JP2009262918A - Windshield for vehicle - Google Patents

Windshield for vehicle Download PDF

Info

Publication number
JP2009262918A
JP2009262918A JP2008308596A JP2008308596A JP2009262918A JP 2009262918 A JP2009262918 A JP 2009262918A JP 2008308596 A JP2008308596 A JP 2008308596A JP 2008308596 A JP2008308596 A JP 2008308596A JP 2009262918 A JP2009262918 A JP 2009262918A
Authority
JP
Japan
Prior art keywords
polarizing film
glass
front window
vehicle
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008308596A
Other languages
Japanese (ja)
Inventor
Kensuke Katagiri
健介 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008308596A priority Critical patent/JP2009262918A/en
Priority to PCT/JP2009/057030 priority patent/WO2009123339A1/en
Publication of JP2009262918A publication Critical patent/JP2009262918A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/06Antiglare equipment associated with windows or windscreens; Sun visors for vehicles using polarising effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a windshield for vehicle to be properly used for a vehicle, in which a driver's seat is positioned while coming close to right or left with a view from the front surface of the vehicle, and improved in safety and design of equipment body by reducing projection of a reflected image of the equipment body due to reflection by the outer surface of the vehicle not only in a horizontal view but also in a wider range of the windshield. <P>SOLUTION: A windshield for vehicle has at least a base material and a polarizing film, where the windshield forms an angle δ with a horizontal reference plane, and the angle δ is 20 degrees to 50 degrees, and where a line on which the horizontal reference plane intersects with the base material surface and the high-absorption axis of the polarizing film forms an angle ψ defined as follows: (-0.0130×δ<SP>2</SP>+1.03δ-12.5)degrees ≤ψ≤(0.00792×δ<SP>2</SP>+0.0879δ+24.4)degree. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、車両用前窓に関し、特に自動車用として好適な車両用前窓に関する。   The present invention relates to a vehicle front window, and more particularly to a vehicle front window suitable for an automobile.

主に太陽光線が強い日中において、自動車(及び車両一般)の前窓にダッシュボード等の筐体の反射像が映り込み、運転者の視認性を低下させることが安全運転上問題となっている。一方、昨今は消費者ニーズの多様性化に伴い、自動車室内の色使いや模様など、デザイン性の自由度が求められる機会が多くなってきている。しかし、ダッシュボード等の窓に反射像が写りこむエリアだけは、この問題があるため暗色しか使えないという不都合があった。
このため、例えば、特許文献1には、反射防止層を被覆したガラス2枚を反射防止層が外側になるように貼り合せてなる合わせガラスが提案されている。
また、特許文献2には、透明ガラス基板の少なくとも片側表面にガラス面側から第1層目として屈折率n1が1.8〜1.9であり、かつ厚みが700〜900Åである薄膜層を被覆し、該第1層目薄膜上に、第2層として屈折率n2が1.4〜1.5であり、かつ厚みが1,100〜1,300Åである薄膜層を積層してなり、前記表面の垂直線となす入射角が50度〜70度の間で入射する膜面側の可視光に対し、前記薄膜層面における反射を4.5%〜6.5%低減する車両用反射低減ガラスが提案されている。
During the daytime when the sunlight is strong, the reflected image of the housing such as the dashboard is reflected on the front window of the car (and the vehicle in general), which reduces the visibility of the driver. Yes. On the other hand, in recent years, with the diversification of consumer needs, there are increasing opportunities for freedom of design such as color use and patterns in the car interior. However, only the area where the reflection image is reflected in the window such as the dashboard has the problem that only dark colors can be used because of this problem.
For this reason, for example, Patent Document 1 proposes a laminated glass obtained by bonding two glasses coated with an antireflection layer so that the antireflection layer is on the outside.
Patent Document 2 discloses a thin film layer having a refractive index n1 of 1.8 to 1.9 and a thickness of 700 to 900 mm as a first layer from the glass surface side on at least one surface of a transparent glass substrate. And a thin film layer having a refractive index n2 of 1.4 to 1.5 and a thickness of 1,100 to 1,300 mm is laminated as a second layer on the first layer thin film. Reflection reduction for vehicles that reduces reflection on the surface of the thin film layer by 4.5% to 6.5% with respect to visible light on the film surface side that is incident between an angle of incidence of 50 ° to 70 ° with the vertical line of the surface Glass has been proposed.

しかし、前記特許文献1及び前記特許文献2のように、車両用前窓の外側に低反射処理を施す場合には、運転時に安全視界を確保するために使用されるワイパー等によって前窓の車外側表面が擦られ、低反射処理膜が摩耗し、光の干渉を利用した光学薄膜の性能を維持できないという問題がある。また、汚れの付着等によって光の干渉条件がずれて反射率が著しく増大し、汚れが目立ち、車両用前窓の外側に低反射処理を行うことは耐久性の面から問題がある。また、片面だけの反射防止処理だけでは、他方の未処理の片面からの裏面反射が残り、結局トータルの反射防止効果は約30%の低減に留まり、十分満足できる性能を備えたものではない。   However, as in Patent Document 1 and Patent Document 2, when low reflection processing is performed on the outside of the vehicle front window, the vehicle of the front window is used by a wiper or the like used to ensure a safe field of view during driving. There is a problem that the outer surface is rubbed, the low reflection treatment film is worn, and the performance of the optical thin film utilizing the interference of light cannot be maintained. In addition, the interference condition of light is shifted due to the adhesion of dirt, the reflectance is remarkably increased, the dirt is conspicuous, and the low reflection treatment on the outside of the vehicle front window has a problem in terms of durability. Further, the antireflection treatment only on one side causes the back surface reflection from the other untreated one side to remain, so that the total antireflection effect is only reduced by about 30%, and the performance is not sufficiently satisfactory.

また、特許文献3には、前記特許文献1及び2のように反射防止膜を用いた車両用前窓の裏面反射を低減するために、運転者の水平前方視線に入り込む車両用前窓からの反射光の主偏光成分(S偏光)が水平に電場振動成分を有することに着目して、水平に高吸収軸を有する偏光膜を合わせガラスである前窓のガラス間又は車内側表面に適用することが提案されている。   Further, in Patent Literature 3, in order to reduce the back surface reflection of the vehicle front window using the antireflection film as in Patent Literatures 1 and 2, the vehicle front window enters the driver's horizontal front line of sight. Focusing on the fact that the main polarization component (S-polarized light) of the reflected light has an electric field vibration component horizontally, a polarizing film having a high absorption axis is applied horizontally between the front windows of the laminated glass or on the vehicle interior surface. It has been proposed.

しかし、前記特許文献3は、水平前方視界に対しては有効であるものの、助手席側に視線を移した際には、S偏光の電場振動方向が偏光膜の高吸収軸からずれてしまうために同等の透過率を有する着色ガラスを用いた場合よりも反射像の映り込みがむしろ顕著になってしまうという問題がある。   However, although Patent Document 3 is effective for a horizontal front view, when the line of sight is shifted to the passenger seat side, the electric field vibration direction of S-polarized light is shifted from the high absorption axis of the polarizing film. There is a problem that the reflected image becomes more prominent than when colored glass having the same transmittance is used.

また、特許文献4には、ダッシュボードにS偏光を吸収又は散乱させる層を付与することにより、ダッシュボードが自動車用前窓に映り込むことを防止し、ダッシュボードの意匠性の向上が図れると記載されている。   Further, in Patent Document 4, when the dashboard is provided with a layer that absorbs or scatters S-polarized light, the dashboard is prevented from being reflected in the front window for an automobile, and the design of the dashboard can be improved. Are listed.

しかし、吸収によってダッシュボードに偏光性を付与すると、必然的に色は暗くなってしまい、意匠性については不十分である。また、通常の自動車の使用において、使用者はダッシュボード上に書類や小物等を置く場合が多くあり、前記特許文献4の手法では、そのような場合に書類や小物等が前窓に映り込むことを防止することは当然不可能であり、更なる改良、開発が望まれているのが現状である。   However, if polarization is imparted to the dashboard by absorption, the color inevitably becomes dark, and the design is insufficient. Further, in normal car use, a user often places a document, an accessory, etc. on a dashboard. In the method of Patent Document 4, the document, an accessory, etc. are reflected on the front window in such a case. It is of course impossible to prevent this, and the current situation is that further improvement and development are desired.

実開平5−69701号公報Japanese Utility Model Publication No. 5-69701 特開平4−357134号公報JP-A-4-357134 特開2007−334150号公報JP 2007-334150 A 特開2006−56413号公報JP 2006-56413 A

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、自動車等の運転席が車両正面から見て左右どちらかに寄って位置するような車両の前窓に好適に用いられ、車外側表面の反射による筐体等の反射像映り込みを、水平前方視界のみならず前窓のより広い範囲において低減することによって、安全性及び筐体の意匠性を向上させることができる車両用前窓を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, the present invention is suitably used for a front window of a vehicle in which a driver's seat of an automobile or the like is located on either the left or right side when viewed from the front of the vehicle, and reflects a reflected image of a housing or the like due to reflection on the outer surface of the vehicle It is an object of the present invention to provide a vehicular front window that can improve safety and design of a housing by reducing the amount of intrusion not only in a horizontal front view but also in a wider range of the front window.

前記課題を解決するため本発明者が鋭意検討を重ねた結果、以下の知見を得た。即ち、自動車等で問題となっている反射像の映り込みにおいて、前窓表面から反射して運転者の目に入る光は偏光性を有しており、その主偏光成分(S偏光)の電場振動方向は、運転者の水平前方視界のみを考慮した場合には、水平方向のみであるが、前窓面全体を考慮した場合には、運転者の視線が前窓表面を含む面と垂直に交わる点を中心にして描かれる同心円の接線の方向であることを知見した。
また、一般的な自動車に代表される運転席が前窓の中心に対し、左右どちらかにずれた位置にあるような車両においては、水平に高吸収軸を有する偏光膜では、助手席側の視界において映り込み防止効果が十分に得られないことを知見した。
As a result of intensive studies by the inventor in order to solve the above problems, the following knowledge has been obtained. That is, in the reflection of a reflection image that is a problem in automobiles, the light reflected from the front window surface and entering the driver's eyes has polarization, and the electric field of its main polarization component (S-polarized light) The vibration direction is only the horizontal direction when only the driver's horizontal front view is considered, but when the entire front window surface is considered, the driver's line of sight is perpendicular to the plane including the front window surface. It was found that the direction of the tangent of concentric circles drawn around the intersecting point.
In addition, in a vehicle in which the driver's seat represented by a general automobile is shifted to the left or right with respect to the center of the front window, a polarizing film having a high absorption axis horizontally has a front seat side. It was found that the effect of preventing reflection in the field of view could not be obtained sufficiently.

本発明は、本発明者による前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。
<1> 少なくとも基材と偏光膜とを有し、水平基準面とのなす角δが20度以上50度以下である車両用前窓において、
前記水平基準面と前記基材面とが交わる線と、前記偏光膜の高吸収軸との角度φが、(−0.0130×δ+1.03δ−12.5)度≦φ≦(0.00792×δ+0.0879δ+24.4)度であることを特徴とする車両用前窓である。
<2> 角度φが、(0.00792×δ+0.0879δ+14.4)度±5度である前記<1>に記載の車両用前窓である。
<3> 角度φが、(−0.0130×δ+1.03δ−2.46)度±5度である前記<1>に記載の車両用前窓である。
<4> 基材の水平基準面と向き合う側の面に、偏光膜を有する前記<1>から<3>のいずれかに記載の車両用前窓である。
<5> 基材が2枚の板ガラス間に中間層を有する合わせガラスであり、かつ該中間層が偏光膜を含む前記<1>から<3>のいずれかに記載の車両用前窓である。
<6> 基材が高分子化合物であり、かつ該基材の表面及び内部のいずれかに偏光膜を有する前記<1>から<4>のいずれかに記載の車両用前窓である。
<7> 両面及び水平基準面と向き合う側の最表面のいずれかに、反射防止膜を有する前記<1>から<6>のいずれかに記載の車両用前窓である。
<8> 車両が、自動車である前記<1>から<7>のいずれかに記載の車両用前窓である。
This invention is based on the said knowledge by this inventor, and as a means for solving the said subject, it is as follows.
<1> In a vehicle front window having at least a base material and a polarizing film and having an angle δ formed by a horizontal reference plane of 20 degrees or more and 50 degrees or less,
The angle φ between the line where the horizontal reference plane and the substrate surface intersect and the high absorption axis of the polarizing film is (−0.0130 × δ 2 + 1.03δ−12.5) degrees ≦ φ ≦ (0 .00792 × δ 2 + 0.0879δ + 24.4) degrees, which is a vehicle front window.
<2> The vehicle front window according to <1>, wherein the angle φ is (0.00792 × δ 2 + 0.0879δ + 14.4) degrees ± 5 degrees.
<3> The vehicle front window according to <1>, wherein the angle φ is (−0.0130 × δ 2 + 1.03δ−2.46) degrees ± 5 degrees.
<4> The vehicle front window according to any one of <1> to <3>, wherein a polarizing film is provided on a surface facing the horizontal reference surface of the substrate.
<5> The vehicle front window according to any one of <1> to <3>, wherein the base material is a laminated glass having an intermediate layer between two sheet glasses, and the intermediate layer includes a polarizing film. .
<6> The vehicle front window according to any one of <1> to <4>, wherein the base material is a polymer compound and a polarizing film is provided on either the surface or the inside of the base material.
<7> The vehicle front window according to any one of <1> to <6>, wherein an antireflection film is provided on one of both surfaces and the outermost surface facing the horizontal reference surface.
<8> The vehicle front window according to any one of <1> to <7>, wherein the vehicle is an automobile.

本発明によると、従来における問題を解決することができ、自動車等の運転席が車両正面から見て左右どちらかに寄って位置するような車両の前窓に好適に用いられ、車外側表面の反射による筐体等の反射像映り込みを、水平前方視界のみならず前窓のより広い範囲において低減することによって、安全性及び筐体の意匠性を向上させることができる車両用前窓を提供することができる。   According to the present invention, conventional problems can be solved, and it is preferably used for a front window of a vehicle in which a driver's seat of an automobile or the like is located on either the left or right side when viewed from the front of the vehicle. Providing a vehicle front window that can improve safety and design of the casing by reducing the reflection of the reflected image of the casing and the like due to reflection not only in the horizontal front view but also in a wider range of the front window. can do.

本発明の車両用前窓は、少なくとも基材と偏光膜とを有し、反射防止膜、更に必要に応じてその他の層を有してなる。   The vehicle front window of the present invention includes at least a base material and a polarizing film, and includes an antireflection film and, if necessary, other layers.

前記車両用前窓は、上記構成とすることにより、特に大きな反射映り込み防止効果が得られる。これは、車内側表面の反射防止膜のみでは車外側表面の反射を防ぐことができず、偏光膜だけでは車内側表面の反射を防ぐことができないためである。
また、反射防止膜を用いた場合には、車内側表面における反射が低減された分だけ、前窓中へ入射してくる光の強度が強くなるため、車外側表面からの反射光強度もそれに従って強くなり、また、反射光の主成分が車外側表面からの反射となるため、偏光膜によって得られる効果が大きくなる。例えば、基材にある角度で光が入射した場合の表面反射率が10%であった場合、入射光強度I0を1とすると、車内側表面からの反射光強度I1と車外側表面からの反射光強度I2、及び全反射光強度(I1+I2)は、下記式で表される。
I1=1×0.1=0.1
I2=1×0.9×0.1×0.9≒0.08
(I1+I2)=0.1+0.08=0.18
これに反射防止膜を適用して、仮に車内側表面の反射率が0となったとすると、反射防止膜を適用した時の車内側表面からの反射光強度I3と車外側表面からの反射光強度I4、及び全反射光強度(I3+I4)は、下記のとおりである。
I3=1×0=0
I4=1×1×0.1×1=0.1
(I3+I4)=0+0.1=0.1
When the vehicle front window is configured as described above, a particularly large reflection reflection preventing effect can be obtained. This is because the reflection on the vehicle outer surface cannot be prevented only by the antireflection film on the vehicle inner surface, and the reflection on the vehicle inner surface cannot be prevented only by the polarizing film.
In addition, when an antireflection film is used, the intensity of light incident on the front window is increased by the amount corresponding to the reduced reflection on the inner surface of the vehicle, so the intensity of reflected light from the outer surface of the vehicle is also increased. Further, since the main component of the reflected light is reflected from the outer surface of the vehicle, the effect obtained by the polarizing film is increased. For example, when the surface reflectance when light is incident on the substrate at an angle is 10%, if the incident light intensity I0 is 1, the reflected light intensity I1 from the vehicle inner surface and the reflection from the vehicle outer surface The light intensity I2 and the total reflected light intensity (I1 + I2) are expressed by the following formulas.
I1 = 1 × 0.1 = 0.1
I2 = 1 × 0.9 × 0.1 × 0.9≈0.08
(I1 + I2) = 0.1 + 0.08 = 0.18
If the antireflection film is applied to this and the reflectance of the vehicle inner surface becomes 0, the reflected light intensity I3 from the vehicle inner surface and the reflected light intensity from the vehicle outer surface when the antireflection film is applied. I4 and total reflected light intensity (I3 + I4) are as follows.
I3 = 1 × 0 = 0
I4 = 1 × 1 × 0.1 × 1 = 0.1
(I3 + I4) = 0 + 0.1 = 0.1

ここで、偏光膜を用いて、車外側表面からの反射光強度I2又はI4を50%低減できたとすると、反射防止膜を用いない場合の全反射光強度(I1+I2)’、反射防止膜を用いる場合の全反射光強度(I3+I4)’は、下記のとおりである。
(I1+I2)’=0.1+0.08×0.5=0.14
(I3+I4)’=0+0.1×0.5=0.05
このため、50%偏光膜による、反射防止膜を用いない場合の全反射光低減率R1と、用いる場合の全反射光低減率R2の全反射光低減率は、下記のとおりである。
R1=(I1+I2)’/(I1+I2)=0.78
R2=(I3+I4)’/(I3+I4)=0.5
このように偏光膜によって得られる反射低減の効果は反射防止膜が車内側表面にあった場合の方が顕著に現れる。このことは逆に、偏光膜による反射抑制の効果が得られない領域では、反射防止膜を用いた場合の方が、反射抑制効果の少なさがより顕著に現れることを示す。
Here, assuming that the reflected light intensity I2 or I4 from the vehicle outer surface can be reduced by 50% using the polarizing film, the total reflected light intensity (I1 + I2) ′ when the antireflection film is not used, and the antireflection film are used. The total reflected light intensity (I3 + I4) ′ in this case is as follows.
(I1 + I2) ′ = 0.1 + 0.08 × 0.5 = 0.14
(I3 + I4) ′ = 0 + 0.1 × 0.5 = 0.05
For this reason, the total reflection light reduction rate R1 when the antireflection film is not used and the total reflection light reduction rate R2 when the antireflection film is used and the total reflection light reduction rate R2 when used are as follows.
R1 = (I1 + I2) ′ / (I1 + I2) = 0.78
R2 = (I3 + I4) ′ / (I3 + I4) = 0.5
As described above, the effect of reducing reflection obtained by the polarizing film is more remarkable when the antireflection film is on the inner surface of the vehicle. On the contrary, in the region where the effect of suppressing the reflection by the polarizing film cannot be obtained, it is shown that the effect of suppressing the reflection is more remarkable when the antireflection film is used.

前窓におけるS偏光の振動方向は、図1(この場合は運転席が車両進行方向の右側、いわゆる右ハンドルの例である、図2、図3A、図4も同様)に示すように、運転者の視線が前窓表面を含む面と垂直に交わる点を中心にして描かれる同心円の接線方向で表される。なぜなら、前記同心円の接線は、運転者の目に入る光の進行方向が円の中心を通る線に平行なことから、入射光の進行方向と垂直であり、また、S偏光の偏光軸aは、入射光の進行方向に垂直かつ入射界面に平行であるからである。今、水平基準面に対し平行に偏光膜の高吸収軸を設定した場合を考えると、図2に示すように、助手席側の領域において、運転者の目に入る入射光のS偏光の偏光軸aと偏光膜の高吸収軸bのなす角は大きい。したがって、助手席側に視線を移した際には、偏光膜による映り込みの防止効果が期待できないばかりか、近年普及している着色ガラスを用いた場合よりも反射が強くなってしまうという問題が生じる。ここで、水平基準面と基材面が交わる直線に対し偏光膜の高吸収軸が一定の傾きを有するように偏光膜の高吸収軸を設定すると、図3Aに示すように、助手席側の領域における運転者の目に入る入射光のS偏光の偏光軸aと偏光膜の高吸収軸bのなす角が小さくなるだけではなく、S偏光の偏光軸aと偏光膜の高吸収軸bが平行となる点を結んだ線(領域)cが広くなるため、偏光膜の高吸収軸bを一定角度傾けることが、偏光膜による映り込み防止効果をより大きく発現させることにつながる。   As shown in FIG. 1 (in this case, the driver's seat is on the right side of the vehicle traveling direction, which is an example of a so-called right steering wheel, the same applies to FIGS. 2, 3A, and 4). This is expressed by the tangential direction of concentric circles drawn around the point where the person's line of sight intersects the plane including the front window surface perpendicularly. Because the tangent of the concentric circle is perpendicular to the direction of the incident light because the traveling direction of the light entering the driver's eyes is parallel to the line passing through the center of the circle, and the polarization axis a of the S-polarized light is This is because it is perpendicular to the traveling direction of the incident light and parallel to the incident interface. Considering the case where the high absorption axis of the polarizing film is set parallel to the horizontal reference plane, as shown in FIG. 2, the polarization of the S-polarized light of the incident light entering the driver's eyes in the area on the passenger seat side The angle formed between the axis a and the high absorption axis b of the polarizing film is large. Therefore, when the line of sight is shifted to the passenger seat side, not only the effect of preventing the reflection by the polarizing film can be expected, but also the problem that the reflection becomes stronger than in the case of using colored glass that has been popular in recent years. Arise. Here, when the high absorption axis of the polarizing film is set so that the high absorption axis of the polarizing film has a certain inclination with respect to the straight line where the horizontal reference plane and the substrate surface intersect, as shown in FIG. Not only is the angle formed between the polarization axis a of the S-polarized light and the high absorption axis b of the polarizing film entering the eyes of the driver in the region, but also the polarization axis a of the S-polarized light and the high absorption axis b of the polarizing film are Since the line (region) c connecting the parallel points becomes wider, tilting the high absorption axis b of the polarizing film by a certain angle leads to a greater manifestation of the reflection preventing effect by the polarizing film.

したがって本発明においては、車両用前窓全体において、偏光膜の映り込み防止効果の少ない領域を減らすため、図3A及び図3Bに示すように、水平基準面と前窓面が交わる直線に対し偏光膜の高吸収軸が一定の傾きを有するように配置し、好ましくは反射防止膜を設けると、偏光膜の反射防止効果がより顕著に現れる領域を、水平基準面に対し平行に偏光膜の高吸収軸を設定した場合よりも広く取ることができるものである。   Therefore, in the present invention, as shown in FIGS. 3A and 3B, in order to reduce the area where the reflection effect of the polarizing film is small in the entire front window for vehicles, as shown in FIGS. When the high absorption axis of the film is arranged so as to have a certain inclination, and preferably provided with an antireflection film, the region where the antireflection effect of the polarizing film appears more prominently is parallel to the horizontal reference plane. It can be made wider than when the absorption axis is set.

−偏光膜の配置角度−
前記偏光膜の配置角度、即ち、水平基準面と基材面が交わる線と、偏光膜の高吸収軸との角度φ(図3A及び図3B参照)は、(−0.0130×δ+1.03δ−12.5)度≦φ≦(0.00792×δ+0.0879δ+24.4)度であり、(0.00792×δ+0.0879δ+14.4)度±5度であることが好ましく、(−0.0130×δ+1.03δ−2.46)度±5度であることがより好ましい。
ただし、式中δは、車両用前窓と水平基準面とのなす角(前窓の傾斜角)であり、該角度δは空力抵抗を小さくするため20度以上50度以下であり、好ましくは25度〜40度に形成されている。
前記角度φが5度以下であると、水平基準面に対し平行に偏光膜の高吸収軸を設定した場合との差が効果的に現れず、助手席側における反射像の映り込み抑制効果が得られない。一方、前記角度φが45度以上であると、運転者正面において、S偏光の偏光軸と偏光膜の高吸収軸とがなす角が大きくなり、運転者正面の映り込みが着色ガラスよりも顕著となることがある。
ここで、前記水平基準面とは、車両における水平な基準となる面を意味し、例えば自動車ではダッシュボード面が該当する。
前記偏光膜の高吸収軸とは、偏光膜に直線偏光を入射した時に、最も吸収が大きい軸を意味し、偏光膜の偏光吸光度測定によって、最大の吸光度を示す軸を求めることにより求めることができる。
偏光膜を適用した車両において、前記水平基準面と基材面が交わる線(基準線)と、偏光膜の高吸収軸との角度φを求めるには、例えば高吸収軸の明らかな偏光板を通して車両の前窓を観察し、偏光板を回すと、偏光板と前窓偏光膜の高吸収軸がなす角によって明暗が変化することを利用すればよい。偏光板を回して、最も暗く見える時、その偏光板の高吸収軸と直交する方向が前窓偏光膜の高吸収軸であり、求めた高吸収軸と基準線の角度を測定することによって角度φが得られる。
-Arrangement angle of polarizing film-
The arrangement angle of the polarizing film, that is, the angle φ (see FIGS. 3A and 3B) between the line where the horizontal reference plane and the substrate surface intersect with the high absorption axis of the polarizing film is (−0.0130 × δ 2 +1). .03δ-12.5) degrees ≦ φ ≦ (0.00792 × δ 2 + 0.0879δ + 24.4) degrees, and preferably (0.00792 × δ 2 + 0.0879δ + 14.4) degrees ± 5 degrees. , (−0.0130 × δ 2 + 1.03δ−2.46) degrees ± 5 degrees is more preferable.
Where δ is an angle formed by the vehicle front window and the horizontal reference plane (tilt angle of the front window), and the angle δ is 20 degrees or more and 50 degrees or less in order to reduce aerodynamic resistance, preferably It is formed at 25 to 40 degrees.
If the angle φ is 5 degrees or less, the difference from the case where the high absorption axis of the polarizing film is set in parallel to the horizontal reference plane does not appear effectively, and the reflection image reflection suppression effect on the passenger seat side is not effective. I can't get it. On the other hand, when the angle φ is 45 degrees or more, the angle formed between the polarization axis of S-polarized light and the high absorption axis of the polarizing film is large in the front of the driver, and the reflection on the front of the driver is more noticeable than in the colored glass. It may become.
Here, the horizontal reference plane means a plane that becomes a horizontal reference in the vehicle, and corresponds to a dashboard plane in an automobile, for example.
The high absorption axis of the polarizing film means the axis that absorbs the most when linearly polarized light is incident on the polarizing film, and is obtained by determining the axis indicating the maximum absorbance by measuring the polarization absorbance of the polarizing film. it can.
In a vehicle to which a polarizing film is applied, in order to obtain an angle φ between a line (reference line) where the horizontal reference surface and the substrate surface intersect with the high absorption axis of the polarizing film, for example, through a polarizing plate with a clear high absorption axis When the front window of the vehicle is observed and the polarizing plate is rotated, it may be used that the brightness changes depending on the angle formed by the high absorption axis of the polarizing plate and the front window polarizing film. When the polarizing plate is turned and looks darkest, the direction perpendicular to the high absorption axis of the polarizing plate is the high absorption axis of the front window polarizing film, and the angle is determined by measuring the angle between the obtained high absorption axis and the reference line. φ is obtained.

−偏光膜の光学特性−
380nm〜780nmの波長範囲における、車両用前窓の平均透過率は、道路運送車両法の保安基準第29条3項により、0.70以上でなくてはならないと定められていることを考慮し、前記偏光膜は、前窓に適用したときに、前窓の常光透過率が0.70以上0.85以下であることが好ましく、前窓の常光透過率が0.70となる透過率を有することが特に好ましい。前記偏光膜の配向度は0.65以上が好ましく、0.8以上がより好ましく、0.9以上が更に好ましい。
-Optical properties of polarizing films-
Considering that the average transmittance of the front window for vehicles in the wavelength range of 380 nm to 780 nm must be 0.70 or more according to Article 29, paragraph 3 of the safety standard of the Road Transport Vehicle Law. When the polarizing film is applied to the front window, the normal light transmittance of the front window is preferably 0.70 or more and 0.85 or less, and the transmittance at which the normal light transmittance of the front window is 0.70 is obtained. It is particularly preferable to have it. The degree of orientation of the polarizing film is preferably 0.65 or more, more preferably 0.8 or more, and still more preferably 0.9 or more.

前記偏光膜の材料としては、上記光学特性を有すれば特に制限はなく、目的に応じて適宜選択することができるが、例えば異方性金属ナノ粒子、カーボンナノチューブ、金属錯体、二色性色素、ヨウ素/PVA系材料、などが挙げられる。これらの中でも、異方性金属ナノ粒子、カーボンナノチューブが耐久性の面から特に好ましい。
前記偏光層の製造方法としては、特に制限はなく、目的に応じて適宜選択することができるが、前記偏光層の材料に応じて適宜選択することができる。
The material of the polarizing film is not particularly limited as long as it has the above optical characteristics, and can be appropriately selected according to the purpose. For example, anisotropic metal nanoparticles, carbon nanotubes, metal complexes, dichroic dyes , Iodine / PVA materials, and the like. Among these, anisotropic metal nanoparticles and carbon nanotubes are particularly preferable from the viewpoint of durability.
There is no restriction | limiting in particular as a manufacturing method of the said polarizing layer, Although it can select suitably according to the objective, It can select suitably according to the material of the said polarizing layer.

前記偏光膜の厚みは、特に制限はなく、目的に応じて適宜選択することができ、50nm〜300μmが好ましい。   There is no restriction | limiting in particular in the thickness of the said polarizing film, According to the objective, it can select suitably, 50 nm-300 micrometers are preferable.

<基材>
前記基材としてはガラス(即ち、基材ガラス)が最も適している。これは、ガラスは風雨に晒される環境において乗り物の概略寿命である12年の耐久性を持ち、偏光を乱さない、と言う点において最も実績があるからである。しかし、最近では、ポリマーの板状成形物においてもノルボルネン系高分子等のように高耐久性であって等方性が高く偏光を乱しにくいプラスチックが提供されており、基材としてガラス以外を用いることも可能である。
<Base material>
As the substrate, glass (that is, substrate glass) is most suitable. This is because glass has the longest track record in that it has a durability of 12 years, which is the approximate life of a vehicle in an environment exposed to wind and rain, and does not disturb polarization. Recently, however, plastics such as norbornene polymers have been provided with high durability, isotropic plastics that do not disturb polarization, and the base materials other than glass have been provided. It is also possible to use it.

−基材ガラス−
前記基材ガラスとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、単層ガラス、合わせガラス、強化合わせガラス、複層ガラス、強化複層ガラス、合わせ複層ガラスなどが挙げられる。
このような基材ガラスを構成する板ガラスの種類としては、例えば透明板ガラス、型板ガラス、網入り板ガラス、線入り板ガラス、強化板ガラス、熱線反射板ガラス、熱線吸収板ガラス、Low−E板ガラス、その他各種板ガラスなどが挙げられる。
なお、前記基材ガラスは、透明ガラスであれば無色透明ガラス及び有色透明ガラスのどちらであってもよい。
前記基材ガラスの厚みは、特に制限はなく、目的に応じて適宜選択することができるが、2mm〜20mmが好ましく、4mm〜10mmがより好ましい。
上記ガラス板は、同じ種類のものが複数枚用いられてもよいし、2種類以上のものが併用されてもよい。
-Base glass-
There is no restriction | limiting in particular as said base glass, Although it can select suitably according to the objective, For example, a single layer glass, a laminated glass, a tempered laminated glass, a multilayer glass, a tempered multilayer glass, a laminated multilayer glass Etc.
As a kind of plate glass which constitutes such substrate glass, for example, transparent plate glass, mold plate glass, mesh plate glass, wire plate glass, tempered plate glass, heat ray reflection plate glass, heat ray absorption plate glass, Low-E plate glass, and other various plate glasses Is mentioned.
In addition, as long as the said base glass is transparent glass, either a colorless transparent glass and colored transparent glass may be sufficient.
There is no restriction | limiting in particular in the thickness of the said base glass, Although it can select suitably according to the objective, 2 mm-20 mm are preferable and 4 mm-10 mm are more preferable.
A plurality of the same types of glass plates may be used, or two or more types may be used in combination.

−合わせガラス−
前記合わせガラスは、2枚の板ガラスの間に中間層を介在させて一体化したものである。このような合わせガラスは、外部衝撃を受けて破損してもガラスの破片が飛散することがなく安全であるため、自動車等の乗り物のフロントガラス、建築物等の窓ガラスとして広く用いられている。自動車用合わせガラスの場合には、最近では軽量化を図るため相当薄いものが用いられており、1枚のガラスは厚みが1mm〜3mmであり、該ガラス2枚を厚みが0.3mm〜1mmの粘着層で貼り合わせて、合計厚み約3mm〜6mmの合わせガラスとしている。
-Laminated glass-
The laminated glass is integrated with an intermediate layer interposed between two plate glasses. Such a laminated glass is widely used as a windshield for vehicles such as automobiles and windows for buildings because it is safe because glass fragments do not scatter even if damaged by an external impact. . In the case of laminated glass for automobiles, recently, a considerably thin glass has been used in order to reduce the weight. One glass has a thickness of 1 mm to 3 mm, and the two glasses have a thickness of 0.3 mm to 1 mm. A laminated glass having a total thickness of about 3 mm to 6 mm is obtained by laminating with an adhesive layer.

前記2枚の板ガラスとしては、上述した各種板ガラスを目的に応じて適宜使用することができる。
前記中間層に用いられる熱可塑性樹脂としては、例えば、ポリビニルアセタール系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニル系樹脂、飽和ポリエステル系樹脂、ポリウレタン系樹脂、エチレン−酢酸ビニル共重合体などが挙げられる。これらの中でも、透明性、耐候性、強度、接着力等の諸性能のバランスに優れた中間層が得られることから、ポリビニルアセタール系樹脂が特に好ましい。
As the two plate glasses, the above-described various plate glasses can be appropriately used according to the purpose.
Examples of the thermoplastic resin used in the intermediate layer include polyvinyl acetal resins, polyvinyl alcohol resins, polyvinyl chloride resins, saturated polyester resins, polyurethane resins, and ethylene-vinyl acetate copolymers. . Among these, a polyvinyl acetal resin is particularly preferable because an intermediate layer having an excellent balance of various properties such as transparency, weather resistance, strength, and adhesive strength can be obtained.

前記ポリビニルアセタール系樹脂としては、特に制限はなく、目的に応じて適宜選択することができるが、ポリビニルアルコール(以下、PVAと略記することがある)とホルムアルデヒドとを反応させて得られるポリビニルホルマール樹脂、PVAとアセトアルデヒドとを反応させて得られる狭義のポリビニルアセタール樹脂、PVAとn−ブチルアルデヒドとを反応させて得られるポリビニルブチラール樹脂などが挙げられる。
前記ポリビニルアセタール系樹脂の合成に用いられるPVAとしては、特に制限はなく、目的に応じて適宜選択することができるが、平均重合度が200〜5,000のものが好ましく、500〜3,000のものがより好ましい。前記平均重合度が200未満であると、得られるポリビニルアセタール系樹脂を用いた中間層の強度が弱くなりすぎることがあり、5,000を超えると、得られるポリビニルアセタール系樹脂を成形する際に不具合が生じることがある。
前記ポリビニルアセタール系樹脂は、特に制限はなく、目的に応じて適宜選択することができるが、アセタール化度が40モル%〜85モル%であるものが好ましく、50モル%〜75モル%のものがより好ましい。前記アセタール化度が40モル%未満又は85モル%を超えるポリビニルアセタール系樹脂は反応機構上、合成が困難となることがある。前記アセタール化度は、JIS K6728に準拠して測定することができる。
There is no restriction | limiting in particular as said polyvinyl acetal type-resin, Although it can select suitably according to the objective, The polyvinyl formal resin obtained by making polyvinyl alcohol (it may abbreviate as PVA hereafter) and formaldehyde react. , Polyvinyl acetal resin in a narrow sense obtained by reacting PVA with acetaldehyde, polyvinyl butyral resin obtained by reacting PVA with n-butyraldehyde, and the like.
There is no restriction | limiting in particular as PVA used for the synthesis | combination of the said polyvinyl acetal type resin, Although it can select suitably according to the objective, A thing with an average degree of polymerization of 200-5,000 is preferable, 500-3,000. Are more preferred. When the average degree of polymerization is less than 200, the strength of the intermediate layer using the obtained polyvinyl acetal resin may be too weak, and when it exceeds 5,000, the resulting polyvinyl acetal resin is molded. Problems may occur.
The polyvinyl acetal resin is not particularly limited and may be appropriately selected depending on the intended purpose. The acetalization degree is preferably 40 mol% to 85 mol%, and preferably 50 mol% to 75 mol%. Is more preferable. Polyvinyl acetal resins having an acetalization degree of less than 40 mol% or more than 85 mol% may be difficult to synthesize due to the reaction mechanism. The degree of acetalization can be measured according to JIS K6728.

前記中間層には、前記熱可塑性樹脂以外にも、必要に応じて例えば可塑剤、顔料、無機酸化物、無機窒化物、接着性調整剤、カップリング剤、界面活性剤、酸化防止剤、熱安定剤、光安定剤、難燃剤、帯電防止剤、紫外線吸収剤、熱線遮蔽剤、耐湿性向上剤、導電性材料などを添加することができるし、上述の添加剤を含有する機能層を中間層の一部として積層してもよい。また、中間層の最表面に、例えば、特開2007−22089号公報に記載の方法によってエンボス加工を施しても、偏光層を始めとする機能層の性能には何ら問題はない。また、例えば、特開2008−37018号公報に記載されているような方法で、遮音特性を付与してもよい。   For the intermediate layer, in addition to the thermoplastic resin, if necessary, for example, a plasticizer, a pigment, an inorganic oxide, an inorganic nitride, an adhesion adjusting agent, a coupling agent, a surfactant, an antioxidant, a heat Stabilizers, light stabilizers, flame retardants, antistatic agents, ultraviolet absorbers, heat ray shielding agents, moisture resistance improvers, conductive materials, etc. can be added, and functional layers containing the above-mentioned additives are intermediate You may laminate | stack as a part of layer. Moreover, even if the outermost surface of the intermediate layer is embossed by the method described in Japanese Patent Application Laid-Open No. 2007-22089, there is no problem in the performance of the functional layer including the polarizing layer. Further, for example, sound insulation characteristics may be imparted by a method as described in JP 2008-37018 A.

本発明の偏光板は、映り込み防止、即ち可視光線反射率の低減に関する。したがって、本発明の効果を最大限に発現するためには、前記添加剤の可視光線重価平均透過率は、100%により近いことが好ましい。実際に合わせガラス用中間膜に用いられる上記添加剤の多くは、元々、各機能を発現しながらも、ガラスの色味に影響しないように、できる限り可視光線の波長域に吸収を持たせない設計となっているので、本発明においても、一般的に用いられている合わせガラス用中間膜添加剤の中から自由に選択して用いることが可能であるし、今後開発される機能性添加剤でも、可視光線の波長域に強い吸収や反射特性を持たない限り、基本的に共に用いることが可能であって、本発明による映り込み防止効果に悪影響は与えない。添加剤としては、例えば、特願2006−514110号明細書の段落番号〔0042〕〜〔0056〕に記載の可塑剤、接着力調整剤、紫外線吸収剤、特開2008−024538号公報(特願2006−197119号明細書)の段落番号〔0020〕〜〔0023〕、特願2006−531979号明細書の段落番号〔0023〕、〔0024〕に記載の赤外線遮蔽剤、特願2006−528948号明細書の段落番号〔0012〕〜〔0018〕に記載の耐湿性向上剤、などが挙げられる。   The polarizing plate of the present invention relates to prevention of reflection, that is, reduction of visible light reflectance. Therefore, in order to maximize the effects of the present invention, the visible light weight average transmittance of the additive is preferably closer to 100%. Many of the above-mentioned additives that are actually used in interlayer films for laminated glass originally exhibit each function, but do not absorb as much as possible in the wavelength range of visible light so as not to affect the color of the glass. Since it is designed, in the present invention, it can be used by freely selecting from commonly used interlayer additives for laminated glass, and functional additives to be developed in the future However, as long as they do not have strong absorption or reflection characteristics in the visible light wavelength range, they can be used together and do not adversely affect the anti-reflection effect according to the present invention. Examples of the additive include plasticizers, adhesive strength modifiers, ultraviolet absorbers described in paragraphs [0042] to [0056] of Japanese Patent Application No. 2006-514110, Japanese Patent Application Laid-Open No. 2008-024538 (Japanese Patent Application No. No. 2006-197119), paragraph numbers [0020] to [0023], Japanese Patent Application No. 2006-531979, paragraphs [0023] and [0024], and infrared screening agents described in Japanese Patent Application No. 2006-528948 And moisture resistance improvers described in paragraphs [0012] to [0018] of the book.

前記中間層の成形方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、熱可塑性樹脂及びその他の成分を含有する組成物を均一に混練りした後、押出し法、カレンダー法、プレス法、キャスティング法、インフレーション法等の従来公知の方法によりシート状に作製する方法などが挙げられる。
前記中間層の厚みは、特に制限はなく、目的に応じて適宜選択することができるが、0.3mm〜1.6mmが好ましい。
本発明においては、前記中間層が、ガラスとの接着性のよい前述の熱可塑性樹脂及び/又は機能性樹脂からなる複数の膜が積層された合わせガラス用中間膜であって、偏光膜をその複数膜の積層体の一部又は全部として含有することが生産性、耐久性などの点から好ましい。なお、前記偏光膜は合わせガラスの片方の表面に設けることもできる。
The method for forming the intermediate layer is not particularly limited and may be appropriately selected depending on the intended purpose.For example, a composition containing a thermoplastic resin and other components is uniformly kneaded and then extruded. And a method of producing a sheet by a conventionally known method such as a calendering method, a pressing method, a casting method, and an inflation method.
There is no restriction | limiting in particular in the thickness of the said intermediate | middle layer, Although it can select suitably according to the objective, 0.3 mm-1.6 mm are preferable.
In the present invention, the intermediate layer is an intermediate film for laminated glass in which a plurality of films made of the above-mentioned thermoplastic resin and / or functional resin having good adhesion to glass are laminated, and the polarizing film is It is preferable to contain it as a part or all of the laminate of a plurality of films from the viewpoints of productivity and durability. The polarizing film can also be provided on one surface of the laminated glass.

前記合わせガラスの作製方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、2枚の透明なガラス板の間に本発明の前記車両用前窓に用いられる偏光膜を中間層で挟み込み、この合わせガラス構成体を例えばゴムバッグのような真空バッグの中に入れ、この真空バッグを排気系に接続して、真空バッグ内の圧力が約−65〜−100kPaの減圧度となるように減圧吸引(脱気)しながら温度が約70℃〜110℃の予備接着を行った後、この予備接着された合わせガラス構成体をオートクレーブの中に入れ、温度120℃〜150℃、圧力0.98MPa〜1.47MPaの条件で加熱加圧して本接着を行うことにより、所望の合わせガラスを得ることができる。   The method for producing the laminated glass is not particularly limited and may be appropriately selected according to the purpose. For example, a polarizing film used for the vehicle front window of the present invention is provided between two transparent glass plates. The laminated glass structure is put in a vacuum bag such as a rubber bag, and the vacuum bag is connected to an exhaust system so that the pressure in the vacuum bag is about −65 to −100 kPa. After pre-adhering at a temperature of about 70 ° C. to 110 ° C. with vacuum suction (degassing) so as to be, the pre-adhered laminated glass structure is placed in an autoclave, and the temperature is 120 ° C. to 150 ° C. The desired laminated glass can be obtained by performing the main bonding under heat and pressure under the conditions of pressure 0.98 MPa to 1.47 MPa.

ここで、前記自動車用前窓に用いられる合わせガラスは、用いる板ガラスの常光の可視光線重価平均透過率(JIS R3106)が、85%以上100%未満であることが好ましく、90%以上100%未満であることがより好ましい。更に、合わせガラスの形態での常光の可視光線重価平均透過率は、70%以上85%以下となるように主として中間層の偏光層によって調整されていることが好ましく、70%により近いことが、映り込み防止の観点から、より好ましい。ここで、偏光層を含む本発明の合わせガラスの、常光の可視光線重価平均透過率は、上記合わせガラスの同一測定点において、入射する直線偏光の高吸収軸の角度を変えながら直線偏光透過率を測定し、直線偏光の重価平均透過率の最大値と最小値の平均を取ることで求められる。常光の可視光線重価平均透過率は、安全上、法規によって70%以上と定められており、85%以上となると、映り込み防止効果が十分に得られないことがある。また、合わせガラスの形態での厚みが3mm〜6mmであって、偏光特性に加えて、少なくとも紫外線吸収特性、熱線遮蔽性を有することが好ましい。紫外線吸収特性、熱線遮蔽性は、中間膜に付与してもよいし、ガラスに付与していてもよい。更には、合わせガラスの少なくとも一方の面に反射防止コーティングが施されていることがより好ましい。   Here, as for the laminated glass used for the said front window for motor vehicles, it is preferable that the visible light weight value average transmittance | permeability (JIS R3106) of the normal light of the plate glass to be used is 85% or more and less than 100%, 90% or more and 100%. More preferably, it is less. Further, the visible light weight average transmittance of ordinary light in the form of laminated glass is preferably adjusted mainly by the polarizing layer of the intermediate layer so as to be 70% or more and 85% or less, and is closer to 70%. From the viewpoint of preventing reflection, it is more preferable. Here, the visible light weight average transmittance of ordinary light of the laminated glass of the present invention including the polarizing layer is linearly polarized while changing the angle of the high absorption axis of the incident linearly polarized light at the same measurement point of the laminated glass. It is obtained by measuring the rate and taking the average of the maximum value and the minimum value of the weight average transmittance of linearly polarized light. The visible light weight average transmittance of ordinary light is set to 70% or more for safety, and if it is 85% or more, the effect of preventing reflection may not be sufficiently obtained. Moreover, it is preferable that the thickness in the form of a laminated glass is 3 mm to 6 mm and has at least ultraviolet absorption characteristics and heat ray shielding properties in addition to the polarization characteristics. The ultraviolet absorption property and the heat ray shielding property may be imparted to the intermediate film or may be imparted to the glass. Furthermore, it is more preferable that at least one surface of the laminated glass is provided with an antireflection coating.

<反射防止膜>
前記反射防止膜は、前記基材の両面、又は水平基準面と向き合う側の最表面に有することが好ましい。
<Antireflection film>
The antireflection film is preferably provided on both surfaces of the substrate or on the outermost surface facing the horizontal reference surface.

前記反射防止膜は、実使用上充分な耐久性、耐熱性を有し、例えば60度入射での反射率を5%以下に抑えることができるものであれば特に制限はなく、目的に応じて適宜選択することができるが、例えば、(1)微細な表面凹凸を形成した膜、(2)高屈折率膜と低屈折率膜を組み合わせた2層膜の構成、(3)中屈折率膜、高屈折率膜、及び低屈折率膜を順次積層した3層膜構成などが挙げられる。これらの中でも、(2)及び(3)が特に好ましい。
これら反射防止膜は、基材ガラス表面に直接ゾルゲル法、スパッタリング法、蒸着法、CVD法などで形成してもよい。また、透明支持体上にディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート、マイクログラビア法やエクストルージョンコート法による塗布により反射防止膜を形成し、基材ガラス表面に反射防止膜を粘着又は接着してもよい。
The antireflection film is not particularly limited as long as it has sufficient durability and heat resistance for practical use, and can suppress the reflectance at an incidence of 60 degrees to 5% or less, for example. For example, (1) a film in which fine surface irregularities are formed, (2) a structure of a two-layer film in which a high refractive index film and a low refractive index film are combined, and (3) a medium refractive index film And a three-layer film structure in which a high refractive index film and a low refractive index film are sequentially laminated. Among these, (2) and (3) are particularly preferable.
These antireflection films may be directly formed on the surface of the substrate glass by a sol-gel method, a sputtering method, a vapor deposition method, a CVD method, or the like. Moreover, an antireflection film is formed on the transparent support by dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, micro gravure method or extrusion coating method, An antireflection film may be adhered or adhered to the surface of the base glass.

前記反射防止膜は、上述したとおり、透明支持体上に低屈折率層より高い屈折率を有する少なくとも一層の層(高屈折率層)、及び低屈折率層(最外層)の順序の層構成からなることが好ましい。
低屈折率層より高い屈折率を有する少なくとも1層を2層とする場合には、透明支持体上に中屈折率層、高屈折率層、及び低屈折率層(最外層)の順序の層構成からなることが好ましい。このような構成の反射防止膜は、「高屈折率層の屈折率>中屈折率層の屈折率>透明支持体の屈折率>低屈折率層の屈折率」の関係を満足する屈折率を有するように設計される。なお、各屈折率層の屈折率は相対的なものである。
As described above, the antireflection film has a layer structure in the order of at least one layer (high refractive index layer) having a higher refractive index than the low refractive index layer and low refractive index layer (outermost layer) on the transparent support. Preferably it consists of.
When at least one layer having a refractive index higher than that of the low refractive index layer is two, the layers are in the order of the middle refractive index layer, the high refractive index layer, and the low refractive index layer (outermost layer) on the transparent support. It is preferable to consist of a structure. The antireflection film having such a structure has a refractive index satisfying the relationship of “refractive index of high refractive index layer> refractive index of medium refractive index layer> refractive index of transparent support> refractive index of low refractive index layer”. Designed to have. The refractive index of each refractive index layer is relative.

−透明支持体−
前記透明支持体としてプラスチックフィルムを用いることが好ましい。このプラスチックフィルムの材料の例としては、セルロースアシレート、ポリアミド、ポリカーボネート、ポリエステル(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリスチレン、ポリオレフィン、ポリスルホン、ポリエーテルスルホン、ポリアリレート、ポリエーテルイミド、ポリメチルメタクリレート、ポリエーテルケトンなどが挙げられる。
-Transparent support-
It is preferable to use a plastic film as the transparent support. Examples of plastic film materials include cellulose acylate, polyamide, polycarbonate, polyester (eg, polyethylene terephthalate, polyethylene naphthalate, etc.), polystyrene, polyolefin, polysulfone, polyethersulfone, polyarylate, polyetherimide, polymethyl. Examples include methacrylate and polyether ketone.

−高屈折率層及び中屈折率層−
反射防止膜の高い屈折率を有する層は、平均粒径100nm以下の高屈折率の無機化合物超微粒子及びマトリックスバインダーを含有する硬化性膜からなることが好ましい。
高屈折率の無機化合物微粒子としては、屈折率1.65以上の無機化合物が挙げられ、好ましくは屈折率1.9以上のものが挙げられる。例えば、Ti、Zn、Sb、Sn、Zr、Ce、Ta、La、In等の酸化物、これらの金属原子を含む複合酸化物等が挙げられる。
特に好ましくは、Co、Zr、Alから選ばれる少なくとも1つの元素を含有する二酸化チタンを主成分とする無機微粒子(以下、「特定の酸化物」と称することもある)が挙げられ、特に好ましい元素はCoである。
Tiに対する、Co、Al、Zrの総含有量は、Tiに対して0.05質量%〜30質量%であることが好ましく、0.1質量%〜10質量%がより好ましく、0.2質量%〜7質量%が更に好ましく、0.3質量%〜5質量%が特に好ましく、0.5質量%〜3質量%が最も好ましい。
Co、Al、Zrは、二酸化チタンを主成分とする無機微粒子の内部や表面に存在する。Co、Al、Zrが二酸化チタンを主成分とする無機微粒子の内部に存在することがより好ましく、内部と表面の両方に存在することが最も好ましい。これらの特定の金属元素は、酸化物として存在してもよい。
また、他の好ましい無機粒子として、チタン元素と酸化物が屈折率1.95以上となる金属元素から選ばれる少なくとも1種の金属元素(以下、「Met」とも略称することもある)との複合酸化物の粒子で、かつ該複合酸化物は、Coイオン、Zrイオン、及びAlイオンから選ばれる金属イオンの少なくとも1種がドープされてなる無機微粒子(「特定の複酸化物」と称することもある)が挙げられる。
ここで、該酸化物の屈折率が1.95以上となる金属酸化物の金属元素としては、Ta、Zr、In、Nd、Sb,Sn、Biなど挙げられ、これらの中でも、Ta、Zr、Sn、Biが特に好ましい。
複合酸化物にドープされる金属イオンの含有量は、複合酸化物を構成する全金属[Ti+Met]量に対して、25質量%を超えない範囲で含有することが屈折率維持の観点から好ましく、0.05質量%〜10質量%がより好ましく、0.1質量%〜5質量%が更に好ましく、0.3質量%〜3質量%が最も好ましい。
ドープした金属イオンは、金属イオン、及び金属原子のいずれで存在してもよく、複合酸化物の表面から内部まで適宜に存在することが好ましい。表面と内部との両方に存在することがより好ましい。
-High refractive index layer and medium refractive index layer-
The layer having a high refractive index of the antireflection film is preferably composed of a curable film containing inorganic compound ultrafine particles having a high refractive index having an average particle diameter of 100 nm or less and a matrix binder.
Examples of the high refractive index inorganic compound fine particles include inorganic compounds having a refractive index of 1.65 or more, preferably those having a refractive index of 1.9 or more. Examples thereof include oxides such as Ti, Zn, Sb, Sn, Zr, Ce, Ta, La, and In, and composite oxides containing these metal atoms.
Particularly preferred are inorganic fine particles mainly composed of titanium dioxide containing at least one element selected from Co, Zr, and Al (hereinafter sometimes referred to as “specific oxide”), and particularly preferred elements. Is Co.
The total content of Co, Al, and Zr with respect to Ti is preferably 0.05% by mass to 30% by mass with respect to Ti, more preferably 0.1% by mass to 10% by mass, and 0.2% by mass. % To 7% by mass is more preferable, 0.3% to 5% by mass is particularly preferable, and 0.5% to 3% by mass is most preferable.
Co, Al, and Zr are present inside and on the surface of inorganic fine particles mainly composed of titanium dioxide. More preferably, Co, Al, and Zr are present inside the inorganic fine particles mainly composed of titanium dioxide, and most preferably present both inside and on the surface. These specific metal elements may exist as oxides.
As another preferable inorganic particle, a composite of titanium element and at least one metal element selected from metal elements whose oxide has a refractive index of 1.95 or more (hereinafter sometimes abbreviated as “Met”). The oxide particles and the composite oxide are inorganic fine particles doped with at least one of metal ions selected from Co ions, Zr ions, and Al ions (also referred to as “specific composite oxides”). There is).
Here, examples of the metal element of the metal oxide in which the refractive index of the oxide is 1.95 or more include Ta, Zr, In, Nd, Sb, Sn, and Bi. Among these, Ta, Zr, Sn and Bi are particularly preferable.
The content of the metal ions doped into the composite oxide is preferably from the viewpoint of maintaining the refractive index, in a range not exceeding 25 mass% with respect to the total amount of metal [Ti + Met] constituting the composite oxide, 0.05 mass%-10 mass% are more preferable, 0.1 mass%-5 mass% are still more preferable, and 0.3 mass%-3 mass% are the most preferable.
The doped metal ion may exist as either a metal ion or a metal atom, and preferably exists appropriately from the surface to the inside of the composite oxide. More preferably, it exists both on the surface and inside.

上記のような超微粒子とするには、粒子表面を表面処理剤で処理する方法、高屈折率粒子をコアとしたコアシェル構造とする方法、及び、特定の分散剤を併用する方法等が挙げられる。
粒子表面を表面処理剤で処理する方法に挙げられる表面処理剤としては、例えば、特開平11−295503号公報、特開平11−153703号公報、及び特開2000−9908号公報に記載されたシランカップリング剤等、特開2001−310432号公報等に記載されたアニオン性化合物又は有機金属カップリング剤が開示されている。
また、高屈折率粒子をコアとしたコアシェル構造とする方法としては、特開2001−166104号公報、及び米国特許公開2003/0202137号公報等に記載の技術を用いることができる。
更に、特定の分散剤を併用する方法は、特開平11−153703号公報、米国特許第6210858号明細書、及び特開2002−2776069号公報等に記載の技術が挙げられる。
Examples of the ultrafine particles as described above include a method of treating the particle surface with a surface treatment agent, a method of forming a core-shell structure with a high refractive index particle as a core, and a method of using a specific dispersant in combination. .
Examples of the surface treatment agent exemplified in the method of treating the particle surface with the surface treatment agent include silanes described in JP-A Nos. 11-295503, 11-153703, and 2000-9908. An anionic compound or an organometallic coupling agent described in JP-A No. 2001-310432 or the like is disclosed.
As a method for forming a core-shell structure with high refractive index particles as a core, techniques described in Japanese Patent Application Laid-Open No. 2001-166104, US Patent Publication No. 2003/0202137, and the like can be used.
Further, examples of the method of using a specific dispersant in combination include the techniques described in JP-A No. 11-153703, US Pat. No. 6,210,858, JP-A No. 2002-276069, and the like.

マトリックスを形成する材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば熱可塑性樹脂、硬化性樹脂などが挙げられる。
更に、ラジカル重合性及び/又はカチオン重合性の重合性基を少なくとも2個以上含有の多官能性化合物含有組成物、加水分解性基を含有の有機金属化合物及びその部分縮合体組成物から選ばれる少なくとも1種の組成物が好ましい。例えば、特開2000−47004号公報、特開2001−315242号公報、特開2001−31871号公報、特開2001−296401号公報等に記載の化合物が挙げられる。
また、金属アルコキシドの加水分解縮合物から得られるコロイド状金属酸化物と金属アルコキシド組成物から得られる硬化性膜も好ましい。例えば、特開2001−293818号公報等に記載されているものが挙げられる。
高屈折率層の屈折率は、1.70〜2.20であることが好ましい。高屈折率層の厚みは、5nm〜10μmであることが好ましく、10nm〜1μmであることが更に好ましい。
中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.50〜1.70であることが好ましい。中屈折率層の厚みは、5nm〜10μmであることが好ましく、10nm〜1μmであることが更に好ましい。
There is no restriction | limiting in particular as the material which forms a matrix, According to the objective, it can select suitably, For example, a thermoplastic resin, curable resin, etc. are mentioned.
Furthermore, it is selected from a polyfunctional compound-containing composition containing at least two radically polymerizable and / or cationically polymerizable groups, an organometallic compound containing a hydrolyzable group, and a partial condensate composition thereof. At least one composition is preferred. Examples thereof include compounds described in JP-A 2000-47004, JP-A 2001-315242, JP-A 2001-31871, JP-A 2001-296401, and the like.
Further, a curable film obtained from a colloidal metal oxide obtained from a hydrolyzed condensate of metal alkoxide and a metal alkoxide composition is also preferred. Examples thereof include those described in JP-A No. 2001-293818.
The refractive index of the high refractive index layer is preferably 1.70 to 2.20. The thickness of the high refractive index layer is preferably 5 nm to 10 μm, and more preferably 10 nm to 1 μm.
The refractive index of the middle refractive index layer is adjusted to be a value between the refractive index of the low refractive index layer and the refractive index of the high refractive index layer. The refractive index of the middle refractive index layer is preferably 1.50 to 1.70. The thickness of the medium refractive index layer is preferably 5 nm to 10 μm, and more preferably 10 nm to 1 μm.

−低屈折率層−
前記低屈折率層は、高屈折率層の上に順次積層してなることが好ましい。前記低屈折率層の屈折率は、1.20〜1.55であることが好ましく、1.30〜1.50がより好ましい。
耐擦傷性、防汚性を有する最外層として構築することが好ましい。耐擦傷性を大きく向上させる手段として表面への滑り性付与が有効で、従来公知のシリコーンの導入、フッ素の導入等からなる薄膜層の手段を適用できる。
-Low refractive index layer-
It is preferable that the low refractive index layer is sequentially laminated on the high refractive index layer. The refractive index of the low refractive index layer is preferably 1.20 to 1.55, more preferably 1.30 to 1.50.
It is preferable to construct as the outermost layer having scratch resistance and antifouling property. As a means for greatly improving the scratch resistance, imparting slipperiness to the surface is effective, and conventionally known thin film layer means such as introduction of silicone or introduction of fluorine can be applied.

含フッ素化合物の屈折率は1.35〜1.50が好ましく、1.36〜1.47がより好ましい。また、含フッ素化合物はフッ素原子を35質量%〜80質量%の範囲で含む架橋性、若しくは重合性の官能基を含む化合物が好ましい。
例えば、特開平9−222503号公報の段落番号[0018]〜[0026]、特開平11−38202号公報の段落番号[0019]〜[0030]、特開2001−40284号公報の段落番号[0027]〜[0028]、特開2000−284102号公報、及び特開2004−45462号公報等に記載の化合物が挙げられる。
シリコーン化合物としてはポリシロキサン構造を有する化合物であり、高分子鎖中に硬化性官能基又は重合性官能基を含有して、膜中で橋かけ構造を有するものが好ましい。例えば、反応性シリコーン〔例えばサイラプレーン(チッソ株式会社製)、両末端にシラノール基含有のポリシロキサン(特開平11−258403号公報等)〕などが挙げられる。
The refractive index of the fluorine-containing compound is preferably 1.35 to 1.50, more preferably 1.36 to 1.47. The fluorine-containing compound is preferably a compound containing a crosslinkable or polymerizable functional group containing fluorine atoms in the range of 35% by mass to 80% by mass.
For example, paragraph numbers [0018] to [0026] in JP-A-9-222503, paragraph numbers [0019] to [0030] in JP-A-11-38202, and paragraph number [0027] in JP-A-2001-40284. ] To [0028], JP-A 2000-284102, JP-A 2004-45462, and the like.
The silicone compound is a compound having a polysiloxane structure, preferably containing a curable functional group or a polymerizable functional group in the polymer chain and having a crosslinked structure in the film. For example, reactive silicone [for example, Silaplane (manufactured by Chisso Corporation), silanol group-containing polysiloxane at both ends (JP-A-11-258403, etc.)] and the like can be mentioned.

架橋又は重合性基を有する含フッ素及び/又はシロキサンのポリマーの架橋又は重合反応は、重合開始剤、増感剤等を含有する最外層を形成するための塗布組成物を塗布と同時又は塗布後に光照射や加熱することにより実施することが好ましい。前記重合開始剤、及び前記増感剤としては、従来公知のものを用いることができる。   The crosslinking or polymerization reaction of the fluorine-containing and / or siloxane polymer having a crosslinking or polymerizable group is performed simultaneously with or after the application of the coating composition for forming the outermost layer containing a polymerization initiator, a sensitizer and the like. It is preferable to carry out by light irradiation or heating. A conventionally well-known thing can be used as the said polymerization initiator and the said sensitizer.

また、シランカップリング剤等の有機金属化合物と特定のフッ素含有炭化水素基含有のシランカップリング剤とを触媒共存下に縮合反応で硬化するゾルゲル硬化膜も好ましい。
例えば、ポリフルオロアルキル基含有シラン化合物又はその部分加水分解縮合物(特開昭58−142958号公報、特開昭58−147483号公報、特開昭58−147484号公報、特開平9−157582号公報、特開平11−106704号公報等に記載の化合物)、フッ素含有長鎖基であるポリ「パーフルオロアルキルエーテル」基を含有するシリル化合物(特開2000−117902号公報、特開2001−48590号公報、特開2002−53804号公報に記載の化合物等)などが挙げられる。
前記低屈折率層は、上記以外の添加剤として充填剤(例えば、二酸化珪素(シリカ)、含フッ素粒子(フッ化マグネシウム,フッ化カルシウム,フッ化バリウム))等の一次粒子平均径が1nm〜150nmの低屈折率無機化合物を含有することが好ましい。
特に、前記低屈折率層はその屈折率上昇をより一層少なくするために、中空の無機微粒子を用いることが好ましい。中空の無機微粒子は屈折率が1.17〜1.40が好ましく、1.17〜1.37がより好ましく、1.17〜1.35が更に好ましい。ここでの屈折率は粒子全体としての屈折率を表し、中空の無機微粒子を形成している外殻のみの屈折率を表すものではない。
前記低屈折率層中の中空の無機微粒子の平均粒径は、該低屈折率層の厚みの30%以上100%以下であることが好ましく、前記低屈折率層の厚みの35%以上80%以下がより好ましく、前記低屈折率層の厚みの40%以上60%以下が更に好ましい。
即ち、前記低屈折率層の厚みが100nmであれば、無機微粒子の粒径は30nm以上100nm以下が好ましく、35nm以上80nm以下がより好ましく、40nm以上60nm以下が更に好ましい。
なお、これら中空の無機微粒子の屈折率はアッベ屈折率計(アタゴ株式会社製)にて測定を行うことができる。
Also preferred is a sol-gel cured film in which an organometallic compound such as a silane coupling agent and a specific fluorine-containing hydrocarbon group-containing silane coupling agent are cured by a condensation reaction in the presence of a catalyst.
For example, a polyfluoroalkyl group-containing silane compound or a partially hydrolyzed condensate thereof (JP 58-142958, JP 58-147483, JP 58-147484, JP 9-157582). And silyl compounds containing a poly "perfluoroalkyl ether" group which is a fluorine-containing long chain group (JP 2000-117902 A, JP 2001-48590 A). And the compounds described in JP-A-2002-53804).
The low-refractive index layer has an average primary particle diameter of 1 nm to 1 nm as an additive other than the above, such as a filler (for example, silicon dioxide (silica), fluorine-containing particles (magnesium fluoride, calcium fluoride, barium fluoride)). It is preferable to contain a 150 nm low refractive index inorganic compound.
In particular, it is preferable to use hollow inorganic fine particles in order to further reduce the increase in the refractive index of the low refractive index layer. The hollow inorganic fine particles preferably have a refractive index of 1.17 to 1.40, more preferably 1.17 to 1.37, and still more preferably 1.17 to 1.35. The refractive index here represents the refractive index of the entire particle, and does not represent the refractive index of only the outer shell forming the hollow inorganic fine particles.
The average particle diameter of the hollow inorganic fine particles in the low refractive index layer is preferably 30% or more and 100% or less of the thickness of the low refractive index layer, and 35% or more and 80% of the thickness of the low refractive index layer. The following is more preferable, and the thickness of the low refractive index layer is more preferably 40% or more and 60% or less.
That is, when the thickness of the low refractive index layer is 100 nm, the particle size of the inorganic fine particles is preferably 30 nm to 100 nm, more preferably 35 nm to 80 nm, and further preferably 40 nm to 60 nm.
The refractive index of these hollow inorganic fine particles can be measured with an Abbe refractometer (manufactured by Atago Co., Ltd.).

他の添加剤としては、特開平11−3820号公報の段落番号[0020]〜[0038]に記載の有機微粒子等、シランカップリング剤、滑り剤、界面活性剤等を含有することができる。   As other additives, organic fine particles described in paragraphs [0020] to [0038] of JP-A-11-3820, silane coupling agents, slip agents, surfactants, and the like can be contained.

前記低屈折率層が最外層の下層に位置する場合、低屈折率層は気相法(例えば真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等)により形成されてもよいが、安価に製造できる点で、塗布法が好ましい。
前記低屈折率層の厚みは、30nm〜200nmであることが好ましく、50nm〜150nmであることがより好ましく、60nm〜120nmであることが更に好ましい。
When the low refractive index layer is located under the outermost layer, the low refractive index layer may be formed by a vapor phase method (for example, a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, etc.) The coating method is preferable because it can be manufactured at a low cost.
The thickness of the low refractive index layer is preferably 30 nm to 200 nm, more preferably 50 nm to 150 nm, and still more preferably 60 nm to 120 nm.

前記車両用前窓におけるその他の層としては、必要に応じて例えば、ハードコート層、前方散乱層、プライマー層、帯電防止層、下塗り層、保護層等を設けてもよい。   As other layers in the vehicle front window, for example, a hard coat layer, a forward scattering layer, a primer layer, an antistatic layer, an undercoat layer, a protective layer, and the like may be provided as necessary.

<車両用前窓の用途等>
本発明の車両用前窓は、以上説明したように、基材面と水平基準面とが交わる線に対して高吸収軸が一定角度φ傾いた偏光膜を有し、優れた光線の反射抑制効果を有するので、各種車両用前窓として広く用いることができるが、特に、運転者の座席位置が前窓の中心から左右どちらかにずれた位置にあり(運転席が車両進行方向の右側、いわゆる右ハンドルの場合(図3A)と左ハンドル(図3B)で設定が逆になる)、前窓の傾斜角が小さい自動車の前窓に用いることが、車外側反射を少なくして、車内の筐体の反射像映り込みを防止できる点から特に好適である。
<Applications for front windows for vehicles>
As described above, the vehicle front window of the present invention has a polarizing film whose high absorption axis is inclined by a certain angle φ with respect to the line where the base material surface and the horizontal reference surface intersect, and has excellent light beam reflection suppression. Because it has an effect, it can be widely used as a front window for various vehicles. In particular, the driver's seat position is shifted to the left or right from the center of the front window (the driver seat is on the right side in the vehicle traveling direction, In the case of the so-called right steering wheel (FIG. 3A) and the left steering wheel (FIG. 3B), the setting is reversed.) This is particularly preferable from the viewpoint that reflection of the casing can be prevented from being reflected.

本発明の車両用前窓は、以上説明したように、自動車等の車両の前窓に用いた場合には、車内のダッシュボード等の筐体の反射像や外灯等の映り込みを防止することができ、運転者の安全視界が確保される。また、従来は用いることのできなかった明るい色や絵柄の付いた意匠性の高いダッシュボードを用いることが可能になる。更に、自車の前窓と対向車の前窓とは偏光膜の高透過率方向が平行ではなくなるため、偏光膜を水平に置いた場合よりも、対向車内の様子が見えづらくなり、相互のプライバシーが守られるという利点も生まれる。   As described above, when the vehicle front window of the present invention is used for the front window of a vehicle such as an automobile, it prevents reflection of a housing such as a dashboard in the vehicle or reflection of an external light or the like. And the driver's safety view is secured. In addition, it is possible to use a highly designable dashboard with bright colors and patterns that could not be used conventionally. Furthermore, since the high transmittance direction of the polarizing film is not parallel between the front window of the own vehicle and the front window of the oncoming vehicle, it is more difficult to see the inside of the oncoming vehicle than when the polarizing film is placed horizontally. There is also an advantage that privacy is protected.

以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

なお、以下の実施例及び比較例において、自動車前窓そのものの入射光の反射率を分光的に測定することは、その大きさのために困難であるので、分光器で測定可能な大きさ(縦50mm×横50mm、厚み1mm)のガラスを用いて行った。   In the following examples and comparative examples, it is difficult to spectroscopically measure the reflectance of the incident light on the front window of the automobile itself because of its size. The measurement was performed using glass having a length of 50 mm × width of 50 mm and a thickness of 1 mm.

(実施例1)
−偏光板、φ15度−
ポリビニルアルコールフィルムを、室温の水に60秒間浸した後に、40℃のヨウ素(和光純薬工業株式会社製、0.033質量%)、及びヨウ化カリウム(和光純薬工業株式会社製、0.33質量%)水溶液に10秒間浸した。
次いで、60℃のホウ酸(和光純薬工業株式会社製、4.0質量%)、及びヨウ化カリウム(和光純薬工業株式会社製、4.0質量%)水溶液に60秒間浸し、5倍に延伸して、乾燥させて、偏光膜を作製した。
次に、白板ガラス(松浪硝子工業株式会社製、0050−JFL)の片面に、水平基準面と基材面が交わる線と偏光膜の高吸収軸との角度φが15度となるように、偏光膜をパナック株式会社製の粘着剤PD−S1を用い、貼り付けて、偏光膜付きガラスを作製した。
得られた偏光膜付きガラスの反射率を、表1の入射角、及び入射光線のS偏光軸と偏光膜の高吸収軸とがなす角βで、以下のようにして測定した。結果を表1に示す。また、反射防止コーティングなしの各前窓材の比較結果を表2、角度φの違いの比較結果を表4に示す。
Example 1
-Polarizing plate, φ15 degrees-
After immersing the polyvinyl alcohol film in water at room temperature for 60 seconds, 40 ° C. iodine (Wako Pure Chemical Industries, Ltd., 0.033 mass%) and potassium iodide (Wako Pure Chemical Industries, Ltd. (33% by mass) in an aqueous solution for 10 seconds.
Next, it is immersed in an aqueous solution of boric acid (4.0% by mass, manufactured by Wako Pure Chemical Industries, Ltd.) and potassium iodide (4.0% by mass, manufactured by Wako Pure Chemical Industries, Ltd.) at 60 ° C. for 60 seconds, 5 times. And then dried to produce a polarizing film.
Next, on one side of white plate glass (manufactured by Matsunami Glass Industrial Co., Ltd., 0050-JFL), the angle φ between the line where the horizontal reference surface and the substrate surface intersect and the high absorption axis of the polarizing film is 15 degrees. A polarizing film was attached using a pressure-sensitive adhesive PD-S1 manufactured by Panac Co., Ltd. to produce a glass with a polarizing film.
The reflectance of the obtained glass with a polarizing film was measured in the following manner using the incident angle in Table 1 and the angle β formed by the S-polarization axis of the incident light and the high absorption axis of the polarizing film. The results are shown in Table 1. Table 2 shows the comparison results of the front window materials without the antireflection coating, and Table 4 shows the comparison results of the difference in the angle φ.

<ガラスサンプルの反射率の測定>
傾斜角δが35度である自動車前窓より代表点を6点選び(図4参照)、その点で反射して運転者の目に入る光線の入射角と、入射光線のS偏光軸と偏光膜の高吸収軸とがなす角β(0度≦β≦90度)を表1に示すように求め、実施例1の絶対反射率を、紫外・可視分光光度計(日本分光株式会社製、V−560)、及び絶対反射率測定ユニット(日本分光株式会社製、ARV−474S)を用いて測定した。
なお、それぞれの反射率は、反射防止層がある場合には反射防止層側を入射面とし、反射防止層がない場合はガラス側を入射面として測定を行った。また、反射率は、白板ガラス及び反射防止コーティングを施した白板ガラスは650nm、その他は透過率が70%となる波長の光で測定した。
<Measurement of reflectance of glass sample>
Six representative points are selected from the front window of the car having an inclination angle δ of 35 degrees (see FIG. 4), the incident angle of the light beam reflected at that point and entering the driver's eyes, the S-polarization axis and the polarization of the incident light beam. The angle β (0 ° ≦ β ≦ 90 °) formed by the high absorption axis of the film was determined as shown in Table 1, and the absolute reflectance of Example 1 was measured using an ultraviolet / visible spectrophotometer (manufactured by JASCO Corporation, V-560) and an absolute reflectance measurement unit (JAV Corp., ARV-474S).
Each reflectance was measured by using the antireflection layer side as the incident surface when the antireflection layer is provided, and using the glass side as the incident surface when there is no antireflection layer. The reflectance was measured with light having a wavelength at which the white plate glass and the white plate glass provided with the antireflection coating had a wavelength of 650 nm, and the transmittance was 70%.

(実施例2)
−偏光板、反射防止コーティング、φ15度−
白板ガラス(松浪硝子工業株式会社製、0050−JFL)に、蒸着によってMgFの反射防止層を設けて作製した反射防止ガラスの反射防止層を設けていない側の面に、水平基準面と基材面が交わる線と偏光膜の高吸収軸との角度φが15度となるようにして、実施例1と同じ偏光膜を貼り付けて、偏光膜付き反射防止ガラスを作製した。
得られた偏光膜付き反射防止ガラスの反射率を、表1の入射角、及び入射光線のS偏光軸と偏光膜の高吸収軸とがなす角βで、実施例1と同様にして測定した。結果を表1、反射防止コーティングありの各前窓材の比較結果を表3に示す。
(Example 2)
-Polarizing plate, antireflection coating, φ15 degrees-
A horizontal reference plane and a base are formed on the side of the antireflection glass that is prepared by providing an antireflection layer of MgF 2 by vapor deposition on white plate glass (manufactured by Matsunami Glass Industrial Co., Ltd., 0050-JFL). The same polarizing film as in Example 1 was attached so that the angle φ between the line where the material surfaces intersected and the high absorption axis of the polarizing film was 15 degrees, to produce an antireflection glass with a polarizing film.
The reflectance of the obtained antireflection glass with a polarizing film was measured in the same manner as in Example 1 with the incident angle shown in Table 1 and the angle β formed between the S-polarization axis of incident light and the high absorption axis of the polarizing film. . The results are shown in Table 1, and the comparison results of the front window materials with antireflection coating are shown in Table 3.

(実施例3)
−偏光板、φ25度−
白板ガラス(松浪硝子工業株式会社製、0050−JFL)に、水平基準面と基材面が交わる線と偏光膜の高吸収軸との角度φが25度となるようにして、実施例1と同じ偏光膜を貼り付けて偏光膜付き反射防止ガラスを作製した。
得られた偏光膜付きガラスの反射率を、表1の入射角、及び入射光線のS偏光軸と偏光膜の高吸収軸とがなす角βで、実施例1と同様にして測定した。結果を表1及び表4に示す。
(Example 3)
-Polarizing plate, φ25 degrees-
In Example 1 with white plate glass (manufactured by Matsunami Glass Industrial Co., Ltd., 0050-JFL) such that the angle φ between the line where the horizontal reference plane and the substrate surface intersect and the high absorption axis of the polarizing film is 25 degrees. The same polarizing film was affixed to produce an antireflection glass with a polarizing film.
The reflectance of the obtained glass with a polarizing film was measured in the same manner as in Example 1 with the incident angle shown in Table 1 and the angle β formed by the S polarization axis of the incident light beam and the high absorption axis of the polarizing film. The results are shown in Tables 1 and 4.

(実施例4)
−偏光板、φ10度−
白板ガラス(松浪硝子工業株式会社製、0050−JFL)に、水平基準面と基材面が交わる線と偏光膜の高吸収軸との角度φが10度となるようにして、実施例1と同じ偏光膜を貼り付けて偏光膜付き反射防止ガラスを作製した。
得られた偏光膜付きガラスの反射率を、表1の入射角、及び入射光線のS偏光軸と偏光膜の高吸収軸とがなす角βで、実施例1と同様にして測定した。結果を表1及び表4に示す。
Example 4
-Polarizing plate, φ10 degrees-
In Example 1 with white plate glass (manufactured by Matsunami Glass Industrial Co., Ltd., 0050-JFL) such that the angle φ between the line where the horizontal reference plane and the substrate plane intersect and the high absorption axis of the polarizing film is 10 degrees. The same polarizing film was affixed to produce an antireflection glass with a polarizing film.
The reflectance of the obtained glass with a polarizing film was measured in the same manner as in Example 1 with the incident angle shown in Table 1 and the angle β formed by the S polarization axis of the incident light beam and the high absorption axis of the polarizing film. The results are shown in Tables 1 and 4.

(実施例5)
−偏光板、φ35度−
白板ガラス(松浪硝子工業株式会社製、0050−JFL)に、水平基準面と基材面が交わる線と偏光膜の高吸収軸との角度φが35度となるようにして、実施例1と同じ偏光膜を貼り付けて偏光膜付き反射防止ガラスを作製した。
得られた偏光膜付きガラスの反射率を、表1の入射角、及び入射光線のS偏光軸と偏光膜の高吸収軸とがなす角βで、実施例1と同様にして測定した。結果を表1及び表4に示す。
(Example 5)
-Polarizing plate, φ35 degrees-
In Example 1 with white plate glass (manufactured by Matsunami Glass Industrial Co., Ltd., 0050-JFL), the angle φ between the line where the horizontal reference plane and the substrate surface intersect and the high absorption axis of the polarizing film is 35 degrees. The same polarizing film was affixed to produce an antireflection glass with a polarizing film.
The reflectance of the obtained glass with a polarizing film was measured in the same manner as in Example 1 with the incident angle shown in Table 1 and the angle β formed by the S polarization axis of the incident light beam and the high absorption axis of the polarizing film. The results are shown in Tables 1 and 4.

(比較例1)
白板ガラス(松浪硝子工業株式会社製、0050−JFL)の反射率を、表1の入射角で測定した。表2に示す。
(Comparative Example 1)
The reflectance of white plate glass (manufactured by Matsunami Glass Industry Co., Ltd., 0050-JFL) was measured at the incident angle shown in Table 1. It shows in Table 2.

(比較例2)
−白板ガラス、反射防止コーティング−
白板ガラス(松浪硝子工業株式会社製、0050−JFL)の片面に、蒸着によってMgFの反射防止層を設けて作製した反射防止ガラスの反射率を、表1の入射角で測定した。結果を表3に示す。
(Comparative Example 2)
-White plate glass, anti-reflection coating-
The reflectance of the antireflection glass produced by providing an antireflection layer of MgF 2 by vapor deposition on one side of white plate glass (manufactured by Matsunami Glass Industrial Co., Ltd., 0050-JFL) was measured at the incident angle shown in Table 1. The results are shown in Table 3.

(比較例3)
−等方性着色膜−
アクリル系樹脂(東亞合成株式会社、アロンS1006)25質量%、及び有機色素(株式会社林原生物化学研究所製、G205)0.004質量%をトルエンに溶解し、該溶液をトリアセチルセルロースフィルムに塗布し、乾燥させて、等方性着色膜を作製した。
次に、白板ガラス(松浪硝子工業株式会社製、0050−JFL)の片面に、等方性着色膜を貼り付け、着色膜付きガラスを作製した。
得られた着色膜付きガラスの反射率を、表1の入射角で測定した。結果を表2に示す。
(Comparative Example 3)
-Isotropic colored film-
25% by mass of acrylic resin (Toagosei Co., Ltd., Aron S1006) and 0.004% by mass of organic dye (Hayashibara Biochemical Laboratories, Inc., G205) are dissolved in toluene, and the solution is made into a triacetyl cellulose film. It was applied and dried to produce an isotropic colored film.
Next, an isotropic colored film was attached to one side of white plate glass (manufactured by Matsunami Glass Industrial Co., Ltd., 0050-JFL) to produce a glass with a colored film.
The reflectance of the obtained glass with a colored film was measured at the incident angle shown in Table 1. The results are shown in Table 2.

(比較例4)
−等方性着色膜、反射防止コーティング−
白板ガラス(松浪硝子工業株式会社製、0050−JFL)の片面に、蒸着によってMgFの反射防止層を設けて作製した反射防止ガラスの、反射防止層を設けていない側の面に前記等方性着色膜を貼り付けることによって作製した、着色膜貼り付け反射防止ガラスの反射率を、表1の入射角で測定した。結果を表3に示す。
(Comparative Example 4)
-Isotropic colored film, antireflection coating-
White plate glass (Matsunami Glass Industries, Ltd., 0050-JFL) on one side of the isotropic antireflection layer of MgF 2 antireflection glass prepared by providing, on the surface on the side not provided with an anti-reflection layer by vapor deposition The reflectance of the colored film-attached antireflection glass prepared by attaching the coloring colored film was measured at the incident angle shown in Table 1. The results are shown in Table 3.

(比較例5)
−偏光板、φ0度−
白板ガラス(松浪硝子工業株式会社製、0050−JFL)に、水平基準面と基材面が交わる線と偏光膜の高吸収軸との角度φが0度となるようにして、実施例1と同じ偏光膜を貼り付けて偏光膜付き反射防止ガラスを作製した。
得られた偏光膜付きガラスの反射率を、表1の入射角、及び入射光線のS偏光軸と偏光膜の高吸収軸とがなす角βで、実施例1と同様にして測定した。結果を表1、表2、及び表4に示す。
(Comparative Example 5)
-Polarizing plate, φ0 degree-
In Example 1 with white plate glass (manufactured by Matsunami Glass Industrial Co., Ltd., 0050-JFL) such that the angle φ between the line where the horizontal reference plane and the substrate surface intersect and the high absorption axis of the polarizing film is 0 degree. The same polarizing film was affixed to produce an antireflection glass with a polarizing film.
The reflectance of the obtained glass with a polarizing film was measured in the same manner as in Example 1 with the incident angle shown in Table 1 and the angle β formed by the S polarization axis of the incident light beam and the high absorption axis of the polarizing film. The results are shown in Table 1, Table 2, and Table 4.

(比較例6)
−偏光板、反射防止コーティング、φ0度−
白板ガラス(松浪硝子工業株式会社製、0050−JFL)に、水平基準面と基材面が交わる線と偏光膜の高吸収軸との角度φが0度となるようにして、実施例2と同じ偏光膜を貼り付けて偏光膜付き反射防止ガラスを作製した。
得られた偏光膜付きガラスの反射率を、表1の入射角、及び入射光線のS偏光軸と偏光膜の高吸収軸とがなす角βで、実施例1と同様にして測定した。結果を表1、及び表3に示す。
(Comparative Example 6)
-Polarizing plate, antireflection coating, φ0 degree-
In Example 2 with white plate glass (manufactured by Matsunami Glass Industrial Co., Ltd., 0050-JFL), the angle φ between the line where the horizontal reference surface and the substrate surface intersect with the high absorption axis of the polarizing film is 0 degree. The same polarizing film was affixed to produce an antireflection glass with a polarizing film.
The reflectance of the obtained glass with a polarizing film was measured in the same manner as in Example 1 with the incident angle shown in Table 1 and the angle β formed by the S polarization axis of the incident light beam and the high absorption axis of the polarizing film. The results are shown in Tables 1 and 3.

(比較例7)
−偏光板、φ45度−
白板ガラス(松浪硝子工業株式会社製、0050−JFL)に、水平基準面と基材面が交わる線と偏光膜の高吸収軸との角度φが45度となるようにして、実施例1と同じ偏光膜を貼り付けて偏光膜付き反射防止ガラスを作製した。
得られた偏光膜付きガラスの反射率を、表1の入射角、及び入射光線のS偏光軸と偏光膜の高吸収軸とがなす角βで、実施例1と同様にして測定した。結果を表1、及び表4に示す。
(Comparative Example 7)
-Polarizing plate, φ45 degrees-
In Example 1 with white plate glass (manufactured by Matsunami Glass Industrial Co., Ltd., 0050-JFL) such that the angle φ between the line where the horizontal reference plane and the substrate surface intersect and the high absorption axis of the polarizing film is 45 degrees. The same polarizing film was affixed to produce an antireflection glass with a polarizing film.
The reflectance of the obtained glass with a polarizing film was measured in the same manner as in Example 1 with the incident angle shown in Table 1 and the angle β formed by the S polarization axis of the incident light beam and the high absorption axis of the polarizing film. The results are shown in Tables 1 and 4.

表2の結果から、実施例1の偏光板を15度傾けたものが比較例1の白板ガラスや比較例3の着色ガラス、比較例5の偏光板を水平に適用したものと比べ、最も反射率の平均値が低いことが分かった。 From the results of Table 2, the polarizing plate of Example 1 tilted 15 degrees is the most reflective compared to the white plate glass of Comparative Example 1, the colored glass of Comparative Example 3, and the polarizing plate of Comparative Example 5 applied horizontally. The average value of the rate was found to be low.

表3の結果から、表2の結果と同様に、反射防止コーティングを施しても、実施例2の偏光板を15度傾けたものが最も反射率の平均値が低いことが分かった。 From the results in Table 3, as in the results in Table 2, it was found that the average value of the reflectance was lowest when the polarizing plate of Example 2 was tilted by 15 degrees even when antireflection coating was applied.

表4の結果から、傾斜角δが35度の時、偏光板を10度〜35度傾けた実施例1、3、4、5が偏光板を傾けていない比較例5、偏光板を45度傾けた比較例7よりも、反射率の平均値が低いことが分かった。
実施例1、3、4、5を比較すると、最も平均の反射率の低い実施例1、3、5が好ましく、中でも、安全上重要視される運転者正面の領域である点5と点6の反射率が低い実施例1、3がより好ましく、点5と点6の反射率が最も低い実施例1が最も好ましい。
From the results of Table 4, when the tilt angle δ is 35 degrees, Examples 1, 3, 4, and 5 in which the polarizing plate is tilted by 10 to 35 degrees are comparative example 5 in which the polarizing plate is not tilted, and the polarizing plate is 45 degrees. It turned out that the average value of a reflectance is lower than the comparative example 7 inclined.
When Examples 1, 3, 4, and 5 are compared, Examples 1, 3, and 5 having the lowest average reflectance are preferable, and among them, points 5 and 6 that are areas in front of the driver regarded as important for safety. Examples 1 and 3 having a low reflectance are more preferable, and Example 1 having the lowest reflectance at points 5 and 6 is most preferable.

(実施例6)
<金ナノロッドを用いた偏光板の作製>
−金ナノロッドの合成−
C.J.MurphyらのSeed−Mediated法〔J.Phys.Chem.B,105,4065(2001)〕を参照して、金ナノロッドの合成を行った。
まず、0.01MのHAuCl水溶液0.25mLを、界面活性剤としての0.1Mのセチルトリメチルアンモニウムブロミド(CTAB)水溶液7.5mLに添加し、5分間攪拌した。氷冷した還元剤としての0.01MのNaBH水溶液0.6mLを一気に添加し、1分間激しく攪拌すると、溶液の色は薄黄色から薄茶色に変化し、金ナノロッドの種となる金ナノ粒子を得た。
次に、0.1MのCTAB水溶液4.75mL、0.01MのHAuCl水溶液0.2mL、及び0.01MのAgNO水溶液0.03mLを混合した溶液中に、0.1Mのアスコルビン酸水溶液0.032mLを添加し、攪拌すると、溶液の色が薄茶色から透明に変化した。この反応溶液に上記で得た種粒子溶液0.01mLを添加し、数回ゆっくり振り混ぜた後、12時間静置すると溶液の色が赤紫色になり、金ナノロッド水溶液が得られた。
得られた金ナノロッド水溶液には界面活性剤であるCTABが含まれているため、超遠心分離機による精製を行った。14,000rpmで12分間遠心分離処理すると金ナノロッドは沈降するため、上澄みを除去した後純水を添加し、更に14,000rpmで12分間遠心分離処理するする操作を3回繰り返した。上澄みを除去し、金ナノロッドの濃厚水溶液を得た。
得られた金ナノロッドの濃厚水溶液について、透過型電子顕微鏡(TEM)(日本電子株式会社製、JEM−2010)で観察したところ、短軸長さ12nm、長軸長さ45nm、アスペクト比3.8の形状がほぼ単一な金ナノロッドであることが分かった。
(Example 6)
<Preparation of polarizing plate using gold nanorods>
-Synthesis of gold nanorods-
C. J. et al. Murphy et al., Seed-Mediated Method [J. Phys. Chem. B, 105, 4065 (2001)], gold nanorods were synthesized.
First, 0.25 mL of 0.01 M HAuCl 4 aqueous solution was added to 7.5 mL of 0.1 M cetyltrimethylammonium bromide (CTAB) aqueous solution as a surfactant and stirred for 5 minutes. When 0.6 mL of 0.01 M NaBH 4 aqueous solution as an ice-cooled reducing agent is added at once and stirred vigorously for 1 minute, the color of the solution changes from light yellow to light brown, and gold nanoparticles that become seeds of gold nanorods Got.
Next, in a solution obtained by mixing 4.75 mL of 0.1 M CTAB aqueous solution, 0.2 mL of 0.01 M HAuCl 4 aqueous solution, and 0.03 mL of 0.01 M AgNO 3 aqueous solution, 0.1 M ascorbic acid aqueous solution 0 was added. When 0.032 mL was added and stirred, the color of the solution changed from light brown to clear. To this reaction solution was added 0.01 mL of the seed particle solution obtained above, and the mixture was slowly shaken several times and allowed to stand for 12 hours. As a result, the color of the solution became reddish purple, and an aqueous solution of gold nanorods was obtained.
Since the obtained gold nanorod aqueous solution contains CTAB, which is a surfactant, it was purified by an ultracentrifuge. Since gold nanorods settled when centrifuged at 14,000 rpm for 12 minutes, the operation of adding pure water after removing the supernatant and further performing centrifugal treatment at 14,000 rpm for 12 minutes was repeated three times. The supernatant was removed to obtain a concentrated aqueous solution of gold nanorods.
When the concentrated aqueous solution of the obtained gold nanorods was observed with a transmission electron microscope (TEM) (JEM-2010, manufactured by JEOL Ltd.), the minor axis length was 12 nm, the major axis length was 45 nm, and the aspect ratio was 3.8. It was found that the shape of the gold nanorod was almost single.

−金ナノロッドが分散したポリビニルアルコール水溶液の調製−
ポリビニルアルコール(PVA−224、株式会社クラレ製、鹸化度88%、質量平均重合度2400)を純水に溶解し、7.5質量%水溶液を調製した。そのポリビニルアルコール水溶液5gに、上記合成した金ナノロッド水溶液2gを添加、攪拌することにより、金ナノロッドが安定に分散したポリビニルアルコール水溶液を調製した。
-Preparation of aqueous solution of polyvinyl alcohol with gold nanorods dispersed-
Polyvinyl alcohol (PVA-224, manufactured by Kuraray Co., Ltd., saponification degree 88%, mass average polymerization degree 2400) was dissolved in pure water to prepare a 7.5% by mass aqueous solution. By adding and stirring 2 g of the synthesized gold nanorod aqueous solution to 5 g of the polyvinyl alcohol aqueous solution, a polyvinyl alcohol aqueous solution in which the gold nanorods were stably dispersed was prepared.

−金ナノロッドを含むポリビニルアルコール膜の作製−
次に、その金ナノロッドが分散したポリビニルアルコール水溶液をポリエチレンテレフタレート(PET)フイルム上にバーコート塗布し、60℃で2時間乾燥させて、偏光層をPETフイルムより剥離することにより、乾燥厚み40μmの金ナノロッドを含むポリビニルアルコール膜を作製した。
-Production of polyvinyl alcohol film containing gold nanorods-
Next, a polyvinyl alcohol aqueous solution in which the gold nanorods are dispersed is bar-coated on a polyethylene terephthalate (PET) film, dried at 60 ° C. for 2 hours, and the polarizing layer is peeled off from the PET film, whereby a dry thickness of 40 μm is obtained. A polyvinyl alcohol film containing gold nanorods was prepared.

−延伸処理−
次に、その金ナノロッドを含むポリビニルアルコール膜を90℃で一軸延伸機によって4倍に延伸することによって、金ナノロッドの長軸が延伸方向に揃い、異方吸収を示す偏光膜を作製した。
-Stretching treatment-
Next, the polyvinyl alcohol film containing the gold nanorods was stretched 4 times with a uniaxial stretching machine at 90 ° C., thereby producing a polarizing film in which the long axes of the gold nanorods were aligned in the stretching direction and exhibited anisotropic absorption.

−金ナノロッドの配向性−
得られた偏光板の切片を透過型電子顕微鏡(TEM)(日本電子株式会社製、JEM−2010)で観察したところ、500個の金ナノロッドの80個数%以上が偏光層の水平面に対し±10度以内に配向していた。また、500個の金ナノロッドの80個数%以上が偏光層の延伸方向に対し±10度以内に配列していた。
-Orientation of gold nanorods-
When the slice of the obtained polarizing plate was observed with a transmission electron microscope (TEM) (manufactured by JEOL Ltd., JEM-2010), 80% or more of 500 gold nanorods were ± 10 with respect to the horizontal plane of the polarizing layer. Oriented within degrees. Further, 80% by number or more of 500 gold nanorods were arranged within ± 10 degrees with respect to the extending direction of the polarizing layer.

−反射防止効果−
実施例1と同様に、白板ガラス(松浪硝子工業株式会社製、0050−JFL)に作製した金ナノロッド偏光膜を貼り付け、表1の実施例1と同じ入射角、角βで反射率を測定したところ、実施例1と全く等しい結果が得られた。
-Anti-reflection effect-
Similar to Example 1, a gold nanorod polarizing film prepared on white glass (manufactured by Matsunami Glass Industrial Co., Ltd., 0050-JFL) was attached, and the reflectance was measured at the same incident angle and angle β as in Example 1 of Table 1. As a result, the same result as in Example 1 was obtained.

(実施例7)
<反射率シミュレーション>
トヨタ自動車株式会社製クラウンセダンの前窓の大きさ、運転者のアイポイントとの距離を参考にして計算に用いた。ガラスの屈折率は1.52とし、以下の方法で、前窓傾斜角δ、偏光膜の高吸収軸の角度φ、偏光膜の配向度S、偏光膜の透過率Tをパラメータとして振り、計1512組の条件を設定して、ある傾斜角に対する、好適な偏光膜の高吸収軸の角度の計算を行ったところ、運転席側の領域の反射が色ガラスよりもよくなる偏光膜の高吸収軸の角度の大きさφの上限は42度であった。
また、ある傾斜角δにおいて前窓の全領域の反射率の合計が最小となる偏光膜の吸収軸の角度φは図5に示すように、例外なく、(0.00792×δ+0.0879δ+14.4)度±5度の範囲に入っていた。また、ある傾斜角δにおいて運転席側の領域の反射率の合計が色ガラスよりも強くならない範囲において、前窓全体での反射を最も低く抑制できる偏光膜の吸収軸の角度φの大きさは、図6に示すように、例外なく、(−0.0130×δ+1.03δ−2.46)度±5度の範囲に入っていた。
(Example 7)
<Reflectance simulation>
The size of the front window of the Crown Sedan made by Toyota Motor Corporation and the distance from the driver's eye point were used for the calculation. The refractive index of the glass is 1.52, and the following method is used to change the front window tilt angle δ, the angle φ of the high absorption axis of the polarizing film, the orientation degree S of the polarizing film, and the transmittance T of the polarizing film as parameters. When the conditions of 1512 sets were set and the angle of the high absorption axis of a suitable polarizing film was calculated with respect to a certain tilt angle, the high absorption axis of the polarizing film in which the reflection in the region on the driver's seat side was better than that of colored glass The upper limit of the angle size φ was 42 degrees.
Further, as shown in FIG. 5, the angle φ of the absorption axis of the polarizing film that minimizes the total reflectance of the entire area of the front window at a certain tilt angle δ is (0.00792 × δ 2 + 0.0879δ + 14) without exception. .4) It was within a range of ± 5 °. In addition, in the range where the total reflectance of the driver seat side region at a certain inclination angle δ does not become stronger than the colored glass, the magnitude of the angle φ of the absorption axis of the polarizing film that can suppress the reflection at the entire front window to the lowest is As shown in FIG. 6, it was in the range of (−0.0130 × δ 2 + 1.03δ−2.46) ° ± 5 ° without exception.

以下に計算の方法を示す。
今、自動車の前窓が平面と見なせるものとし、運転者の視線と前窓の表面が垂直に交わる点を原点0(0,0)とする。更に運転者から見て右方向をX軸方向、上方向をY軸方向、原点0から運転者の目の位置である点Eへの方向をZ軸方向とし、点Eと原点0の距離を1とする。更に、前窓に角θ1で光が入射した時、屈折角がθ2であるとし、入射光線の前窓面内への写像と偏光膜の高吸収軸とのなす角をαと定義する。また、前窓に適用した偏光膜の厚さdに等しい距離だけ光が偏光膜中を進行した時にX軸、Y軸、Z軸に平行電場成分を有する光の各方向成分の透過率がそれぞれtx、ty、tzであるすると、前窓基材の透過率が1とみなせる時、入射光が前窓表面より進入してから前窓裏面の反射点に達するまでにS波成分の強度は、下記式(1)のように減衰される。
また、P波成分の強度は、下記式(2)に示すように減衰される。
The calculation method is shown below.
Assume that the front window of the automobile can be regarded as a plane, and the point where the driver's line of sight and the surface of the front window intersect perpendicularly is the origin 0 (0, 0). Further, when viewed from the driver, the right direction is the X-axis direction, the upward direction is the Y-axis direction, the direction from the origin 0 to the point E which is the driver's eye position is the Z-axis direction, and the distance between the point E and the origin 0 is Set to 1. Furthermore, when light is incident on the front window at an angle θ1, the refraction angle is θ2, and the angle formed by the mapping of the incident light beam into the front window surface and the high absorption axis of the polarizing film is defined as α. Further, when light travels through the polarizing film by a distance equal to the thickness d of the polarizing film applied to the front window, the transmittance of each directional component of light having parallel electric field components on the X, Y, and Z axes is respectively When the transmittance of the front window base material can be regarded as 1 when tx, ty, and tz, the intensity of the S wave component from when the incident light enters from the front window surface to the reflection point on the back surface of the front window is It is attenuated as in the following formula (1).
Further, the intensity of the P wave component is attenuated as shown in the following formula (2).

また、tx、ty、tzは、以下のようにして決定した。
前窓に垂直に光が入射した時の、実測の透過率は、表面反射による損失と、媒質の吸収による損失、反射光が再び界面で反射して出射してくることによる増大分を反映した値である。入射光が入射面から裏面までの間に媒質によって吸収される時、その透過率をtとし、車内側表面での反射率をr’、車外側表面での反射率をrとすると、多重反射を考慮した透過率Tは、下記式(3)となる。
ここで、表面反射率r及びr’は基材の屈折率n2又はn3によって下記式(4)及び(5)の通り決まる。
Moreover, tx, ty, and tz were determined as follows.
The measured transmittance when light enters the front window perpendicularly reflects the loss due to surface reflection, the loss due to the absorption of the medium, and the increase due to the reflected light being reflected and emitted again at the interface. Value. When incident light is absorbed by the medium from the incident surface to the back surface, if the transmittance is t, the reflectance on the vehicle inner surface is r ', and the reflectance on the vehicle outer surface is r, multiple reflection The transmittance T in consideration of the following equation (3).
Here, the surface reflectances r and r ′ are determined by the following formulas (4) and (5) depending on the refractive index n2 or n3 of the substrate.

ここで、r’としたのは、反射防止膜の特性を、屈折角は基材の屈折率に依存したままで、あたかも基材の屈折率が空気の屈折率に近いかのような反射を与える特殊な界面を与えるものとして扱うためである。つまり、反射防止膜を適用した場合、車内側表面での反射率は屈折率n3(n1<n3<n2)の基材と空気の界面に入射角θ1で光が入射したときの反射率に低減されるものとして扱い、屈折角はθ2のままであるとした。そのような扱いが可能なことは、実際に反射防止コーティングを施したガラス基板の表面反射率を測定し、計算値と比較することにより確かめた(図7参照、特性が完全に一致することは無いが、反射率を抑制する効果としては同様のものとして見ることができる)。
反射防止膜を適用しない系に関してはn3=n2とすればよい。したがって、パラメータとして、屈折率n2、n3と分光器による測定で現れるであろう透過率Tを決めると、前記式(3)、(4)、及び(5)よりtが求まる。
Here, r ′ is the characteristic of the antireflection film, the refraction angle remains dependent on the refractive index of the base material, and the reflection is as if the refractive index of the base material is close to the refractive index of air. This is to treat it as a special interface. That is, when the antireflection film is applied, the reflectance on the inner surface of the vehicle is reduced to the reflectance when light is incident on the interface between the base material and the air having the refractive index n3 (n1 <n3 <n2) at the incident angle θ1. It was assumed that the refraction angle remained θ2. The fact that such a treatment is possible was confirmed by measuring the surface reflectance of a glass substrate actually coated with an antireflection coating and comparing it with the calculated value (see FIG. 7, the characteristics are completely in agreement). No, but the effect of suppressing the reflectance can be seen as the same).
For a system to which an antireflection film is not applied, n3 = n2. Therefore, when the refractive indexes n2 and n3 and the transmittance T that will appear in the measurement by the spectroscope are determined as parameters, t is obtained from the above equations (3), (4), and (5).

ここで、tは、下記式(6)である。
また、配向度Sは、下記式(7)である。
ただし、Ahは高吸収軸の吸光度、Alは低吸収軸の吸光度である。
Here, t is the following formula (6).
Further, the degree of orientation S is represented by the following formula (7).
However, Ah is the absorbance of the high absorption axis, and Al is the absorbance of the low absorption axis.

下記式(8)の透過率と吸光度の関係から、tx及びtyの比が決定できる。
本計算では、吸収の異方性は一軸異方性であるとし、下記式(9)とした。
The ratio of tx and ty can be determined from the relationship between transmittance and absorbance in the following formula (8).
In this calculation, the anisotropy of absorption is uniaxial anisotropy, and the following formula (9) is used.

以上のように、偏光膜の透過特性tx、ty、tzは、基材の屈折率、前窓の垂直入射の透過率、及び配向度によって求めることができる。
θ1≠0の時、S波、P波の表面での反射率rS、rPは、その値は共立出版株式会社、國分泰雄、「先端エレクトロニクスシリーズ6 光波工学」より、下記式(10)及び(11)である。
As described above, the transmission characteristics tx, ty, and tz of the polarizing film can be obtained from the refractive index of the base material, the normal incidence transmittance of the front window, and the degree of orientation.
When θ1 ≠ 0, the reflectances rS and rP on the surface of the S wave and P wave are the following formulas (10) and Kyoritsu Publishing Co., Ltd., Yasuo Kokubun, “Advanced Electronics Series 6 Lightwave Engineering” and (11).

θ1、θ2は空気の屈折率n1、基材の屈折率をn2とすると、下記式(12)のスネルの法則により関係づけられる。
θ1 and θ2 are related by Snell's law of the following formula (12), where n1 is the refractive index of air and n2 is the refractive index of the substrate.

車内側表面と車外側表面の両方を考慮した反射率RS,Pは、下記式(13)である。
ここで、r’S,Pは入射面での反射率を表し、前記式(12)のn2に見かけ上の屈折率n3を代入して求められるθ3を用いて、前記式(10)又は(11)によって計算できる。
The reflectivity R S, P considering both the vehicle inner surface and the vehicle outer surface is the following equation (13).
Here, r ′ S, P represents the reflectance at the incident surface, and θ3 obtained by substituting the apparent refractive index n3 for n2 in the equation (12) is used to determine the equation (10) or ( 11).

以上により、各点における反射率の計算に必要な材料はそろった。まず、前窓の座標は、トヨタ自動車株式会社製クラウンセダンの、前窓の大きさ、運転者のアイポイントとの距離を参考にして、n1=1.00、n2=1.52、lu=110cm、ld=140cm、h=65cm、el=60cm、ev=30cm、eh=25cmとした。
ここで、パラメータ(傾斜角δ、偏光膜の配向度S、前窓の透過率T、入射面の見かけ上の屈折率n3)を、20度≦δ≦50度、0.6≦S≦1.0、0.70≦T≦0.85、1.1≦n3≦1.6の範囲から、δを5度刻み、Sを0.05刻み、Tを0.05刻み、n3を0.1刻みで選び、計1512組について、運転席側の領域の反射率の合計が同じ透過率を有する色ガラスよりも小さくなる偏光膜の吸収軸の角度の大きさφをそれぞれの組で求めたところ、その最大値は41.3度であり、41.3度以下であれば、偏光膜を用いた方が同じ透過率の色ガラスよりも、前窓全体の反射率の合計が小さくなることが分かった。
更に、同条件で、前窓の全領域の反射率の合計が最小となる偏光膜の吸収軸の角度φを求め、横軸δ−縦軸φとしてプロットしたところ、各点は、h(δ)min≦φ≦h(δ)maxで表される範囲内に現れた。
As described above, the materials necessary for calculating the reflectance at each point have been prepared. First, the coordinates of the front window are n1 = 1.00, n2 = 1.52, lu = with reference to the size of the front window of the Crown Sedan manufactured by Toyota Motor Corporation and the distance from the driver's eye point. 110 cm, ld = 140 cm, h = 65 cm, el = 60 cm, ev = 30 cm, eh = 25 cm.
Here, the parameters (inclination angle δ, polarizing film orientation degree S, front window transmittance T, apparent refractive index n3 of the incident surface) are 20 ° ≦ δ ≦ 50 °, 0.6 ≦ S ≦ 1. 0.0, 0.70 ≦ T ≦ 0.85, 1.1 ≦ n3 ≦ 1.6, δ is incremented by 5 degrees, S is incremented by 0.05, T is incremented by 0.05, and n3 is The angle φ of the absorption axis of the polarizing film, which is smaller than that of the colored glass having the same transmittance as the total reflectance of the driver's seat side area, was determined for each group for a total of 1512 pairs. However, the maximum value is 41.3 degrees, and if it is 41.3 degrees or less, the total reflectance of the entire front window is smaller when the polarizing film is used than when the colored glass has the same transmittance. I understood.
Further, under the same conditions, the angle φ of the absorption axis of the polarizing film that minimizes the total reflectance of the entire area of the front window is obtained and plotted as the horizontal axis δ−the vertical axis φ. ) It appeared within the range represented by min ≦ φ ≦ h (δ) max.

ここで、h(δ)min及びh(δ)maxは、下記式(14)及び(15)であり、h(δ)min及びh(δ)maxは共に(0.00792×δ+0.0879δ+14.4)度±5度の範囲内であった。
Here, h (δ) min and h (δ) max are the following formulas (14) and (15), and both h (δ) min and h (δ) max are (0.00792 × δ 2 +0. 0879δ + 14.4) ° ± 5 °.

また、運転者の主たる視線は、車両の前方にあたる運転者正面であるため、この領域の反射はできる限り抑制しておくことが望ましい。そこで、前窓の運転者側の端(右ハンドルの車両の場合は右端)が、等方性の着色ガラスと同等以下の反射率を示し、かつ、前窓の全領域の反射率の合計が最小となるような偏光膜の吸収軸の角度φを求め、横軸δ―縦軸φとしてプロットしたところ、各点は、i(δ)min≦φ≦i(δ)maxで表される範囲内に現れた。
ここで、i(δ)min及びi(δ)maxは、下記式(16)及び(17)であり、i(δ)min及びi(δ)max共に、(―0.0130×δ+1.03δ―2.46)度±5度の範囲内であった。
Further, since the driver's main line of sight is the front of the driver in front of the vehicle, it is desirable to suppress reflection in this region as much as possible. Therefore, the driver's end of the front window (the right end in the case of a right-hand drive vehicle) shows a reflectance equal to or lower than that of isotropic colored glass, and the total reflectance of the entire area of the front window is When the angle φ of the absorption axis of the polarizing film that minimizes is obtained and plotted as the horizontal axis δ−the vertical axis φ, each point is a range represented by i (δ) min ≦ φ ≦ i (δ) max. Appeared in.
Here, i (δ) min and i (δ) max are the following formulas (16) and (17), and both i (δ) min and i (δ) max are (−0.0130 × δ 2 +1). 0.03δ−2.46) ° ± 5 °.

(実施例8)
<偏光合わせガラスの作製>
−ポリビニルブチラール(PVB)樹脂の調製−
アセタール化度65モル%のポリビニルブチラール(PVB)樹脂60gを、キシレン1768gに、25℃で溶解させた。その後、n−ブチルアルデヒド95gを溶液に一括投入して5分間の攪拌により十分に混合し、次いで、35質量%塩酸溶液115gを15分間かけて滴下し混合した。これらを混合してから、30分間後、全系を0.5〜0.6℃/分の速度で60℃まで60分かけて昇温した。その後、この反応系を60℃で3時間恒温保持し、反応を完了させた。
反応完了後、反応混合物に重曹(樹脂固形分対比で60質量%)を溶解した水/メタノール(混合比1:1)を大過剰で添加した。その後、この樹脂を大過剰のメタノール中に落とし、樹脂を再沈殿させ、沈殿物を水洗し、乾燥を経て、ポリビニルブチラール樹脂の白色粉末を得た。
(Example 8)
<Production of polarized laminated glass>
-Preparation of polyvinyl butyral (PVB) resin-
60 g of polyvinyl butyral (PVB) resin having a degree of acetalization of 65 mol% was dissolved in 1768 g of xylene at 25 ° C. Thereafter, 95 g of n-butyraldehyde was added all at once to the solution and mixed well by stirring for 5 minutes, and then 115 g of 35% by mass hydrochloric acid solution was added dropwise over 15 minutes and mixed. After mixing these, 30 minutes later, the whole system was heated up to 60 ° C. over 60 minutes at a rate of 0.5 to 0.6 ° C./min. Thereafter, the reaction system was held at 60 ° C. for 3 hours to complete the reaction.
After completion of the reaction, water / methanol (mixing ratio 1: 1) in which sodium bicarbonate (60% by mass relative to the resin solid content) was dissolved was added to the reaction mixture in a large excess. Thereafter, the resin was dropped into a large excess of methanol to reprecipitate the resin, the precipitate was washed with water, and dried to obtain a white powder of polyvinyl butyral resin.

−PVB樹脂膜の作製−
上記ポリビニルブチラール50gに、可塑剤としてトリエチレングリコール−ジ−2−エチルブチレート15gを加え、この配合物をミキシングロールで十分に混練した。次いで、この混練物に酸化防止剤としてジブチルヒドロキシトルエン(BHT)0.08gを添加した後、混練物の所定量をプレス成形機により150℃で30分間保持した。こうして、厚み0.38mmのPVB樹脂膜を得た。
-Production of PVB resin film-
To 50 g of the polyvinyl butyral, 15 g of triethylene glycol-di-2-ethylbutyrate was added as a plasticizer, and this blend was sufficiently kneaded with a mixing roll. Next, 0.08 g of dibutylhydroxytoluene (BHT) was added as an antioxidant to the kneaded product, and then a predetermined amount of the kneaded material was held at 150 ° C. for 30 minutes by a press molding machine. Thus, a PVB resin film having a thickness of 0.38 mm was obtained.

−偏光膜の作製−
偏光膜をガラス板に粘着剤で貼り付けなかった以外、実施例1の各工程と同様の操作を行い、偏光膜を得た。
-Production of polarizing film-
Except that the polarizing film was not attached to the glass plate with an adhesive, the same operation as in each step of Example 1 was performed to obtain a polarizing film.

−偏光合わせガラスの作製−
前記得られた2枚のPVB樹脂膜と、偏光膜とを、積層構成がPVB樹脂膜/偏光膜/PVB樹脂膜になるように、重ね合わせて、3層の積層中間膜を得た。この中間膜をそれぞれ1辺10cmの正方形の厚み3mmの2枚のフロートガラスで両側からサンドイッチし、この未圧着サンドイッチ体をゴムバッグへ入れ、20torrの真空度で20分間脱気した後、脱気状態のまま90℃のオーブンに移し、この温度を30分間保持した。こうして真空プレスにより仮接着したサンドイッチ体を、次いでオートクレーブ中で圧力12kg/cm、温度135℃で熱圧着処理し、偏光合わせガラスを作製した。
-Production of polarized laminated glass-
The two obtained PVB resin films and the polarizing film were superposed so that the laminated structure would be PVB resin film / polarizing film / PVB resin film to obtain a three-layer laminated intermediate film. This intermediate film is sandwiched from both sides with two float glass with a square of 10 cm on each side and a thickness of 3 mm. The unbonded sandwich is placed in a rubber bag and degassed for 20 minutes at a vacuum of 20 torr. The state was transferred to an oven at 90 ° C., and this temperature was maintained for 30 minutes. The sandwich body temporarily bonded by vacuum pressing in this manner was then subjected to thermocompression treatment at a pressure of 12 kg / cm 2 and a temperature of 135 ° C. in an autoclave to produce a polarizing laminated glass.

(実施例9)
<紫外線吸収特性を付与した偏光合わせガラスの作製>
PVB樹脂膜の作製工程でBHTの添加と同時に、紫外線吸収剤(チバガイギー社製、チヌビンPwo)0.08gを添加した以外は、実施例8の各工程と同様の操作を行い、紫外線吸収特性を付与した偏光合わせガラスを作製した。
Example 9
<Preparation of polarized laminated glass with UV absorption characteristics>
Simultaneously with the addition of BHT in the PVB resin film production process, 0.08 g of an ultraviolet absorber (manufactured by Ciba Geigy Co., Ltd., Tinuvin Pwo) was added, and the same operation as in each step of Example 8 was performed to obtain ultraviolet absorption characteristics. The applied polarizing laminated glass was produced.

(実施例10)
<熱線遮蔽特性を付与した偏光合わせガラスの作製>
−熱線遮蔽微粒子分散可塑剤の調製−
可塑剤としてのトリエチレングリコール−ジ−2−エチルブチレート15gと、錫ドープ酸化インジウム(ITO)微粒子6gを仕込み、これに分散剤として長鎖アルキリン酸エステル0.6gを添加して、水平型のマイクロビ−ズミルにて上記可塑剤中にITO微粒子を分散させて、熱線遮蔽微粒子分散可塑剤を調製した。この熱線遮蔽微粒子分散可塑剤中のITO微粒子の平均粒径は35nmであった。
(Example 10)
<Preparation of polarizing laminated glass with heat ray shielding properties>
-Preparation of heat ray shielding fine particle dispersed plasticizer-
15 g of triethylene glycol-di-2-ethylbutyrate as a plasticizer and 6 g of tin-doped indium oxide (ITO) fine particles were added, and 0.6 g of a long-chain alkylate as a dispersant was added to the horizontal type. In the above microbead mill, ITO fine particles were dispersed in the plasticizer to prepare a heat ray shielding fine particle dispersed plasticizer. The average particle diameter of the ITO fine particles in this heat ray shielding fine particle-dispersed plasticizer was 35 nm.

−熱線遮蔽特性を付与した合わせガラスの作製−
PVB樹脂膜の作製工程で、可塑剤としてのトリエチレングリコール−ジ−2−エチルブチレート15gの代わりに上記で得られた熱線遮蔽微粒子分散可塑剤20gを用いた以外は、実施例8の各工程と同様の操作を行い、熱線遮蔽特性を付与した偏光合わせガラスを作製した。
-Production of laminated glass with heat ray shielding properties-
Each of the examples in Example 8 except that 20 g of the heat ray shielding fine particle dispersed plasticizer obtained above was used instead of 15 g of triethylene glycol-di-2-ethylbutyrate as a plasticizer in the PVB resin film production process. The same operation as in the step was performed to produce a polarized laminated glass imparted with heat ray shielding properties.

<映り込み防止効果の比較>
前記実施例8〜10で作製した合わせガラスを、白色マーカーで格子状の印をつけた黒い紙の上に、水平面から30度の角度に傾けて並べ、それぞれの合わせガラスに映り込んだ白色格子像の明度を目視によって比較した。その結果、紫外線吸収特性又は熱線遮蔽特性を付与した偏光合わせガラスも、それらを付与していない偏光合わせガラスとまったく同程度の映り込み明度しか示さず、紫外線吸収特性又は熱線遮蔽特性を付与しても、偏光合わせガラスの映り込み防止効果には悪影響を与えていないことが分かった。
<Comparison of reflection prevention effect>
The laminated glass produced in Examples 8 to 10 is arranged on a black paper marked with a grid-like mark with a white marker at an angle of 30 degrees from the horizontal plane, and reflected on each laminated glass. The brightness of the images was compared visually. As a result, the polarizing laminated glass provided with the ultraviolet absorbing property or the heat ray shielding property also shows only the same brightness as the polarizing laminated glass not provided with the ultraviolet ray absorbing property or the heat ray shielding property. However, it was found that the effect of preventing the reflection of the polarizing laminated glass was not adversely affected.

本発明の車両用前窓は、自動車等の運転席が車両正面から見て左右どちらかに寄って位置するような車両の前窓に好適に用いられ、車外側表面の反射による筐体等の反射像映り込みを、水平前方視界のみならず前窓のより広い範囲において低減することによって、安全性及び筐体の意匠性を向上させることができるので、特に自動車のフロントガラスに好適に用いられる。   The vehicle front window according to the present invention is suitably used for a vehicle front window in which a driver's seat of an automobile or the like is located on either the left or right side when viewed from the front of the vehicle. Since the reflected image reflection is reduced not only in the horizontal front field of view but also in a wider range of the front window, the safety and the design of the casing can be improved. .

図1は、右ハンドル車において前窓から反射して、運転者の目に入射する光のS偏光の偏光軸を車内側から見たときの概略図である。FIG. 1 is a schematic view of the polarization axis of S-polarized light that is reflected from the front window and incident on the driver's eyes in a right-hand drive vehicle when viewed from the inside of the vehicle. 図2は、右ハンドル車において水平基準面に対し水平に偏光膜の高吸収軸を設定した場合を示す概略図である。FIG. 2 is a schematic diagram showing a case where the high absorption axis of the polarizing film is set horizontally with respect to the horizontal reference plane in the right-hand drive vehicle. 図3Aは、右ハンドル車において水平基準面と基材面が交わる線に対し偏光膜の高吸収軸が一定の傾きを有するように配置した場合を示す概略図である。FIG. 3A is a schematic diagram showing a case where the high absorption axis of the polarizing film is arranged so as to have a certain inclination with respect to a line where the horizontal reference plane and the substrate surface intersect in a right-hand drive vehicle. 図3Bは、図3Aにおいて左ハンドル車に適用した場合の、水平基準面と基材面が交わる線に対し偏光膜の高吸収軸が一定の傾きを有するように配置した場合を示す概略図である。FIG. 3B is a schematic diagram showing a case where the high absorption axis of the polarizing film is arranged so as to have a certain inclination with respect to a line where the horizontal reference plane and the substrate surface intersect when applied to the left-hand drive vehicle in FIG. 3A. is there. 図4は、右ハンドル車において実施例における自動車前窓の反射率の測定点(6点)を示す図である。FIG. 4 is a diagram showing the measurement points (six points) of the reflectance of the front window of the automobile in the embodiment in the right-hand drive vehicle. 図5は、実施例における反射率シミュレーションの結果を示すグラフであり、ある傾斜角δにおいて前窓の全領域の反射率の合計が最小となる偏光膜の吸収軸の角度φが、(0.00792×δ+0.0879δ+14.4)度±5度の範囲に入っていることを示す。FIG. 5 is a graph showing the result of the reflectance simulation in the example. The angle φ of the absorption axis of the polarizing film that minimizes the total reflectance of the entire area of the front window at a certain inclination angle δ is (0. 00792 × δ 2 + 0.0879δ + 14.4) Degree ± 5 degrees. 図6は、実施例における反射率シミュレーションの結果を示すグラフであり、ある傾斜角δにおいて運転席側の領域の反射率の合計が色ガラスよりも強くならない範囲において、前窓全体での反射を最も低く抑制できる偏光膜の吸収軸の角度φの大きさが、(−0.0130×δ+1.03δ−2.46)度±5度の範囲に入っていることを示す。FIG. 6 is a graph showing the result of the reflectance simulation in the example. In the range where the total reflectance of the area on the driver's seat side does not become stronger than that of the colored glass at a certain inclination angle δ, It shows that the angle φ of the absorption axis of the polarizing film that can be suppressed to the lowest is in the range of (−0.0130 × δ 2 + 1.03δ−2.46) ° ± 5 °. 図7は、実際に反射防止コーティングを施したガラス基板の表面反射率を測定し、計算値と比較した結果を示すグラフである。FIG. 7 is a graph showing the result of measuring the surface reflectance of a glass substrate actually provided with an antireflection coating and comparing it with a calculated value.

符号の説明Explanation of symbols

a S偏光の偏光軸
b 偏光膜の高吸収軸
c S偏光の偏光軸と偏光膜の高吸収軸が平行となる点を結んだ線(線が長いほど高吸収軸がS偏光軸と平行になる領域大)
a S Polarization axis of S-polarized light b High absorption axis of the polarizing film c Line connecting the polarization axis of the S-polarized light and the high absorption axis of the polarizing film (the longer the line, the higher the absorption axis becomes parallel to the S polarizing axis) Large area)

Claims (8)

少なくとも基材と偏光膜とを有し、水平基準面とのなす角δが20度以上50度以下である車両用前窓において、
前記水平基準面と前記基材面とが交わる線と、前記偏光膜の高吸収軸との角度φが、(−0.0130×δ+1.03δ−12.5)度≦φ≦(0.00792×δ+0.0879δ+24.4)度であることを特徴とする車両用前窓。
In a vehicle front window having at least a base material and a polarizing film, and an angle δ between the horizontal reference plane and 20 degrees or more and 50 degrees or less,
The angle φ between the line where the horizontal reference plane and the substrate surface intersect and the high absorption axis of the polarizing film is (−0.0130 × δ 2 + 1.03δ−12.5) degrees ≦ φ ≦ (0 .00792 × δ 2 + 0.0879δ + 24.4) degrees A front window for a vehicle characterized by the following.
角度φが、(0.00792×δ+0.0879δ+14.4)度±5度である請求項1に記載の車両用前窓。 The vehicle front window according to claim 1, wherein the angle φ is (0.00792 × δ 2 + 0.0879δ + 14.4) degrees ± 5 degrees. 角度φが、(−0.0130×δ+1.03δ−2.46)度±5度である請求項1に記載の車両用前窓。 The vehicle front window according to claim 1, wherein the angle φ is (−0.0130 × δ 2 + 1.03δ−2.46) degrees ± 5 degrees. 基材の水平基準面と向き合う側の面に、偏光膜を有する請求項1から3のいずれかに記載の車両用前窓。   The vehicular front window according to any one of claims 1 to 3, further comprising a polarizing film on a surface facing the horizontal reference surface of the substrate. 基材が2枚の板ガラス間に中間層を有する合わせガラスであり、かつ該中間層が偏光膜を含む請求項1から3のいずれかに記載の車両用前窓。   The vehicle front window according to any one of claims 1 to 3, wherein the base material is laminated glass having an intermediate layer between two plate glasses, and the intermediate layer includes a polarizing film. 基材が高分子化合物であり、かつ該基材の表面及び内部のいずれかに偏光膜を有する請求項1から4のいずれかに記載の車両用前窓。   The vehicle front window according to any one of claims 1 to 4, wherein the base material is a polymer compound and has a polarizing film on either the surface or the inside of the base material. 両面及び水平基準面と向き合う側の最表面のいずれかに、反射防止膜を有する請求項1から6のいずれかに記載の車両用前窓。   The vehicle front window according to any one of claims 1 to 6, further comprising an antireflection film on one of both surfaces and the outermost surface facing the horizontal reference surface. 車両が、自動車である請求項1から7のいずれかに記載の車両用前窓。   The vehicle front window according to any one of claims 1 to 7, wherein the vehicle is an automobile.
JP2008308596A 2008-03-31 2008-12-03 Windshield for vehicle Pending JP2009262918A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008308596A JP2009262918A (en) 2008-03-31 2008-12-03 Windshield for vehicle
PCT/JP2009/057030 WO2009123339A1 (en) 2008-03-31 2009-03-31 Windshield for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008093372 2008-03-31
JP2008308596A JP2009262918A (en) 2008-03-31 2008-12-03 Windshield for vehicle

Publications (1)

Publication Number Publication Date
JP2009262918A true JP2009262918A (en) 2009-11-12

Family

ID=40622056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308596A Pending JP2009262918A (en) 2008-03-31 2008-12-03 Windshield for vehicle

Country Status (2)

Country Link
JP (1) JP2009262918A (en)
WO (1) WO2009123339A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063881A1 (en) * 2010-11-09 2012-05-18 積水化学工業株式会社 Intermediate film for laminated glasses, and laminated glass
JP2020128204A (en) * 2019-02-11 2020-08-27 呉万里 New type automobile capable of securing driver visual field by 180°
JP2021037847A (en) * 2019-09-03 2021-03-11 株式会社デンソー Display system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335099A (en) * 1992-12-22 1994-08-02 Hughes Aircraft Company Veiling glare control holographic windshield
JP2004130916A (en) * 2002-10-10 2004-04-30 Yazaki Corp Window reflection reduction mechanism for vehicles
JP2007334150A (en) * 2006-06-16 2007-12-27 Fujifilm Corp Polarizing film for window and front window for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063881A1 (en) * 2010-11-09 2012-05-18 積水化学工業株式会社 Intermediate film for laminated glasses, and laminated glass
JP5840140B2 (en) * 2010-11-09 2016-01-06 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
US9561639B2 (en) 2010-11-09 2017-02-07 Sekisui Chemical Co., Ltd. Intermediate film for laminated glasses, and laminated glass
JP2020128204A (en) * 2019-02-11 2020-08-27 呉万里 New type automobile capable of securing driver visual field by 180°
JP2021037847A (en) * 2019-09-03 2021-03-11 株式会社デンソー Display system

Also Published As

Publication number Publication date
WO2009123339A1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5335401B2 (en) Polarizing film, polarizing film manufacturing method, polarizing plate, polarizing plate manufacturing method, and anti-reflection film for vehicle
CN105307996B (en) Heat-ray shielding film, heat-ray shielding transparent base material, heat-ray shielding resin sheet, automobile, and building
US6911254B2 (en) Infrared absorbing compositions and laminates
US20090201583A1 (en) Polarizing film for window and front window for means of traveling
WO2015122507A1 (en) Laminated glass
JP2009534287A (en) Intermediate layer containing hydrolytically stable infrared absorber
JP4848872B2 (en) Laminated glass for windows
US20100060985A1 (en) Method for producing polarizing plate, and automobile&#39;s windshield
WO2021107062A1 (en) Interlayer film for laminated glass, laminated glass, and image display system
US20100177383A1 (en) Glass
CN211595444U (en) Laminated glass for vehicle
WO2013077252A1 (en) Infrared shielding film and infrared shielding body
JP2010079197A (en) Anisotropic scattering film, film for head up display, and glass
WO2021107061A1 (en) Intermediate film for laminated glass, laminated glass, and image display system
CN111918850A (en) Interlayer film for laminated glass, and method for manufacturing flat-panel display system
WO2014162619A1 (en) Heat-ray-shielding film, heat-ray-shielding transparent substrate, vehicle, and building
US20220032744A1 (en) Vehicle
JPWO2015104981A1 (en) Infrared reflective film, method for producing infrared reflective film, and method for producing laminated glass
JP2021127286A (en) Glass laminate and vehicle
JP2009262918A (en) Windshield for vehicle
US20210078292A1 (en) Film for laminating glass, method for manufacturing film for laminating glass, and vehicle comprising film for laminating glass
WO2022244873A1 (en) Laminated glass, and head-up display system
JP2010156720A (en) Polarizing plate, method of manufacturing the same, and automobile windshield
JP7028102B2 (en) Laminated glass
WO2020203991A1 (en) Laminated glass and vehicle system