JP2009263721A - Film deposition apparatus - Google Patents

Film deposition apparatus Download PDF

Info

Publication number
JP2009263721A
JP2009263721A JP2008114734A JP2008114734A JP2009263721A JP 2009263721 A JP2009263721 A JP 2009263721A JP 2008114734 A JP2008114734 A JP 2008114734A JP 2008114734 A JP2008114734 A JP 2008114734A JP 2009263721 A JP2009263721 A JP 2009263721A
Authority
JP
Japan
Prior art keywords
substrate
cooling
back surface
cooling member
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008114734A
Other languages
Japanese (ja)
Other versions
JP5072700B2 (en
Inventor
Kazunari Yonemoto
一成 米元
Tetsuya Karaki
哲也 唐木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008114734A priority Critical patent/JP5072700B2/en
Publication of JP2009263721A publication Critical patent/JP2009263721A/en
Application granted granted Critical
Publication of JP5072700B2 publication Critical patent/JP5072700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film deposition apparatus capable of enhancing the film deposition quality by improving the temperature distribution in a film-deposited substrate. <P>SOLUTION: In a process of performing the film deposition by tightly fitting a mask 4 to a film deposition surface of a substrate 1, the temperature control of the substrate 1 is performed by tightly fitting a back side cooling member 3 to a non-film deposition surface side of the substrate 1. When a center part of the substrate 1 is opposite to an evaporation source, and higher in temperature than a peripheral part, a projecting part 3a having a large contact area with the substrate 1 is provided on a center part of the back side cooling member 3. Thus, the cooling efficiency of the back side cooling member 3 is distributed to improve the temperature distribution of the substrate 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、基板温度分布を改善して高精度の成膜を可能とする成膜装置に関するものである。   The present invention relates to a film forming apparatus that improves film temperature distribution and enables highly accurate film formation.

薄型表示パネルに用いる有機EL素子は、液晶素子と共に年々その需要が増大し、パネルの大型化・高性能化、高精度化や、歩留まり、スループット等生産性の向上を図るべく成膜装置及び成膜方法の検討が行われている。   The demand for organic EL elements used in thin display panels is increasing year by year along with liquid crystal elements. To increase productivity, such as increase in panel size, performance, accuracy, yield, and throughput, etc. Membrane methods are being studied.

一般的に有機EL素子は、蛍光性有機化合物を含む薄膜を、陰極と陽極とで挟んだ構成を有する。そして、前記薄膜に電子及び正孔(ホール)を注入して再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光、燐光)を利用して発光させる。この有機EL素子の特徴は、10V以下の低電圧で100〜100000cd/m程度の高輝度の面発光が可能であり、また、蛍光物質の種類を選択することにより青色から赤色までの発光が可能なことである。 Generally, an organic EL element has a configuration in which a thin film containing a fluorescent organic compound is sandwiched between a cathode and an anode. Then, electrons and holes (holes) are injected into the thin film and recombined to generate excitons (excitons), and light emission (fluorescence, phosphorescence) when the excitons are deactivated is used. Make it emit light. The characteristics of this organic EL element are that it can emit surface light with a high luminance of about 100 to 100000 cd / m 2 at a low voltage of 10 V or less, and emit light from blue to red by selecting the type of fluorescent material. It is possible.

有機薄膜の形成方法については、低分子(モノマー)有機EL材料は主にマスク成膜法を用いた真空蒸着法で成膜され、さらに、電極形成についてはスパッタ法あるいは真空蒸着法で引き続き成膜されている。   As for the method of forming an organic thin film, a low molecular (monomer) organic EL material is formed mainly by a vacuum vapor deposition method using a mask film formation method, and further, an electrode is formed continuously by a sputtering method or a vacuum vapor deposition method. Has been.

しかし、従来の成膜装置で用いられるマスクユニットを用いて薄膜形成を行う場合、成膜速度を上げるために蒸発源への投入パワーを増加させると、基板は蒸着成膜時に蒸着熱とともに蒸発源からの放射熱およびマスクから接触熱を受熱して、基板温度が上昇する。   However, when a thin film is formed using a mask unit used in a conventional film forming apparatus, if the input power to the evaporation source is increased in order to increase the film forming speed, the substrate is evaporated together with the evaporation heat during the evaporation film forming. The substrate temperature rises by receiving the radiant heat from and the contact heat from the mask.

この基板温度を下げるために、従来は、基板と冷却部材の間に、例えば柔らかな熱伝導部材を入れて冷却効率を上げている。また、輻射熱を吸収させる手段として、例えばヘリウム冷凍機のクライオ面を用いて、基板冷却を促進させている(特許文献1参照)。   In order to lower the substrate temperature, conventionally, for example, a soft heat conducting member is inserted between the substrate and the cooling member to increase the cooling efficiency. Further, as means for absorbing radiant heat, for example, a cryo-surface of a helium refrigerator is used to promote substrate cooling (see Patent Document 1).

また、マスク遮蔽部と成膜部との温度差による破損を防止するために基板温度分布を改善する方法が知られている。これは、基板のマスク遮蔽部の温度が低いことを改善するためにマスク表面の放射率を0.2以上にしてマスク温度を上昇させている。さらに、マスク両表面に表面粗さRaが3〜10μの凹凸を形成し、放射率を向上させてマスク温度を上昇させている。また、マスクとトレイ間は部分接触と断熱材で断熱させて、トレイへの熱の逃げを抑えてマスク温度を制御している(特許文献2参照)。   Further, a method for improving the substrate temperature distribution is known in order to prevent damage due to a temperature difference between the mask shielding part and the film forming part. This increases the mask temperature by setting the emissivity of the mask surface to 0.2 or more in order to improve the low temperature of the mask shielding portion of the substrate. Furthermore, unevenness having a surface roughness Ra of 3 to 10 μm is formed on both surfaces of the mask to improve the emissivity and raise the mask temperature. In addition, the mask and the tray are insulated by partial contact and a heat insulating material, and the mask temperature is controlled by suppressing the escape of heat to the tray (see Patent Document 2).

特開2005−285576号公報JP 2005-285576 A 特開2005−054244号公報Japanese Patent Laid-Open No. 2005-054244

しかしながら、成膜中の基板には蒸発源の位置、数に対応して高温部が生じており、さらにその供給熱量が増加するにつれてその温度分布も増大する。   However, a high temperature portion is generated on the substrate during film formation corresponding to the position and number of evaporation sources, and the temperature distribution increases as the amount of heat supplied increases.

例えば、図9に示すように、蒸着熱源が中央1箇所の場合は、基板101の中央部の温度が高くなり周辺部は低くなる。   For example, as shown in FIG. 9, when the evaporation heat source is at one central position, the temperature at the central portion of the substrate 101 is high and the peripheral portion is low.

また、デバイス高精度化を目的として、例えば、3種の材料を同時に蒸着する場合は、蒸着熱源が3箇所に増加し、図10に示すように、基板201には3箇所の高温部を持った温度分布が生じ、これにより温度分布が増大していた。   Further, for the purpose of improving device accuracy, for example, when three kinds of materials are vapor-deposited at the same time, the evaporation heat source is increased to three places, and the substrate 201 has three high-temperature portions as shown in FIG. Temperature distribution was generated, which increased the temperature distribution.

基板温度分布の増大に対しては、特許文献1及び特許文献2に記載の対策では対応できず、そのため、マスクとの位置ずれ、熱変形によるゆがみ等により、着膜の位置精度や線幅精度が悪化していた。   The increase in the substrate temperature distribution cannot be dealt with by the measures described in Patent Document 1 and Patent Document 2, and therefore, the positional accuracy and the line width accuracy of the deposited film due to misalignment with the mask, distortion due to thermal deformation, and the like. Was getting worse.

本発明は、成膜時の基板温度分布を改善することにより高精度成膜を可能とする成膜装置を提供することを目的とするものである。   An object of this invention is to provide the film-forming apparatus which enables highly accurate film-forming by improving the substrate temperature distribution at the time of film-forming.

本発明の成膜装置は、蒸発源から発生する成膜材料の蒸気を、マスクを介して基板に蒸着させる成膜装置において、前記基板の成膜面と反対側の非成膜面に接触して前記基板を冷却する背面冷却部材と、前記背面冷却部材を冷却する冷却手段と、前記背面冷却部材の前記基板に対する接触面に、前記蒸発源による熱源位置に対応するように冷却効率の分布をもたせるための冷却効率制御手段と、を有することを特徴とする。   The film forming apparatus of the present invention is a film forming apparatus that deposits vapor of a film forming material generated from an evaporation source onto a substrate through a mask, and contacts a non-film forming surface opposite to the film forming surface of the substrate. And a cooling means for cooling the back surface cooling member, a cooling means for cooling the back surface cooling member, and a contact surface of the back surface cooling member with respect to the substrate, the distribution of the cooling efficiency corresponding to the position of the heat source by the evaporation source. And cooling efficiency control means for providing the cooling efficiency.

基板の面内温度分布をできるだけ小さく抑えるためには、特に、真空中の基板温度については背面冷却部材との接触による冷却が効果大である。そこで、基板の高温個所を、背面冷却部材によって基板背面から部分的に効率よく冷却するための冷却効率制御手段を設けることにより、基板温度分布を改善する。   In order to keep the in-plane temperature distribution of the substrate as small as possible, cooling by contact with the rear cooling member is particularly effective for the substrate temperature in vacuum. Therefore, the substrate temperature distribution is improved by providing a cooling efficiency control means for efficiently cooling the high temperature portion of the substrate from the back surface of the substrate by the back surface cooling member.

基板の温度分布を改善し、基板の熱変形を抑制することで、着膜の位置精度や線幅精度を向上させる。これにより、高品質な有機EL素子等を製造することができる。   By improving the temperature distribution of the substrate and suppressing thermal deformation of the substrate, the positional accuracy and line width accuracy of the deposited film are improved. Thereby, a high quality organic EL element etc. can be manufactured.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1(a)は、第1の実施形態を示す。図示しない蒸発源から発生する成膜材料の蒸気を蒸着させる基板1は、その成膜面と、反対側の非成膜面と、をマグネット2により、それぞれ背面冷却部材3とマスク4に密着される。平板四角枠状のフレームと一体化したマスク4は、トレイ5に取り付けられ、その上に基板1と背面冷却部材3を載包し、マグネット2によりマスク成膜のためのユニットとして構成される。マグネット2は、磁力によりマスク4を基板1に引き寄せて密着させる。   FIG. 1A shows a first embodiment. A substrate 1 on which vapor of a film forming material generated from an evaporation source (not shown) is deposited is closely attached to a back surface cooling member 3 and a mask 4 by a magnet 2 and a non-film forming surface on the opposite side. The A mask 4 integrated with a flat plate frame is attached to a tray 5, and a substrate 1 and a rear cooling member 3 are mounted thereon. The mask 2 is configured as a unit for mask film formation. The magnet 2 brings the mask 4 into close contact with the substrate 1 by magnetic force.

トレイ5は、銅(Cu)、アルミニウム(Al)、ステンレススティール(SUS)、鉄(Fe)またはこれらの合金等の、比較的熱伝導性が良好で機械加工が容易な材料を用いることが望ましい。   The tray 5 is preferably made of a material having relatively good thermal conductivity and easy machining, such as copper (Cu), aluminum (Al), stainless steel (SUS), iron (Fe), or an alloy thereof. .

トレイ5の中央に配置される基板1は、300×400mm角、厚さ0.7mmの無アルカリガラス基板である。マスク4は、基板1に形成したいパターンに対応して、各種のパターン開口部が設けられた厚さ0.01〜0.2mmで100mm角の金属板製のパターン形成用のマスクである。マスク4は、基板1に密着するように、トレイ5に装着されたマグネット2の磁力により引き上げられるので、例えばインバーやNiで作製される。   The substrate 1 disposed in the center of the tray 5 is a non-alkali glass substrate having a size of 300 × 400 mm and a thickness of 0.7 mm. The mask 4 is a pattern forming mask made of a 100 mm square metal plate having a thickness of 0.01 to 0.2 mm provided with various pattern openings corresponding to a pattern to be formed on the substrate 1. Since the mask 4 is pulled up by the magnetic force of the magnet 2 mounted on the tray 5 so as to be in close contact with the substrate 1, it is made of, for example, Invar or Ni.

蒸発源による熱源位置(蒸着熱源)が基板1の中央部に対応する1箇所である成膜装置において、図1(b)、(c)に示すように、背面冷却部材3には、基板1に対する接触面の中央部に、200×100mm、高さ0.5mmの凸部3aを形成する。   In the film forming apparatus in which the heat source position (vapor deposition heat source) by the evaporation source is one place corresponding to the central portion of the substrate 1, the back surface cooling member 3 includes the substrate 1 as shown in FIGS. A convex portion 3a having a size of 200 × 100 mm and a height of 0.5 mm is formed at the center of the contact surface.

凸部3aは、蒸着熱源に対応するように背面冷却部材3の冷却効率に分布をもたせるための冷却効率制御手段であり、例えば、部材の組立や研削により形成される。背面冷却部材3には図示しない冷却管(冷却手段)が配置されている。   The convex portion 3a is a cooling efficiency control means for giving a distribution to the cooling efficiency of the back surface cooling member 3 so as to correspond to the vapor deposition heat source, and is formed, for example, by assembling or grinding the members. A cooling pipe (cooling means) (not shown) is disposed on the back surface cooling member 3.

このように、凸部3aによって、背面冷却部材3の面内方向に接触面積の分布をもたせることにより、基板1の中央部の冷却効率を高めて、基板温度を均一にする。   Thus, by providing the contact area distribution in the in-plane direction of the back surface cooling member 3 by the convex portions 3a, the cooling efficiency of the central portion of the substrate 1 is increased and the substrate temperature is made uniform.

比較のために、冷却効率に分布をもたせるための凸部の無い背面冷却部材を用いて成膜したところ、基板の中央部が高温になり、周辺部との温度差が10〜15℃あった。   For comparison, when a film was formed using a back surface cooling member without a convex portion for providing a distribution in cooling efficiency, the central portion of the substrate became high temperature, and the temperature difference from the peripheral portion was 10 to 15 ° C. .

一方、本実施形態による背面冷却部材3を取り付けた基板1では、上記温度差が2.5℃となり、温度分布が改善した。そして、基板温度分布に起因する、中央部と周辺部のパターンのずれは、±2μm以下に位置精度が改善した。   On the other hand, in the board | substrate 1 which attached the back surface cooling member 3 by this embodiment, the said temperature difference became 2.5 degreeC and temperature distribution improved. Then, the positional accuracy improved to ± 2 μm or less for the shift between the central portion and the peripheral portion due to the substrate temperature distribution.

これは、蒸着源の位置に対応した背面冷却部材の中央部に凸加工を施し、図2に示すように、中央部の熱の流れを増加させて冷却を促進し、基板の中央部と周辺部との温度差を低減することができたためである。   This is because convex processing is applied to the central part of the back surface cooling member corresponding to the position of the vapor deposition source, as shown in FIG. 2, the heat flow in the central part is increased to promote cooling, and the central part and the periphery of the substrate This is because the temperature difference from the part could be reduced.

なお、凸部形状は制約なく、図3に示すように、ピン形状の凸部である凸ピン部13aを背面冷却部材13の中央部に複数配置した構成でもよい。   The shape of the convex portion is not limited, and a configuration in which a plurality of convex pin portions 13a, which are pin-shaped convex portions, are arranged at the central portion of the back surface cooling member 13 as shown in FIG.

蒸発源を3箇所に分布させた成膜装置においては、3箇所の熱源位置に対応して3ヶ所の高温部が存在する。このため、図4に示すように、基板に対する接触面の中央部3箇所に50×50mm、高さ0.5mmの凸部23aを研削形成した背面冷却部材23を用いた。   In the film forming apparatus in which the evaporation sources are distributed in three places, there are three high temperature portions corresponding to the three heat source positions. For this reason, as shown in FIG. 4, a back surface cooling member 23 in which convex portions 23 a having a size of 50 × 50 mm and a height of 0.5 mm are formed by grinding at three locations on the central portion of the contact surface with the substrate.

背面冷却部材23には図示しない冷却管が配置されている。図1の装置と同様に、基板温度が改善し、成膜位置精度を向上させることができた。   A cooling pipe (not shown) is disposed on the rear cooling member 23. Similar to the apparatus of FIG. 1, the substrate temperature was improved and the film deposition position accuracy was improved.

本実施形態によれば、基板の裏面に密着して配設された背面冷却部材の接触面に、凸形状を分布配置して接触面積に粗密差をつけることで、基板の冷却状況に差ができ基板温度分布を小さくすることができる。これによって基板変形が小さくなり、成膜時にパターン形成用のマスクとのずれが改善されるため、着膜の位置精度や線幅精度が向上する。   According to the present embodiment, there is a difference in the cooling state of the substrate by distributing the convex shape on the contact surface of the back surface cooling member disposed in close contact with the back surface of the substrate and making a difference in the contact area. In addition, the substrate temperature distribution can be reduced. As a result, the deformation of the substrate is reduced, and the deviation from the mask for pattern formation is improved at the time of film formation, so that the positional accuracy and line width accuracy of the deposited film are improved.

図5は、第2の実施形態を示す。これは、蒸着熱源が中央部1箇所である成膜装置において、背面冷却部材33と基板の中央部との接触面積を増やすために、背面冷却部材33の中央部に表面処理を施したものである。例えば、背面冷却部材33の中央部に、200×100mmのエリア部分33aの表面粗さRaを2μm以下に仕上げた表面処理面を設ける。その他の部分はRaが2μmよりも大きくなるようにすることで、冷却効率の面内方向の分布をもたせている。背面冷却部材33には冷却管(冷却手段)が配置されている。   FIG. 5 shows a second embodiment. This is a film forming apparatus in which the deposition heat source is at one central portion, and a surface treatment is applied to the central portion of the rear cooling member 33 in order to increase the contact area between the rear cooling member 33 and the central portion of the substrate. is there. For example, a surface-treated surface in which the surface roughness Ra of the area portion 33a of 200 × 100 mm is finished to 2 μm or less is provided at the center of the rear cooling member 33. The other portions are provided with an in-plane distribution of cooling efficiency by making Ra larger than 2 μm. A cooling pipe (cooling means) is disposed on the rear cooling member 33.

このように構成された背面冷却部材を取り付けた成膜装置により蒸着成膜した結果、基板の温度分布が第1の実施形態と同様に改善し、基板温度分布に起因する中央部と周辺部のパターン位置ずれが低減された。   As a result of vapor deposition film formation by the film forming apparatus to which the back surface cooling member configured in this way is attached, the temperature distribution of the substrate is improved similarly to the first embodiment, and the central portion and the peripheral portion due to the substrate temperature distribution are improved. Pattern position shift was reduced.

これは、背面冷却部材の中央部に、例えば研磨により表面粗さを小さく表面処理したエリアを設けることで、表面粗さに分布をもたせて冷却効率に差をつけ、従来中央部が高く、周辺部が低くなっていた基板温度分布を小さくできたことによる。   This is because, for example, by providing an area where the surface roughness is reduced by polishing, for example, at the center of the rear cooling member, the distribution of the surface roughness is distributed and the cooling efficiency is different. This is because the temperature distribution of the substrate, which has been lowered, can be reduced.

さらに、蒸着熱源が3箇所である成膜装置においても、本実施形態による背面冷却部材は、基板接触面の中央部3箇所に同様の研磨仕上げを行うことにより、第1の実施形態と同様に基板温度を改善し、成膜位置精度を向上させることができた。   Furthermore, also in the film forming apparatus having three evaporation heat sources, the back surface cooling member according to the present embodiment performs the same polishing finish on the three central portions of the substrate contact surface, similarly to the first embodiment. The substrate temperature was improved and the film deposition position accuracy was improved.

本実施形態によれば、基板の裏面に密着する背面冷却部材の接触面において部分的に表面粗さを変えて基板の冷却状況に差をつくることで、基板温度分布を小さく改善することができる。その結果、基板変形が小さくなり、成膜時にパターン形成用のマスクとのずれが改善されるため、着膜の位置精度や線幅精度が向上する。   According to this embodiment, the temperature distribution of the substrate can be improved to be small by changing the surface roughness partially on the contact surface of the back surface cooling member that is in close contact with the back surface of the substrate to make a difference in the cooling state of the substrate. . As a result, the deformation of the substrate is reduced, and the deviation from the mask for pattern formation is improved at the time of film formation, so that the positional accuracy and line width accuracy of the deposited film are improved.

図6及び図7は、第3の実施形態を示す。蒸着熱源が中央部1箇所である成膜装置において、背面冷却部材43の基板接触面の中央部には、200×100mmの部分に熱伝導率が高い厚さ1mmの銅板43a貼り付け、周辺には熱伝導率が低い厚さ1mmのセラミック板43bを貼り付けた。このように、熱伝導率の異なる異種材料を接合することにより、背面冷却部材43の冷却効率に分布を持たせている。なお、背面冷却部材43には図示しない冷却管が配置されている。   6 and 7 show a third embodiment. In the film forming apparatus in which the evaporation heat source is one central portion, a copper plate 43a having a thickness of 1 mm having a high thermal conductivity is attached to a 200 × 100 mm portion at the central portion of the substrate contact surface of the rear cooling member 43, Stuck a 1 mm thick ceramic plate 43b with low thermal conductivity. As described above, the dissimilar materials having different thermal conductivities are joined, so that the cooling efficiency of the back surface cooling member 43 is distributed. Note that a cooling pipe (not shown) is disposed on the rear cooling member 43.

このように構成された背面冷却部材を取り付けた成膜装置により蒸着成膜した結果、基板の温度は中央部と周辺部の温度分布が第1の実施形態と同様に改善し、基板温度分布に起因する中央部と周辺部のパターン位置ずれが改善した。   As a result of the vapor deposition film formation by the film forming apparatus having the rear cooling member configured as described above, the temperature distribution of the substrate is improved in the central portion and the peripheral portion as in the first embodiment, and the substrate temperature distribution is improved. The resulting pattern misalignment between the central part and the peripheral part was improved.

これは、接触面中央部に熱伝導率が良い部材を、そして周辺には熱伝導率が悪い部材を貼り付けた背面冷却部材を使用することで、従来中央部が高く、周辺部が低くなっていた基板温度分布を小さくできたことによる。   This is because a member with good thermal conductivity is used at the center of the contact surface, and a rear cooling member with a member with poor heat conductivity is used at the periphery. This is because the temperature distribution of the substrate was reduced.

また、図7に示すように、中央部の銅板53aと周辺部のセラミック板53bを背面冷却部材53の内部に配置しても、同様の効果がある。   Further, as shown in FIG. 7, the same effect can be obtained even if the central copper plate 53 a and the peripheral ceramic plate 53 b are arranged inside the back surface cooling member 53.

さらに、蒸着熱源が3箇所である成膜装置においても、本実施形態による背面冷却部材は、基板接触面の中央部3箇所に同様の構造をとることで、第1の実施形態と同様に基板温度が改善し、成膜位置精度を向上させることができた。   Further, in the film forming apparatus having three deposition heat sources, the back surface cooling member according to the present embodiment has the same structure as that of the first embodiment by adopting the same structure at the three central portions of the substrate contact surface. The temperature was improved and the film deposition position accuracy was improved.

本実施形態によれば、基板の裏面に密着する背面冷却部材に、部分的に熱伝導率の異なる異種材料を接合することで基板の冷却効率に差をつけ、基板温度分布を改善することができる。その結果、基板変形が小さくなり、成膜時にパターン形成用のマスクとのずれが改善されるため、着膜の位置精度や線幅精度が向上する。   According to this embodiment, it is possible to improve the substrate temperature distribution by making a difference in the cooling efficiency of the substrate by bonding different materials having different thermal conductivities to the back surface cooling member that is in close contact with the back surface of the substrate. it can. As a result, the deformation of the substrate is reduced, and the deviation from the mask for pattern formation is improved at the time of film formation, so that the positional accuracy and line width accuracy of the deposited film are improved.

図8は、第4の実施形態を示す。これは、蒸着熱源が中央部1箇所である成膜装置において、背面冷却部材63の中央部と周辺部に2系統の冷却管63a、63bを加工した。そして、中央部には20℃、周辺部には25℃の冷媒を使用して、冷却能力の異なる2系統の配管を有する冷却手段によって背面冷却部材63を冷却した。   FIG. 8 shows a fourth embodiment. In this film forming apparatus having a vapor deposition heat source at one central part, two cooling pipes 63a and 63b are processed in the central part and the peripheral part of the rear cooling member 63. Then, the back surface cooling member 63 was cooled by a cooling means having two systems of pipes having different cooling capacities, using a refrigerant of 20 ° C. in the central part and 25 ° C. in the peripheral part.

このように冷却効率に分布をもつ背面冷却部材を取り付けた成膜装置により蒸着成膜した結果、基板の温度分布が第1の実施形態と同様に改善し、パターン位置精度が向上した。これは、背面冷却部材に2系統の冷却管を加工して、接触面中央部の冷媒温度を周辺部の冷媒温度に比べて低く制御した背面冷却部材を使用することで、従来中央部が高く、周辺部が低くなっていた基板温度分布を小さくできたことによる。   As described above, as a result of the vapor deposition film formation by the film forming apparatus provided with the back surface cooling member having the distribution in the cooling efficiency, the temperature distribution of the substrate is improved as in the first embodiment, and the pattern position accuracy is improved. This is because the back surface cooling member is processed with two cooling pipes and the back surface cooling member in which the refrigerant temperature at the central portion of the contact surface is controlled to be lower than the refrigerant temperature at the peripheral portion is used. This is because the substrate temperature distribution which has been lowered in the peripheral portion can be reduced.

さらに、蒸着熱源が3箇所である成膜装置においても、本実施形態による背面冷却部材は、基板接触面の中央部3箇所に同様の冷却管を加工することで、第1の実施形態と同様に基板温度が改善し、成膜位置精度を向上させることができた。   Further, in the film forming apparatus having three deposition heat sources, the back surface cooling member according to the present embodiment is similar to the first embodiment by processing the same cooling pipes at the three central portions of the substrate contact surface. In addition, the substrate temperature was improved, and the deposition position accuracy was improved.

本実施形態によれば、基板の裏面に密着する背面冷却部材の冷却管の配置や冷却条件を変えて基板の冷却状況に差をつけることで、基板温度分布を小さく改善することができる。その結果、基板変形が小さくなり、成膜時にパターン形成用のマスクとのずれが改善されるため、着膜の位置精度や線幅精度が向上する。   According to the present embodiment, the substrate temperature distribution can be improved by changing the arrangement of the cooling pipes of the back surface cooling member that is in close contact with the back surface of the substrate and the cooling conditions to make a difference in the cooling state of the substrate. As a result, the deformation of the substrate is reduced, and the deviation from the mask for pattern formation is improved at the time of film formation, so that the positional accuracy and line width accuracy of the deposited film are improved.

第1の実施形態による成膜装置を示すもので、(a)はその主要部を示す模式断面図、(b)、(c)は背面冷却部材のみを示す断面図と底面図である。BRIEF DESCRIPTION OF THE DRAWINGS The film-forming apparatus by 1st Embodiment is shown, (a) is a schematic cross section which shows the principal part, (b), (c) is sectional drawing and a bottom view which show only a back surface cooling member. 図1の背面冷却部材における熱の流れを示す図である。It is a figure which shows the heat flow in the back surface cooling member of FIG. 一変形例を示す図である。It is a figure which shows one modification. 別の変形例を示す図である。It is a figure which shows another modification. 第2の実施形態による背面冷却部材を示すもので、(a)はその断面図、(b)は底面図である。The back surface cooling member by 2nd Embodiment is shown, (a) is the sectional drawing, (b) is a bottom view. 第3の実施形態による背面冷却部材を示すもので、(a)はその断面図、(b)は底面図である。The back surface cooling member by 3rd Embodiment is shown, (a) is the sectional drawing, (b) is a bottom view. 一変形例を示す図である。It is a figure which shows one modification. 第4の実施形態による背面冷却部材を示すもので、(a)はその断面図、(b)は底面図である。The back surface cooling member by 4th Embodiment is shown, (a) is the sectional drawing, (b) is a bottom view. 蒸着熱源が中央1箇所である場合の基板の温度分布を示す図である。It is a figure which shows the temperature distribution of a board | substrate in case a vapor deposition heat source is one center. 蒸着熱源が3箇所である場合の基板の温度分布を示す図である。It is a figure which shows the temperature distribution of a board | substrate in case a vapor deposition heat source is three places.

符号の説明Explanation of symbols

1 基板
2 マグネット
3、13、23、33、43、53、63 背面冷却部材
4 マスク
5 トレイ
3a、23a 凸部
13a 凸ピン部
43a、53a 銅板
63a、63b 冷却管
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Magnet 3, 13, 23, 33, 43, 53, 63 Back surface cooling member 4 Mask 5 Tray 3a, 23a Convex part 13a Convex pin part 43a, 53a Copper plate 63a, 63b Cooling tube

Claims (5)

蒸発源から発生する成膜材料の蒸気を、マスクを介して基板に蒸着させる成膜装置において、
前記基板の成膜面と反対側の非成膜面に接触して前記基板を冷却する背面冷却部材と、
前記背面冷却部材を冷却する冷却手段と、
前記背面冷却部材の前記基板に対する接触面に、前記蒸発源による熱源位置に対応するように冷却効率の分布をもたせるための冷却効率制御手段と、を有することを特徴とする成膜装置。
In a film forming apparatus for depositing vapor of a film forming material generated from an evaporation source on a substrate through a mask,
A back surface cooling member that cools the substrate in contact with a non-film formation surface opposite to the film formation surface of the substrate;
Cooling means for cooling the back surface cooling member;
A film forming apparatus, comprising: cooling efficiency control means for providing a distribution of cooling efficiency on a contact surface of the back surface cooling member with respect to the substrate so as to correspond to a heat source position by the evaporation source.
前記冷却効率制御手段は、前記基板に対する前記背面冷却部材の接触面積に分布をもたせるために、前記背面冷却部材に形成された凸部を有することを特徴とする請求項1に記載の成膜装置。   2. The film forming apparatus according to claim 1, wherein the cooling efficiency control unit has a convex portion formed on the back surface cooling member in order to have a distribution in a contact area of the back surface cooling member with respect to the substrate. . 前記冷却効率制御手段は、前記背面冷却部材の表面粗さに分布をもたせるために、前記背面冷却部材に設けられた表面処理面であることを特徴とする請求項1に記載の成膜装置。   The film forming apparatus according to claim 1, wherein the cooling efficiency control unit is a surface treatment surface provided on the back surface cooling member in order to have a distribution in the surface roughness of the back surface cooling member. 前記冷却効率制御手段は、前記背面冷却部材の熱伝導率に分布をもたせるために、前記背面冷却部材に接合された異種材料であることを特徴とする請求項1に記載の成膜装置。   2. The film forming apparatus according to claim 1, wherein the cooling efficiency control unit is a dissimilar material bonded to the back surface cooling member in order to have a distribution in the thermal conductivity of the back surface cooling member. 前記冷却効率制御手段は、前記冷却手段の冷却能力に分布をもたせるために、前記背面冷却部材に設けられた冷却管であることを特徴とする請求項1に記載の成膜装置。   The film forming apparatus according to claim 1, wherein the cooling efficiency control unit is a cooling pipe provided in the back surface cooling member in order to have a distribution in the cooling capacity of the cooling unit.
JP2008114734A 2008-04-25 2008-04-25 Deposition equipment Active JP5072700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114734A JP5072700B2 (en) 2008-04-25 2008-04-25 Deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114734A JP5072700B2 (en) 2008-04-25 2008-04-25 Deposition equipment

Publications (2)

Publication Number Publication Date
JP2009263721A true JP2009263721A (en) 2009-11-12
JP5072700B2 JP5072700B2 (en) 2012-11-14

Family

ID=41389941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114734A Active JP5072700B2 (en) 2008-04-25 2008-04-25 Deposition equipment

Country Status (1)

Country Link
JP (1) JP5072700B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169824A (en) * 1993-12-13 1995-07-04 Anelva Corp Substrate heating and cooling mechanism
JPH11186195A (en) * 1997-12-19 1999-07-09 Samsung Electron Co Ltd Method for forming thin film in semiconductor device
JP2002339066A (en) * 2001-05-15 2002-11-27 Canon Inc Thin oxide film deposition method
JP2004014246A (en) * 2002-06-05 2004-01-15 Sony Corp Organic film forming device and method
JP2004091913A (en) * 2002-07-10 2004-03-25 Sony Corp Film deposition system and film deposition method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169824A (en) * 1993-12-13 1995-07-04 Anelva Corp Substrate heating and cooling mechanism
JPH11186195A (en) * 1997-12-19 1999-07-09 Samsung Electron Co Ltd Method for forming thin film in semiconductor device
JP2002339066A (en) * 2001-05-15 2002-11-27 Canon Inc Thin oxide film deposition method
JP2004014246A (en) * 2002-06-05 2004-01-15 Sony Corp Organic film forming device and method
JP2004091913A (en) * 2002-07-10 2004-03-25 Sony Corp Film deposition system and film deposition method

Also Published As

Publication number Publication date
JP5072700B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
US8882921B2 (en) Thin film deposition apparatus
JP5882668B2 (en) Organic layer deposition apparatus and organic light emitting display device manufacturing method using the same
JP4971723B2 (en) Manufacturing method of organic light emitting display device
TWI244354B (en) Deposition mask, manufacturing method thereof, display unit, manufacturing method thereof, and electronic apparatus including display unit
WO2019114806A1 (en) Deposition carrier board and deposition equipment
TW200304336A (en) Method for vapor deposition and method for making display device
JP2008274322A (en) Vapor deposition apparatus
US9845530B2 (en) Mask for vapor deposition apparatus, vapor deposition apparatus, vapor deposition method, and method for producing organic electroluminescence element
JP2004346356A (en) Mask unit and film deposition system using the same
JP6407479B2 (en) Vapor deposition apparatus, vapor deposition method, and organic EL display device manufacturing method
KR20170059526A (en) Mask assembly, manufacturing method for the mask assembly and manufacturing method for a display apparatus
JP4789535B2 (en) Sputtering apparatus, film forming method
JP2008196002A (en) Vapor-deposition mask, and its manufacturing method
JP2006348337A (en) Vapor deposition film-forming apparatus and vapor deposition source
JP2011127218A (en) Thin film deposition device and manufacturing method of organic emission display device utilizing it
JP5072700B2 (en) Deposition equipment
JP2008305560A (en) Manufacturing method of organic el display device
TW201943002A (en) Carrier for supporting a substrate or a mask and arrangement and method for adjusting the position of the same and apparatus for depositing a layer on a substrate by using the arrangement
US20170191155A1 (en) Vapor disposition system
KR101456250B1 (en) Depositing source apparatus with cooling shield
KR100741052B1 (en) Vacuum evaporation mask of EL display device, and vacuum evaporation method and apparatus utilizing the same
KR20150083066A (en) Linear Depositing System for Substrate Cooling
JP2008218995A (en) Susceptor heater assembly of large-area substrate processing system
KR20120017976A (en) Mask unit for fabricating of organic light emitting display device and method of fabricating the same
KR102651394B1 (en) Substrate processing equipment for horizontally fixed organic material deposition equipment for large-area display manufacturing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110422

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120203

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

R151 Written notification of patent or utility model registration

Ref document number: 5072700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3