JP2009264234A - Intake device of internal combustion engine - Google Patents

Intake device of internal combustion engine Download PDF

Info

Publication number
JP2009264234A
JP2009264234A JP2008114381A JP2008114381A JP2009264234A JP 2009264234 A JP2009264234 A JP 2009264234A JP 2008114381 A JP2008114381 A JP 2008114381A JP 2008114381 A JP2008114381 A JP 2008114381A JP 2009264234 A JP2009264234 A JP 2009264234A
Authority
JP
Japan
Prior art keywords
intake
valve
combustion engine
intake valve
valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008114381A
Other languages
Japanese (ja)
Inventor
Koshiro Kimura
幸四郎 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008114381A priority Critical patent/JP2009264234A/en
Publication of JP2009264234A publication Critical patent/JP2009264234A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To satisfactorily form a tumble flow in a cylinder while conducting operation in Atkinson cycle. <P>SOLUTION: In the intake device of the internal combustion engine having three intake valves for each cylinder, a first intake valve is closed near a bottom dead-center, second and three intake valves are closed late after a piston reaches to the bottom dead-center. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の吸気装置に関する。   The present invention relates to an intake device for an internal combustion engine.

ピストンが吸気行程における下死点に到達した後、圧縮行程に入ってから吸気弁を閉じる(「吸気弁遅閉じ」という)ことにより実圧縮比を下げ、アトキンソンサイクルで運転する場合、筒内混合気の燃焼が悪化する。これは、吸気弁遅閉じ時は、ピストン上昇の際に生成する上昇流が吸気弁から吸気ポートに多量に抜けるため、筒内にタンブル流が形成されにくく(図2)、筒内混合気の乱れの減少により火炎伝播が悪化するためである。   When the piston reaches the bottom dead center in the intake stroke and then enters the compression stroke, the intake valve is closed (referred to as “intake valve delay close”) to lower the actual compression ratio, and in-cylinder mixing when operating in the Atkinson cycle Qi combustion worsens. This is because, when the intake valve is closed late, a large amount of the upward flow generated when the piston rises passes from the intake valve to the intake port, so that a tumble flow is not easily formed in the cylinder (FIG. 2). This is because flame propagation deteriorates due to a decrease in turbulence.

一方、1気筒あたりに吸気弁を3つ備え、3つの吸気弁が、排気弁から最も離れて配置され、3弁のうちで中央に位置する吸気弁と、気筒の内周方向に沿って中央の吸気弁の両側に配置された2つの吸気弁とから構成される、内燃機関の吸気装置においては、これらの吸気弁の閉弁タイミングを制御することにより、アトキンソンサイクルでの運転を行いつつ、筒内に形成するタンブル流を強化することが可能と考えられる。   On the other hand, three intake valves are provided per cylinder, and the three intake valves are arranged farthest from the exhaust valve, and the intake valve located in the center of the three valves and the center along the inner circumferential direction of the cylinder In the intake device of the internal combustion engine, which is composed of two intake valves arranged on both sides of the intake valve, by controlling the closing timing of these intake valves, while operating in the Atkinson cycle, It is considered possible to strengthen the tumble flow formed in the cylinder.

ところで、3つの吸気弁について、中央の吸気弁の開弁のタイミングと、両側の吸気弁の開弁のタイミングとをずらせることは、例えば特許文献1、2に示されている。   By the way, for example, Patent Documents 1 and 2 show that the timing of opening the central intake valve and the timing of opening the intake valves on both sides of the three intake valves are shifted.

しかし、特許文献1に記載の発明では、排気弁と中央の吸気弁とのオーバーラップ角を、両側の(排気弁と隣り合う)吸気弁とのオーバーラップ角よりも大きくし、隣り合う吸・排気弁から吹き抜ける未燃ガスの低減を図ったものであり、中央の吸気弁の開弁のタイミングと、両側の吸気弁の開弁のタイミングとが異なるように制御されているが、閉弁については、いずれも遅閉じであるため、ピストン上昇時のタンブル流の形成が阻害される。   However, in the invention described in Patent Document 1, the overlap angle between the exhaust valve and the central intake valve is made larger than the overlap angle between the intake valves on both sides (adjacent to the exhaust valve) and It is intended to reduce the unburned gas that blows out from the exhaust valve, and the timing of opening the central intake valve and the timing of opening the intake valves on both sides are controlled differently. Since both are closed slowly, the formation of the tumble flow when the piston rises is hindered.

特許文献2に記載の発明では、中央の吸気弁の開弁タイミングが、両側の吸気弁の開弁タイミングよりも早くなるように設定し、吸・排気弁の開弁がオーバーラップする初期に、燃焼室内の高温の燃焼ガスが中央の吸気ポート内に吹き返され、吸気ポート内の空気又は希薄混合気を暖め、この後にこの燃焼ガスにより暖められた空気または希薄混合気が高温気流として燃焼室内に吸入され、両端の吸気ポートを通して燃焼室内に供給される燃料と混合して、燃料の霧化を促進するものであるが、閉弁のタイミングに関しては記載がない。   In the invention described in Patent Document 2, the opening timing of the central intake valve is set to be earlier than the opening timing of the intake valves on both sides, and at the initial stage when the intake and exhaust valve opening overlaps, The high-temperature combustion gas in the combustion chamber is blown back into the central intake port, warming the air or lean mixture in the intake port, and then the air or lean mixture heated by this combustion gas enters the combustion chamber as a high-temperature air flow. The fuel is sucked and mixed with the fuel supplied into the combustion chamber through the intake ports at both ends to promote the atomization of the fuel, but there is no description regarding the timing of closing the valve.

特開平02−188607号公報Japanese Patent Laid-Open No. 02-188607 特開平03−15623号公報Japanese Patent Laid-Open No. 03-15623

本発明は、1気筒あたりに3つの吸気弁を有し、この3つの吸気弁が、排気弁から最も離れて配置され、3弁のうち中央に位置する吸気弁と、気筒の内周方向に沿って中央の吸気弁の両側に配置された2つの吸気弁とから構成される、内燃機関の吸気装置において、アトキンソンサイクルでの運転を行いつつ、筒内混合気の燃焼を改善することを目的としている。   The present invention has three intake valves per cylinder, and these three intake valves are arranged farthest from the exhaust valve, and the intake valve located in the center of the three valves and the inner peripheral direction of the cylinder Aiming to improve combustion of in-cylinder air-fuel mixture while operating in an Atkinson cycle in an intake device of an internal combustion engine, which is composed of two intake valves arranged on both sides of a central intake valve along It is said.

請求項1に記載の発明によれば、1気筒あたりに3つの吸気弁を有する内燃機関の吸気装置であって、3つの吸気弁が、排気弁から最も離れて配置された第1の吸気弁と、気筒の内周方向に沿って第1の吸気弁の両側に配置された、第2と第3の吸気弁とを備え、第1の吸気弁を、吸気行程における下死点近傍で閉じ、第2と第3の吸気弁は、下死点よりも遅角側で遅閉じする、内燃機関の吸気装置が提供される。   According to the first aspect of the present invention, there is provided an intake device for an internal combustion engine having three intake valves per cylinder, wherein the three intake valves are arranged farthest from the exhaust valve. And second and third intake valves arranged on both sides of the first intake valve along the inner circumferential direction of the cylinder, and the first intake valve is closed near the bottom dead center in the intake stroke The second and third intake valves are provided with an intake device for an internal combustion engine that is closed late on the retard side from the bottom dead center.

すなわち、請求項1の発明では、ピストン上昇によって生成される上昇流のうち、排気弁から最も離れて配置された第1の吸気弁付近の上昇流は、気筒中央付近の広い領域を流れる気流であって、タンブル成分が大きく、第1の吸気弁の両側に配置された、第2、第3の吸気弁寄りの上昇流は、気筒壁面付近を流れる気流であって、もともと、タンブル成分が小さいことから、第1の吸気弁のみ吸気下死点近傍で閉じるようにする。これにより、上昇流のうち、気筒中央付近の上昇流は、吸気弁から抜けることがなく、筒内で形成されるタンブル流を強化することができ、両端側の吸気弁からは、タンブル流の形成に寄与しない気流を抜き、実圧縮比を下げて、アトキンソンサイクルで運転することができる。従って、アトキンソンサイクルでの運転を行いつつ、筒内混合気の燃焼を改善することができる。   That is, according to the first aspect of the present invention, of the upward flow generated by the piston ascending, the upward flow near the first intake valve arranged farthest from the exhaust valve is an airflow flowing in a wide area near the center of the cylinder. Thus, the upward flow near the second and third intake valves, which are arranged on both sides of the first intake valve, has a large tumble component, and is an airflow flowing near the cylinder wall surface, and originally has a small tumble component. Therefore, only the first intake valve is closed in the vicinity of the intake bottom dead center. As a result, the rising flow in the vicinity of the center of the cylinder among the rising flows does not escape from the intake valve, and the tumble flow formed in the cylinder can be strengthened. It can be operated in the Atkinson cycle by removing the air flow that does not contribute to the formation, lowering the actual compression ratio. Therefore, the combustion of the in-cylinder mixture can be improved while performing the operation in the Atkinson cycle.

請求項2に記載の発明によれば、第1の吸気弁のリフト量を、第2と第3の吸気弁のリフト量よりも大きくする、請求項1に記載の内燃機関の吸気装置が提供される。   According to a second aspect of the present invention, there is provided an intake device for an internal combustion engine according to the first aspect, wherein the lift amount of the first intake valve is larger than the lift amounts of the second and third intake valves. Is done.

すなわち、請求項2の発明では、第1の吸気弁のリフト量を第2、第3の吸気弁のリフト量よりも大きくし、第1の吸気弁からの吸気量を増加して、吸気時に形成するタンブル流を強化する。
吸気時には、吸気流によってタンブル流が形成されるが、第1の吸気弁からの吸気流は気筒の中央付近の広い空間部分に流入するため、気筒の側壁に近い部分に流入する第2、第3の吸気弁からの吸気流と比較して、タンブル成分が大きい。このため、第1の吸気弁のリフト量を第2、第3の吸気弁のリフト量よりも大きくすることにより、効果的に吸気時のタンブル流を強化することができ、筒内混合気の燃焼改善効果を更に大きくすることができる。
That is, in the invention of claim 2, the lift amount of the first intake valve is made larger than the lift amounts of the second and third intake valves, the intake amount from the first intake valve is increased, Strengthen the tumble flow that forms.
At the time of intake, a tumble flow is formed by the intake flow. However, since the intake flow from the first intake valve flows into a wide space portion near the center of the cylinder, the second and second flow into the portion close to the side wall of the cylinder. Compared with the intake air flow from the intake valve 3, the tumble component is large. Therefore, by making the lift amount of the first intake valve larger than the lift amounts of the second and third intake valves, the tumble flow during intake can be effectively enhanced, The combustion improvement effect can be further increased.

請求項3に記載の発明によれば、第1の吸気弁の作用角を、第2と第3の吸気弁の作用角よりも小さくし、第1の吸気弁の開弁開始タイミングと、第2と第3の吸気弁の開弁開始タイミングとを略一致させ、更に、開弁開始タイミングを、排気弁の閉弁タイミングに略一致させる、請求項1又は2に記載の内燃機関の吸気装置が提供される。   According to the third aspect of the present invention, the operating angle of the first intake valve is made smaller than the operating angles of the second and third intake valves, the opening timing of the first intake valve, 3. The intake device for an internal combustion engine according to claim 1, wherein the valve opening start timing of the second intake valve and the valve opening start timing of the third intake valve are substantially matched, and the valve opening start timing is substantially matched with the valve closing timing of the exhaust valve. Is provided.

すなわち、1気筒あたりに3つの吸気弁を備える場合、第1、第2、第3の吸気弁の作用角は、同一にすることが一般的であるため、この場合には、請求項1、2の発明において、第1の吸気弁は、吸気上死点のかなり前から開くこととなり、排気弁の開時期と第1の吸気弁の開時期とがオーバーラップする時期が発生し、排気ポートから吸気ポートへの吹き戻しが発生する。この吹き戻しは、内部EGRとなるが、請求項1、2の発明においては、内部EGRの導入を積極的に制御することができないため、運転状況によって、燃焼の悪化、燃費の悪化等を発生させる。そこで、第1の吸気弁の作用角を、第2、第3の吸気弁の作用角よりも小さくし、第1の吸気弁の閉弁タイミングを請求項1又は2に記載したタイミングに維持しつつ、3つの吸気弁の開弁タイミングを略同一とする。更に、3つの吸気弁の開弁開始タイミングを、排気弁の閉弁タイミングに略一致させる。これにより、排気ポートから吸気ポートへの吹き戻しを防止することができる。   That is, when three intake valves are provided per cylinder, the operating angles of the first, second, and third intake valves are generally the same. In the second aspect of the invention, the first intake valve opens a long time before the intake top dead center, and the exhaust valve opening timing and the first intake valve opening timing overlap each other. To the intake port occurs. This blowback becomes an internal EGR, but in the inventions of claims 1 and 2, since the introduction of the internal EGR cannot be actively controlled, the deterioration of combustion, the deterioration of fuel consumption, etc. occur depending on the driving situation. Let Therefore, the operating angle of the first intake valve is made smaller than the operating angles of the second and third intake valves, and the closing timing of the first intake valve is maintained at the timing described in claim 1 or 2. However, the opening timings of the three intake valves are made substantially the same. Further, the opening start timings of the three intake valves are made to substantially coincide with the closing timings of the exhaust valves. Thereby, the blowback from the exhaust port to the intake port can be prevented.

請求項4に記載の発明によれば、第1の吸気弁の作用角を進角制御する、請求項3に記載の内燃機関の吸気装置が提供される。   According to the fourth aspect of the present invention, there is provided the intake device for an internal combustion engine according to the third aspect, wherein the working angle of the first intake valve is advanced.

すなわち、請求項3の発明においては、運転状況に応じて内部EGRを行ないたい場合にもこれができないため、請求項4の発明では、運転状況に応じて、内部EGRを行なう必要がある場合には、第1の吸気弁のみバルブタイミングを進角制御し、第1の吸気弁の開弁時期と排気弁の開弁時期とのオーバーラップを発生させ、排気ポートから吸気ポートへ吹き戻しを生じさせて、内部EGRを筒内に導入するように積極的に制御し、運転状況の改善を行なうことができる。第2、第3の吸気弁は、バルブタイミングを進角しないので、第2、第3の吸気弁の遅閉じは維持され、実圧縮比を下げて運転することができ、また、第1の吸気弁は早閉じとなるので、ピストン上昇時のタンブル流は良好に形成され、筒内混合気の燃焼を改善することができる。   That is, in the invention of claim 3, since this is not possible even when it is desired to perform internal EGR according to the driving situation, in the invention of claim 4, when it is necessary to perform internal EGR according to the driving situation. Only the first intake valve is controlled to advance the valve timing, the overlap between the opening timing of the first intake valve and the opening timing of the exhaust valve is generated, and the blowback from the exhaust port to the intake port is caused. Thus, it is possible to positively control the internal EGR so as to be introduced into the cylinder, and to improve the driving situation. Since the second and third intake valves do not advance the valve timing, the second and third intake valves are kept closed late, can be operated with a lower actual compression ratio, and the first Since the intake valve closes quickly, the tumble flow when the piston rises is well formed, and the combustion of the in-cylinder mixture can be improved.

請求項5に記載の発明によれば、ポート燃料噴射弁による燃料噴射を、第1の吸気弁の傘部に集中的に当てる、請求項2又は4に記載の内燃機関の吸気装置が提供される。   According to a fifth aspect of the present invention, there is provided an intake device for an internal combustion engine according to the second or fourth aspect, wherein the fuel injection by the port fuel injection valve is concentrated on the umbrella portion of the first intake valve. The

すなわち、請求項2と4の発明において、高温の既燃ガスの吹き戻しは第1の吸気弁でのみ生じるため、拭き戻しによって第1の吸気弁の傘部へデポジットが堆積する問題が発生する。そこで、請求項5の発明では、ポート噴射による燃料を主に第1の吸気弁傘部に集中的に当てる。これにより、デポジットの堆積しやすい第1の吸気弁は、噴射燃料によって堆積物が洗い流されるため、効果的にデポジット堆積を抑制でき、タンブル流を良好に形成させることによって筒内の燃焼を改善するという本発明の目的を有利に達成することができる。   That is, in the inventions of claims 2 and 4, since the high temperature burned gas blows back only at the first intake valve, there arises a problem that deposits are accumulated on the umbrella portion of the first intake valve by wiping back. . Therefore, in the invention of claim 5, the fuel from the port injection is mainly applied to the first intake valve umbrella. As a result, since the deposit is washed away by the injected fuel, the first intake valve in which deposit is likely to accumulate can effectively suppress deposit accumulation and improve combustion in the cylinder by forming a tumble flow well. The object of the present invention can be advantageously achieved.

各請求項に記載の発明によれば、1気筒あたりに3つの吸気弁を有し、この3つの吸気弁が、排気弁から最も離れて配置され、3弁のうちで中央に位置する吸気弁と、気筒の内周方向に沿って中央の吸気弁の両側に配置された2つの吸気弁とから構成される、内燃機関の吸気装置において、アトキンソンサイクルでの運転を行いつつ、筒内混合気の燃焼を改善するという共通の効果を奏する。   According to the invention described in each claim, there are three intake valves per cylinder, and these three intake valves are arranged farthest from the exhaust valve and are located in the center among the three valves. And an intake device for an internal combustion engine that is arranged on both sides of the central intake valve along the inner circumferential direction of the cylinder, and performs an in-cylinder mixture while operating in the Atkinson cycle It has the common effect of improving the combustion.

以下、添付図面を用いて本発明の実施形態について説明する。なお、複数の添付図面において、同一又は相当する部材、部分等には、同一の符号を付している。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the plurality of attached drawings, the same or corresponding members, parts, etc. are denoted by the same reference numerals.

図1は、本発明の一実施形態を示す図である。3つの吸気弁は、図4(a)に示すように、気筒内周に沿って配置され、排気弁51、52から最も離れて配置された第1の吸気弁41と、気筒の内周方向に沿って、第1の吸気弁41の両側に配置された、第2の吸気弁42と第3の吸気弁43とから構成される。図1において、3つの吸気弁(弁部穴のみ図示)のうち、第1の吸気弁を閉弁し、第2、第3の吸気弁を開弁した状態でピストン6が上昇すると、ピストン上昇によって生成される上昇流のうち、第1の吸気弁付近の気流101は、気筒中央部の空間を上昇する気流であって、上昇気流の主流をなす。従って、第1の吸気弁が閉弁されていることから、大きなタンブル流を形成する。一方、第1の吸気弁の両側に配置された、第2、第3の吸気弁に向う上昇流102、103は、気筒側壁に沿った小さな上昇流であるため、もともとタンブル流に寄与しない。従って、第2、第3の吸気弁から吸気ポートに気流が抜けることにより、実圧縮比は下がり、アトキンソンサイクルで運転することができるが、タンブル流は良好に形成され、筒内の燃焼が改善される。図5に、本実施形態のバルブタイミングを図示する。第1の吸気弁の閉弁タイミングと、第2及び第3の吸気弁の閉弁タイミングとが、異なるように制御され、第1の吸気弁は、下死点近傍で閉弁し、第2及び第3の吸気弁は、遅閉じとなるように制御されている。   FIG. 1 is a diagram showing an embodiment of the present invention. As shown in FIG. 4A, the three intake valves are arranged along the inner circumference of the cylinder, the first intake valve 41 arranged farthest from the exhaust valves 51 and 52, and the inner circumference direction of the cylinder The second intake valve 42 and the third intake valve 43 are arranged on both sides of the first intake valve 41. In FIG. 1, when the piston 6 rises with the first intake valve closed and the second and third intake valves opened among the three intake valves (only the valve hole is shown), the piston rises. Among the upward flows generated by the above, the airflow 101 in the vicinity of the first intake valve is an airflow that rises in the space in the center of the cylinder and forms the main stream of the upward airflow. Accordingly, since the first intake valve is closed, a large tumble flow is formed. On the other hand, the upflows 102 and 103 arranged on both sides of the first intake valve toward the second and third intake valves are small upflows along the cylinder side wall, and thus do not originally contribute to the tumble flow. Therefore, the air compression from the second and third intake valves to the intake port reduces the actual compression ratio and allows operation in the Atkinson cycle, but the tumble flow is well formed and the combustion in the cylinder is improved. Is done. FIG. 5 illustrates the valve timing of this embodiment. The valve closing timing of the first intake valve and the valve closing timing of the second and third intake valves are controlled to be different from each other. The first intake valve closes near bottom dead center, and the second intake valve closes. The third intake valve is controlled to be closed late.

図2は、ピストンが吸気行程における下死点に到達した後、圧縮行程移行後に吸気弁を遅閉じすることにより実圧縮比を下げ、アトキンソンサイクルで運転する場合、ピストン6の上昇の際に生成する上昇流が吸気弁から吸気ポート2に多量に抜けるため、気筒1内にタンブル流が形成されにくいことを示す。   FIG. 2 shows that when the piston reaches the bottom dead center in the intake stroke, the actual compression ratio is lowered by slowly closing the intake valve after the compression stroke is shifted, and when the piston 6 is lifted when operating in the Atkinson cycle. This shows that a large amount of the upward flow that escapes from the intake valve to the intake port 2 makes it difficult to form a tumble flow in the cylinder 1.

図3は、本発明の他の実施形態を示す図であり、吸気行程におけるタンブル流の形成を示す図である。3つの吸気弁(弁部穴のみ図示)のうち、第1の吸気弁から流入する吸気流101が気筒内の中央部の広い空間に流入し、第2、第3の吸気弁から流入する吸気流102、103は、気筒壁面に近い領域に流入するため、3つの吸気弁のうち、第1の吸気弁からの吸気流がタンブル流の主流を形成する。従って、図6に示すように、3つの吸気弁のうち、第1の吸気弁のリフト量を大きくすることにより、タンブル流を強化することができる。   FIG. 3 is a diagram showing another embodiment of the present invention, and is a diagram showing the formation of a tumble flow in the intake stroke. Of the three intake valves (only the valve hole is shown), the intake air flow 101 flowing from the first intake valve flows into a wide space in the center of the cylinder, and the intake air flows from the second and third intake valves. Since the flows 102 and 103 flow into a region close to the cylinder wall surface, among the three intake valves, the intake flow from the first intake valve forms the main flow of the tumble flow. Therefore, as shown in FIG. 6, the tumble flow can be enhanced by increasing the lift amount of the first intake valve among the three intake valves.

図4は、図3に対応する吸気流を、平面図(a)及び立面図(b)に示したものである。吸気ポート2から、吸気弁41、42、43を通って気筒1内に吸気が流入し、タンブル流100が形成されが、気筒1内の広い空間を流れるタンブル流の主流は、吸気弁41から流入する吸気流である。   FIG. 4 shows an intake air flow corresponding to FIG. 3 in a plan view (a) and an elevation view (b). From the intake port 2, intake air flows into the cylinder 1 through the intake valves 41, 42, 43 to form a tumble flow 100, but the main flow of the tumble flow flowing through a wide space in the cylinder 1 is from the intake valve 41. This is the inspiratory flow that flows in.

図7は、本発明を内燃機関の吸気装置に適用した場合の、更に他の実施形態のバルブタイミングを示す図であり、第1の吸気弁の作用角を、第2と第3の吸気弁の作用角よりも小さくし、第1の吸気弁の開弁期間を、第2と第3の吸気弁の開弁期間よりも短くし、第1の吸気弁の開弁開始タイミングと、第2と第3の吸気弁の開弁開始タイミングとを略一致させ、更に、これら吸気弁の開弁開始タイミングを、排気弁の閉弁タイミングに略一致させる。このようにすることにより、排気ポート3から吸気ポート2(図4)への吹き戻しを防止することができる。一方、これら吸気弁の閉弁タイミングは、図6と同一であり、ピストン上昇時のタンブル流の形成や、アトキンソンサイクルでの運転を行なうことには変わりがない。   FIG. 7 is a diagram showing the valve timing of still another embodiment when the present invention is applied to an intake device of an internal combustion engine, and the working angle of the first intake valve is expressed as the second and third intake valves. And the first intake valve opening period is shorter than the second and third intake valve opening periods, the first intake valve opening start timing, And the opening timing of the third intake valve substantially coincide with each other, and further, the opening timing of these intake valves substantially coincides with the closing timing of the exhaust valve. By doing in this way, the blowback from the exhaust port 3 to the intake port 2 (FIG. 4) can be prevented. On the other hand, the closing timing of these intake valves is the same as that in FIG. 6, and there is no change in the formation of a tumble flow when the piston is raised and the operation in the Atkinson cycle.

図8は、図7のように構成したバルブタイミングに対し、運転状況に応じて、第1の吸気弁の開弁時期のみ進角制御し、排気弁の開弁時期と第1の吸気弁の開弁時期とをオーバーラップさせるバルブタイミングを示す。このように制御することによって、排気ポートから吸気ポートへの吹き戻しを発生させ、内部EGRを必要に応じて行なうことができる。   FIG. 8 shows that the valve timing configured as shown in FIG. 7 is controlled to advance only the opening timing of the first intake valve in accordance with the operating condition, and the opening timing of the exhaust valve and the first intake valve are controlled. The valve timing which overlaps with the valve opening timing is shown. By controlling in this way, blowback from the exhaust port to the intake port can be generated, and internal EGR can be performed as necessary.

図9は、ポート燃料噴射弁7による燃料噴射を、第1の吸気弁41の傘部に集中的に当てる実施形態を示す図である。これにより、デポジットの堆積しやすい第1の吸気弁41は、噴射燃料によって堆積物が洗い流されるため、効果的にデポジット堆積を抑制でき、タンブル流を良好に生成させることによって筒内の燃焼を改善するという本発明の目的を有利に達成することができる。   FIG. 9 is a diagram showing an embodiment in which fuel injection by the port fuel injection valve 7 is concentrated on the umbrella portion of the first intake valve 41. As a result, the first intake valve 41 where deposits are likely to deposit can effectively suppress deposit accumulation because the deposits are washed away by the injected fuel, and improve the combustion in the cylinder by generating a tumble flow satisfactorily. The object of the present invention can be advantageously achieved.

以上のように、本発明は、バルブタイミングの位相変化のみで吸気弁遅閉じ時の燃焼悪化を改善することができ、構造面、コスト面で非常に有利である。   As described above, the present invention can improve the deterioration of combustion at the time of late closing of the intake valve only by changing the phase of the valve timing, and is very advantageous in terms of structure and cost.

本発明を内燃機関の吸気装置に適用した場合の、一実施形態の概略構成を説明する図である。It is a figure explaining the schematic structure of one embodiment at the time of applying the present invention to the intake device of an internal-combustion engine. 図1の実施形態を説明するために、ピストン上昇の際に生成する気筒内の流れを示す図である。FIG. 2 is a diagram illustrating a flow in a cylinder that is generated when the piston is raised in order to explain the embodiment of FIG. 1. 本発明を内燃機関の吸気装置に適用した場合の、他の実施形態の概略構成を説明する図である。It is a figure explaining the schematic structure of other embodiment at the time of applying this invention to the intake device of an internal combustion engine. (a)は、図3に対応する吸気流を説明する平面図、(b)は、その立面図である。(A) is a top view explaining the intake flow corresponding to FIG. 3, (b) is the elevation. 本発明を内燃機関の吸気装置に適用した場合の、一実施形態のバルブタイミングを説明する図である。It is a figure explaining the valve timing of one embodiment at the time of applying the present invention to the intake device of an internal-combustion engine. 本発明を内燃機関の吸気装置に適用した場合の、他の実施形態のバルブタイミングを説明する図である。It is a figure explaining the valve timing of other embodiments at the time of applying the present invention to the intake device of an internal-combustion engine. 本発明を内燃機関の吸気装置に適用した場合の、更に他の実施形態のバルブタイミングを説明する図である。It is a figure explaining the valve timing of other embodiment at the time of applying this invention to the intake device of an internal combustion engine. 図7の実施形態に更なる制御を追加する実施形態のバルブタイミングを説明する図である。It is a figure explaining the valve timing of embodiment which adds further control to embodiment of FIG. 本発明を内燃機関の吸気装置に適用した場合の、ポート燃料噴射弁の一実施形態の概略構成を説明する図である。It is a figure explaining the schematic structure of one Embodiment of a port fuel injection valve at the time of applying this invention to the intake device of an internal combustion engine.

符号の説明Explanation of symbols

1 気筒
2 吸気ポート
3 排気ポート
41 第1の吸気弁
42 第2の吸気弁
43 第3の吸気弁
51 第1の排気弁
52 第2の排気弁
6 ピストン
7 ポート燃料噴射弁
100 吸気流が形成するタンブル流
101 気筒中央領域のタンブル流
102 第2の吸気弁側の気流
103 第3の吸気弁側の気流
A ピストンの運動方向
1 Cylinder 2 Intake Port 3 Exhaust Port 41 First Intake Valve 42 Second Intake Valve 43 Third Intake Valve 51 First Exhaust Valve 52 Second Exhaust Valve 6 Piston 7 Port Fuel Injection Valve 100 Intake Flow Forms The tumble flow 101 The tumble flow in the center region of the cylinder 102 The air flow on the second intake valve side 103 The air flow on the third intake valve side A The direction of movement of the piston

Claims (5)

1気筒あたりに3つの吸気弁を有する内燃機関の吸気装置であって、
前記3つの吸気弁が、排気弁から最も離れて配置された第1の吸気弁と、気筒の内周方向に沿って前記第1の吸気弁の両側に配置された、第2と第3の吸気弁とを備え、
前記第1の吸気弁を、吸気行程における下死点近傍で閉じ、
前記第2と第3の吸気弁は、前記下死点よりも遅角側で遅閉じする、
内燃機関の吸気装置。
An intake device for an internal combustion engine having three intake valves per cylinder,
The three intake valves are a first intake valve arranged farthest from the exhaust valve, and second and third intake valves arranged on both sides of the first intake valve along the inner circumferential direction of the cylinder. With an intake valve,
Closing the first intake valve near the bottom dead center in the intake stroke;
The second and third intake valves close late on the retard side from the bottom dead center;
An intake device for an internal combustion engine.
前記第1の吸気弁のリフト量を、前記第2と第3の吸気弁のリフト量よりも大きくする、請求項1に記載の内燃機関の吸気装置。   The intake device for an internal combustion engine according to claim 1, wherein a lift amount of the first intake valve is larger than lift amounts of the second and third intake valves. 前記第1の吸気弁の作用角を、前記第2と第3の吸気弁の作用角よりも小さくし、前記第1の吸気弁の開弁開始タイミングと、前記第2と第3の吸気弁の開弁開始タイミングとを略一致させ、
更に、前記開弁開始タイミングを、排気弁の閉弁タイミングに略一致させる、
請求項1又は2に記載の内燃機関の吸気装置。
The operating angle of the first intake valve is made smaller than the operating angles of the second and third intake valves, and the opening timing of the first intake valve, the second and third intake valves, The valve opening start timing of
Further, the valve opening start timing is substantially matched with the exhaust valve closing timing,
An intake device for an internal combustion engine according to claim 1 or 2.
前記第1の吸気弁の作用角を進角制御する、請求項3に記載の内燃機関の吸気装置。   The intake device for an internal combustion engine according to claim 3, wherein the working angle of the first intake valve is advanced. ポート燃料噴射弁による燃料噴射を、前記第1の吸気弁の傘部に集中的に当てる、請求項2又は4に記載の内燃機関の吸気装置。   The intake device for an internal combustion engine according to claim 2 or 4, wherein fuel injection by the port fuel injection valve is concentrated on the umbrella portion of the first intake valve.
JP2008114381A 2008-04-24 2008-04-24 Intake device of internal combustion engine Withdrawn JP2009264234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114381A JP2009264234A (en) 2008-04-24 2008-04-24 Intake device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114381A JP2009264234A (en) 2008-04-24 2008-04-24 Intake device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009264234A true JP2009264234A (en) 2009-11-12

Family

ID=41390382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114381A Withdrawn JP2009264234A (en) 2008-04-24 2008-04-24 Intake device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009264234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003779A (en) * 2016-07-06 2018-01-11 トヨタ自動車株式会社 Control device of internal combustion engine
WO2020013290A1 (en) 2018-07-12 2020-01-16 ヤマハ発動機株式会社 Spark ignition type engine and vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003779A (en) * 2016-07-06 2018-01-11 トヨタ自動車株式会社 Control device of internal combustion engine
US10107147B2 (en) 2016-07-06 2018-10-23 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
WO2020013290A1 (en) 2018-07-12 2020-01-16 ヤマハ発動機株式会社 Spark ignition type engine and vehicle

Similar Documents

Publication Publication Date Title
JP5218671B2 (en) Engine intake system
JP4254865B2 (en) Piston for internal combustion engine and internal combustion engine to which the piston is applied
JP5321354B2 (en) Fuel injection device
JP2013231428A (en) Air intake system for internal combustion engine
JP2010001830A (en) Cylinder direct injection type spark ignition internal combustion engine
JP2011157969A (en) Internal combustion engine
JP5585283B2 (en) engine
JP2009264234A (en) Intake device of internal combustion engine
JP2008223615A (en) Internal combustion engine
JP2009191674A (en) Combustion chamber structure
JP2009041531A (en) Cylinder injection internal combustion engine
JP5861840B2 (en) Intake port fuel injection engine
JP5765535B2 (en) Fuel injection engine in the intake passage
JP2008223677A (en) Cylinder injection type spark ignition internal combustion engine
JP2007198343A (en) Spark ignition internal combustion engine
JP7424732B2 (en) Control device for direct injection engine
KR100794015B1 (en) Gasoline engine applied for dual continuously variable valve timing
JP6281585B2 (en) Intake and exhaust structure of internal combustion engine
JP6258653B2 (en) Internal combustion engine
JP2008267271A (en) Spark ignition engine
JP2006188959A (en) Valve system of engine
JP2016125449A (en) Variable miller cycle engine control method and control device
JP2010024938A (en) Intake device of engine
JP5251895B2 (en) Intake / exhaust device for internal combustion engine
KR101299688B1 (en) Temperature Stratification Method for Anti-knocking in a Direct Injection Gasoline Engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705