JP2009258048A - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP2009258048A
JP2009258048A JP2008110213A JP2008110213A JP2009258048A JP 2009258048 A JP2009258048 A JP 2009258048A JP 2008110213 A JP2008110213 A JP 2008110213A JP 2008110213 A JP2008110213 A JP 2008110213A JP 2009258048 A JP2009258048 A JP 2009258048A
Authority
JP
Japan
Prior art keywords
hole
connector
current sensor
conductor
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008110213A
Other languages
Japanese (ja)
Other versions
JP5107779B2 (en
Inventor
Emi Kageyama
絵未 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2008110213A priority Critical patent/JP5107779B2/en
Publication of JP2009258048A publication Critical patent/JP2009258048A/en
Application granted granted Critical
Publication of JP5107779B2 publication Critical patent/JP5107779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current sensor which enhances manufacturing efficiency and assembling efficiency. <P>SOLUTION: A shield 6 which is arranged at circumference of Z axis of a wire 2 is partitioned into two at X axis direction. Each of partitioned shields 61, 62 is arranged at the similar shape mutually so as to become line symmetry by setting a straight line L1 in alignment with X axis as axis of symmetry. A housing case 7 which holds the shield 6 is prepared so that a connector 5 may be project in accordance with Z axis direction from a connector through-hole 73. The housing case 7 is prepared so that the connector through-hole 73 and a wire through-hole 74 may be partitioned along X axis. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電流センサに係り、特に、電流が流れる導体と、前記導体の長手方向を軸として軸周りを囲むように配置されたシールド板と、前記導体に電流が流れたときに発生する磁界の磁束密度を検出して電気信号に変換する磁電変換素子と、を有する電流センサに関するものである。   The present invention relates to a current sensor, and in particular, a conductor through which a current flows, a shield plate disposed so as to surround the axis around the longitudinal direction of the conductor, and a magnetic field generated when a current flows through the conductor. The present invention relates to a current sensor having a magnetoelectric conversion element that detects and converts the magnetic flux density into an electric signal.

上述した電流センサとして、例えば図8に示すようなものが一般的に知られている(例えば特許文献1〜4)。同図に示すように、電流センサ10は、電流が流れる電線2(導体)と、電線2の長手方向を軸として軸周りを囲むように配置された環状の収容ケース7と、を有している。上記収容ケース7内には、電線2の長手方向を軸として軸周りを囲むように配置された環状のコア(図示せず)と、コアのギャップ内に配置された磁電変換素子としてのホール素子(図示せず)と、が収容されている。収容ケース7は、その中央に電線2を貫通して保持する電線貫通孔74(導体貫通孔)が設けられている。   As the above-described current sensor, for example, the one shown in FIG. 8 is generally known (for example, Patent Documents 1 to 4). As shown in the figure, the current sensor 10 has an electric wire 2 (conductor) through which an electric current flows, and an annular housing case 7 arranged so as to surround the axis around the longitudinal direction of the electric wire 2 as an axis. Yes. In the housing case 7, an annular core (not shown) arranged so as to surround the axis around the longitudinal direction of the electric wire 2, and a hall element as a magnetoelectric conversion element arranged in the gap of the core (Not shown). The housing case 7 is provided with an electric wire through hole 74 (conductor through hole) for penetrating and holding the electric wire 2 at the center thereof.

上述した構成の電流センサ10は、電線2に電流が流れるとその電流に応じた磁束密度の磁界が発生する。ホール素子は、コアにより収束された磁界の磁束密度を電気信号に変換して、電流に応じた信号として出力する。また、コアは、外部からの磁界の影響をシールドする機能も有している。しかしながら、上記電線2の端部にかしめられる端子部Tは大きいものが多く、この端子部Tを収容ケース7中央に設けた電線貫通孔74に通すことができない。このため、上述した電流センサ10は、収容ケース7の電線貫通孔74に電線2を通した後に、電線2の端部に端子部Tをかしめる必要があり、電線2の収容ケース7に対する取り付けが非常に煩雑であった。   In the current sensor 10 having the above-described configuration, when a current flows through the electric wire 2, a magnetic field having a magnetic flux density corresponding to the current is generated. The Hall element converts the magnetic flux density of the magnetic field converged by the core into an electric signal and outputs it as a signal corresponding to the current. The core also has a function of shielding the influence of an external magnetic field. However, the terminal portion T that is crimped to the end portion of the electric wire 2 is often large, and the terminal portion T cannot be passed through the electric wire through hole 74 provided in the center of the housing case 7. For this reason, the above-described current sensor 10 needs to crimp the terminal portion T to the end of the electric wire 2 after passing the electric wire 2 through the electric wire through hole 74 of the accommodating case 7, and the electric wire 2 is attached to the accommodating case 7. Was very cumbersome.

このような問題を解決するために、コア又はケースを分割する電流センサが提案されている(特許文献5、6)。この電流センサによれば、電線の端部に端子部をかしめた状態でコア又はケースに取り付けることができる。しかしながら、上述した電流センサは、コア又はケースを複数のパーツに分割している。このため、1つのコア又はケースを構成する複数のパーツを別々の製造工程で製造した後に組み立てる必要があり、製造効率、組み付け効率が悪い、という問題があった。
特開2001−66328号公報 特開2006−78255号公報 特開2005−308527号公報 特開2003−121476号公報 特開平9−292413号公報 特開2001−83184号公報
In order to solve such a problem, a current sensor that divides a core or a case has been proposed (Patent Documents 5 and 6). According to this current sensor, it can be attached to the core or the case with the terminal portion crimped to the end portion of the electric wire. However, the current sensor described above divides the core or case into a plurality of parts. For this reason, it is necessary to assemble a plurality of parts constituting one core or case in different manufacturing processes, and there is a problem that manufacturing efficiency and assembly efficiency are poor.
JP 2001-66328 A JP 2006-78255 A JP 2005-308527 A JP 2003-121476 A JP-A-9-292413 JP 2001-83184 A

そこで、本発明は、上記のような問題点に着目し、製造効率及び組み付け効率の向上を図った電流センサを提供することを課題とする。   Accordingly, the present invention focuses on the above-described problems, and an object thereof is to provide a current sensor that improves manufacturing efficiency and assembly efficiency.

上記課題を解決するためになされた請求項1記載の発明は、電流が流れる導体と、前記導体の長手方向を軸として軸周りを囲むように配置された前記長手方向と直交する分割方向に2分割されたシールド板と、前記導体に電流が流れたときに発生する磁界の磁束密度を検出して電気信号に変換する磁電変換素子と、を有する電流センサにおいて、前記シールド板が、前記2分割された各々が互いに同一形状となり、かつ、前記2分割された各々が前記分割方向に沿った直線を対称軸として線対称となるように、設けられたことを特徴とする電流センサに存する。   The invention according to claim 1, which has been made to solve the above-mentioned problems, includes a conductor through which an electric current flows and a dividing direction orthogonal to the longitudinal direction arranged so as to surround the axis around the longitudinal direction of the conductor. A current sensor comprising: a divided shield plate; and a magnetoelectric conversion element that detects a magnetic flux density of a magnetic field generated when a current flows through the conductor and converts the magnetic signal into an electric signal. The current sensor is provided so that each of the two parts has the same shape, and each of the two divided parts is line-symmetrical with respect to a straight line along the dividing direction.

請求項2記載の発明は、前記導体が貫通する導体貫通孔を分割するように前記分割方向に分割された前記シールド板を収容する収容ケースと、前記磁電変換素子に電気的に接続されたコネクタと、を有する電流センサであって、前記磁電変換素子が、前記シールド板に囲まれた空間に配置されるように設けられ、前記コネクタが、前記収容ケースに設けたコネクタ貫通孔から前記長手方向に沿って突出するように設けられ、そして、前記収容ケースが、前記コネクタ貫通孔を分割するように設けられたことを特徴とする請求項1に記載の電流センサに存する。   According to a second aspect of the present invention, there is provided a housing case for housing the shield plate divided in the dividing direction so as to divide a conductor through hole through which the conductor passes, and a connector electrically connected to the magnetoelectric transducer The magnetoelectric conversion element is provided so as to be disposed in a space surrounded by the shield plate, and the connector extends from a connector through-hole provided in the housing case in the longitudinal direction. The current sensor according to claim 1, wherein the housing case is provided so as to divide the connector through hole.

請求項3記載の発明は、前記収容ケースを構成する一対の分割ケース同士を係止するための一対の係止手段が、前記導体貫通孔及び前記コネクタ貫通孔を挟むように前記一対の分割ケースの各々に設けられ、そして、前記導体貫通孔が、前記一対の係止手段のうちの前記コネクタ貫通孔とは反対側の係止手段に最も近づけて設けられたことを特徴とする請求項2に記載の電流センサに存する。   According to a third aspect of the present invention, the pair of split cases is configured such that a pair of locking means for locking the pair of split cases constituting the housing case sandwich the conductor through hole and the connector through hole. And the conductor through-hole is provided closest to the locking means on the opposite side of the connector through-hole of the pair of locking means. In the current sensor.

請求項4記載の発明は、前記磁電変換素子が、予め測定された前記導体と前記シールド板との間において前記導体に電流が流れたときに発生する磁界の磁束密度の変化が最小となる位置に配置されていることを特徴とする請求項1〜3何れか1項に記載の電流センサに存する。   According to a fourth aspect of the present invention, the magnetoelectric conversion element is a position where a change in magnetic flux density of a magnetic field generated when a current flows between the conductor and the shield plate measured in advance is minimized. The current sensor according to any one of claims 1 to 3, wherein the current sensor is disposed in a position.

以上説明したように請求項1記載の発明によれば、シールド板が、2分割された各々が同一形状となり、かつ、2分割された各々が分割方向及び長手方向の両方に直交する方向に対称となるように、設けられているので、2分割した各々を同じ製造工程で製造することができる。また、2分割された各々の分割方向及び長手方向の両方に直交する方向の配置を気にする必要がない。これにより、製造効率及び組み付け効率の向上を図ることができる。   As described above, according to the first aspect of the present invention, each of the two divided shield plates has the same shape, and each of the two divided plates is symmetrical in the direction perpendicular to both the dividing direction and the longitudinal direction. Therefore, each of the two parts can be manufactured in the same manufacturing process. Further, there is no need to worry about the arrangement in the direction perpendicular to both the dividing direction and the longitudinal direction of each of the two divided parts. Thereby, the improvement of manufacturing efficiency and assembly | attachment efficiency can be aimed at.

請求項2記載の発明によれば、コネクタが、収容ケースに設けたコネクタ貫通孔から長手方向に沿って突出するように設けられ、そして、収容ケースが、コネクタ貫通孔を分割するように設けられているので、磁気変換素子をシールド板に囲まれた空間に配置しても簡単にコネクタを収容ケースから突出するように収容ケースに取り付けることができる。   According to the second aspect of the present invention, the connector is provided so as to protrude along the longitudinal direction from the connector through-hole provided in the housing case, and the housing case is provided so as to divide the connector through-hole. Therefore, even if the magnetic conversion element is disposed in the space surrounded by the shield plate, the connector can be easily attached to the housing case so as to protrude from the housing case.

請求項3記載の発明によれば、導体貫通孔が、一対の係止手段のうちのコネクタ貫通孔とは反対側の係止手段に最も近づけて設けられているので、導体を可能な限りシールド板に近づけて設けることができる。これにより、収容ケースの伸縮や振動などにより、磁電変換素子の配置位置が変動しても誤差を小さく抑えることができ、精度良く電流を測定することができる。   According to the invention of claim 3, since the conductor through hole is provided closest to the locking means on the side opposite to the connector through hole of the pair of locking means, the conductor is shielded as much as possible. It can be provided close to the plate. Thereby, even if the arrangement position of the magnetoelectric transducer varies due to expansion / contraction or vibration of the housing case, the error can be kept small, and the current can be measured with high accuracy.

請求項4記載の発明によれば、磁電変換素子が、予め測定された導体とシールド板との間において導体に電流が流れたときに発生する磁界の磁束密度の変化が最小となる位置に配置されているので、磁束密度の変化が平坦な位置に磁電変換素子を配置できるため、ガタツキによる測定誤差を小さくすることができる。   According to the invention of claim 4, the magnetoelectric conversion element is disposed at a position where the change in the magnetic flux density of the magnetic field generated when a current flows between the conductor and the shield plate measured in advance is minimized. Therefore, since the magnetoelectric conversion element can be arranged at a position where the change of the magnetic flux density is flat, the measurement error due to the backlash can be reduced.

以下、本発明の実施形態を図1〜図4に基づいて説明する。図1などに示すように、本発明の電流センサ1は、導体としての電線2と、磁電変換素子としてのホールIC3と、回路基板4と、コネクタ5と、シールド板としてのシールド6と、収容ケース7と、を備えている。電線2は、電流が流れる芯線とこの芯線を覆う被覆部とから構成された被覆電線である。ホールIC3は、電線2に電流が流れたときに発生する磁界の磁束密度を検出して電気信号に変換する。ホールIC3は、回路基板4上に搭載される。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. As shown in FIG. 1 and the like, the current sensor 1 of the present invention includes an electric wire 2 as a conductor, a Hall IC 3 as a magnetoelectric conversion element, a circuit board 4, a connector 5, a shield 6 as a shield plate, and a housing. And a case 7. The electric wire 2 is a covered electric wire composed of a core wire through which a current flows and a covering portion that covers the core wire. The Hall IC 3 detects the magnetic flux density of a magnetic field generated when a current flows through the electric wire 2 and converts it into an electric signal. The Hall IC 3 is mounted on the circuit board 4.

回路基板4は、平板状に形成されている。回路基板4は、その表面にホールIC3の端子と、後述するコネクタ5と、を接続するための図示しない導電パターンが形成されている。コネクタ5は、図示しない電源供給端子及び出力端子と、これら端子を収容するコネクタハウジング51と、から構成されている。電源供給端子は、ホールIC3への電源を供給するための端子である。出力端子は、ホールIC3からの電気信号を出力するための端子である。電源供給端子及び出力端子は、一端が上記回路基板4を介してホールIC3に電気的に接続され、他端がコネクタハウジング51の開口から露出するように設けられている。   The circuit board 4 is formed in a flat plate shape. On the surface of the circuit board 4, a conductive pattern (not shown) for connecting the terminals of the Hall IC 3 and a connector 5 described later is formed. The connector 5 includes a power supply terminal and an output terminal (not shown) and a connector housing 51 that accommodates these terminals. The power supply terminal is a terminal for supplying power to the Hall IC 3. The output terminal is a terminal for outputting an electrical signal from the Hall IC 3. The power supply terminal and the output terminal are provided such that one end is electrically connected to the Hall IC 3 through the circuit board 4 and the other end is exposed from the opening of the connector housing 51.

コネクタハウジング51は、図2に示すように、筒状に形成されていて、搭載部511と、コネクタ部512と、ケース嵌合溝513と、から構成されている。搭載部511は、回路基板4上に搭載されている。コネクタ部512は、図1に示すように、後述する収容ケース7のコネクタ貫通孔73(図2)から突出して相手側コネクタとコネクタ接続する。ケース嵌合溝513は、搭載部511−コネクタ部512間に設けられ、後述する収容ケース7のコネクタ貫通孔73の縁部と嵌合する。   As illustrated in FIG. 2, the connector housing 51 is formed in a cylindrical shape, and includes a mounting portion 511, a connector portion 512, and a case fitting groove 513. The mounting portion 511 is mounted on the circuit board 4. As shown in FIG. 1, the connector 512 protrudes from a connector through hole 73 (FIG. 2) of the housing case 7 to be described later and is connected to the mating connector. The case fitting groove 513 is provided between the mounting portion 511 and the connector portion 512, and fits with an edge portion of a connector through hole 73 of the housing case 7 described later.

シールド6は、電線2の長手方向であるZ軸の周りを囲むように配置される。シールド6は、断面略矩形状の環状に形成されていて、Z軸方向(長手方向)と直交するX軸方向(分割方向)に2分割された一対の分割シールド61、62から構成されている。一対の分割シールド61、62は各々、コの字型に設けられると共に互いに同一形状に設けられている。一対の分割シールド61、62は、図3に示すように、X軸方向に沿った直線L1を対称軸とした線対称に形成されている。また、シールド6は、X軸、Z軸の両方に直交するY軸方向に対向する一対のギャップG1、G2が設けられている。   The shield 6 is disposed so as to surround the Z axis that is the longitudinal direction of the electric wire 2. The shield 6 is formed in an annular shape having a substantially rectangular cross section, and includes a pair of split shields 61 and 62 that are divided into two in the X-axis direction (division direction) orthogonal to the Z-axis direction (longitudinal direction). . The pair of split shields 61 and 62 are provided in a U-shape and are provided in the same shape. As shown in FIG. 3, the pair of split shields 61 and 62 are formed in line symmetry with a straight line L1 along the X-axis direction as a symmetry axis. In addition, the shield 6 is provided with a pair of gaps G1 and G2 that face each other in the Y-axis direction orthogonal to both the X-axis and the Z-axis.

収容ケース7は、樹脂などの絶縁部材で箱型に設けられている。図2に示すように、収容ケース7のZ軸方向に対向する一対の面にはそれぞれ、電線2が貫通する一対の電線貫通孔74が設けられている。また、収容ケース7のZ軸方向に対向する一対の面の一方には、コネクタ5が貫通して突出されるコネクタ貫通孔73が設けられている。上記コネクタ貫通孔73及び電線貫通孔74は、Y軸方向に沿って並んで設けられている。収容ケース7は、シールド6と同様にX軸方向(分割方向)に2分割された一対の分割ケース71、72から構成されている。   The housing case 7 is provided in a box shape with an insulating member such as resin. As shown in FIG. 2, a pair of electric wire through-holes 74 through which the electric wire 2 penetrates is provided on each of the pair of surfaces facing the Z-axis direction of the housing case 7. In addition, a connector through hole 73 through which the connector 5 protrudes is provided on one of the pair of surfaces facing the Z-axis direction of the housing case 7. The connector through hole 73 and the wire through hole 74 are provided side by side along the Y-axis direction. Similar to the shield 6, the housing case 7 is composed of a pair of split cases 71 and 72 that are split in the X-axis direction (split direction).

上記一対の分割ケース71、72はそれぞれ、図2及び図4に示すように、受皿状に設けられている。一対の分割ケース71、72は、上記電線貫通孔74及びコネクタ貫通孔73がX軸方向に分割されるように設けられている。分割ケース71には、コネクタ貫通孔73及び電線貫通孔74を挟むようにY軸方向に並んで配置された一対の係止凸部75(=係止手段)が設けられている。また、分割ケース71には、一対の突出部76と、この突出部76に設けられた一対の係止孔77と、が設けられている。一対の突出部76は、分割ケース71のZ軸方向に対向する一対の面のうちコネクタ貫通孔73が設けられていない面に設けられている。一対の突出部76は、分割ケース72に向かって突出して設けられ、Y軸方向に並んで配置されている。   The pair of split cases 71 and 72 are each provided in a tray shape as shown in FIGS. 2 and 4. The pair of split cases 71 and 72 are provided so that the wire through hole 74 and the connector through hole 73 are divided in the X-axis direction. The split case 71 is provided with a pair of locking projections 75 (= locking means) arranged side by side in the Y-axis direction so as to sandwich the connector through hole 73 and the wire through hole 74. In addition, the split case 71 is provided with a pair of protrusions 76 and a pair of locking holes 77 provided in the protrusions 76. The pair of projecting portions 76 are provided on the surface of the split case 71 where the connector through hole 73 is not provided, of the pair of surfaces facing in the Z-axis direction. The pair of protrusions 76 are provided so as to protrude toward the split case 72 and are arranged side by side in the Y-axis direction.

一方、分割ケース72には、図2に示すように、一対の突出部78(=係止手段)と、一対の突出部78に設けた一対の係止孔79と、が設けられている。一対の突出部78は、分割ケース72のコネクタ貫通孔73及び電線貫通孔74を挟むようにY軸方向に並んで配置されている。一対の突出部78は、分割ケース71に向かって突出して設けられ、Y軸方向に沿って配置されている。一対の係止孔79は、分割ケース71に設けた一対の係止凸部75と係止するように設けられている。また、分割ケース72には、Z軸方向に対向する一対の面のうちコネクタ貫通孔73が設けられていない面にY軸方向に並んで配置された一対の係止凸部(図示せず)が設けられている。この図示しない一対の係止凸部は、分割ケース71に設けた係止孔77と係止するように設けられている。   On the other hand, as shown in FIG. 2, the split case 72 is provided with a pair of protrusions 78 (= locking means) and a pair of locking holes 79 provided in the pair of protrusions 78. The pair of projecting portions 78 are arranged side by side in the Y-axis direction so as to sandwich the connector through hole 73 and the wire through hole 74 of the split case 72. The pair of projecting portions 78 are provided so as to project toward the split case 71 and are disposed along the Y-axis direction. The pair of locking holes 79 are provided so as to lock with the pair of locking projections 75 provided in the split case 71. The split case 72 has a pair of locking projections (not shown) arranged side by side in the Y-axis direction on a surface where the connector through hole 73 is not provided among the pair of surfaces facing the Z-axis direction. Is provided. The pair of locking projections (not shown) are provided so as to lock with locking holes 77 provided in the split case 71.

また、図4に示すように、分割ケース71、72にはそれぞれ、基板支持溝80と、シールド固定ピン81と、が設けられている。基板支持溝80は、分割ケース71、72のZ軸方向に対向する内面にX軸方向に沿って設けられている。シールド固定ピン81は、分割ケース71、72の内面にY軸方向に突出して設けられていて、図3に示すように、上記分割シールド61、62のギャップG1、G2の端面と嵌合する。   As shown in FIG. 4, each of the divided cases 71 and 72 is provided with a substrate support groove 80 and a shield fixing pin 81. The substrate support groove 80 is provided along the X-axis direction on the inner surfaces of the split cases 71 and 72 facing the Z-axis direction. The shield fixing pins 81 are provided on the inner surfaces of the split cases 71 and 72 so as to protrude in the Y-axis direction, and fit with the end faces of the gaps G1 and G2 of the split shields 61 and 62 as shown in FIG.

次に、上述した構成の電流センサ1の組み立て手順について説明する。まず、分割ケース71のシールド固定ピン81に分割シールド61のギャップG1、G2の端面を嵌合させて、分割ケース71に分割シールド61を取り付ける。同様に、分割ケース72のシールド固定ピン81に分割シールド62のギャップG1、G2の端面を嵌合させて、分割ケース72に分割シールド62を取り付ける。次に、分割ケース71と分割ケース72とをX軸方向に沿って互いに近づけて、分割ケース71の係止凸部75と分割ケース72の係止孔79とを係止させると共に分割ケース71の係止孔77と分割ケース72の図示しない係止凸部とを係止させて、分割ケース71と分割ケース72とを固定する。このとき、分割ケース71、72にそれぞれ設けた電線貫通孔74間に電線2を挟んで電線2を保持する。これにより、電線2のZ軸周りをシールド6が囲むように配置される。   Next, a procedure for assembling the current sensor 1 having the above-described configuration will be described. First, the split shield 61 is attached to the split case 71 by fitting the end faces of the gaps G <b> 1 and G <b> 2 of the split shield 61 to the shield fixing pin 81 of the split case 71. Similarly, the split shield 62 is attached to the split case 72 by fitting the end faces of the gaps G1 and G2 of the split shield 62 to the shield fixing pins 81 of the split case 72. Next, the split case 71 and the split case 72 are brought close to each other along the X-axis direction to lock the locking projection 75 of the split case 71 and the locking hole 79 of the split case 72 and the split case 71. The split case 71 and the split case 72 are fixed by locking the lock hole 77 and a lock projection (not shown) of the split case 72. At this time, the electric wire 2 is held with the electric wire 2 sandwiched between the electric wire through holes 74 provided in the split cases 71 and 72, respectively. Thereby, it arrange | positions so that the shield 6 may surround the Z-axis periphery of the electric wire 2. FIG.

また、分割ケース71、72に設けた基板支持溝80内に回路基板4を差し込むようにすると共に分割ケース71、72に設けたコネクタ貫通孔73の縁部をコネクタ5に設けたケース嵌合溝513に差し込むようにして、収容ケース7に回路基板4及びこれに接続されたコネクタ5を取り付ける。これにより、シールド6に囲まれた空間にホールIC3が配置される。   A case fitting groove in which the circuit board 4 is inserted into the board support groove 80 provided in the split cases 71 and 72 and the edge of the connector through hole 73 provided in the split cases 71 and 72 is provided in the connector 5. The circuit board 4 and the connector 5 connected thereto are attached to the housing case 7 so as to be inserted into the storage case 513. Thereby, the Hall IC 3 is arranged in the space surrounded by the shield 6.

上述した電流センサ1によれば、2分割された分割シールド61、62の各々が互いに同一形状となり、かつ、2分割された分割シールド61、62の各々がX軸(分割方向)に沿った直線L1を対称軸として線対称となるように、シールド6が設けられている。これにより、分割シールド61、62を同じ製造工程で製造することができる。また、分割シールド61、62のY軸方向の両端をひっくり返しても同じ形状であるため、Y軸方向の配置を気にする必要がない。これにより、製造効率及び組み付け効率の向上を図ることができる。   According to the current sensor 1 described above, each of the two divided shields 61 and 62 has the same shape, and each of the two divided shields 61 and 62 is a straight line along the X axis (dividing direction). The shield 6 is provided so as to be line symmetric with respect to L1 as an axis of symmetry. Thereby, the division | segmentation shields 61 and 62 can be manufactured in the same manufacturing process. In addition, even if the both ends of the split shields 61 and 62 in the Y-axis direction are turned over, the shape is the same, so there is no need to worry about the arrangement in the Y-axis direction. Thereby, the improvement of manufacturing efficiency and assembly | attachment efficiency can be aimed at.

また、上述した電流センサ1によれば、コネクタ5が、収容ケース7に設けたコネクタ貫通孔73からZ軸方向に沿って突出するように設けられ、そして、収容ケース7が、コネクタ貫通孔73を分割するように設けられている。これにより、ホールIC3をシールド6に囲まれた空間に配置しても簡単にコネクタ5を収容ケース7から突出するように収容ケース7に取り付けることができる。また、コネクタ貫通孔73以外の部分については分割ケース71、72を互いに同一形状に設けることができるので、製造効率の向上を図ることができる。   Further, according to the current sensor 1 described above, the connector 5 is provided so as to protrude from the connector through hole 73 provided in the housing case 7 along the Z-axis direction, and the housing case 7 is provided with the connector through hole 73. It is provided to divide. Thus, even if the Hall IC 3 is arranged in a space surrounded by the shield 6, the connector 5 can be easily attached to the housing case 7 so as to protrude from the housing case 7. Further, since the divided cases 71 and 72 can be provided in the same shape with respect to portions other than the connector through hole 73, the manufacturing efficiency can be improved.

次に、上述した電流センサ1のホールIC3の配置位置の詳細について図5及び図6を参照して説明する。本発明者は、上述した図1〜図4に示す電流センサ1を用いて、ホールIC3の位置がシールド6の中心位置Pc(図3参照)からX軸方向、Y軸方向、Z軸方向のそれぞれにずらしたときの電流測定誤差を測定した。結果を図5に示す。同図に示すように、X軸方向、Y軸方向、Z軸方向の3方向を比べるとY軸方向のズレによる電流測定誤差が最も大きくなることが分かった。   Next, details of the arrangement position of the Hall IC 3 of the current sensor 1 described above will be described with reference to FIGS. The inventor uses the current sensor 1 shown in FIGS. 1 to 4 described above, and the position of the Hall IC 3 extends from the center position Pc of the shield 6 (see FIG. 3) in the X axis direction, the Y axis direction, and the Z axis direction. The current measurement error when shifted to each was measured. The results are shown in FIG. As shown in the figure, it was found that the current measurement error due to the deviation in the Y-axis direction was the largest when the three directions of the X-axis direction, the Y-axis direction, and the Z-axis direction were compared.

次に、本発明者は、シールド6−電線2間の距離L2(図3参照)が3.5mm、6mm、8.5mm、11mmの電流センサ1をそれぞれ作製して、中心位置Pcを通りY軸方向に沿った直線L3上の配置位置におけるホールIC3の検出磁束密度を測定した。結果を図6に示す。同図に示すように、ホールIC3の検出磁束密度は、電線2から離れるに従って減少して最小となり、その後、シールド6のギャップG1からの漏れ磁束の影響により電線2から離れてシールド6の上端に近づくに従って増加する。同図から明らかなように、磁束密度の変化が最小となる位置Pmin付近は電線2付近やシールド6付近に比べて磁束密度の変化が平坦である。即ち、位置PminにホールIC3を配置すれば、振動などによるホールIC3のY軸方向の位置ズレが発生しても磁束密度の変化が少なく、電流測定誤差が小さくなる、ということが分かった。そこで、本実施形態ではホールIC3は、予め測定した磁束密度の変化が最小となる位置に配置する。なお、この磁束密度の変化が最小となる位置Pminは、図6に示すように距離L2によって異なる。また、位置Pminは、シールド6の形状などによっても異なる。   Next, the present inventor manufactured current sensors 1 having a distance L2 between the shield 6 and the electric wire 2 (see FIG. 3) of 3.5 mm, 6 mm, 8.5 mm, and 11 mm, respectively, and passed through the center position Pc. The detected magnetic flux density of the Hall IC 3 at the arrangement position on the straight line L3 along the axial direction was measured. The results are shown in FIG. As shown in the figure, the detected magnetic flux density of the Hall IC 3 decreases and becomes the minimum as the distance from the electric wire 2 increases, and then the distance from the electric wire 2 to the upper end of the shield 6 due to the influence of the leakage magnetic flux from the gap G1 of the shield 6 Increases as you get closer. As is clear from the figure, the change in the magnetic flux density is flat in the vicinity of the position Pmin where the change in the magnetic flux density is minimum compared to the vicinity of the electric wire 2 and the vicinity of the shield 6. That is, it has been found that if the Hall IC 3 is arranged at the position Pmin, even if the Hall IC 3 is displaced in the Y-axis direction due to vibration or the like, the change in magnetic flux density is small and the current measurement error is small. Therefore, in the present embodiment, the Hall IC 3 is arranged at a position where the change in magnetic flux density measured in advance is minimized. Note that the position Pmin at which the change in the magnetic flux density is minimum differs depending on the distance L2, as shown in FIG. Further, the position Pmin varies depending on the shape of the shield 6 and the like.

このように配置すれば、ホールIC3の配置位置が多少変動しても磁束密度の変化が平坦な領域内にホールIC3を配置することができる。従って、周囲温度の変化に起因してホールIC3を保持するケースの伸縮や振動などにより、ホールIC3の配置位置が変動しても上述したように磁束密度の変化が小さいため、ホールIC3の出力変動はほとんどなく、精度良く電流を測定することができる。   If arranged in this way, the Hall IC 3 can be arranged in a region where the change in magnetic flux density is flat even if the arrangement position of the Hall IC 3 slightly varies. Therefore, since the change in magnetic flux density is small as described above even if the arrangement position of the Hall IC 3 fluctuates due to expansion / contraction or vibration of the case holding the Hall IC 3 due to the change in the ambient temperature, the output fluctuation of the Hall IC 3 is small. The current can be measured with high accuracy.

次に、上述した電流センサ1の電線2の配置位置の詳細について図7を参照して説明する。本発明者は、上述した図1〜図4に示す電流センサ1を用いて、シールド6−電線2間の距離L2を変えたときのガタツキによる誤差を測定した。結果を図7に示す。なお、ホールIC3は、各距離L2におけるY軸方向の磁束密度の変化が最小となる位置Pminに配置した。同図に示すように、電線2をシールド6に近づけるに従ってガタツキによる誤差が小さくなることが分かった。そこで、本発明の実施形態では、一対の係止凸部75及び一対の突出部78のうちコネクタ貫通孔73とは反対側、即ち下端側の係止凸部75及び突出部78に最も近づけて電線貫通孔74を設けた。これにより、電線2を可能な限りシールド6下端に近づけることができる。このように配置すれば、ホールIC3を保持するケースの伸縮や振動などにより、ホールIC3の配置位置が変動しても誤差を小さく抑えることができ、精度良く電流を測定することができる。   Next, the detail of the arrangement position of the electric wire 2 of the current sensor 1 described above will be described with reference to FIG. The inventor measured an error due to rattling when the distance L2 between the shield 6 and the electric wire 2 was changed using the current sensor 1 shown in FIGS. The results are shown in FIG. The Hall IC 3 is arranged at a position Pmin where the change in the magnetic flux density in the Y-axis direction at each distance L2 is minimized. As shown in the figure, it was found that the error due to rattling becomes smaller as the electric wire 2 is brought closer to the shield 6. Therefore, in the embodiment of the present invention, the pair of locking projections 75 and the pair of projections 78 are closest to the locking projections 75 and the projections 78 on the side opposite to the connector through hole 73, that is, the lower end side. An electric wire through hole 74 was provided. Thereby, the electric wire 2 can be brought as close to the lower end of the shield 6 as possible. With this arrangement, even if the arrangement position of the Hall IC 3 fluctuates due to expansion / contraction or vibration of the case that holds the Hall IC 3, the error can be suppressed small, and the current can be measured with high accuracy.

なお、上述した実施形態では、ホール素子ICがシールド6上端寄りに設けられていて、電線貫通孔74を下端側の係止凸部75及び突出部78に最も近づけて設けることにより、電線2がシールド6下端に可能な限り近づけるように配置していたが、本発明はこれに限ったものではない。例えば、ホール素子ICがシールド6の下端寄りに設けられている場合は、電線貫通孔74を上端側の係止凸部75及び突出部78に最も近づけて設けることにより、電線2をシールド6上端に可能な限り近づけるように配置してもよい。   In the above-described embodiment, the Hall element IC is provided near the upper end of the shield 6, and the electric wire 2 is formed by providing the electric wire through hole 74 closest to the locking convex portion 75 and the protruding portion 78 on the lower end side. Although it has been arranged as close as possible to the lower end of the shield 6, the present invention is not limited to this. For example, in the case where the Hall element IC is provided near the lower end of the shield 6, the electric wire 2 is provided at the upper end of the shield 6 by providing the electric wire through hole 74 closest to the upper-side locking convex portion 75 and the protruding portion 78. May be arranged as close as possible.

また、上述した実施形態では、シールド6を断面略矩形状に設けていたが、本発明はこれに限ったものではない。シールド6の断面形状としては、分割シールド61、62を互いに同一形状にすることができ、かつ、分割シールド61、62を互いに直線Lを対称軸として線対称にすることができる形状であればよい。   In the above-described embodiment, the shield 6 is provided with a substantially rectangular cross section, but the present invention is not limited to this. The cross-sectional shape of the shield 6 may be any shape as long as the split shields 61 and 62 can have the same shape as each other, and the split shields 61 and 62 can be symmetrical with respect to each other with the straight line L as the symmetry axis. .

また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   Further, the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.

本発明の電流センサの一実施の形態を示す斜視図である。It is a perspective view which shows one Embodiment of the current sensor of this invention. 図1に示す電流センサの分解斜視図である。It is a disassembled perspective view of the current sensor shown in FIG. 図1に示す電流センサのI−I線断面図である。It is the II sectional view taken on the line of the current sensor shown in FIG. 図1に示す収容ケースの部分拡大斜視図である。It is a partial expansion perspective view of the storage case shown in FIG. ホールICの位置をシールド6の中心位置PcからX軸方向、Y軸方向、Z軸方向のそれぞれにずらしたときの電流測定誤差を測定した結果を示すグラフである。It is a graph which shows the result of having measured the current measurement error when the position of Hall IC is shifted in the X-axis direction, the Y-axis direction, and the Z-axis direction from the center position Pc of the shield 6, respectively. シールド−電線間の距離が3.5mm、6mm、8.5mm、11mmの電流センサをそれぞれ作製して、中心位置を通りY軸方向に沿った直線上の配置位置におけるホールIC3の検出磁束密度を測定した結果を示すグラフである。Current sensors with shield-to-wire distances of 3.5 mm, 6 mm, 8.5 mm, and 11 mm were prepared, respectively, and the detected magnetic flux density of Hall IC 3 at the position on the straight line passing through the center position along the Y-axis direction. It is a graph which shows the measurement result. シールド−電線間の距離を変えたときのガタツキによる誤差を測定した結果を示すグラフである。It is a graph which shows the result of having measured the error by rattling when changing the distance between a shield and an electric wire. 従来の電流センサの一例を示す斜視図である。It is a perspective view which shows an example of the conventional current sensor.

符号の説明Explanation of symbols

1 電流センサ
2 電線(導体)
3 ホールIC(磁電変換素子)
5 コネクタ
6 シールド(シールド板)
7 収容ケース
73 コネクタ貫通孔
74 電線貫通孔(導体貫通孔)
1 Current sensor 2 Electric wire (conductor)
3 Hall IC (magnetoelectric transducer)
5 Connector 6 Shield (Shield plate)
7 Housing case 73 Connector through hole 74 Electric wire through hole (conductor through hole)

Claims (4)

電流が流れる導体と、前記導体の長手方向を軸として軸周りを囲むように配置された前記長手方向と直交する分割方向に2分割されたシールド板と、前記導体に電流が流れたときに発生する磁界の磁束密度を検出して電気信号に変換する磁電変換素子と、を有する電流センサにおいて、
前記シールド板が、前記2分割された各々が互いに同一形状となり、かつ、前記2分割された各々が前記分割方向に沿った直線を対称軸として線対称となるように、設けられた
ことを特徴とする電流センサ。
Occurs when current flows through a conductor through which current flows, a shield plate that is divided into two in a dividing direction orthogonal to the longitudinal direction, and is arranged so as to surround the axis around the longitudinal direction of the conductor. In a current sensor having a magnetoelectric conversion element that detects a magnetic flux density of a magnetic field to be converted into an electric signal,
The shield plate is provided so that each of the two divided parts has the same shape, and each of the two divided parts is line-symmetric with respect to a straight line along the dividing direction. And current sensor.
前記導体が貫通する導体貫通孔を分割するように前記分割方向に分割された前記シールド板を収容する収容ケースと、前記磁電変換素子に電気的に接続されたコネクタと、を有する電流センサであって、
前記磁電変換素子が、前記シールド板に囲まれた空間に配置されるように設けられ、
前記コネクタが、前記収容ケースに設けたコネクタ貫通孔から前記長手方向に沿って突出するように設けられ、そして、
前記収容ケースが、前記コネクタ貫通孔を分割するように設けられた
ことを特徴とする請求項1に記載の電流センサ。
A current sensor having a housing case for housing the shield plate divided in the dividing direction so as to divide a conductor through-hole through which the conductor passes, and a connector electrically connected to the magnetoelectric transducer. And
The magnetoelectric conversion element is provided to be disposed in a space surrounded by the shield plate,
The connector is provided so as to protrude from the connector through hole provided in the housing case along the longitudinal direction; and
The current sensor according to claim 1, wherein the housing case is provided so as to divide the connector through hole.
前記収容ケースを構成する一対の分割ケース同士を係止するための一対の係止手段が、前記導体貫通孔及び前記コネクタ貫通孔を挟むように前記一対の分割ケースの各々に設けられ、そして、
前記導体貫通孔が、前記一対の係止手段のうちの前記コネクタ貫通孔とは反対側の係止手段に最も近づけて設けられた
ことを特徴とする請求項2に記載の電流センサ。
A pair of locking means for locking the pair of split cases constituting the housing case is provided in each of the pair of split cases so as to sandwich the conductor through hole and the connector through hole; and
The current sensor according to claim 2, wherein the conductor through hole is provided closest to a locking means opposite to the connector through hole of the pair of locking means.
前記磁電変換素子が、予め測定された前記導体と前記シールド板との間において前記導体に電流が流れたときに発生する磁界の磁束密度の変化が最小となる位置に配置されている
ことを特徴とする請求項1〜3何れか1項に記載の電流センサ。
The magnetoelectric conversion element is disposed at a position where a change in magnetic flux density of a magnetic field generated when a current flows between the conductor and the shield plate measured in advance is minimized. The current sensor according to any one of claims 1 to 3.
JP2008110213A 2008-04-21 2008-04-21 Current sensor Active JP5107779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008110213A JP5107779B2 (en) 2008-04-21 2008-04-21 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008110213A JP5107779B2 (en) 2008-04-21 2008-04-21 Current sensor

Publications (2)

Publication Number Publication Date
JP2009258048A true JP2009258048A (en) 2009-11-05
JP5107779B2 JP5107779B2 (en) 2012-12-26

Family

ID=41385642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008110213A Active JP5107779B2 (en) 2008-04-21 2008-04-21 Current sensor

Country Status (1)

Country Link
JP (1) JP5107779B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209256A (en) * 2010-03-29 2011-10-20 Kohshin Electric Corp Device for detecting polyphase current
JP2012068154A (en) * 2010-09-24 2012-04-05 Yazaki Corp Current detector and attachment structure thereof
JP2013257294A (en) * 2012-06-14 2013-12-26 Yazaki Corp Current sensor
JP2013257293A (en) * 2012-06-14 2013-12-26 Yazaki Corp Current sensor
JP2014006115A (en) * 2012-06-22 2014-01-16 Yazaki Corp Current sensor
JP2014025718A (en) * 2012-07-24 2014-02-06 Yazaki Corp Current sensor
JP2014092478A (en) * 2012-11-05 2014-05-19 Alps Green Devices Co Ltd Current sensor
KR20200104508A (en) * 2019-02-27 2020-09-04 홍준기 Clamp mounted electric power measuring apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7109984B2 (en) 2018-04-27 2022-08-01 キヤノン電子株式会社 electromagnetic flow meter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259682A (en) * 1988-08-24 1990-02-28 Matsushita Electric Ind Co Ltd Magnetism detecting device
JPH0792199A (en) * 1993-07-28 1995-04-07 Matsushita Electric Ind Co Ltd Current sensor
JP2000258464A (en) * 1999-03-09 2000-09-22 Mitsubishi Materials Corp Electric current sensor
JP2001281270A (en) * 2000-03-31 2001-10-10 Sumitomo Special Metals Co Ltd Split type current detector
JP2008151743A (en) * 2006-12-20 2008-07-03 Yazaki Corp Current sensor and method for forming the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259682A (en) * 1988-08-24 1990-02-28 Matsushita Electric Ind Co Ltd Magnetism detecting device
JPH0792199A (en) * 1993-07-28 1995-04-07 Matsushita Electric Ind Co Ltd Current sensor
JP2000258464A (en) * 1999-03-09 2000-09-22 Mitsubishi Materials Corp Electric current sensor
JP2001281270A (en) * 2000-03-31 2001-10-10 Sumitomo Special Metals Co Ltd Split type current detector
JP2008151743A (en) * 2006-12-20 2008-07-03 Yazaki Corp Current sensor and method for forming the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209256A (en) * 2010-03-29 2011-10-20 Kohshin Electric Corp Device for detecting polyphase current
US9285401B2 (en) 2010-09-24 2016-03-15 Yazaki Corporation Current detecting device and attaching structure thereof
JP2012068154A (en) * 2010-09-24 2012-04-05 Yazaki Corp Current detector and attachment structure thereof
CN103513086B (en) * 2012-06-14 2016-08-31 矢崎总业株式会社 Current sensor
CN103513086A (en) * 2012-06-14 2014-01-15 矢崎总业株式会社 Current sensor
JP2013257293A (en) * 2012-06-14 2013-12-26 Yazaki Corp Current sensor
JP2013257294A (en) * 2012-06-14 2013-12-26 Yazaki Corp Current sensor
US9465054B2 (en) 2012-06-14 2016-10-11 Yazaki Corporation Current sensor
JP2014006115A (en) * 2012-06-22 2014-01-16 Yazaki Corp Current sensor
JP2014025718A (en) * 2012-07-24 2014-02-06 Yazaki Corp Current sensor
JP2014092478A (en) * 2012-11-05 2014-05-19 Alps Green Devices Co Ltd Current sensor
KR20200104508A (en) * 2019-02-27 2020-09-04 홍준기 Clamp mounted electric power measuring apparatus
KR102176933B1 (en) 2019-02-27 2020-11-10 홍준기 Clamp mounted electric power measuring apparatus

Also Published As

Publication number Publication date
JP5107779B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP5107779B2 (en) Current sensor
JP5817508B2 (en) Current detector
JP4471657B2 (en) Current sensor
US8917085B2 (en) Current sensor
JP2010014477A (en) Current sensor
JP2013120177A (en) Current detector
JP5673085B2 (en) Current detector
JP5598559B2 (en) Current sensor
JP2012042412A (en) Current detection device
WO2013005449A1 (en) Current detection device
JP5026944B2 (en) Current sensor
JP2009150654A (en) Current sensor
JP2008235473A (en) Electronic apparatus
JP6064117B2 (en) Current sensor
JP2009216456A (en) Current sensor
JP2020128961A (en) Current sensor
JP2014010012A (en) Current sensor
JP2020128960A (en) Current sensor
JP2013140089A (en) Current detector
JP2011114954A (en) Electrical junction box
JP2013231691A (en) Current sensor
JP2012247241A (en) Current detector
JP5683511B2 (en) Current sensor
JP2012141262A (en) Current detection device
JP6302454B2 (en) Current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121004

R150 Certificate of patent or registration of utility model

Ref document number: 5107779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250