JP2009259607A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2009259607A
JP2009259607A JP2008107364A JP2008107364A JP2009259607A JP 2009259607 A JP2009259607 A JP 2009259607A JP 2008107364 A JP2008107364 A JP 2008107364A JP 2008107364 A JP2008107364 A JP 2008107364A JP 2009259607 A JP2009259607 A JP 2009259607A
Authority
JP
Japan
Prior art keywords
battery
assembled battery
storage element
secondary battery
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008107364A
Other languages
Japanese (ja)
Inventor
Akira Tsujiko
曜 辻子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008107364A priority Critical patent/JP2009259607A/en
Publication of JP2009259607A publication Critical patent/JP2009259607A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack composed of a combination of a secondary battery pack and an accumulating element for the detection of a voltage which can easily and accurately obtain the charging/discharging state of the battery from the voltage of the accumulating element, and can prevent the deterioration of functions in the battery pack. <P>SOLUTION: The battery pack 10 is composed by having a plurality of secondary batteries 12 and at least one accumulating element 14 for voltage detection which is different from the secondary battery 12 and serially connected. The accumulating element 14 is provided with a positive electrode including active carbon as a positive electrode material and a negative electrode containing a negative electrode substance which has the same composition as that of the secondary battery 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、組電池に関し、詳しくは、主体となる複数の二次電池と少なくとも一つの電圧検知用蓄電素子を組み合わせて構築される組電池に関する。   The present invention relates to an assembled battery, and in particular, to an assembled battery constructed by combining a plurality of main secondary batteries and at least one voltage detection storage element.

リチウムイオン電池、ニッケル水素電池その他の二次電池を単電池とし、該単電池を複数個直列に接続して構成される組電池は高出力が得られる電源として、ハイブリッドカー等の車両の搭載用電源、或いは、パソコン及び携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン電池を単電池として複数直列に接続した組電池は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。   Lithium-ion batteries, nickel-metal hydride batteries and other secondary batteries are used as single batteries, and assembled batteries constructed by connecting a plurality of the single batteries in series are used as power sources for obtaining high output for mounting on vehicles such as hybrid cars. The importance is increasing as a power source or a power source of a personal computer and a portable terminal. In particular, an assembled battery in which a plurality of lithium-ion batteries that are lightweight and have a high energy density are connected in series as single cells is expected to be preferably used as a high-output power source for mounting on vehicles.

組電池の一形態として、相互に特性の異なる二種類の電池(単電池)を組み合わせて構築されたものが知られている。異種の単電池(二次電池)を組み合わせて構築された組電池では、単一種類の二次電池のみで構築された組電池とは異なる特性を当該組電池に付与することができる。   As one form of an assembled battery, a battery constructed by combining two types of batteries (single cells) having different characteristics from each other is known. In an assembled battery constructed by combining different types of single batteries (secondary batteries), the assembled battery can be imparted with characteristics different from those of an assembled battery constructed with only a single type of secondary battery.

例えば、特許文献1には、非水電解質を備える二次電池(以下「非水系二次電池」という。)であるリチウムイオン電池の他に、水溶性電解質を備える二次電池(以下「水溶液系二次電池」という。)として比較的低容量のニッケル水素電池を含む組電池が記載されている。かかる構成の組電池では、リチウムイオン電池よりも容量の小さいニッケル水素電池が含まれていることによって組電池全体の電池電圧から充電末期の検知が容易となり、そのことによってリチウムイオン電池の過充電を防止し得るという特性(効果)が得られている。また、特許文献2には、複数の非水系二次電池(リチウムイオン電池)と、該二次電池とは電極活物質が異なる少なくとも1個の電圧検知用の非水系二次電池(リチウムイオン電池)とから構成された組電池が記載されている。
特開平9−180768号公報 特開2007−220658号公報
For example, in Patent Document 1, in addition to a lithium ion battery that is a secondary battery including a nonaqueous electrolyte (hereinafter referred to as “nonaqueous secondary battery”), a secondary battery including a water soluble electrolyte (hereinafter referred to as “aqueous solution system”). An assembled battery including a relatively low capacity nickel-metal hydride battery is described as “secondary battery”. The assembled battery having such a configuration includes a nickel-metal hydride battery having a smaller capacity than that of the lithium ion battery, so that it becomes easy to detect the end of charge from the battery voltage of the entire assembled battery, thereby overcharging the lithium ion battery. The characteristic (effect) that can be prevented is obtained. Patent Document 2 discloses a plurality of non-aqueous secondary batteries (lithium ion batteries) and at least one voltage detection non-aqueous secondary battery (lithium ion battery) having a different electrode active material from the secondary battery. ) Are described.
JP-A-9-180768 JP 2007-220658 A

上記特許文献1に記載されるような非水系二次電池と水溶液系二次電池との組合せによって構成された組電池は、上述のとおり、充電時においては組電池全体の電圧から当該組電池の充電状態を容易に検出できる一方で、放電時においてはそれぞれの電池特性の相違のため、水溶液系二次電池が過放電現象によって非水系二次電池よりも劣化が進行し易い。かかる過放電現象による水溶液系二次電池の劣化は、組電池全体の性能低下や短寿命化を招くため好ましくない。   As described above, an assembled battery composed of a combination of a non-aqueous secondary battery and an aqueous secondary battery as described in Patent Document 1 is the voltage of the assembled battery from the voltage of the entire assembled battery at the time of charging. While the state of charge can be easily detected, due to the difference in battery characteristics during discharge, the aqueous secondary battery is more likely to deteriorate than the nonaqueous secondary battery due to the overdischarge phenomenon. The deterioration of the aqueous secondary battery due to such an overdischarge phenomenon is not preferable because it causes a decrease in performance and a shortened life of the entire assembled battery.

また、上記特許文献2に記載されるような電極活物質が異なる非水系二次電池の組み合わせによって構成された組電池についても、電池特性の異なる単電池の組み合わせにより組電池全体の性能低下や短寿命化を招く虞があるため好ましくない。   In addition, for an assembled battery configured by a combination of non-aqueous secondary batteries having different electrode active materials as described in Patent Document 2, performance degradation or shortness of the entire assembled battery is reduced by a combination of single cells having different battery characteristics. Since there exists a possibility of causing lifetime extension, it is not preferable.

本発明は、かかる組電池における従来の問題点を解決すべく創出されたものであり、その一つの目的は、二次電池と電圧検知用の蓄電素子との組合せによって構成される組電池であって、該組電池の充放電状態を上記蓄電素子の電圧から容易に且つ正確に検知し得ると共に、該組電池の性能低下を防止し得る組電池を提供することである。   The present invention was created to solve the conventional problems in such an assembled battery, and one object of the present invention is an assembled battery constituted by a combination of a secondary battery and a voltage detection power storage element. Thus, it is an object of the present invention to provide an assembled battery that can easily and accurately detect the charge / discharge state of the assembled battery from the voltage of the power storage element and can prevent the performance of the assembled battery from being deteriorated.

上記目的を達成すべく本発明によって提供される組電池は、複数の二次電池と、該二次電池とは異なる少なくとも一つの電圧検知用蓄電素子とが直列に接続されてなる組電池である。そして、この組電池を構成する蓄電素子は、正極材料として活性炭を含む正極と、前記二次電池と同一組成の負極活物質を含む負極とを備える。   The assembled battery provided by the present invention to achieve the above object is an assembled battery in which a plurality of secondary batteries and at least one voltage detection storage element different from the secondary battery are connected in series. . And the electrical storage element which comprises this assembled battery is equipped with the positive electrode containing activated carbon as a positive electrode material, and the negative electrode containing the negative electrode active material of the same composition as the said secondary battery.

主体となる複数の二次電池と、電圧検知用蓄電素子(例えば二次電池)とが接続されてなる組電池において、上記二次電池は、放電時において放電容量に依らず安定な出力(電圧)を供給できるもの、即ち放電容量に依らず電圧が変動しにくいものが好ましい。このような二次電池は、典型的には平坦な(プラトーな)放電曲線、或いは平坦となる領域を(典型的には広範囲に亘り)有するような放電曲線を呈する放電特性(即ち、平坦な放電カーブ特性)を有する。一方、上記電圧検知用蓄電素子は、放電容量に依存して電圧が大きく変動するものが好ましく、このような蓄電素子は、放電カーブの傾きが大きい放電特性を有する。ここで、放電特性(出力特性)の異なる蓄電素子を製造する際には、典型的には上記二次電池と電極活物質を違えた電極を備えた蓄電素子(電池)を製造する。このような二次電池と電圧検知用蓄電素子との組合せとして、例えば、リチウム二次電池とニッケル水素電池や、正極活物質の異なるリチウム二次電池が挙げられる。しかし、このように電極活物質の異なる電極を備えた蓄電素子を複数の二次電池と接続してなる組電池では、上記したように、組電池全体の性能低下(典型的には電池容量の低下)や短寿命化を招く虞がある。   In an assembled battery in which a plurality of main secondary batteries and a voltage detection storage element (for example, a secondary battery) are connected, the secondary battery has a stable output (voltage) regardless of discharge capacity during discharge. ), That is, a voltage that does not easily change regardless of the discharge capacity is preferable. Such secondary batteries typically have a discharge characteristic that exhibits a flat (plateau) discharge curve or a discharge curve having a flat region (typically over a wide range) (ie, a flat discharge curve). Discharge curve characteristics). On the other hand, the voltage detecting storage element preferably has a voltage that varies greatly depending on the discharge capacity. Such a storage element has a discharge characteristic with a large slope of the discharge curve. Here, when manufacturing an electrical storage element having different discharge characteristics (output characteristics), typically, an electrical storage element (battery) including an electrode having a different electrode active material from the secondary battery is manufactured. Examples of such a combination of the secondary battery and the voltage detecting storage element include a lithium secondary battery and a nickel hydride battery, and a lithium secondary battery having a different positive electrode active material. However, in an assembled battery in which an electricity storage element having electrodes with different electrode active materials is connected to a plurality of secondary batteries in this way, as described above, the overall performance of the assembled battery is degraded (typically, Lowering) and shortening the service life.

本発明により開示される構成の組電池では、上記二次電池と上記電圧検知用蓄電素子とは、正極材料(正極活物質)が互いに異なる正極を備える一方、同一組成の負極活物質を有する負極を備えている。そして、上記蓄電素子は正極材料として活性炭を含んでいる。   In the assembled battery having the configuration disclosed by the present invention, the secondary battery and the voltage detection storage element include negative electrodes having positive electrodes different from each other in positive electrode materials (positive electrode active materials) and having negative electrode active materials having the same composition. It has. And the said electrical storage element contains activated carbon as a positive electrode material.

正極材料として活性炭を含む正極では、電荷(電子)の授受に係る反応(充放電反応)は、活性炭とイオンの吸着反応(非ファラデー反応)に基づく。このため、かかる正極を備えた蓄電素子は、充放電反応が電気化学反応(ファラデー反応)となる電極を備えた場合に比べて、(1)充放電容量に大きく依存し、充放電カーブの傾きが大きい充放電特性を有する、(2)充放電時に不可逆な副反応等を生じることはないので、性能低下が抑制されて長寿命(高耐久性)である、といった性質を備え得る。このような性質を有することにより、かかる正極を備えた蓄電素子は電圧検知用蓄電素子として好適であり、該蓄電素子自体の寿命も延びる。   In a positive electrode including activated carbon as a positive electrode material, a reaction (charge / discharge reaction) related to transfer of charges (electrons) is based on an adsorption reaction (non-Faraday reaction) between activated carbon and ions. For this reason, the electricity storage device provided with such a positive electrode is (1) largely dependent on the charge / discharge capacity, and the slope of the charge / discharge curve, as compared with the case where an electrode whose charge / discharge reaction is an electrochemical reaction (Faraday reaction) is provided. Have large charge / discharge characteristics, and (2) an irreversible side reaction or the like does not occur at the time of charge / discharge, so that the deterioration of performance is suppressed and the life is long (high durability). With such a property, a power storage element including such a positive electrode is suitable as a voltage detection power storage element, and the life of the power storage element itself is extended.

一方、かかる正極を備えた蓄電素子は、上記性質(1)及び(2)を有する反面、(3)抵抗の温度依存性が低い、といった性質も備え得る。これに対して、充放電反応がファラデー反応に基づく二次電池の抵抗は、該反応に活性化エネルギーを伴う結果、温度依存性が高い。ここで、組電池として温度依存性の異なる抵抗を有する二次電池と蓄電素子とを組み合わせた場合には、温度変化に対して上記二次電池と上記蓄電素子との間における抵抗のバランスが崩れるため、適正な電圧領域で充放電を実施していても、上記二次電池に過負荷が生じて該二次電池が性能低下し、短寿命化する虞がある。   On the other hand, a power storage device including such a positive electrode has the above properties (1) and (2), but can also have the property that (3) resistance has low temperature dependence. On the other hand, the resistance of the secondary battery whose charge / discharge reaction is based on the Faraday reaction is highly temperature dependent as a result of the activation energy accompanying the reaction. Here, when a secondary battery having a resistance having different temperature dependence and a power storage element are combined as an assembled battery, the balance of resistance between the secondary battery and the power storage element with respect to a temperature change is lost. For this reason, even when charging / discharging is performed in an appropriate voltage range, an overload is generated in the secondary battery, and the performance of the secondary battery may be reduced and the life may be shortened.

しかし、本発明により開示される構成の組電池では、電圧検知用蓄電素子の負極は、負極活物質が上記二次電池と同一組成である。この結果、該二次電池と同じファラデー反応を生じさせ、抵抗の温度依存性を上記二次電池に近似させることにより、上記二次電池に生じ得る負荷が緩和されて、上記二次電池の短寿命化が防止されて耐久性が向上し得る。従って、本発明により開示される構成の組電池は、電圧検知に好適な蓄電素子を備えると共に、該蓄電素子及び主体となる複数の二次電池の両方の性能低下が防止され、これらを接続してなる全体としての性能についても長期的に信頼性の高いものとして保証され得る。   However, in the assembled battery having the configuration disclosed by the present invention, the negative electrode of the voltage detection power storage element has the same composition as the secondary battery in the negative electrode active material. As a result, the same Faraday reaction as that of the secondary battery is caused and the temperature dependency of resistance is approximated to that of the secondary battery, so that the load that can be generated in the secondary battery is alleviated, and the short-circuit of the secondary battery is reduced. The lifetime can be prevented and the durability can be improved. Accordingly, the assembled battery having the configuration disclosed by the present invention includes a power storage element suitable for voltage detection, and prevents deterioration in performance of both the power storage element and a plurality of main secondary batteries. The overall performance can be guaranteed to be reliable over the long term.

ここで開示される組電池の好ましい一形態では、前記二次電池は、リチウム二次電池である。   In a preferred embodiment of the assembled battery disclosed herein, the secondary battery is a lithium secondary battery.

リチウム二次電池(典型的にはリチウムイオン電池)は他の二次電池(単電池)と比較して電気容量が大きく、組電池を構成する二次電池として好ましい。本構成の組電池は、かかるリチウム二次電池に加えて電圧検知用蓄電素子を備える。このため、平坦な放電カーブ特性を有するリチウム二次電池主体の組電池であっても、放電時の組電池の状態(典型的には放電容量)を測定電圧値(又は測定電圧、即ち電位の変動)から容易に検知することができる。そして、上述のとおり、上記電圧検知用蓄電素子は、正極材料として活性炭を含む正極と、上記リチウム二次電池と同一組成の負極活物質(例えばグラファイト系炭素材料)を備えることにより、組電池全体としての性能低下が防止され得る。このように、本発明によると、高耐久性及び長寿命のリチウム二次電池主体の組電池を提供することができる。   A lithium secondary battery (typically a lithium ion battery) has a larger electric capacity than other secondary batteries (single batteries), and is preferable as a secondary battery constituting an assembled battery. The assembled battery of this configuration includes a voltage detection storage element in addition to the lithium secondary battery. For this reason, even for an assembled battery mainly composed of a lithium secondary battery having a flat discharge curve characteristic, the state of the assembled battery (typically the discharge capacity) at the time of discharging is measured. Fluctuations) can be easily detected. And as above-mentioned, the said voltage detection electrical storage element is equipped with the positive electrode containing activated carbon as a positive electrode material, and the negative electrode active material (for example, graphite-type carbon material) of the same composition as the said lithium secondary battery, The assembled battery whole As a result, performance degradation can be prevented. As described above, according to the present invention, it is possible to provide an assembled battery mainly composed of a lithium secondary battery having high durability and long life.

ここで開示される組電池の更に好ましい一形態では、前記蓄電素子は、前記二次電池と同一組成でリチウムを含む電解質を備える。   In a further preferred embodiment of the assembled battery disclosed herein, the power storage element includes an electrolyte containing lithium having the same composition as the secondary battery.

かかる構成の組電池では、上記蓄電素子が上記二次電池であるリチウム二次電池(典型的にはリチウムイオン電池)と同じ組成でリチウムを含む電解質(典型的には電解液)を備えているため、該蓄電素子における電解質中の電荷(リチウムイオン)の移動速度や、負極でのリチウムの吸蔵放出に係る反応場等、充放電時の電荷の挙動や環境を更に上記二次電池に近似させることにより、上記蓄電素子及び上記二次電池の性能低下がより一層防止され、組電池全体の性能についてもより信頼性の高いものとして保証され得る。   In the assembled battery having such a configuration, the power storage element includes an electrolyte (typically, an electrolyte) containing lithium with the same composition as the lithium secondary battery (typically a lithium ion battery) that is the secondary battery. Therefore, the behavior and environment of charge at the time of charge / discharge, such as the moving speed of the charge (lithium ions) in the electrolyte in the storage element and the reaction field related to occlusion / release of lithium at the negative electrode, are further approximated to the secondary battery. As a result, the performance degradation of the power storage element and the secondary battery can be further prevented, and the performance of the assembled battery as a whole can be guaranteed to be more reliable.

上記構成の組電池により組電池全体の耐久性向上及び長寿命化を実現することができるので、ここで開示される組電池は、高耐久性等が要求される車両に搭載される電池(電池モジュール)として好適に利用され得る。従って、本発明によると、かかる組電池を備える車両(例えば自動車)が提供される。   Since the assembled battery having the above configuration can improve the durability and extend the life of the entire assembled battery, the assembled battery disclosed herein is a battery (battery) mounted on a vehicle that requires high durability and the like. Module). Therefore, according to the present invention, a vehicle (for example, an automobile) provided with such an assembled battery is provided.

また、本発明は、ここで開示される構成の組電池に係る状態検知方法を提供する。即ち、当該状態検知方法は、充放電時における前記電圧検知用蓄電素子の電圧と組電池の容量との相関性が予め決定された組電池を用意し、前記組電池の充放電時において、前記蓄電素子の電圧を測定することにより、該測定電圧値から前記相関性に基づいて前記組電池の状態を検知することを特徴としている。   Moreover, this invention provides the state detection method which concerns on the assembled battery of the structure disclosed here. That is, the state detection method prepares an assembled battery in which a correlation between the voltage of the voltage detecting storage element at the time of charging and discharging and the capacity of the assembled battery is determined in advance, and at the time of charging and discharging the assembled battery, By measuring the voltage of the storage element, the state of the assembled battery is detected from the measured voltage value based on the correlation.

ここで開示される状態検知方法は、組電池を構成する二次電池の状態(典型的には充放電容量、特に放電容量)を、該状態と電圧検知用蓄電素子の測定電圧値との相関性に基づいて検知することにより、上記組電池全体の状態を把握し得る方法である。この方法により、平坦な充放電カーブ特性(特に放電カーブ特性)を有する複数の二次電池を含む組電池であっても、該組電池の使用時(充放電時)において、当該二次電池の容量と、該容量に対応する上記蓄電素子の電圧値との相関性から、上記組電池の状態を好適に検知(把握)することができる。このため、上記二次電池の過充電又は過放電を効果的に防止することができる。本方法は、極めて平坦な充放電カーブ特性を有する二次電池(例えばリチウム二次電池、典型的にはリチウムイオン電池)を接続してなる組電池に対してより好ましく適用することができ、特に上記二次電池の充放電カーブが平坦となる(電圧変化がほぼ一定となる)範囲内における容量を把握したい場合に特に好ましく用いられる。   The state detection method disclosed here relates to the state (typically charge / discharge capacity, particularly discharge capacity) of the secondary battery constituting the assembled battery, and correlation between the state and the measured voltage value of the voltage detection storage element. It is a method that can grasp the state of the whole assembled battery by detecting based on the property. By this method, even in an assembled battery including a plurality of secondary batteries having a flat charge / discharge curve characteristic (particularly, a discharge curve characteristic), when the assembled battery is used (during charge / discharge), the secondary battery From the correlation between the capacity and the voltage value of the power storage element corresponding to the capacity, the state of the assembled battery can be suitably detected (understood). For this reason, the overcharge or overdischarge of the secondary battery can be effectively prevented. This method can be more preferably applied to an assembled battery formed by connecting secondary batteries (for example, lithium secondary batteries, typically lithium ion batteries) having extremely flat charge / discharge curve characteristics. It is particularly preferably used when it is desired to grasp the capacity within a range where the charge / discharge curve of the secondary battery is flat (voltage change is substantially constant).

以下、図1及び図2を参照にしつつ本発明の好適な実施形態を説明する。図1は、本発明に係る組電池の構成を模式的に示す説明図である。図2は、本発明に係る組電池を組み込んだ電源装置の好ましい一形態の構成を模式的に示す説明図である。なお、本明細書において特に言及している事項(例えば、二次電池や蓄電素子の組成)以外の事柄であって本発明の実施に必要な事柄(例えば、組電池の構築手順、単電池を構成する電極体ユニットや電解質の構成、電池構築のための種々のプロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, a preferred embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is an explanatory view schematically showing a configuration of an assembled battery according to the present invention. FIG. 2 is an explanatory view schematically showing a configuration of a preferred embodiment of a power supply device incorporating the assembled battery according to the present invention. It should be noted that matters other than matters specifically mentioned in the present specification (for example, the composition of secondary batteries and power storage elements) and matters necessary for the implementation of the present invention (for example, battery assembly procedures, single cells, etc.) The electrode body unit to be configured, the configuration of the electrolyte, and various processes for battery construction) can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

本明細書において「単電池」とは、組電池を構成するために相互に直列接続され得る個々の電池を指す用語である。特に限定しない限り種々の組成の電池及び蓄電素子を包含する。なお、本明細書において電池とは、リチウム二次電池、ニッケル水素電池、ニッケルカドミウム電池、鉛蓄電池等のいわゆる化学電池の他、電気二重層キャパシタのように種々の化学電池(例えばリチウムイオン電池)と同様の産業分野で同様に使用され得る蓄電素子(物理電池)を包含する。   In the present specification, the “unit cell” is a term that refers to individual cells that can be connected to each other in series to form an assembled battery. Unless specifically limited, batteries and power storage elements of various compositions are included. In this specification, the term “battery” refers to various types of chemical batteries (for example, lithium ion batteries) such as electric double layer capacitors in addition to so-called chemical batteries such as lithium secondary batteries, nickel hydride batteries, nickel cadmium batteries, and lead storage batteries. And a storage element (physical battery) that can be used in the same industrial field.

ここで開示される組電池は、直列に接続されている複数の二次電池に対し、該二次電池とは異なる電圧検知用蓄電素子が直列に接続されていることによって特徴付けられる組電池であり、組電池を構成する二次電池(単電池)の種類、組電池に含まれる単電池の数、等によって限定されない。   The assembled battery disclosed here is an assembled battery characterized by connecting a plurality of secondary batteries connected in series with voltage detection storage elements different from the secondary battery in series. Yes, it is not limited by the type of secondary battery (unit cell) constituting the assembled battery, the number of unit cells included in the assembled battery, and the like.

ここで開示される組電池を構成する二次電池は特に限定されず、種々の二次電池を包含し得るが、非水系二次電池、即ち非水電解質を備える二次電池がより好ましい。この典型例としてはリチウムイオン電池等のリチウム二次電池が挙げられる。特にリチウムイオン電池は、高エネルギー密度で高出力が実現できる二次電池であるため、高性能な組電池、特に車両搭載用組電池(電池モジュール)を構築するうえで好ましい電池である。   Although the secondary battery which comprises the assembled battery disclosed here is not specifically limited, Although a various secondary battery can be included, a nonaqueous secondary battery, ie, a secondary battery provided with a nonaqueous electrolyte, is more preferable. A typical example is a lithium secondary battery such as a lithium ion battery. In particular, a lithium ion battery is a secondary battery that can achieve a high output at a high energy density, and is therefore a preferable battery for constructing a high-performance assembled battery, particularly an assembled battery for a vehicle (battery module).

本発明の組電池を構成する単電池として用いられるリチウムイオン電池の構成材料には特に制限はなく、例えば、正極材料(正極活物質)としては従来からよく用いられているマンガン酸リチウム(LiMn)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)等が使用できる。非水電解液としては、適当な電解質(例えば六フッ化リン酸リチウム(LiPF)等のリチウム塩)を適当量含む非水系溶媒、例えばジエチルカーボネートとエチレンカーボネートとの混合溶媒を好ましく使用することができる。 There are no particular limitations on the constituent material of the lithium ion battery used as the unit cell constituting the assembled battery of the present invention. For example, lithium manganate (LiMn 2 ) which has been conventionally used as a positive electrode material (positive electrode active material). O 4 ), lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ) and the like can be used. As the non-aqueous electrolyte, a non-aqueous solvent containing an appropriate amount of an appropriate electrolyte (for example, a lithium salt such as lithium hexafluorophosphate (LiPF 6 )), for example, a mixed solvent of diethyl carbonate and ethylene carbonate is preferably used. Can do.

本発明に係る組電池では、電圧検知用蓄電素子を含むことにより、充放電時の組電池の状態(典型的には、放電時の組電池における放電容量)を上記蓄電素子測定電圧値(即ち正負各極の電位の変動)から容易に検知することができる。従って、平坦な充放電カーブ特性を有して状態検知が難しい電池としてリチウム二次電池が挙げられるが、本発明では、上記のとおり、そのような平坦な充放電カーブ特性を有する電池の状態検知を容易に行うことができる。従って上記のようなリチウム二次電池を構成単電池として好ましく使用することができる。例えば、LiFePO、LiMnPO等のオリビン構造を有する化合物を正極活物質(オリビン系正極材料)とするリチウムイオン電池は、非常に平坦な放電カーブ特性(電圧挙動)を示すリチウムイオン電池であり、本発明の組電池を構成する非水系二次電池(単電池)として特に好適である。オリビン系正極材料の好適例としてLiFe1−xPOで示される化合物(ここでMはMn,Cr,Co,Cu,Ni,V,Mo,Ti,Zn,Al,Ga,Mg,B及びNbのうちから選択される少なくとも1種であり、xは0≦x≦0.5を満足する実数である。)が挙げられる。 In the assembled battery according to the present invention, the state of the assembled battery during charge / discharge (typically, the discharge capacity of the assembled battery during discharge) is determined by including the voltage detection storage element. It can be easily detected from fluctuations in the potential of the positive and negative electrodes). Accordingly, a lithium secondary battery can be cited as a battery having a flat charge / discharge curve characteristic and difficult to detect the state. In the present invention, as described above, a state detection of a battery having such a flat charge / discharge curve characteristic is provided. Can be easily performed. Therefore, the lithium secondary battery as described above can be preferably used as a constituent cell. For example, a lithium ion battery using a compound having an olivine structure such as LiFePO 4 and LiMnPO 4 as a positive electrode active material (olivine-based positive electrode material) is a lithium ion battery that exhibits a very flat discharge curve characteristic (voltage behavior). It is particularly suitable as a non-aqueous secondary battery (unit cell) constituting the assembled battery of the present invention. Olivine LiFe 1-x M x PO 4 compound represented by the preferred examples of the cathode material (wherein M is Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B And at least one selected from Nb, and x is a real number satisfying 0 ≦ x ≦ 0.5.

また、リチウムイオン電池の負極材料(負極活物質)としてはグラファイトカーボン、アモルファスカーボン等の炭素系材料、リチウム含有遷移金属酸化物や遷移金属窒化物等が使用できる。組電池全体の高電圧化を実現するべく、グラファイト(黒鉛)等の炭素系材料が好ましい。本発明による効果を享受し易い平坦な充放電カーブ特性(電位平坦性)のリチウムイオン電池を構成するのに適する炭素系材料として、黒鉛構造の層間距離dが比較的小さく且つ該d値から算出される格子定数C(=2d)結晶子サイズLcが比較的大きい天然黒鉛系材料やメソカーボンマイクロビーズ等の人造黒鉛系材料が特に好ましい。例えば、顕微鏡法等に基づく平均粒子径が10〜30μm(例えば20μm)程度である黒鉛化度0.9以上の天然黒鉛材料(例えばC=0.67nm、Lc=27nm)が好ましい。 Further, as a negative electrode material (negative electrode active material) of a lithium ion battery, carbon-based materials such as graphite carbon and amorphous carbon, lithium-containing transition metal oxides, transition metal nitrides, and the like can be used. A carbon-based material such as graphite (graphite) is preferable in order to realize a high voltage of the entire assembled battery. As a carbon-based material suitable for constructing a lithium ion battery having a flat charge / discharge curve characteristic (potential flatness) that can easily enjoy the effects of the present invention, the interlayer distance d of the graphite structure is relatively small and calculated from the d value. Particularly preferred are natural graphite materials having a relatively large lattice constant C 0 (= 2d) crystallite size Lc and artificial graphite materials such as mesocarbon microbeads. For example, a natural graphite material (for example, C o = 0.67 nm, Lc = 27 nm) having an average particle diameter of about 10 to 30 μm (for example, 20 μm) and a degree of graphitization of 0.9 or more is preferable.

ここで開示される組電池を構築するために上記のような二次電池(リチウム二次電池、典型的にはリチウムイオン電池)と共に使用される電圧検知用蓄電素子としては、正極材料として活性炭を含む正極と、上記二次電池と同一組成の負極活物質を含む負極とから構成されている蓄電素子を好ましく用いることができる。即ち、かかる電圧検知用蓄電素子は、上記二次電池の正極活物質(リチウム含有遷移金属酸化物)を非晶質な炭素材料(活性炭)を含む正極材料に置換した形態の電池であればよい。また、上記蓄電素子の電解液としては、上記二次電池で用いられる電解液と同一のものを用いることが好ましい。上記二次電池としてリチウムイオン電池を用いる場合には、該リチウムイオン電池と共に使用される電圧検知用蓄電素子として、活性炭を含む正極と、上記のような負極材料(グラファイト)を含む負極と、リチウム塩を含む非水系溶媒からなる非水電解液とを備える蓄電素子、いわゆるリチウムイオンキャパシタを好ましく採用することができる。正極に活性炭を含むような構成の上記蓄電素子は、容量変化に対する電圧変化が大きく(充放電カーブの傾きが大きく)、且つ広い容量範囲に亘り容量変化に対してほぼ一定の勾配で(即ちほぼ直線的に)電圧が変化する。従って、かかる構成の蓄電素子により、上記二次電池を主体とする組電池の使用時(充放電時、特に放電時)の容量変化(特に放電容量変化)を、上記蓄電素子の電圧変化を検知することで正確に把握することができる。   In order to construct the assembled battery disclosed here, the voltage sensing storage element used together with the secondary battery as described above (lithium secondary battery, typically lithium ion battery) is activated carbon as a positive electrode material. A power storage element including a positive electrode including a negative electrode including a negative electrode active material having the same composition as the secondary battery can be preferably used. That is, the voltage detecting power storage element may be a battery having a form in which the positive electrode active material (lithium-containing transition metal oxide) of the secondary battery is replaced with a positive electrode material containing an amorphous carbon material (activated carbon). . Moreover, it is preferable to use the same electrolytic solution as that used in the secondary battery as the electrolytic solution of the power storage element. When a lithium ion battery is used as the secondary battery, the positive electrode containing activated carbon, the negative electrode containing the negative electrode material (graphite) as described above, and lithium An electric storage element provided with a non-aqueous electrolyte composed of a non-aqueous solvent containing a salt, so-called lithium ion capacitor, can be preferably used. The above-described power storage element configured to include activated carbon in the positive electrode has a large voltage change with respect to the capacity change (the slope of the charge / discharge curve is large), and a substantially constant gradient with respect to the capacity change over a wide capacity range (that is, almost the same). The voltage changes linearly. Therefore, the storage element having such a configuration detects a change in capacity (especially a change in discharge capacity) during use (charge / discharge, particularly during discharge) of the assembled battery mainly composed of the secondary battery, and detects a voltage change of the storage element. It is possible to grasp accurately.

また、上記蓄電素子において、正極材料として活性炭を含むが、負極活物質は上記二次電池(リチウム二次電池、典型的にはリチウムイオン電池)と同一組成である。このため、かかる構成の蓄電素子は、正極材料及び負極材料の両方が活性炭であるような形態の蓄電素子(いわゆる、電気二重層キャパシタ)に比べて、抵抗の温度依存性を上記二次電池に近づけることができる。この効果は、電解液も同じ(リチウム塩を含む非水電解液)にすることによってより一層奏される。従って、例えば、1つ又は2〜3個の上記構成の蓄電素子(リチウムイオンキャパシタ)と、複数(例えば5〜30個)の平坦な充放電カーブ特性(電圧挙動)を示すリチウムイオン電池とを組み合わせて組電池を構築した場合には、当該電池の使用時の温度変化によって生じる抵抗のバランスのずれ、又はリチウムイオンの挙動や電極と電解液との界面環境等の相違を軽減することができ、上記リチウムイオン電池にかかる負荷が軽減され得る。この結果、上記組電池全体の性能低下及び短寿命化を防止し、長期に亘って信頼性の高い組電池を提供することができる。   Moreover, in the said electrical storage element, although activated carbon is included as a positive electrode material, a negative electrode active material is the same composition as the said secondary battery (lithium secondary battery, typically a lithium ion battery). For this reason, the power storage device having such a configuration has a resistance temperature dependency on the secondary battery as compared with a power storage device in which both the positive electrode material and the negative electrode material are activated carbon (so-called electric double layer capacitor). You can get closer. This effect is further exhibited by making the electrolytic solution the same (non-aqueous electrolytic solution containing a lithium salt). Therefore, for example, one or two to three power storage elements (lithium ion capacitors) having the above-described configuration and a plurality of (for example, 5 to 30) lithium ion batteries exhibiting flat charge / discharge curve characteristics (voltage behavior). When an assembled battery is constructed in combination, it is possible to reduce the difference in resistance balance caused by temperature changes during use of the battery or the difference in the behavior of lithium ions and the interface environment between the electrode and electrolyte. The load on the lithium ion battery can be reduced. As a result, it is possible to provide a highly reliable assembled battery for a long period of time, preventing performance degradation and shortening of the life of the assembled battery as a whole.

また、上記電圧検知用蓄電素子として、組み合わせる二次電池の電池容量と同程度か、或いは大きい容量のものを使用することができる。これにより、組電池の充電時には上記蓄電素子の過充電が防止されると共に、上記組電池の充電終了が上記蓄電素子の充電終了に制限されることがないので、広い容量範囲で使用することができる。   In addition, as the voltage detection storage element, a battery having a capacity that is approximately the same as or larger than the battery capacity of the secondary battery to be combined can be used. As a result, overcharging of the battery element is prevented during charging of the battery pack, and charging end of the battery pack is not limited to charging end of the battery element, so that it can be used in a wide capacity range. it can.

電池容量の大きな蓄電素子を用いた場合においても、上記組電池の使用時に二次電池の取り得る容量範囲に対応する該蓄電素子の容量範囲内において、該蓄電素子の容量変化に対する電圧変化が大きければ、電圧検知用素子として好ましく採用し得る。ここで、正極材料として活性炭を含む蓄電素子では、広い容量範囲内に亘りほぼ一定の傾きで電圧が変化し、その電圧変化量は上記二次電池の上記容量範囲内における電圧変化量に比べて十分大きいので、電池容量の大きい上記蓄電素子を電圧検知用蓄電素子として好ましく採用することができる。   Even when a battery element with a large battery capacity is used, the voltage change relative to the capacity change of the battery element is large within the capacity range of the battery element corresponding to the capacity range that the secondary battery can take when using the assembled battery. Thus, it can be preferably employed as a voltage detection element. Here, in the storage element including activated carbon as the positive electrode material, the voltage changes with a substantially constant slope over a wide capacity range, and the voltage change amount is larger than the voltage change amount within the capacity range of the secondary battery. Since it is sufficiently large, the above storage element having a large battery capacity can be preferably employed as the voltage detection storage element.

次に、図1を参照にしつつ、本発明に係る組電池の構成を説明する。図1に模式的に示すように、ここで開示される組電池10は、複数の二次電池12及び電圧検知用蓄電素子14が直列に接続されてなる組電池10であって、当該組電池10を構成する単電池12は二次電池(例えばリチウム二次電池、典型的にはリチウムイオン電池)12であり、且つ、該二次電池12とは異なる電圧検知用蓄電素子14が少なくとも1つ接続されている。上記蓄電素子14の接続される位置は、組電池10の端部でも上記二次電池12同士の間でもよく特に限定されない。また、その他の構成や組電池の組み付け方法等は従来の組電池と同じでよく、特に制限はない。例えば、組電池を構成する単電池の形態や単電池の数量は従来の組電池と同様でよい。例えば、組電池の主構成要素である二次電池としてリチウムイオン電池を採用する場合、当該リチウムイオン電池(単電池)の一形態として、所定の電池構成材料(正極負極それぞれの活物質、正極負極それぞれの集電体、セパレータ、電解質等)を具備する電極体と、該電極体を収容する容器とを備える密閉型のリチウムイオン電池が挙げられる。
また、上記組電池10を電源として所定の回路に接続した際、図1に示す組電池10の内部構成と同様の回路構成の電源装置(電源回路)が提供される。
Next, the structure of the assembled battery according to the present invention will be described with reference to FIG. As schematically shown in FIG. 1, an assembled battery 10 disclosed herein is an assembled battery 10 in which a plurality of secondary batteries 12 and a voltage detection storage element 14 are connected in series, and the assembled battery 10 10 is a secondary battery (for example, a lithium secondary battery, typically a lithium ion battery) 12, and at least one voltage sensing storage element 14 different from the secondary battery 12. It is connected. The position to which the electricity storage element 14 is connected may be at the end of the assembled battery 10 or between the secondary batteries 12 and is not particularly limited. In addition, other configurations, the assembled method of the assembled battery, and the like may be the same as those of the conventional assembled battery, and are not particularly limited. For example, the form of the unit cell constituting the assembled battery and the number of the unit cells may be the same as those of the conventional assembled battery. For example, when a lithium ion battery is adopted as a secondary battery that is a main constituent element of an assembled battery, as one form of the lithium ion battery (single battery), a predetermined battery constituent material (active material of each of positive and negative electrodes, positive and negative electrodes) And a sealed lithium ion battery including an electrode body including each current collector, separator, electrolyte, and the like, and a container for housing the electrode body.
When the assembled battery 10 is connected to a predetermined circuit as a power source, a power supply device (power supply circuit) having the same circuit configuration as the internal configuration of the assembled battery 10 shown in FIG. 1 is provided.

例えば、図2に模式的に示すように、複数の二次電池12及び電圧検知用蓄電素子14を含む電源装置(電源回路)40であって、複数(例えば5〜30個)の二次電池(例えば非水系二次電池、好ましくはリチウムイオン電池)12と、該二次電池12に対して直列に接続された少なくとも1つ(1つ、又は2〜3個)の電圧検知用蓄電素子14の組合せによって構成される組電池20と、制御部30とを備えた電源装置(電源回路)40が提供される。例えば上記制御部30を予め車両に設けておき、別途用意した脱着自在の組電池20を所定の位置に装着した際、制御部30と該組電池20の上記蓄電素子14とが並列接続され得るように構成された電源装置40が提供される(例えば車両の電源用電源装置)。また、上記制御部30には、例えば上記蓄電素子14の電圧値を測定する測定手段や、上記蓄電素子14の容量及び上記二次電池の容量、更には組電池20全体の容量を上記測定手段により得られた測定電圧値から検知する検知手段等が含まれている。なお、このような構成の電源装置40を構成するための制御部30には、図示した上記測定手段や検知手段の他に、組電池20と直接的に接続される又は接続されない種々の電子部品(キャパシタ、トランジスタ等の素子)や付加回路(補助電源等)を含み得るが、これらの要素は本発明を特徴付けるものではないため詳細な説明は省略する。   For example, as schematically shown in FIG. 2, a power supply device (power supply circuit) 40 including a plurality of secondary batteries 12 and a voltage detecting storage element 14, and a plurality of (for example, 5 to 30) secondary batteries. (For example, a non-aqueous secondary battery, preferably a lithium ion battery) 12 and at least one (one or two to three) voltage detection storage elements 14 connected in series to the secondary battery 12. A power supply device (power supply circuit) 40 including the assembled battery 20 configured by the combination of the above and the control unit 30 is provided. For example, when the control unit 30 is provided in a vehicle in advance and a separately prepared removable battery 20 is mounted at a predetermined position, the control unit 30 and the power storage element 14 of the battery pack 20 can be connected in parallel. The power supply device 40 configured as described above is provided (for example, a power supply device for a vehicle power supply). The control unit 30 includes, for example, measuring means for measuring the voltage value of the power storage element 14, capacity of the power storage element 14, capacity of the secondary battery, and further, capacity of the assembled battery 20 as a whole. The detection means etc. which detect from the measured voltage value obtained by 1 are included. The control unit 30 for configuring the power supply device 40 having such a configuration includes various electronic components that are directly connected to or not connected to the assembled battery 20 in addition to the above-described measurement means and detection means. (Elements such as capacitors and transistors) and additional circuits (auxiliary power supply and the like) may be included, but these elements do not characterize the present invention, and thus detailed description thereof is omitted.

本発明によると、ここで開示される構成の組電池の状態(典型的には放電時の放電容量)を検知する方法が提供される。   According to the present invention, there is provided a method for detecting the state (typically, discharge capacity during discharge) of an assembled battery having the configuration disclosed herein.

かかる方法は、例えば予備的な充放電処理により上記組電池の状態と該組電池を構成する電圧検知用蓄電素子の電圧値との相関性が予め決定されている組電池を用意し、該組電池の使用時において上記電圧検知用蓄電素子の電圧を随時測定し、この測定電圧値を上記相関性に照らし合わせることにより、上記組電池の状態を検知する方法である。   Such a method prepares an assembled battery in which the correlation between the state of the assembled battery and the voltage value of the voltage detecting storage element constituting the assembled battery is determined in advance by, for example, preliminary charge and discharge processing. This is a method of detecting the state of the assembled battery by measuring the voltage of the voltage detecting storage element at any time during use of the battery and comparing the measured voltage value with the correlation.

かかる方法において、上記相関性は、例えば以下に示す手順により決定される。即ち、組電池の構成要素である二次電池の一つに対して、所定条件(所定の電流条件及び電圧条件)下で予備的な充放電処理(典型的には1サイクルの充放電処理)を実施する。該予備的な放電処理の一例としては、(i)所定電流値(例えば上記二次電池の正極における理論容量から予測した電池容量の5分の1程度の電流値、例えば1A)の定電流条件で充電し、電圧値が所定電圧値(充電上限電圧)に到達後、該電圧値を維持して電流値を(例えば定電流条件での電流値の10分の1になるまで)減衰させていく方法(即ち、定電流定電圧方式)で充電処理を行う、(ii)この充電処理の実施後、所定電流値(例えば上記定電流条件と同じ電流値)の下で所定電圧値(例えば上記充電上限電圧の75%の電圧値)に到達するまで放電することが挙げられる。このような予備的な充放電処理により、上記二次電池の放電容量、或いは残存容量(放電開始直前又は充電終了時の容量から放電容量を差し引いて残存する分の容量)と電圧値との相関性を求める。また、上記蓄電素子についても上記と同様の予備的な充放電処理を実施して、上記蓄電素子における放電容量(残存容量)と電圧値との相関性を求める。   In this method, the correlation is determined by the following procedure, for example. That is, a preliminary charge / discharge process (typically one cycle of charge / discharge process) is performed on one of the secondary batteries as a component of the assembled battery under a predetermined condition (predetermined current condition and voltage condition). To implement. As an example of the preliminary discharge treatment, (i) a constant current condition of a predetermined current value (for example, a current value of about one fifth of the battery capacity predicted from the theoretical capacity at the positive electrode of the secondary battery, for example, 1 A) After the voltage value reaches a predetermined voltage value (charging upper limit voltage), the voltage value is maintained and the current value is attenuated (for example, until it becomes 1/10 of the current value under a constant current condition). (Ii) After this charging process is performed, a predetermined voltage value (for example, the above-described constant current condition) is used under a predetermined current value (for example, the above-described constant current condition). Discharge until it reaches a voltage value of 75% of the charge upper limit voltage). Correlation between the discharge capacity of the secondary battery or the remaining capacity (the capacity obtained by subtracting the discharge capacity from the capacity immediately before the start of discharge or at the end of charge) and the voltage value by such preliminary charge / discharge treatment. Seeking sex. In addition, the same charge / discharge treatment as described above is performed on the power storage element, and the correlation between the discharge capacity (remaining capacity) and the voltage value in the power storage element is obtained.

次いで、上記のような方法により求めた二つの相関性(即ち、上記二次電池の容量と電圧値との相関性、及び上記蓄電素子の容量と電圧値との相関性)を照合し、上記二次電池の容量値からこれに対応する上記蓄電素子の容量値を求め、この求められた蓄電素子の容量値から該蓄電素子の電圧値を導くことにより、上記二次電池の容量値に対応する上記蓄電素子の電圧値を設定することができる。このようにして、上記二次電池の容量(状態)と上記蓄電素子の電圧との相関性を求め、当該相関性から上記組電池の状態と上記蓄電素子の電圧との相関性を更に決定する。   Next, the two correlations obtained by the above method (that is, the correlation between the capacity of the secondary battery and the voltage value, and the correlation between the capacity of the storage element and the voltage value) are collated, Corresponding to the capacity value of the secondary battery by determining the capacity value of the power storage element corresponding to the capacity value of the secondary battery and deriving the voltage value of the power storage element from the determined capacity value of the power storage element The voltage value of the storage element can be set. In this way, the correlation between the capacity (state) of the secondary battery and the voltage of the storage element is obtained, and the correlation between the state of the assembled battery and the voltage of the storage element is further determined from the correlation. .

上記組電池の状態検知は、例えば以下のようにして行うことができる。上記のようにして予め組電池の状態と電圧検知用蓄電素子の電圧との相関性が決定された組電池を用意し、該組電池を充放電処理する(使用する)。この充放電処理を上記蓄電素子の電圧を測定しながら実施し、随時得られる測定電圧値と上記相関性とを比較することにより、上記組電池全体の状態を検知する。ここで、上記蓄電素子の電圧測定の頻度は特に限定されず、所定時間毎に測定してもよいし、或いは連続的に上記電圧をモニタリングしていてもよい。   The state detection of the assembled battery can be performed as follows, for example. An assembled battery in which the correlation between the state of the assembled battery and the voltage of the voltage detecting storage element is determined in advance as described above is prepared, and the assembled battery is charged / discharged (used). The charging / discharging process is performed while measuring the voltage of the power storage element, and the state of the entire assembled battery is detected by comparing the measured voltage value obtained as needed and the correlation. Here, the frequency of voltage measurement of the power storage element is not particularly limited, and may be measured every predetermined time, or the voltage may be continuously monitored.

上記組電池の使用時に上記二次電池の取り得る容量範囲の上限値及び下限値は、典型的には上記二次電池の充放電カーブにおける平坦部分の両端部(該平坦部分の開始部及び終了部)付近に相当する各容量となるが、上記組電池が組み込まれ得る電源装置(例えば図2における電源装置40)の出力特性によって適宜設定され得る。   The upper limit value and the lower limit value of the capacity range that the secondary battery can take when using the assembled battery are typically the both ends of the flat portion in the charge / discharge curve of the secondary battery (the start and end of the flat portion). Part), each capacity corresponding to the vicinity, but can be appropriately set depending on the output characteristics of a power supply device (for example, power supply device 40 in FIG. 2) in which the assembled battery can be incorporated.

以上のような方法により、上記組電池全体の状態を上記電圧検知用蓄電素子の測定電圧値から検知することができる。また、かかる方法は、例えば図2に模式的に示される上記電源装置40の制御部30において、好ましく実施され得る。   By the method as described above, the state of the entire assembled battery can be detected from the measured voltage value of the voltage detecting storage element. Moreover, this method can be preferably implemented in, for example, the control unit 30 of the power supply device 40 schematically shown in FIG.

以下の実施例によって、本発明を更に詳しく説明するが、本発明の構成をかかる実施例として挙げたものに限定することを意図したものではない。   The following examples further illustrate the invention, but are not intended to limit the construction of the invention to those listed as such examples.

二次電池と電圧検知用蓄電素子とを直列に接続してなる組電池において、上記蓄電素子の種類を変えることにより上記組電池の耐久性(放電容量維持率)に相違があるか否かを評価した。この耐久性評価の具体的方法を以下に示す。
<組電池の主体となる二次電池の作製>
組電池に組み込む二次電池としてリチウムイオン電池を作製した。即ち、正極活物質であるLiFePOと、導電助材であるアセチレンブラック(AB)と、結着材であるポリフッ化ビニリデン(PVDF)を、質量比でLiFePO/AB/PVDF=85/5/10となるように分散溶媒であるN−メチル−2−ピロリドン(NMP)に添加し、よく混合することによって正極活物質層形成用ペーストを調製した。得られた正極活物質層形成用ペーストを、長さ2.7m、幅10cm、厚さ15μmのアルミニウム箔上に塗布し、ロールプレスによる処理を行って、該アルミニウム箔上に正極活物質層を形成してなる正極集電体シートを作製した。
Whether or not there is a difference in durability (discharge capacity retention rate) of the assembled battery by changing the type of the storage element in the assembled battery formed by connecting a secondary battery and a voltage detecting storage element in series evaluated. A specific method for evaluating the durability will be described below.
<Production of secondary battery that is the main component of the assembled battery>
A lithium ion battery was produced as a secondary battery incorporated in the assembled battery. That is, LiFePO 4 which is a positive electrode active material, acetylene black (AB) which is a conductive additive, and polyvinylidene fluoride (PVDF) which is a binder, LiFePO 4 / AB / PVDF = 85/5 / A positive electrode active material layer forming paste was prepared by adding to N-methyl-2-pyrrolidone (NMP), which is a dispersion solvent, and mixing well. The obtained paste for forming a positive electrode active material layer was applied on an aluminum foil having a length of 2.7 m, a width of 10 cm, and a thickness of 15 μm, and a treatment by a roll press was performed, so that the positive electrode active material layer was formed on the aluminum foil. A positive electrode current collector sheet formed was produced.

一方、負極活物質である天然黒鉛系炭素材料(グラファイト)と、結着材であるスチレン−ブタジエン共重合体(SBR)と、増粘材であるカルボキシメチルセルロース(CMC)を、質量比でグラファイト/SBR/CMC=95/2.5/2.5となるように分散溶媒である水に添加し、よく混合することによって負極活物質層形成用ペーストを調製した。得られた負極活物質層形成用ペーストを、長さ2.9m、幅10cm、厚さ10μmの銅箔上に塗布し、ロールプレスによる処理を行って、該銅箔上に負極活物質層を形成して成る負極集電体シートを作製した。なお、正極の理論容量と負極の理論容量との比率が1(正極):1.5(負極)となるように上記ペーストの塗布量を調節した。   On the other hand, a natural graphite-based carbon material (graphite) that is a negative electrode active material, a styrene-butadiene copolymer (SBR) that is a binder, and carboxymethyl cellulose (CMC) that is a thickener are graphite / A negative electrode active material layer forming paste was prepared by adding to water as a dispersion solvent so that SBR / CMC = 95 / 2.5 / 2.5 and mixing well. The obtained paste for forming a negative electrode active material layer was applied on a copper foil having a length of 2.9 m, a width of 10 cm, and a thickness of 10 μm, and a treatment by a roll press was performed, so that the negative electrode active material layer was formed on the copper foil. A formed negative electrode current collector sheet was prepared. The amount of paste applied was adjusted so that the ratio between the theoretical capacity of the positive electrode and the theoretical capacity of the negative electrode was 1 (positive electrode): 1.5 (negative electrode).

こうして得られた正極集電体シート及び負極集電体シートを、長さ3.1m、幅11cm、厚さ25μmのポリプロピレン/ポリエチレン複合体多孔質膜であるセパレータシート(2枚)と共に捲回し(20周巻き)、次いで押しつぶすことによってリチウムイオン電池用の扁平形状捲回電極体を作製した。   The positive electrode current collector sheet and the negative electrode current collector sheet thus obtained were wound together with a separator sheet (two sheets) that is a polypropylene / polyethylene composite porous film having a length of 3.1 m, a width of 11 cm, and a thickness of 25 μm ( A flat wound electrode body for a lithium ion battery was produced by crushing 20 turns) and then crushing.

作製した捲回電極体に正負極それぞれのリード端子を溶接し、捲回電極体に対応する形状のアルミニウム製の箱形容器(内容積:約100mL)に収容した。容器には適当量の電解液(質量比1:1:1であるエチレンカーボネート、エチルメチルカーボネート及びジメチルカーボネートの混合溶媒にリチウム塩として濃度1MとなるLiPFを溶解した非水電解液)を注入し、封止した。これにより、組電池の単電池として使用する捲回型電極体を備える密閉型リチウムイオン電池を作製した。
<電圧検知用蓄電素子の作製>
また、組電池に組み込む電圧検知用蓄電素子として以下に示す3種類の蓄電素子(1)〜(3)を作製した。
<蓄電素子(1)の作製>
正極活物質をLiFePOからLiNiOに変更する以外は、上記リチウムイオン電池の作製方法と同様にして、蓄電素子(1)(リチウムイオン電池)を作製した。
<蓄電素子(2)の作製>
正極活物質をLiFePOからLiCoOに変更する以外は、上記リチウムイオン電池の作製方法と同様にして、蓄電素子(2)(リチウムイオン電池)を作製した。
<蓄電素子(3)の作製>
活性炭(正極活物質)と、導電助材であるABと、結着材であるPVDFを、質量比で活性炭/AB/PVDF=80/10/10となるように分散溶媒であるNMPに添加し、よく混合することによって正極活物質層形成用ペーストを調製した。得られた正極活物質層形成用ペーストを、長さ2.7m、幅10cm、厚さ15μmのアルミニウム箔上に塗布し、ロールプレスによる処理を行って、該アルミニウム箔上に正極活物質層を形成してなる正極集電体シートを作製した。正極集電体シート以外は上記リチウムイオン電池の作製方法と同様にして、蓄電素子(3)(いわゆるリチウムイオンキャパシタ)を作製した。
ここで、上記リチウムイオン電池(二次電池)、蓄電素子(1)、(2)及び(3)のそれぞれの放電特性を調べた。具体的には、上記二次電池及び蓄電素子(1)〜(3)のそれぞれについて、25℃の温度条件下、定電流定電圧によって正極理論容量から予測した電池容量(Ah)の5分の1の電流値で各充電上限電圧まで充電を行った。即ち、定電圧充電時の最終電流値が初期の電流値の10分の1になる点まで充電を行った。上記充電後、実施例、比較例1及び比較例2の各組電池の放電特性を評価するため、正極理論容量から予測した電池容量(Ah)の5分の1の電流値で3Vまで放電し、上記リチウムイオン電池及び蓄電素子(1)〜(3)のそれぞれの容量値(放電容量)を調べた。得られた容量値を、上記リチウムイオン電池及び蓄電素子(1)〜(3)のそれぞれの「耐久試験前の容量値」とした。
The lead terminals of the positive and negative electrodes were welded to the wound electrode body thus produced and accommodated in an aluminum box-shaped container (internal volume: about 100 mL) having a shape corresponding to the wound electrode body. An appropriate amount of electrolytic solution (non-aqueous electrolytic solution in which LiPF 6 having a concentration of 1 M as a lithium salt is dissolved in a mixed solvent of ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate having a mass ratio of 1: 1: 1) is injected into the container. And sealed. This produced the sealed lithium ion battery provided with the wound electrode body used as a single battery of the assembled battery.
<Preparation of voltage sensing power storage element>
Moreover, the following three types of power storage elements (1) to (3) were produced as voltage detection power storage elements to be incorporated into the assembled battery.
<Production of power storage element (1)>
A storage element (1) (lithium ion battery) was produced in the same manner as the above lithium ion battery production method except that the positive electrode active material was changed from LiFePO 4 to LiNiO 2 .
<Production of power storage element (2)>
A storage element (2) (lithium ion battery) was produced in the same manner as the above lithium ion battery production method except that the positive electrode active material was changed from LiFePO 4 to LiCoO 2 .
<Production of electricity storage element (3)>
Activated carbon (positive electrode active material), AB, which is a conductive additive, and PVDF, which is a binder, are added to NMP, which is a dispersion solvent, so that the mass ratio is activated carbon / AB / PVDF = 80/10/10. The positive electrode active material layer forming paste was prepared by mixing well. The obtained paste for forming a positive electrode active material layer was applied on an aluminum foil having a length of 2.7 m, a width of 10 cm, and a thickness of 15 μm, and a treatment by a roll press was performed, so that the positive electrode active material layer was formed on the aluminum foil. A positive electrode current collector sheet formed was produced. A storage element (3) (so-called lithium ion capacitor) was produced in the same manner as the above-described method for producing a lithium ion battery except for the positive electrode current collector sheet.
Here, each discharge characteristic of the said lithium ion battery (secondary battery) and electrical storage element (1), (2) and (3) was investigated. Specifically, for each of the secondary battery and the storage elements (1) to (3), 5 minutes of the battery capacity (Ah) predicted from the positive electrode theoretical capacity by the constant current and constant voltage under the temperature condition of 25 ° C. Charging was carried out at a current value of 1 up to each charging upper limit voltage. That is, the charging was performed until the final current value during constant voltage charging was 1/10 of the initial current value. After the above charging, in order to evaluate the discharge characteristics of the assembled batteries of Example, Comparative Example 1 and Comparative Example 2, the battery was discharged to 3 V at a current value of 1/5 of the battery capacity (Ah) predicted from the positive electrode theoretical capacity. The capacity values (discharge capacities) of the lithium ion battery and the storage elements (1) to (3) were examined. The obtained capacity value was defined as “capacity value before endurance test” of each of the lithium ion battery and power storage elements (1) to (3).

次いで、上記リチウムイオン電池10個と、上記蓄電素子(1)〜(3)から選ばれる1個とを直列に接続することによって、本実施例に係る組電池を作製した。   Next, the assembled battery according to this example was manufactured by connecting in series the 10 lithium ion batteries and one selected from the storage elements (1) to (3).

ここで、例1として、10個の上記リチウムイオン電池と1個の上記蓄電素子(1)とを直列に接続してなる組電池を作製した。   Here, as Example 1, an assembled battery in which 10 lithium ion batteries and one power storage element (1) were connected in series was manufactured.

また、例2として、10個の上記リチウムイオン電池と1個の上記蓄電素子(2)とを直列に接続してなる組電池を作製した。   Further, as Example 2, an assembled battery in which 10 lithium ion batteries and one power storage element (2) were connected in series was manufactured.

更に、例3として、10個の上記リチウムイオン電池と1個の上記蓄電素子(3)とを直列に接続してなる組電池を作製した。   Furthermore, as Example 3, an assembled battery formed by connecting ten lithium ion batteries and one power storage element (3) in series was manufactured.

次に、例1〜例3に係る3つの組電池のそれぞれに対して、耐久試験(加速劣化試験)を実施した。この耐久試験としては、25℃の温度条件下において、2Cでの充放電を繰り返すサイクル試験を行った。具体的には、各組電池を2Cの定電流で上限電圧まで充電し、次いで2Cの定電流で3Vまで放電した。このサイクルを100回繰り返した。なお、ここで「C」は放電時間率を表す。従って、電流密度2Cとは、電池容量(Ah)に相当する電気量を0.5時間で供給し得る電流密度(A)を意味する。   Next, an endurance test (accelerated deterioration test) was performed on each of the three assembled batteries according to Examples 1 to 3. As this endurance test, a cycle test in which charging and discharging at 2C were repeated under a temperature condition of 25 ° C. Specifically, each assembled battery was charged to an upper limit voltage with a constant current of 2C, and then discharged to 3V with a constant current of 2C. This cycle was repeated 100 times. Here, “C” represents a discharge time rate. Therefore, the current density 2C means a current density (A) that can supply an amount of electricity corresponding to the battery capacity (Ah) in 0.5 hours.

上記温度条件下での耐久試験を実施した後、例1〜3に係る各組電池のそれぞれについて、リチウムイオン電池と蓄電素子(1)〜(3)とを切り離した。例1の組電池に係る1個のリチウムイオン電池と蓄電素子(1)、例2の組電池に係る1個のリチウムイオン電池と蓄電素子(2)、及び例3の組電池に係る1個のリチウムイオン電池と蓄電素子(3)の各充放電特性を評価するため、上記耐久試験前の放電特性評価と同様に、正極理論容量から予測した電池容量(Ah)の5分の1の電流値で充電上限電圧まで充電を行った後、同じ電流値で3Vに至るまで放電し、各組電池の容量値(放電容量)を調べた。得られた容量値を「耐久試験後の容量値」とした。   After carrying out the durability test under the above temperature conditions, the lithium ion battery and the storage elements (1) to (3) were separated from each of the assembled batteries according to Examples 1 to 3. One lithium ion battery and storage element (1) according to the assembled battery of Example 1, one lithium ion battery and storage element (2) according to the assembled battery of Example 2, and one according to the assembled battery of Example 3 In order to evaluate the charge / discharge characteristics of the lithium ion battery and the electricity storage element (3), the current of 1/5 of the battery capacity (Ah) predicted from the theoretical capacity of the positive electrode, similarly to the discharge characteristic evaluation before the durability test. After charging up to the charging upper limit voltage, the battery was discharged at the same current value up to 3 V, and the capacity value (discharge capacity) of each assembled battery was examined. The obtained capacity value was defined as “capacity value after endurance test”.

なお、例3に係る組電池を構成していたリチウムイオン電池(単電池)、及び蓄電素子(3)の25℃の放電カーブを示すグラフを図3及び図4にそれぞれ示した。縦軸は電圧[V]を示し、横軸は放電容量(Q)[%]を示す。ここで、放電容量100%とは、図3においては上記リチウムイオン電池の「耐久試験前の容量値」であり、図4においては上記蓄電素子(3)の「耐久試験前の容量値」である。   In addition, the graph which shows the 25 degreeC discharge curve of the lithium ion battery (unit cell) which comprised the assembled battery which concerns on Example 3, and an electrical storage element (3) was shown in FIG.3 and FIG.4, respectively. The vertical axis represents voltage [V], and the horizontal axis represents discharge capacity (Q) [%]. Here, the discharge capacity of 100% is the “capacity value before the durability test” of the lithium ion battery in FIG. 3, and the “capacity value before the durability test” of the power storage element (3) in FIG. is there.

上記例1〜3に係る各リチウムイオン電池と、蓄電素子(1)〜(3)の耐久試験前後の容量値から耐久試験後の容量維持率を求めた。この容量維持率は、「耐久試験後の容量値」を「耐久試験前の容量値」で割ったものを百分率で表したものである。例1〜3に係るリチウムイオン電池と蓄電素子(1)〜(3)の各容量維持率を表1に示す。   The capacity retention ratio after the durability test was determined from the capacity values before and after the durability test of each of the lithium ion batteries according to Examples 1 to 3 and the electricity storage devices (1) to (3). This capacity retention ratio is expressed as a percentage obtained by dividing "capacity value after endurance test" by "capacity value before endurance test". Table 1 shows capacity retention rates of the lithium ion batteries and the storage elements (1) to (3) according to Examples 1 to 3.

Figure 2009259607
Figure 2009259607

表1に示されるように、例1、例2に係る組電池は、主体となる二次電池(リチウムイオン電池)とは正極活物質のリチウム含有遷移金属酸化物が異なる蓄電素子(リチウムイオン電池)を電圧検知用蓄電素子として組み込んでいる。この場合には、電圧検知用蓄電素子自体の容量維持率が低下しており、耐久試験実施後の容量低下が認められた。一方、例3に係る組電池では、電圧検知用蓄電素子として活性炭を正極材料(正極活物質)として含む蓄電素子を採用している。この場合には、電圧検知用蓄電素子の容量維持率及び上記主体となる二次電池の容量維持率はどちらもほぼ100%に近く、耐久試験実施後の容量低下がほとんど認められず、高い耐久性を有することがわかった。この結果により、正極材料として活性炭を含む正極と二次電池と同一組成の負極活物質を含む負極とを備えた蓄電素子を、電圧検知用蓄電素子として組電池に組み込むことによって、組電池全体の性能低下及び短寿命化が防止され、耐久性向上及び長寿命化を実現し得ることがわかった。   As shown in Table 1, the assembled batteries according to Examples 1 and 2 are different from the main secondary battery (lithium ion battery) in the storage element (lithium ion battery) in which the lithium-containing transition metal oxide of the positive electrode active material is different. ) Is incorporated as a voltage detecting power storage element. In this case, the capacity maintenance rate of the voltage detection power storage element itself was decreased, and a decrease in capacity after the endurance test was observed. On the other hand, in the assembled battery according to Example 3, a storage element including activated carbon as a positive electrode material (positive electrode active material) is used as a voltage detection storage element. In this case, both the capacity maintenance rate of the voltage detecting power storage element and the capacity maintenance rate of the main secondary battery are almost 100%, and almost no decrease in capacity after the endurance test was observed, and high durability. It was found to have sex. As a result, a battery element including a positive electrode including activated carbon as a positive electrode material and a negative electrode including a negative electrode active material having the same composition as the secondary battery is incorporated into the assembled battery as a voltage detection power storage element. It has been found that performance degradation and shortening of the life can be prevented, and durability improvement and long life can be realized.

なお、25℃の温度条件下で上記耐久試験に加え、−30℃、0℃、45℃、60℃の各温度条件下においても同様の耐久試験を実施した。その結果、いずれの温度条件下においても、表1に示される結果と同様の結果が認められた。   In addition to the above durability test under the temperature condition of 25 ° C., the same durability test was performed under the temperature conditions of −30 ° C., 0 ° C., 45 ° C., and 60 ° C. As a result, the result similar to the result shown in Table 1 was recognized under any temperature condition.

また、図3及び図4のグラフから明らかなように、例3に係る組電池に組み込まれている蓄電素子(3)は、放電容量の変化に対してほぼ一定の傾きで電圧が変化することが確認された。一方、例3に係る組電池を構成する二次電池(リチウムイオン電池)は、広い放電容量の範囲に亘って平坦な放電カーブ特性を有する。この結果、例3に係る組電池では、上記蓄電素子により上記二次電池の容量を正確に検知できることが確認された。例えば、図3及び図4において、上記二次電池と上記蓄電素子のそれぞれの容量を調整し、且つ上記組電池の使用条件を調節することにより、上記組電池の使用時(充放電時)に上記二次電池(単電池)の取り得る容量範囲が例えば図3の放電容量Q〜Qの範囲となるようにし、また該容量Q,Qに対応する上記蓄電素子の放電容量がそれぞれ容量Q,Qとなるようにすると、上記二次電池の放電容量範囲Q〜Qにおける電圧変化は、約0.2Vであるのに対し、上記蓄電素子の放電容量範囲Q〜Qにおける電圧変化は、約1Vである。このように、上記蓄電素子の放電容量範囲に対する電圧変化は、上記二次電池の電圧変化よりも大きいため、上記蓄電素子により上記二次電池の放電容量を正確に検知し得る。 As is clear from the graphs of FIGS. 3 and 4, the voltage of the electricity storage element (3) incorporated in the assembled battery according to Example 3 changes with a substantially constant slope with respect to the change in discharge capacity. Was confirmed. On the other hand, the secondary battery (lithium ion battery) constituting the assembled battery according to Example 3 has a flat discharge curve characteristic over a wide discharge capacity range. As a result, in the assembled battery according to Example 3, it was confirmed that the capacity of the secondary battery can be accurately detected by the power storage element. For example, in FIGS. 3 and 4, by adjusting the respective capacities of the secondary battery and the storage element and adjusting the use conditions of the battery pack, the battery pack is used (charge / discharge). The capacity range that the secondary battery (unit cell) can take is, for example, the range of the discharge capacities Q 1 to Q 2 in FIG. 3, and the discharge capacity of the power storage element corresponding to the capacities Q 1 and Q 2 is When the capacity is set to Q 3 and Q 4 , respectively, the voltage change in the discharge capacity range Q 1 to Q 2 of the secondary battery is about 0.2 V, whereas the discharge capacity range Q 3 of the power storage element. change in voltage to Q 4 is about 1V. Thus, since the voltage change with respect to the discharge capacity range of the power storage element is larger than the voltage change of the secondary battery, the discharge capacity of the secondary battery can be accurately detected by the power storage element.

更に、複数の上記二次電池を主体とした組電池の放電カーブ特性は、該二次電池(単電池)の放電カーブ特性と類似し得るので、結果、上記蓄電素子は組電池全体の放電容量を正確に検知し得ることがわかる。   Furthermore, the discharge curve characteristics of the assembled battery mainly composed of the plurality of secondary batteries can be similar to the discharge curve characteristics of the secondary battery (unit cell). As a result, the storage element has a discharge capacity of the entire assembled battery. It can be seen that can be detected accurately.

なお、上記実施例では放電特性を評価することにより放電時における組電池の状態検知の有効性を確認したが、充電特性についても上記と同様とみなすことができ、従って、上記蓄電素子により充放電時における組電池の状態検知を好ましく行うことができる。   In the above examples, the effectiveness of the state detection of the assembled battery at the time of discharging was confirmed by evaluating the discharging characteristics. However, the charging characteristics can also be regarded as the same as described above. The state detection of the assembled battery at the time can be preferably performed.

上記実施例から明らかなように、本発明によると、主体となる複数の二次電池(リチウム二次電池、典型的にはリチウムイオン電池)及び該二次電池と接続される電圧検知用蓄電素子の両方の性能低下が防止されて組電池全体が高寿命化する組電池であって、充放電時の組電池の状態を上記蓄電素子による測定電圧値から容易に検知できる組電池を提供することができる。   As is apparent from the above-described embodiments, according to the present invention, a plurality of secondary batteries (lithium secondary batteries, typically lithium ion batteries) that are the main components, and a voltage detecting storage element connected to the secondary batteries. To provide an assembled battery in which the deterioration of both of the performances is prevented and the entire assembled battery has a long life, and the state of the assembled battery at the time of charging / discharging can be easily detected from the measured voltage value by the power storage element. Can do.

従って、本発明の組電池(或いは該組電池を組み込んだ電源装置)は、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適である。従って、図5に示すように、本発明によって上記のように説明した構成の組電池10(或いは図2における電源装置40)を備える車両1(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)を提供することができる。   Therefore, the assembled battery (or a power supply device incorporating the assembled battery) of the present invention is particularly suitable as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Therefore, as shown in FIG. 5, a vehicle 1 (typically an automobile, particularly a hybrid automobile, an electric automobile, etc.) including the assembled battery 10 (or the power supply device 40 in FIG. 2) configured as described above according to the present invention. An automobile equipped with an electric motor such as a fuel cell automobile) can be provided.

以上、本発明を好適な実施形態及び実施例により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。   As mentioned above, although this invention was demonstrated by suitable embodiment and an Example, such description is not a limitation matter and of course, various modifications are possible.

本発明に係る組電池の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the assembled battery which concerns on this invention. 本発明に係る組電池を組み込んだ電源装置の好ましい一形態の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of one preferable form of the power supply device incorporating the assembled battery which concerns on this invention. 例3に係る組電池を構成していたリチウムイオン電池の25℃の放電カーブを示すグラフである。6 is a graph showing a discharge curve at 25 ° C. of a lithium ion battery constituting the assembled battery according to Example 3. FIG. 例3に係る組電池を構成していた蓄電素子(3)の25℃の放電カーブを示すグラフである。10 is a graph showing a discharge curve at 25 ° C. of the electricity storage device (3) constituting the assembled battery according to Example 3. 本発明の組電池を備えた車両(自動車)を模式的に示す側面図である。It is a side view which shows typically the vehicle (automobile) provided with the assembled battery of this invention.

符号の説明Explanation of symbols

1 車両
10,20 組電池
12 二次電池
14 電圧検知用蓄電素子
30 制御部
40 電源装置
DESCRIPTION OF SYMBOLS 1 Vehicle 10, 20 Battery pack 12 Secondary battery 14 Voltage detection electrical storage element 30 Control part 40 Power supply device

Claims (5)

複数の二次電池と、該二次電池とは異なる少なくとも一つの電圧検知用蓄電素子とが直列に接続されてなる組電池において、
前記蓄電素子は、正極材料として活性炭を含む正極と、前記二次電池と同一組成の負極活物質を含む負極とを備える、組電池。
In an assembled battery in which a plurality of secondary batteries and at least one voltage detection storage element different from the secondary battery are connected in series,
The storage element includes a positive electrode including activated carbon as a positive electrode material, and a negative electrode including a negative electrode active material having the same composition as the secondary battery.
前記二次電池は、リチウム二次電池である、請求項1に記載の組電池。   The assembled battery according to claim 1, wherein the secondary battery is a lithium secondary battery. 前記蓄電素子は、前記二次電池と同一組成でリチウムを含む電解質を備える、請求項2に記載の組電池。   The assembled battery according to claim 2, wherein the power storage element includes an electrolyte containing lithium with the same composition as the secondary battery. 請求項1〜3のいずれかに記載の組電池を備える車両。   A vehicle comprising the assembled battery according to claim 1. 組電池の状態検知方法であって、
請求項1〜3のいずれかに記載の組電池であって、充放電時における前記電圧検知用蓄電素子の電圧と組電池の容量との相関性が予め決定された組電池を用意し、前記組電池の充放電時において、前記蓄電素子の電圧を測定することにより、該測定電圧値から前記相関性に基づいて前記組電池の状態を検知することを特徴とする方法。
An assembled battery state detection method,
It is an assembled battery in any one of Claims 1-3, Comprising: The assembled battery by which the correlation of the voltage of the said voltage detection electrical storage element at the time of charging / discharging and the capacity | capacitance of an assembled battery was prepared, and the said A method of detecting a state of the assembled battery from the measured voltage value based on the correlation by measuring a voltage of the storage element during charging / discharging of the assembled battery.
JP2008107364A 2008-04-17 2008-04-17 Battery pack Withdrawn JP2009259607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008107364A JP2009259607A (en) 2008-04-17 2008-04-17 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008107364A JP2009259607A (en) 2008-04-17 2008-04-17 Battery pack

Publications (1)

Publication Number Publication Date
JP2009259607A true JP2009259607A (en) 2009-11-05

Family

ID=41386781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008107364A Withdrawn JP2009259607A (en) 2008-04-17 2008-04-17 Battery pack

Country Status (1)

Country Link
JP (1) JP2009259607A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037863A (en) * 2011-08-06 2013-02-21 Denso Corp Battery pack
JP2013037862A (en) * 2011-08-06 2013-02-21 Denso Corp Battery pack
JP2013089522A (en) * 2011-10-20 2013-05-13 Tdk Corp Battery pack and electricity storage device
JP2013142568A (en) * 2012-01-10 2013-07-22 Denso Corp Secondary battery and remaining capacity calculating device for the same
WO2015108111A1 (en) * 2014-01-15 2015-07-23 Connexx Systems 株式会社 Hybrid storage battery and hybrid storage device, power generation and storage unit, power grid system, and traveling body using same
CN105659428A (en) * 2013-10-21 2016-06-08 丰田自动车株式会社 Cell system
JP2018147827A (en) * 2017-03-08 2018-09-20 株式会社東芝 Charge and discharge control device, service condition creation device, program and power storage system
JP2021099987A (en) * 2019-12-23 2021-07-01 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Battery controller and battery power measurement method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037863A (en) * 2011-08-06 2013-02-21 Denso Corp Battery pack
JP2013037862A (en) * 2011-08-06 2013-02-21 Denso Corp Battery pack
JP2013089522A (en) * 2011-10-20 2013-05-13 Tdk Corp Battery pack and electricity storage device
JP2013142568A (en) * 2012-01-10 2013-07-22 Denso Corp Secondary battery and remaining capacity calculating device for the same
CN105659428A (en) * 2013-10-21 2016-06-08 丰田自动车株式会社 Cell system
JPWO2015059746A1 (en) * 2013-10-21 2017-03-09 トヨタ自動車株式会社 Battery system
US10181622B2 (en) 2013-10-21 2019-01-15 Toyota Jidosha Kabushiki Kaisha Cell system
WO2015108111A1 (en) * 2014-01-15 2015-07-23 Connexx Systems 株式会社 Hybrid storage battery and hybrid storage device, power generation and storage unit, power grid system, and traveling body using same
JP2018147827A (en) * 2017-03-08 2018-09-20 株式会社東芝 Charge and discharge control device, service condition creation device, program and power storage system
JP2021099987A (en) * 2019-12-23 2021-07-01 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Battery controller and battery power measurement method thereof
JP7295082B2 (en) 2019-12-23 2023-06-20 台達電子工業股▲ふん▼有限公司 Battery controller and its battery power measurement method
US11750005B2 (en) 2019-12-23 2023-09-05 Delta Electronics, Inc. Battery controller and battery level measurement method thereof

Similar Documents

Publication Publication Date Title
JP5081886B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP5708977B2 (en) Assembled battery
JP6047871B2 (en) Battery pack and power storage device using the same
CN115799601A (en) Lithium ion battery
JP2009259607A (en) Battery pack
US20140272551A1 (en) Nonaqueous electrolyte battery and battery pack
KR101483891B1 (en) Lithium ion secondary battery
JP2007335360A (en) Lithium secondary cell
JP2001243943A (en) Non-aqueous electrolyte secondary battery
JP2011086530A (en) Battery pack, and power supply device
KR20160074385A (en) Negative electrode material for lithium ion battery
US10637048B2 (en) Silicon anode materials
JP2009199929A (en) Lithium secondary battery
JP6051038B2 (en) Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2007184261A (en) Lithium-ion secondary battery
KR20170107368A (en) Non-aqueous electrolyte battery, battery pack and vehicle
JP5620499B2 (en) Non-aqueous electrolyte battery
KR20120114811A (en) Positive electrode active material for secondary battery comprising lithium cobalt-based oxide of improved performance and lithium secondary battery comprising the same
EP2768065A1 (en) Nonaqueous electrolyte secondary cell and method for producing nonaqueous electrolyte secondary cell
JP6443416B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
KR20220015222A (en) Anode for lithium secondary battery and lithium secondary battery including the same
JP2013197052A (en) Lithium ion power storage device
KR20170067042A (en) Method for charging of secondary battery
CN114079077B (en) Nonaqueous electrolyte secondary battery
JP2013143262A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705