ隙間なく接触させている。特に、本例の場合には、上記凹溝18の軸方向両側壁面に上記シール材19bの軸方向両側面を、それぞれ比較的大きな締め代を持たせて接触させている。この為に、図2に示す様な、上記シール材19bの自由状態での(上記凹溝18内に組み付ける前の)幅寸法W19b を、この凹溝18の幅寸法W18よりも、上記締め代の大きさに見合う分だけ大きく(W19b >W18)している。 As shown in FIG. 1, the outer peripheral surface of the sealing material 19 b is attached to the bottom surface of the concave groove 18 in the state where the seal ring 7 b is assembled in the concave groove 18, and both axial wall surfaces in the axial direction of the concave groove 18. Further, both side surfaces in the axial direction of the sealing material 19b are in contact with each other without any gap. In particular, in the case of this example, both axial side surfaces of the sealing material 19b are brought into contact with both axial wall surfaces of the concave groove 18 with relatively large tightening margins. For this reason, as shown in FIG. 2, the width dimension W 19b in the free state of the sealing material 19b (before being assembled in the concave groove 18) is set to be larger than the width dimension W 18 of the concave groove 18. The size is increased by an amount corresponding to the size of the tightening allowance (W 19b > W 18 ).

又、上述の図1に示した組み付け状態で、上記シール環7bの全体が上記凹溝18内に収まる様にしている。この為に、上記芯材22b(及び上記シール材19b)の内径寸法d22b を、上記両内輪素子11a、11aの内径寸法d11a よりも少しだけ大きく(d22b >d11a )している。更に、上述の図1に示した組み付け状態で、上記凹溝18の軸方向両側壁面と上記芯材22bの幅方向両端縁との間部分に、それぞれ上記シール材19bの一部が介在される様にしている。言い換えれば、上記凹溝18の径方向内端開口が、上記芯材22bによって完全に塞がれない様にしている。この為に、この芯材22bの幅寸法W22b を、上記凹溝18の幅寸法W18よりも小さく(W22b <W18)している。 Further, in the assembled state shown in FIG. 1 described above, the entire seal ring 7 b is set to be accommodated in the concave groove 18. For this purpose, the inner diameter d 22b of the core material 22b (and the sealing material 19b) is slightly larger than the inner diameter d 11a of the inner ring elements 11a and 11a (d 22b > d 11a ). Further, in the assembled state shown in FIG. 1 described above, a part of the sealing material 19b is interposed between the axially opposite side wall surfaces of the concave groove 18 and the widthwise both ends of the core material 22b. Like. In other words, the radially inner end opening of the concave groove 18 is not completely blocked by the core material 22b. For this reason, the width dimension W 22b of the core material 22b is made smaller than the width dimension W 18 of the concave groove 18 (W 22b <W 18 ).

又、本例の場合、上記凹溝18内に上記シール環7bを組み付ける作業は、次の様にして行う。先ず、上記両内輪素子11a、11aの軸方向端面同士を突き当てる事で上記凹溝18を完成させる前に、何れか一方の内輪素子11aに形成された上記凹溝18の軸方向片半部の内側に、上記シール環7bの軸方向片半部を、軸方向から挿入して組み付ける。その後、上記両内輪素子11a、11aの軸方向端面同士を突き当てる事で上記凹溝18を完成させるのと同時に、他方の内輪素子11aに形成された上記凹溝18の軸方向他半部の内側に、上記シール環7bの軸方向他半部を、軸方向から挿入して組み付ける。   In the case of this example, the work for assembling the seal ring 7b in the concave groove 18 is performed as follows. First, before the groove 18 is completed by abutting the axial end faces of the inner ring elements 11a, 11a, one half of the axial direction of the groove 18 formed in one of the inner ring elements 11a. The axial half piece of the seal ring 7b is inserted and assembled in the axial direction. Thereafter, the groove 18 is completed by abutting the axial end faces of the inner ring elements 11a, 11a, and at the same time, the other half of the groove 18 formed in the other inner ring element 11a is axially other half. The other half portion in the axial direction of the seal ring 7b is inserted and assembled from the axial direction inside.

尚、本例の場合には、互いに突き当てた、上記両内輪素子11a、11aの軸方向端面同士の間の円周方向1乃至複数箇所に、それぞれ転動体設置空間16(図14参照)と上記凹溝18とを連通する通気孔27を、径方向に亙り形成している。但し、本発明を実施する場合、この様な通気孔27は、必ずしも設ける必要はない。   In the case of the present example, the rolling element installation space 16 (see FIG. 14) is disposed at one or a plurality of locations in the circumferential direction between the axial end surfaces of the inner ring elements 11a and 11a, which are in contact with each other. A vent hole 27 communicating with the concave groove 18 is formed in the radial direction. However, when the present invention is carried out, such a vent hole 27 is not necessarily provided.

上述の様に、本例の密封型転がり軸受ユニットの場合には、凹溝18内にシール環7bを組み付けた状態で、撥水撥油剤を含浸させた耐熱性繊維材料により造ったシール材19bを、上記凹溝18の底面及び軸方向両側壁面に隙間なく接触させている。特に、これら軸方向両側壁面に対しては、それぞれ締め代を持たせて接触させている。この為、上記シール材19bと上記凹溝18の内面との間部分や、このシール材19bの内部を通じて、外部空間に存在する冷却水等の水分や摩耗粉スラッジ等の異物が転動体設置空間16(図14参照)内に引き込まれたり、この転動体設置空間16内に存在する潤滑用グリース等の油分が外部空間に漏洩したりする事を防止できる。   As described above, in the case of the sealed type rolling bearing unit of this example, the sealing material 19b made of the heat-resistant fiber material impregnated with the water / oil repellent agent in the state where the sealing ring 7b is assembled in the concave groove 18. Are in contact with the bottom surface of the concave groove 18 and both side walls in the axial direction without any gap. In particular, these axial wall surfaces are in contact with each other with a tightening margin. Therefore, foreign matter such as water such as cooling water and wear powder sludge existing in the external space passes through the space between the sealing material 19b and the inner surface of the concave groove 18 and the inside of the sealing material 19b. 16 (see FIG. 14), or oil such as lubricating grease existing in the rolling element installation space 16 can be prevented from leaking into the external space.

特に、本例の場合、上記シール材19bを構成する、撥水撥油剤を含浸させた耐熱性繊維材料は、通気性を有する為、このシール材19bによって空気が遮断される事はない。この為、運転時に生じる軸受温度の変化に伴い、上記転動体設置空間16が陽圧又は負圧になる傾向になった場合に、上記シール材19bの内部を通じて、上記転動体設置空間16と外部空間との間で空気が出入できる。特に、本例の場合には、互いに突き当てた、1対の内輪素子11a、11aの軸方向端面同士の間に、上記転動体設置空間16と上記凹溝18とを連通する通気孔27を設けている為、この転動体設置空間16と外部空間との間での空気の出入を円滑に行える。従って、これら両空間同士の間に圧力差が生じる事を防止できる。この結果、上記転動体設置空間16が過度な負圧状態になる事や、この転動体設置空間16の負圧状態が長時間継続して、1対のシールリング5、5を構成する弾性材15、15(図14参照)の先端縁の摩耗が促進される事を防止できる。この為、外部空間に存在する冷却水等が、上記両シールリング5、5を構成する弾性材15、15の先端縁と内輪2(全体構造は図14参照)の軸方向両端部外周面との摺接部(間部分)を通じて、上記転動体設置空間16内に引き込まれ易くなると言った不具合が発生する事を防止できる。   In particular, in the case of this example, the heat-resistant fiber material impregnated with the water and oil repellent that constitutes the sealing material 19b has air permeability, so that the air is not blocked by the sealing material 19b. For this reason, when the rolling element installation space 16 tends to become positive pressure or negative pressure due to the change in the bearing temperature that occurs during operation, the rolling element installation space 16 and the outside through the inside of the sealing material 19b. Air can enter and leave the space. In particular, in the case of this example, a vent hole 27 that communicates the rolling element installation space 16 and the groove 18 is formed between the axial end surfaces of the pair of inner ring elements 11a and 11a that are in contact with each other. Since it is provided, air can smoothly enter and exit between the rolling element installation space 16 and the external space. Therefore, it is possible to prevent a pressure difference from occurring between these two spaces. As a result, the rolling element installation space 16 becomes in an excessively negative pressure state, or the negative pressure state of the rolling element installation space 16 continues for a long time, and the elastic material constituting the pair of seal rings 5 and 5. 15 and 15 (see FIG. 14) can be prevented from being accelerated at the leading edge. For this reason, the cooling water or the like existing in the external space is caused by the leading edges of the elastic members 15 and 15 constituting the seal rings 5 and 5 and the outer peripheral surfaces of the both ends in the axial direction of the inner ring 2 (refer to FIG. It is possible to prevent the occurrence of a problem that it is easy to be drawn into the rolling element installation space 16 through the sliding contact portion (interspace portion).

又、本例の場合、上記シール材19bを構成する、撥水撥油剤を含浸させた耐熱性繊維材料は、柔軟性を有する。この為、上記凹溝18に多少の寸法誤差及び形状誤差があったとしても、上記シール材19bが柔軟に変形する事でこれら各誤差を吸収し、このシール材19bと上記凹溝18の内面との接触状態を適正にできる。従って、この凹溝18の寸法精度及び形状精度を厳正に管理する必要がない。又、上記シール材19bは、大判な繊維素材を切り出して造れる為、このシール材19bを造る際に高価な成形型を使用する必要がない。従って、上記凹溝18を形成する1対の内輪素子11a、11aの加工コスト、並びに、上記シール環の製造コストを十分に抑えらえる。   In the case of this example, the heat-resistant fiber material impregnated with the water / oil repellent that constitutes the sealing material 19b has flexibility. For this reason, even if there are some dimensional errors and shape errors in the concave groove 18, the sealing material 19 b flexibly deforms to absorb these errors, and the sealing material 19 b and the inner surface of the concave groove 18. The contact state with can be made appropriate. Therefore, it is not necessary to strictly manage the dimensional accuracy and shape accuracy of the groove 18. Further, since the sealing material 19b can be manufactured by cutting out a large fiber material, it is not necessary to use an expensive mold when manufacturing the sealing material 19b. Accordingly, the processing cost of the pair of inner ring elements 11a, 11a forming the concave groove 18 and the manufacturing cost of the seal ring can be sufficiently suppressed.

又、本例の場合には、上記シール環7bを構成する芯材22bとして、金属により短円筒状に形成した、剛性の高いものを使用している。この為、この芯材22bにより、上記シール材19bを十分に補強できる。具体的には、上記凹溝18内に上記シール環7bを組み付けた状態で、このシール環7bの一部が径方向内方に垂れ下がり、上記両内輪素子11a、11aの内周面よりも径方向内方に突出すると言った不具合が発生する事を防止できる。従って、メンテナンス時、上記両内輪素子11a、11aの内径側にロールネックを抜き差しする際に、このロールネックが上記シール環7bと干渉すると言った不具合が発生する事を防止できる。尚、本例を実施する場合、上記芯材22bの剛性を十分に確保できるのであれば、この芯材22bを構成する材料として、繊維強化プラスチック等の他の材料を使用する事もできる。   In the case of this example, as the core material 22b constituting the seal ring 7b, a highly rigid material formed in a short cylindrical shape with a metal is used. For this reason, the core material 22b can sufficiently reinforce the sealing material 19b. Specifically, in a state where the seal ring 7b is assembled in the concave groove 18, a part of the seal ring 7b hangs inward in the radial direction, and has a diameter larger than the inner peripheral surfaces of the inner ring elements 11a and 11a. It is possible to prevent the occurrence of a problem such as protruding inward in the direction. Therefore, it is possible to prevent a problem that the roll neck interferes with the seal ring 7b when the roll neck is inserted into and removed from the inner diameter side of the inner ring elements 11a and 11a during maintenance. In the case of carrying out this example, if the rigidity of the core material 22b can be sufficiently ensured, other materials such as fiber reinforced plastic can be used as the material constituting the core material 22b.

[実施の形態の第2例]
図3〜4は、本発明の実施の形態の第2例を示している。本例の場合、シール環7cを構成する芯材22cは、上述した第1例の芯材22bに相当する短円筒部28と、この短円筒部28の軸方向両端部の外径側にそれぞれ、この短円筒部28と同心に配置した1対の円環部29、29と、これら短円筒部28の外周面と1対の円環部29、29の内周面とを円周方向等間隔位置で連結する、それぞれがコ字形である複数の連結部30、30とから成る。そして、径方向外方に開口する、上記芯材22cの内側に、シール材19bの径方向内半部を、嵌め込む状態で装着している。
[Second Example of Embodiment]
3 to 4 show a second example of the embodiment of the present invention. In the case of this example, the core material 22c constituting the seal ring 7c is respectively provided on the short cylindrical portion 28 corresponding to the core material 22b of the first example described above and on the outer diameter side of both axial end portions of the short cylindrical portion 28. A pair of annular portions 29, 29 arranged concentrically with the short cylindrical portion 28, and an outer peripheral surface of the short cylindrical portion 28 and an inner peripheral surface of the pair of annular portions 29, 29 are arranged in a circumferential direction or the like. It is composed of a plurality of connecting portions 30 and 30 each having a U-shape, which are connected at intervals. And the inner half part of the radial direction of the sealing material 19b is fitted in the inner side of the core material 22c that opens radially outward.

上述の様に構成する本例の場合には、上記芯材22cの構成要素として、上記短円筒部28の他に、上記1対の円環部29、29と上記複数の連結部30、30とを設ける事で、この芯材22cの断面形状を、径方向外方に開口するコ字形状にしている。この為、この芯材22cの剛性を、上述した第1例の芯材22bの剛性よりも大きくできる。従って、この芯材22cにより上記シール材19bを、より十分に補強できる。更に、本例の場合には、径方向外方に開口する、上記芯材22cの内側に、上記シール材19bの径方向内半部を嵌め込む状態で装着できる為、上記シール環7cの組立作業を容易に行える。尚、本例を実施する場合、上記芯材22cの剛性を十分に確保できるのであれば、この芯材22cを構成する材料として、繊維強化プラスチック等の他の材料を使用する事もできる。その他の構成及び作用は、上述した第1例の場合と同様である。   In the case of this example configured as described above, in addition to the short cylindrical portion 28, the pair of annular portions 29 and 29 and the plurality of connecting portions 30 and 30 are included as constituent elements of the core member 22c. Are provided so that the cross-sectional shape of the core material 22c is a U-shape that opens radially outward. For this reason, the rigidity of the core material 22c can be made larger than the rigidity of the core material 22b of the first example described above. Therefore, the sealing material 19b can be more sufficiently reinforced by the core material 22c. Furthermore, in the case of this example, since the inner half of the seal material 19b can be fitted inside the core material 22c that opens radially outward, the seal ring 7c can be assembled. Work can be done easily. In addition, when implementing this example, as long as the rigidity of the core material 22c can be sufficiently ensured, other materials such as fiber-reinforced plastic can be used as the material constituting the core material 22c. Other configurations and operations are the same as those of the first example described above.

[実施の形態の第3例]
図5〜7は、本発明の実施の形態の第3例を示している。本例の場合、シール環7dを構成する芯材22dは、網目状の金属材により、外径側を開口させた断面コ字形で、全体を円環状に形成している。そして、径方向外方に開口する、この芯材22dの内側に、シール材19bの径方向内半部を嵌め込む状態で装着している。又、本例の場合、上記芯材22dの幅寸法W22d は、凹溝18の幅寸法W18よりも僅かに小さい(W22d <W18)程度の大きさとしている。
[Third example of embodiment]
5 to 7 show a third example of the embodiment of the present invention. In the case of this example, the core material 22d constituting the seal ring 7d is formed in a ring shape with a mesh-shaped metal material, the outer diameter side of which is open, and is formed in an annular shape as a whole. And it mounts | wears in the state which engages the radial direction inner half part of the sealing material 19b inside this core material 22d opened to radial direction outward. In the case of this example, the width dimension W 22d of the core material 22d is slightly smaller than the width dimension W 18 of the concave groove 18 (W 22d <W 18 ).

上述の様に構成する本例の場合には、シール環7dを構成する芯材22dの素材が、網目状の金属材である為、この芯材22dの通気性を良好にできる。従って、上記シール環7d全体の通気性を向上させる事ができる。又、上記芯材22dは、素材が網目状の金属材ではあるものの、径方向外方が開口した断面コ字形で、全体を円環状に形成している為、十分な剛性を備える。従って、上述した各例の場合と同様、この芯材22dにより、上記シール材19bを十分に補強できる。又、上記芯材22dの素材が、網目状の金属材である為、この芯材22dを製造する為の加工を容易に行える。更に、本例の場合も、径方向外方に開口する、上記芯材22dの内側に、上記シール材19bの径方向内半部を嵌め込む状態で装着できる為、上記シール環7dの組立作業を容易に行える。尚、本例を実施する場合、上記芯材22dの剛性を十分に確保できるのであれば、この芯材22dを構成する材料として、繊維強化プラスチック等の他の材料を使用する事もできる。その他の構成及び作用は、前述の図1〜2に示した第1例の場合と同様である。   In the case of this example configured as described above, since the material of the core material 22d constituting the seal ring 7d is a mesh-like metal material, the air permeability of the core material 22d can be improved. Therefore, the air permeability of the entire seal ring 7d can be improved. Further, although the core material 22d is a net-like metal material, the core material 22d has a U-shaped cross section with an opening in the outer radial direction, and has a sufficient rigidity because it is formed in an annular shape as a whole. Accordingly, the sealing material 19b can be sufficiently reinforced by the core material 22d, as in the above-described examples. Further, since the material of the core material 22d is a net-like metal material, the processing for manufacturing the core material 22d can be easily performed. Furthermore, in the case of this example, since the inner half of the seal material 19b can be fitted inside the core material 22d that opens radially outward, the assembly work of the seal ring 7d is possible. Can be easily performed. In the case of carrying out this example, if the rigidity of the core material 22d can be sufficiently ensured, other materials such as fiber reinforced plastic can be used as the material constituting the core material 22d. Other configurations and operations are the same as those of the first example shown in FIGS.

[実施の形態の第4例]
図8〜10は、本発明の実施の形態の第4例を示している。上述した第3例では、シール環7dを構成する芯材22dを円環状に形成したが、本例の場合には、シール環を構成する芯材22eを、欠円環状に形成している。これと共に、この芯材22eを構成する網目状の素材を、ばね性の良好な金属材としている。これにより、図10に示す様に、上記芯材22eを矢印イ、イ方向(円周方向)に弾性変形させる事で、この芯材22eとシール材19b(図5参照)とを組み合わせて成るシール環を、弾性的に縮径できる様にしている。そして、この様にシール環を弾性的に縮径させつつ、このシール環を、1対の内輪素子11a、11a(図5参照)の内径側で、軸方向に移動させられる様にしている。
[Fourth Example of Embodiment]
8 to 10 show a fourth example of the embodiment of the present invention. In the above-described third example, the core material 22d constituting the seal ring 7d is formed in an annular shape. However, in the case of this example, the core material 22e constituting the seal ring is formed in a non-circular shape. At the same time, the mesh-like material constituting the core material 22e is a metal material having good spring properties. As a result, as shown in FIG. 10, the core material 22e and the sealing material 19b (see FIG. 5) are combined by elastically deforming the core material 22e in the directions of arrows A and B (circumferential direction). The seal ring can be elastically reduced in diameter. The seal ring is elastically reduced in this way, and the seal ring is moved in the axial direction on the inner diameter side of the pair of inner ring elements 11a and 11a (see FIG. 5).

上述の様に構成する本例の場合には、1対の内輪素子11a、11aの軸方向端面同士を突き当てる事により凹溝18(図5参照)を完成させた状態で、この凹溝18に上記シール環を着脱する事ができる。即ち、このシール環を弾性的に縮径させながら、上記凹溝18の内径側まで移動させ、この位置でこのシール環の径寸法を弾性的に復元させれば、この凹溝18内にこのシール環を組み付けられる。逆に、この凹溝18内に組み付けたシール環を弾性的に縮径させた状態で、このシール環を軸方向に移動させて上記両内輪素子11a、11aの内径側から抜き取れば、上記凹溝18内からこのシール環を取り外せる。従って、メンテナンス時に、軸受ユニットを分解できない事情がある場合でも、上記凹溝18内に組み付けたシール環の交換を行える。又、本例の場合には、上記芯材22eの弾力によって、上記シール材19bの外周面を上記凹溝18の底面に対し、締め代を持たせて押し付けられる為、上記シール環によるシール性を向上させる事ができる。尚、この様な芯材22eの弾力は、前述の図16に示した環状スプリング21の弾力に比べて、十分に大きくできる。従って、上述した各例の場合と同様、上記芯材22eにより、上記シール材19bを十分に補強できる。その他の構成及び作用は、上述した第3例の場合と同様である。   In the case of this example configured as described above, the groove 18 (see FIG. 5) is completed by abutting the axial end surfaces of the pair of inner ring elements 11a, 11a. The seal ring can be attached and detached. That is, when the seal ring is elastically reduced in diameter and moved to the inner diameter side of the groove 18 and the diameter of the seal ring is elastically restored at this position, the groove is inserted into the groove 18. A seal ring can be assembled. On the contrary, if the seal ring assembled in the concave groove 18 is elastically reduced in diameter, the seal ring is moved in the axial direction and extracted from the inner diameter side of the inner ring elements 11a and 11a. The seal ring can be removed from the inside of the concave groove 18. Therefore, even when there is a situation where the bearing unit cannot be disassembled during maintenance, the seal ring assembled in the concave groove 18 can be replaced. In the case of this example, since the outer peripheral surface of the sealing material 19b is pressed against the bottom surface of the concave groove 18 by the elasticity of the core material 22e, the sealing performance by the seal ring is increased. Can be improved. In addition, the elasticity of such a core material 22e can be made sufficiently larger than the elasticity of the annular spring 21 shown in FIG. Therefore, the sealing material 19b can be sufficiently reinforced by the core material 22e, as in the case of each example described above. Other configurations and operations are the same as those of the third example described above.

[実施の形態の第5例]
図11は、本発明の実施の形態の第5例を示している。本例の場合、シール環7fは、シール材19bの内周面の表層部の軸方向両端寄り部分に、ばね鋼製の線材により全体を円環状に形成した1対の芯材22f、22fを、それぞれ同心に埋め込んだ如き状態で結合して成る。この様な構成を採用する事により、上記両芯材22f、22fを弾性変形させる事で、上記シール環7fの外接円の直径を弾性的に小さくできる様にしている。そして、この様にシール環7fの外接円の直径を弾性的に小さくしつつ、このシール環7fを、1対の内輪素子11a、11aの内径側で軸方向に移動させられる様にしている。従って、これら両内輪素子11a、11aの軸方向端面同士を突き当てる事により凹溝18を完成させた状態で、この凹溝18に上記シール環7fを着脱できる。その他の構成及び作用は、(上記両芯材22f、22fの弾力を、前述の図16に示した環状スプリング21の弾力に比べて十分に大きくできる点を含めて、)上述した第4例の場合と同様である。
[Fifth Example of Embodiment]
FIG. 11 shows a fifth example of the embodiment of the present invention. In the case of this example, the seal ring 7f is provided with a pair of core members 22f and 22f that are formed in a ring shape by spring steel wires at portions near the axial ends of the surface layer portion of the inner peripheral surface of the seal material 19b. They are combined in a state where they are embedded concentrically. By adopting such a configuration, the diameter of the circumscribed circle of the seal ring 7f can be elastically reduced by elastically deforming both the core members 22f and 22f. In this manner, the diameter of the circumscribed circle of the seal ring 7f is elastically reduced, and the seal ring 7f is moved in the axial direction on the inner diameter side of the pair of inner ring elements 11a and 11a. Therefore, the seal ring 7f can be attached to and detached from the concave groove 18 in a state where the concave groove 18 is completed by abutting the axial end faces of the inner ring elements 11a and 11a. Other configurations and operations are as follows (including the point that the elasticity of both the core members 22f and 22f can be sufficiently larger than the elasticity of the annular spring 21 shown in FIG. 16). Same as the case.

[実施の形態の第6例]
図12は、本発明の実施の形態の第6例を示している。本例の場合には、シール環7gを構成する芯材22gを、断面L字形で全体を円環状に形成している。そして、この芯材22g(シール環7g)の内径寸法d22g と1対の内輪素子11a、11aの内径寸法d11a との差α(=d22g −d11a )を、凹溝18の底面の内径寸法D18と上記芯金22gの外径寸法D22g との差β(D18−D22g )よりも、大きく(α>β)している。この様に構成する本例の場合には、上記シール環7gを構成する芯材19b(図12では便宜上、自由状態で示している。)がへたる等して、万一、上記凹溝18に対して上記芯材22gが径方向に変位したとしても、上記芯金22gの外周縁の周方向一部が上記凹溝18の底面にぶつかる事に基づいて、上記シール環22gの周方向反対側の内径側部分が上記両内輪素子11a、11aの内周面よりも径方向内方に突出する事を防止できる。その他の構成及び作用は、前述の図1に示した第1例の場合と同様である。
[Sixth Example of Embodiment]
FIG. 12 shows a sixth example of the embodiment of the present invention. In the case of this example, the core material 22g constituting the seal ring 7g is formed in an annular shape as a whole with an L-shaped cross section. The inner diameter d 22 g and a pair of inner rings element 11a of the core material 22 g (seal ring 7 g), the difference between the inner diameter d 11a of 11a alpha a (= d 22g -d 11a), the bottom surface of the groove 18 It is larger (α> β) than the difference β (D 18 -D 22g ) between the inner diameter D 18 and the outer diameter D 22g of the cored bar 22g. In the case of this example configured as described above, the core material 19b (shown in a free state for convenience in FIG. 12) that constitutes the seal ring 7g is stumbled. On the other hand, even if the core material 22g is displaced in the radial direction, the circumferential direction of the seal ring 22g is opposite based on the fact that a part of the outer peripheral edge of the core metal 22g collides with the bottom surface of the concave groove 18. It is possible to prevent the inner diameter side portion on the side from projecting radially inward from the inner peripheral surfaces of the inner ring elements 11a, 11a. Other configurations and operations are the same as those of the first example shown in FIG.

[実施の形態の第7例]
図13は、本発明の実施の形態の第7例を示している。前述の図1に示した第1例の場合が、凹溝18を、1対の内輪素子11a、11aの軸方向端面同士の突き当て部の内周面に形成していたのに対し、本例の場合には、凹溝18aを、1対の内輪素子11b、11bの軸方向端面同士の突き当て部の外周面に形成している。これに伴い、本例の場合には、上記凹溝18a内に組み付けたシール環7hの径方向に関する構造(シール材19cと芯材22hとの径方向に関する位置関係)を、上記第1例の場合と逆にしている。その他の構成及び作用は、上記第1例の場合と同様である。
[Seventh Embodiment]
FIG. 13 shows a seventh example of the embodiment of the invention. In the case of the first example shown in FIG. 1, the groove 18 is formed on the inner peripheral surface of the abutting portion between the axial end surfaces of the pair of inner ring elements 11a and 11a. In the case of the example, the concave groove 18a is formed on the outer peripheral surface of the abutting portion between the axial end surfaces of the pair of inner ring elements 11b and 11b. Accordingly, in the case of this example, the structure in the radial direction of the seal ring 7h assembled in the concave groove 18a (the positional relationship in the radial direction between the sealing material 19c and the core material 22h) is the same as that of the first example. The case is reversed. Other configurations and operations are the same as those of the first example.

尚、本発明を実施する場合には、シール環を構成する芯材として、前述の図16に示した環状スプリングを使用する事もできる。   When the present invention is carried out, the annular spring shown in FIG. 16 can also be used as the core material constituting the seal ring.

本発明の実施の形態の第1例を示す、図15と同様の図。The figure similar to FIG. 15 which shows the 1st example of embodiment of this invention. 自由状態で示す、シール環の部分断面図。The fragmentary sectional view of a seal ring shown in a free state. 本発明の実施の形態の第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example of embodiment of this invention. シール環を構成する芯材の部分斜視図。The fragmentary perspective view of the core material which comprises a seal ring. 本発明の実施の形態の第3例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 3rd example of embodiment of this invention. シール環を構成する芯材の斜視図。The perspective view of the core material which comprises a seal ring. 図6のA部拡大図。The A section enlarged view of FIG. 本発明の実施の形態の第4例を示す、シール環を構成する芯材の斜視図。The perspective view of the core material which comprises the seal ring which shows the 4th example of embodiment of this invention. 図8のB部拡大図。The B section enlarged view of FIG. 第4例のシール環を構成する芯材を軸方向から見た図。The figure which looked at the core material which comprises the seal ring of a 4th example from the axial direction. 本発明の実施の形態の第5例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 5th example of embodiment of this invention. 同第6例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 6th example. 同第7例を示す、要部拡大断面図。The principal part expanded sectional view which shows the 7th example. 密封型多列円すいころ軸受の従来構造の第1例を示す半部断面図。The half part sectional view showing the 1st example of the conventional structure of a sealed type multi-row tapered roller bearing. 図14のC部拡大図。The C section enlarged view of FIG. 従来構造の第2例を示す、図15と同様の図。The figure similar to FIG. 15 which shows the 2nd example of conventional structure. 同第3例を示す、図15と同様の図。The figure similar to FIG. 15 which shows the said 3rd example.

符号の説明Explanation of symbols

1 外輪
2 内輪
3 円すいころ
4 シールホルダ
5 シールリング
6 Oリング
7、7′、7a〜7h シール環
8a、8b 外輪素子
9 外輪間座
10 外輪軌道
11、11a、11b 内輪素子
12 内輪軌道
13 保持器
14 芯金
15 弾性材
16 転動体設置空間
17 係止溝
18、18a 凹溝
19、19′、19a〜19c シール材
20 係止溝
21 環状スプリング
22、22b〜22h 芯材
23 基部
24 シールリップ
25 薄肉部
26 切れ目
27 通気孔
28 短円筒部
29 円環部
30 連結部
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Inner ring 3 Tapered roller 4 Seal holder 5 Seal ring 6 O-ring 7, 7 ', 7a-7h Seal ring 8a, 8b Outer ring element 9 Outer ring spacer 10 Outer ring track 11, 11a, 11b Inner ring element 12 Inner ring track 13 Holding Container 14 Core 15 Elastic material 16 Rolling body installation space 17 Locking groove 18, 18a Recessed groove 19, 19 ', 19a-19c Sealing material 20 Locking groove 21 Annular spring 22, 22b-22h Core material 23 Base 24 Seal lip 25 Thin-walled portion 26 Cut 27 Vent hole 28 Short cylindrical portion 29 Circular portion 30 Connecting portion

Claims (2)

内周面に複列又は多列の外輪軌道を有する外輪と、外周面に複列又は多列の内輪軌道を有する内輪と、これら各外輪軌道とこれら各内輪軌道との間に、各列毎に複数個ずつ、転動自在に設けられた転動体と、上記外輪の内周面と上記内輪の外周面との間に存在する転動体設置空間の軸方向両端開口を塞ぐ1対の摺接型のシールリングとを備え、上記内輪は、それぞれがその外周面に上記内輪軌道を1列以上有し、且つ、互いの軸方向端面同士を突き当てた1対の内輪素子を含んで構成したもので、これら両内輪素子の軸方向端面同士の突き当て部の内周面又は外周面に凹溝を、これら両内輪素子に掛け渡す状態で全周に亙り形成しており、この凹溝内に、上記両内輪素子の軸方向端面同士の間を液密に塞ぐシール環を組み付けている密封型転がり軸受ユニットに於いて、このシール環は、撥水撥油性と通気性と柔軟性とを有する素材により全体を円環状に構成したシール材と、このシール材を補強する為の円環状又は欠円環状の芯材とを組み合わせる事で、全体を円環状に構成したものであり、このシール環を上記凹溝内に組み付けた状態で、上記シール材がこの凹溝の内面のうち少なくとも軸方向両側壁面にそれぞれ全周に亙り締め代を持って軸方向に接触すると共に、上記シール環の全体が上記凹溝内に収まる事を特徴とする密封型転がり軸受ユニット。   An outer ring having a double-row or multi-row outer ring raceway on the inner peripheral surface, an inner ring having a double-row or multi-row inner ring raceway on the outer peripheral surface, and between each outer ring raceway and each inner ring raceway, for each row A pair of rolling elements provided in a freely rotatable manner, and a pair of sliding contacts that block both axial openings of the rolling element installation space existing between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring. The inner ring includes a pair of inner ring elements each having one or more rows of the inner ring raceways on the outer peripheral surface thereof and abutting each other in the axial direction. Therefore, a concave groove is formed on the inner peripheral surface or the outer peripheral surface of the abutting portion between the axial end surfaces of both inner ring elements, and is formed over the entire circumference in a state of spanning the inner ring elements. In addition, a seal-type rolling assembly is assembled in which a seal ring is installed to tightly seal between the axial end faces of the inner ring elements. In a bearing unit, this seal ring is made of a seal material that is formed in an annular shape by a material having water and oil repellency, air permeability, and flexibility, and an annular shape or a missing portion for reinforcing the seal material. By combining with an annular core material, the whole is configured in an annular shape, and in a state where the seal ring is assembled in the groove, the seal material is at least axially of the inner surface of the groove. A hermetic rolling bearing unit characterized in that both side wall surfaces are axially contacted with a tightening allowance around the entire circumference, and the entire seal ring is contained in the concave groove. 内周面に複列又は多列の外輪軌道を有する外輪と、外周面に複列又は多列の内輪軌道を有する内輪と、これら各外輪軌道とこれら各内輪軌道との間に、各列毎に複数個ずつ、転動自在に設けられた転動体と、上記外輪の内周面と上記内輪の外周面との間に存在する転動体設置空間の軸方向両端開口を塞ぐ1対の摺接型のシールリングとを備え、上記内輪は、それぞれがその外周面に上記内輪軌道を1列以上有し、且つ、互いの軸方向端面同士を突き当てた1対の内輪素子を含んで構成したもので、これら両内輪素子の軸方向端面同士の突き当て部の内周面又は外周面に凹溝を、これら両内輪素子に掛け渡す状態で全周に亙り形成しており、この凹溝内に、上記両内輪素子の軸方向端面同士の間を液密に塞ぐシール環を組み付けている密封型転がり軸受ユニットを構成する、このシール環に於いて、撥水撥油性と通気性と柔軟性とを有する素材により全体を円環状に構成したシール材と、このシール材を補強する為の円環状又は欠円環状の芯材とを組み合わせる事で、全体を円環状に構成しており、上記凹溝内に組み付けた状態で、上記シール材がこの凹溝の内面のうち少なくとも軸方向両側壁面にそれぞれ全周に亙り締め代を持って軸方向に接触すると共に、全体が上記凹溝内に収まる事を特徴とするシール環。   An outer ring having a double-row or multi-row outer ring raceway on the inner peripheral surface, an inner ring having a double-row or multi-row inner ring raceway on the outer peripheral surface, and between each outer ring raceway and each inner ring raceway, for each row A pair of rolling elements provided in a freely rotatable manner, and a pair of sliding contacts that block both axial openings of the rolling element installation space existing between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring. The inner ring includes a pair of inner ring elements each having one or more rows of the inner ring raceways on the outer peripheral surface thereof and abutting each other in the axial direction. Therefore, a concave groove is formed on the inner peripheral surface or the outer peripheral surface of the abutting portion between the axial end surfaces of both inner ring elements, and is formed over the entire circumference in a state of spanning the inner ring elements. In addition, a seal-type rolling assembly is assembled in which a seal ring is installed to tightly seal between the axial end faces of the inner ring elements. This seal ring, which constitutes the bearing unit, is made of a material having water and oil repellency, air permeability and flexibility, and is formed into a ring shape, and an annular shape for reinforcing this seal material. Alternatively, the whole is configured in an annular shape by combining with a non-circular core material, and the seal material is attached to at least both axial wall surfaces in the axial direction of the inner surface of the concave groove when assembled in the concave groove. A seal ring, characterized in that each of the seal rings has a tightening allowance around the entire circumference and contacts in the axial direction, and the whole fits in the groove.
JP2008111173A 2008-04-22 2008-04-22 Sealed rolling bearing unit and seal ring Pending JP2009264404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111173A JP2009264404A (en) 2008-04-22 2008-04-22 Sealed rolling bearing unit and seal ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111173A JP2009264404A (en) 2008-04-22 2008-04-22 Sealed rolling bearing unit and seal ring

Publications (1)

Publication Number Publication Date
JP2009264404A true JP2009264404A (en) 2009-11-12

Family

ID=41390512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111173A Pending JP2009264404A (en) 2008-04-22 2008-04-22 Sealed rolling bearing unit and seal ring

Country Status (1)

Country Link
JP (1) JP2009264404A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165724A (en) * 2011-02-17 2012-09-06 Nippon Shokuhin Kako Co Ltd Batter for deep-fried food
CN103762774A (en) * 2013-12-31 2014-04-30 中船重工电机科技股份有限公司 Externally-arranged type rotating rectifier alternating current motor with oil-leakage preventing device
FR3030654A1 (en) * 2014-12-17 2016-06-24 Skf Ab BEARING WITH UNIT OF FUNCTION AND METHOD OF ASSEMBLING SUCH A BEARING
EP3992482A1 (en) * 2020-10-27 2022-05-04 Aktiebolaget SKF Bearing unit
US11428269B2 (en) * 2019-11-11 2022-08-30 Aktiebolaget Skf Rolling-element bearing assembly
US11655854B2 (en) 2019-11-11 2023-05-23 Aktiebolaget Skf Rolling-element bearing assembly

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165724A (en) * 2011-02-17 2012-09-06 Nippon Shokuhin Kako Co Ltd Batter for deep-fried food
CN103762774A (en) * 2013-12-31 2014-04-30 中船重工电机科技股份有限公司 Externally-arranged type rotating rectifier alternating current motor with oil-leakage preventing device
FR3030654A1 (en) * 2014-12-17 2016-06-24 Skf Ab BEARING WITH UNIT OF FUNCTION AND METHOD OF ASSEMBLING SUCH A BEARING
US11428269B2 (en) * 2019-11-11 2022-08-30 Aktiebolaget Skf Rolling-element bearing assembly
US11655854B2 (en) 2019-11-11 2023-05-23 Aktiebolaget Skf Rolling-element bearing assembly
EP3992482A1 (en) * 2020-10-27 2022-05-04 Aktiebolaget SKF Bearing unit

Similar Documents

Publication Publication Date Title
JP2009264404A (en) Sealed rolling bearing unit and seal ring
JP6070202B2 (en) Rolling bearing device and rolling roll backup roll using the same
EP2469110B1 (en) Sealing device and rolling bearing device provided with sealing device
JP2016080141A (en) Sealing device
JP2006207613A (en) Sealing device for rolling bearing and sealed rolling bearing
JP6028409B2 (en) Self-aligning roller bearing with sealing device and manufacturing method thereof
WO2016125516A1 (en) Bearing device for railway vehicle
JP2012211690A (en) Roller bearing
WO2014141859A1 (en) Bearing device with sealing device
JP2009264403A (en) Sealed rolling bearing unit and seal ring
JP4240197B2 (en) SEALING DEVICE FOR ROLLING BEARING AND ROLLING BEARING DEVICE
JP2004332905A (en) Bearing device for rail vehicle
JP2007192258A (en) Rolling bearing with seal
JP2008032042A (en) Rolling bearing device
JP5602504B2 (en) Rolling bearing sealing device
JP4226401B2 (en) Oil seal for roll neck of rolling mill
JP2018100730A (en) Sealing device
JP2011220428A (en) Bearing device for railway vehicle axle
JP5084575B2 (en) Sealing device and rolling bearing device
JP2015227671A (en) Sealing-type rolling bearing
JP2002339997A (en) Bearing sealing device
EP1067301A2 (en) Sealing device for a rolling bearing
JP2022148773A (en) Sealing device and rolling bearing having the same
JP5138507B2 (en) Rolling bearing for axle
JP2022147349A (en) Sealing device and rolling bearing device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20100318

Free format text: JAPANESE INTERMEDIATE CODE: A7424