JP2009257175A - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
JP2009257175A
JP2009257175A JP2008106593A JP2008106593A JP2009257175A JP 2009257175 A JP2009257175 A JP 2009257175A JP 2008106593 A JP2008106593 A JP 2008106593A JP 2008106593 A JP2008106593 A JP 2008106593A JP 2009257175 A JP2009257175 A JP 2009257175A
Authority
JP
Japan
Prior art keywords
fuel
gas
fuel injection
engine
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008106593A
Other languages
Japanese (ja)
Other versions
JP4884420B2 (en
Inventor
Hitoshi Maekawa
仁之 前川
Yusuke Kimura
優介 木村
Naoya Kato
直也 加藤
Takahiro Narita
隆大 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2008106593A priority Critical patent/JP4884420B2/en
Publication of JP2009257175A publication Critical patent/JP2009257175A/en
Application granted granted Critical
Publication of JP4884420B2 publication Critical patent/JP4884420B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection device capable of optimizing the atomized state of the injected gas-liquid mixture fuel by adjusting the mixing amount of a gas to be included in a liquid fuel. <P>SOLUTION: The fuel injection device 1 to supply the engine with the liquid fuel containing fine bubbles is equipped with a fuel pump 20 to feed by pressure the fuel sucked up from a fuel storage tank 10 to a fuel injection valve 30, a fine bubble mixing part 60 to make finer the gas and mix it with the liquid fuel fed by pressure by the fuel pump 20, and a gas supply part 50 to supply the gas to the fine bubble mixing part 60. In an ECU 70, the gas amount which optimizes the atomized condition in accordance with the engine operating condition is stored previously, and the ECU senses the engine operating condition and controls so that the stored gas amount corresponding to the operating condition is supplied from the gas supply means 50 into the liquid fuel. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微細気泡を含んだ燃料を機関に供給する燃料噴射装置に関する。   The present invention relates to a fuel injection device that supplies fuel containing fine bubbles to an engine.

従来、内燃機関の燃焼室内に微粒化した燃料を噴射供給することにより燃焼効率を向上させている。例えば、特許文献1では、外部から取り込んだ空気を微細化して液体燃料に混合し、この微細気泡を含んだ燃料を噴射することで噴霧液滴を微粒化する燃料噴射装置が開示されている。
また、特許文献2には、水素ガスを微細化して液体の炭化水素燃料に混合し、燃料中に混合された水素ガスの急速燃焼特性などにより燃焼効率を改善させた燃料噴射装置が開示されている。
特開2007−170295号公報 特開2006−329009号公報
Conventionally, combustion efficiency is improved by injecting and supplying atomized fuel into a combustion chamber of an internal combustion engine. For example, Patent Document 1 discloses a fuel injection device that atomizes air taken from outside, mixes it with liquid fuel, and injects fuel containing the fine bubbles to atomize spray droplets.
Further, Patent Document 2 discloses a fuel injection device in which hydrogen gas is refined and mixed with a liquid hydrocarbon fuel, and combustion efficiency is improved by rapid combustion characteristics of the hydrogen gas mixed in the fuel. Yes.
JP 2007-170295 A JP 2006-329209 A

しかしながら、特許文献1では、運転条件に関わらず常に一定量の気体を燃料中に混合するため、噴霧粒径を小さくすることはできるが、ペネトレーションは低下し、最適な噴霧形状とすることができない。
また、特許文献2では、運転条件に応じて水素ガスと液体燃料の混合割合を変更可能であるが、水素ガスの混合量は、燃焼効率の改善のために各運転条件に応じた必要な量に決定している。従って、噴霧形状、すなわち、ペネトレーション、噴霧粒径、及び噴霧角は最適化されていない。
However, in Patent Document 1, since a constant amount of gas is always mixed in the fuel regardless of the operating conditions, the spray particle size can be reduced, but the penetration is reduced and the optimum spray shape cannot be obtained. .
In Patent Document 2, the mixing ratio of hydrogen gas and liquid fuel can be changed according to the operating conditions, but the mixing amount of the hydrogen gas is a necessary amount corresponding to each operating condition for improving combustion efficiency. Is determined. Therefore, the spray shape, i.e. penetration, spray particle size, and spray angle, is not optimized.

本発明は、上述した点に鑑みてなされたものであり、その目的は、液体燃料に混入する気体の混合量を調整し、噴射される気液混合燃料の噴霧形状を最適化することが可能な燃料噴射装置を提供することにある。   The present invention has been made in view of the above-described points, and an object thereof is to adjust the amount of gas mixed in the liquid fuel and to optimize the spray shape of the gas-liquid mixed fuel to be injected. Is to provide a simple fuel injection device.

請求項1記載の燃料噴射装置は、微細気泡を含んだ液体燃料を機関に供給する燃料噴射装置であって、燃料を噴射する燃料噴射弁と、液体燃料が貯留される燃料貯留槽と、燃料貯留槽から汲み上げた燃料を燃料噴射弁に圧送する燃料ポンプと、気体を微細化し、微細化された気体を燃料ポンプにより圧送された液体燃料中に混合する微細気泡混合手段と、微細気泡混合手段に気体を供給する気体供給手段とを備える。また、機関の運転状態を検知する運転状態検知手段と、機関の運転状態と、運転状態に応じて噴霧状態を最適にする気体量との対応関係が予め記憶された対応関係記憶手段と、運転状態検知手段にて検知された運転状態検知結果に対応する対応関係記憶手段から読み出された気体量を気体供給手段から液体燃料中に供給するように制御する気体供給制御手段と、を備える。   The fuel injection device according to claim 1 is a fuel injection device that supplies liquid fuel containing fine bubbles to an engine, a fuel injection valve that injects fuel, a fuel storage tank that stores liquid fuel, and a fuel A fuel pump that pumps fuel pumped up from the storage tank to the fuel injection valve, a fine bubble mixing means that refines the gas and mixes the refined gas into the liquid fuel pumped by the fuel pump, and a fine bubble mixing means Gas supply means for supplying gas to the In addition, an operation state detection unit that detects the operation state of the engine, a correspondence relationship storage unit in which a correspondence relationship between the operation state of the engine and the gas amount that optimizes the spray state according to the operation state is stored in advance, Gas supply control means for controlling the gas amount read from the correspondence storage means corresponding to the operation state detection result detected by the state detection means to be supplied from the gas supply means into the liquid fuel.

すなわち、本発明では、機関の運転状態に応じて噴霧状態を最適とする気体量を、対応関係記憶手段に予め記憶しておく。ここで噴霧状態を最適とする気体量はベンチテストなどによって得ることが考えられる。そして、運転状態検知手段にて検知される運転状態検知結果に応じた気体量を、微細気泡混合手段にて微細化して混合する。運転状態検知結果とは、機関回転数や機関負荷等が例示される。これによって、液体燃料に混入する気体の混合量を調整し、噴射される気液混合燃料の噴霧形状を最適化することができる。その結果、燃焼を改善することができる。なお、噴霧状態とは、ペネトレーション(噴霧貫徹力)、噴霧粒径、噴霧角等である。   That is, in the present invention, the gas amount that optimizes the spray state in accordance with the operating state of the engine is stored in advance in the correspondence storage means. Here, it is conceivable that the gas amount that optimizes the spray state is obtained by a bench test or the like. And the gas quantity according to the driving | running state detection result detected by the driving | running state detection means is refined | miniaturized by the fine bubble mixing means, and is mixed. Examples of the operating state detection result include engine speed and engine load. Thereby, the mixing amount of the gas mixed in the liquid fuel can be adjusted, and the spray shape of the injected gas-liquid mixed fuel can be optimized. As a result, combustion can be improved. The spray state includes penetration (spray penetration force), spray particle size, spray angle, and the like.

請求項2に記載の燃料噴射装置では、気体供給手段が、水素を供給する水素供給手段と、水素以外の気体を供給する非水素供給手段と、を有する。ここで、水素以外の気体としては、空気、酸素、窒素などが例示される。
噴霧状態を最適化するために微細化して混合する気体として水素を利用すれば、水素も燃料として利用できるため、燃焼改善の効果が奏される。さらに、水素が必要ない運転状態においては水素以外の気体を供給することにより、噴霧状態を最適化することができる。水素が必要ない運転条件とは、例えば機関の高負荷時などである。
In the fuel injection device according to the second aspect, the gas supply unit includes a hydrogen supply unit that supplies hydrogen and a non-hydrogen supply unit that supplies a gas other than hydrogen. Here, examples of the gas other than hydrogen include air, oxygen, and nitrogen.
If hydrogen is used as a gas to be refined and mixed in order to optimize the spray state, hydrogen can also be used as a fuel, so that an effect of improving combustion is exhibited. Furthermore, in an operating state where hydrogen is not required, the spray state can be optimized by supplying a gas other than hydrogen. The operating conditions that do not require hydrogen are, for example, when the engine is heavily loaded.

ところで、気体供給手段により気体が供給された後に、供給した気体を必要としない運転状態となる場合がある。その場合には、微細気泡を含んだ燃料を回収し、微細気泡を含まない燃料を噴霧して最適な噴霧状態とすることが望ましい。そこで、次に示す構成を採用することが望ましい。   By the way, after the gas is supplied by the gas supply means, there may be an operation state that does not require the supplied gas. In that case, it is desirable to recover the fuel containing fine bubbles and spray the fuel not containing fine bubbles to obtain an optimum spray state. Therefore, it is desirable to employ the following configuration.

請求項3に記載の燃料噴射装置は、燃料噴射弁の入口に配設される燃料分配管と、燃料分配管と燃料貯留槽とを連絡する回収通路と、回収通路に配設され、微細気泡が混合された微細気泡混合燃料を液体燃料と微細気泡を形成する気体とに分離し、当該液体燃料を燃料貯留槽に回収する回収手段と、を備える。
これにより、供給した気体を必要としない運転状態となった場合には、微細気泡を含んだ燃料を回収し、供給した気体の微細気泡を含まない燃料を噴霧して噴霧状態を最適化することができる。
According to a third aspect of the present invention, there is provided a fuel injection device comprising: a fuel distribution pipe disposed at an inlet of a fuel injection valve; a recovery passage connecting the fuel distribution pipe and the fuel storage tank; And a recovery means for separating the mixed fuel of fine bubbles into liquid fuel and gas forming fine bubbles and recovering the liquid fuel in a fuel storage tank.
As a result, when the operation state does not require the supplied gas, the fuel containing fine bubbles is recovered, and the fuel that does not contain the supplied gas fine bubbles is sprayed to optimize the spray state. Can do.

ところで、車両停止時のように、機関を停止する場合には、微細気泡を含んだ燃料が長期間噴射されない可能性がある。液体燃料中の微細化された気体は、時間をかけて崩壊し液体燃料中に溶解するが、飽和量以上の気体は凝集しガス塊となってしまう。これにより、次回の機関再始動時に、燃料調量性が低下したり、ベーパロッック現象のように燃料の噴射ができなくなったりする可能性がある。また、機関の停止要求があった場合に、微細気泡を含んだ燃料を噴霧してから停止すると、余分な燃料を燃焼することとなってしまう。そこで、次のような構成を採用することが望ましい。   By the way, when the engine is stopped like when the vehicle is stopped, there is a possibility that fuel containing fine bubbles may not be injected for a long time. The refined gas in the liquid fuel collapses over time and dissolves in the liquid fuel, but the gas above the saturation amount aggregates to form a gas lump. As a result, at the next engine restart, the fuel metering property may be lowered, or fuel may not be injected as in the vapor lock phenomenon. In addition, when there is a request to stop the engine, if fuel containing fine bubbles is sprayed and then stopped, excess fuel will be burned. Therefore, it is desirable to adopt the following configuration.

請求項4に記載の燃料噴射装置は、機関の停止要求を判断する機関停止要求判断手段と、燃料噴射弁を制御する燃料噴射制御手段と、燃料ポンプの駆動を制御するポンプ駆動制御手段と、回収手段にて微細気泡混合燃料の回収が終了したことを判断する回収終了判断手段と、を備えている。機関停止要求判別手段にて機関からの停止要求があったと判断された場合、燃料噴射制御手段は燃料噴射弁からの燃料噴射を停止し、気体供給制御手段は気体供給手段による気体の供給を停止し、ポンプ駆動制御手段は燃料ポンプの駆動を継続する。しかる後、回収終了判断手段にて微細気泡混合燃料の回収が終了したと判断された場合、ポンプ駆動制御手段は、燃料ポンプの駆動を停止する。   The fuel injection device according to claim 4 is an engine stop request determination means for determining a request to stop the engine, a fuel injection control means for controlling the fuel injection valve, a pump drive control means for controlling the drive of the fuel pump, A recovery end judging means for judging that the collection of the fine bubble mixed fuel is finished by the collecting means. When it is determined by the engine stop request determining means that there is a stop request from the engine, the fuel injection control means stops the fuel injection from the fuel injection valve, and the gas supply control means stops the gas supply by the gas supply means. The pump drive control means continues to drive the fuel pump. Thereafter, when it is determined by the recovery end determination means that the recovery of the fine bubble mixed fuel has ended, the pump drive control means stops driving the fuel pump.

機関の停止要求があった場合には、燃料噴射と気体供給は停止するが、燃料ポンプは微細気泡混合燃料の回収が終了するまで駆動を継続するので、配管中に微細気泡を含む燃料が残らず、ガス塊の発生を防ぐことができる。
これにより、内燃機関再起動時に燃料調量性が低下したり、燃料噴射ができなくなったりすることを避け、好適に再始動することができる。
When there is a request to stop the engine, fuel injection and gas supply stop, but the fuel pump continues to drive until the recovery of the fine bubble mixed fuel is completed, so that fuel containing fine bubbles remains in the pipe. Therefore, generation of gas lumps can be prevented.
As a result, it is possible to appropriately restart the engine while avoiding the fuel metering property being lowered or the fuel injection being impossible when the internal combustion engine is restarted.

なお、回収終了の判断は、配管容量と燃料ポンプの供給液量に基づいて判断してもよく、また、次の構成を採用してもよい。
請求項5に記載の燃料噴射装置は、微細気泡混合燃料中の気体混合量を検知する混合気体量検知センサを有し、混合気体量検知センサに基づいて回収終了を判断する。
The end of recovery may be determined based on the pipe capacity and the amount of liquid supplied to the fuel pump, or the following configuration may be adopted.
According to a fifth aspect of the present invention, the fuel injection device includes a mixed gas amount detection sensor that detects a mixed gas amount in the fine bubble mixed fuel, and determines the end of recovery based on the mixed gas amount detection sensor.

このとき、混合気体量検知センサは、燃料分配管の回収通路側の末端付近に設けることが好ましく、これにより、燃料噴射弁に微細気泡を含む液体燃料が燃料分配管になくなったことを好適に判断することができる。   At this time, the mixed gas amount detection sensor is preferably provided in the vicinity of the end of the fuel distribution pipe on the side of the recovery passage, thereby suitably eliminating liquid fuel containing fine bubbles in the fuel distribution valve in the fuel distribution pipe. Judgment can be made.

以下、本発明による燃料噴射装置を図面に基づいて説明する。
(一実施形態)
本発明の一実施形態に係る燃料噴射装置を図1に示す。
車両に搭載される内燃機関の燃料噴射装置1は、液体燃料を貯留する燃料貯留槽10と、燃料貯留槽10内の燃料を吸い上げて昇圧した後に送出する燃料ポンプ20と、燃料ポンプ20から吐出された燃料を複数の燃料噴射弁30に供給する燃料分配管としてのデリバリパイプ40とを備えている。
Hereinafter, a fuel injection device according to the present invention will be described with reference to the drawings.
(One embodiment)
A fuel injection device according to an embodiment of the present invention is shown in FIG.
A fuel injection device 1 for an internal combustion engine mounted on a vehicle includes a fuel storage tank 10 that stores liquid fuel, a fuel pump 20 that sucks up and pressurizes fuel in the fuel storage tank 10, and discharges from the fuel pump 20. And a delivery pipe 40 as a fuel distribution pipe for supplying the fuel to the plurality of fuel injection valves 30.

複数の燃料噴射弁30は、図示しない機関としての内燃機関のシリンダヘッドに挿入して搭載され、内燃機関の各気筒の内部へ燃料を噴射する。   The plurality of fuel injection valves 30 are mounted by being inserted into a cylinder head of an internal combustion engine as an engine (not shown), and inject fuel into each cylinder of the internal combustion engine.

回収通路としてのリターン通路43は、デリバリパイプ40と、燃料貯留槽10とを連絡している。デリバリパイプ40のリターン通路43側末端には、リリーフバルブ42が設けられている。
リターン通路43に配設される回収手段としての脱泡部44は、微細気泡混合燃料を燃料と気体に分離する。脱泡部44は、液体燃料中の微細気泡を除去できればどのような方法であってもよく、減圧や遠心分離による分離装置が例示される。
A return passage 43 serving as a collection passage communicates the delivery pipe 40 and the fuel storage tank 10. A relief valve 42 is provided at the end of the delivery pipe 40 on the return passage 43 side.
A defoaming section 44 as a collecting means disposed in the return passage 43 separates the fine bubble mixed fuel into fuel and gas. The defoaming unit 44 may be any method as long as it can remove fine bubbles in the liquid fuel, and examples thereof include a separation device using reduced pressure or centrifugal separation.

気体供給部50は、水素供給手段としての水素ガス供給ポンプ51a及び水素ガス供給通路52aと、非水素供給手段としての空気供給ポンプ51b及び空気供給通路52bとを有する。車載の水タンク54から供給された水は、電気分解層53で電気分解され、水素を生成する。生成した水素は水素ガス供給ポンプ51aにより水素ガス供給通路52aから微細気泡混合手段としての微細気泡混合部60へ供給される。空気は、非水素供給手段としての空気供給ポンプ51bにより空気供給通路52bから微細気泡混合部60へ供給される。   The gas supply unit 50 includes a hydrogen gas supply pump 51a and a hydrogen gas supply passage 52a as hydrogen supply means, and an air supply pump 51b and an air supply passage 52b as non-hydrogen supply means. The water supplied from the in-vehicle water tank 54 is electrolyzed in the electrolysis layer 53 to generate hydrogen. The produced hydrogen is supplied from the hydrogen gas supply passage 52a by the hydrogen gas supply pump 51a to the fine bubble mixing section 60 as fine bubble mixing means. Air is supplied from the air supply passage 52b to the fine bubble mixing unit 60 by an air supply pump 51b as a non-hydrogen supply means.

微細気泡混合部60は、燃料供給通路41の途中に設けられている。微細気泡混合部60は、気体供給部50から供給された気体を微細化し、この微細化した気体を、燃料通路41を流れる液体燃料に混入させることができるように構成されている。例えば微細気泡としては直径が数μmから数十μm程度のマイクロバルブが知られている。微細気泡混合部60は、微細気泡を燃料中に混合できれば、どのような方法を用いた装置であってもよい。例えば、液体燃料及び水素ガスの2層旋回流を発生させ、その回転軸部分に空洞を形成し、せん断力を発生させて水素ガスを切断、粉砕する方法が例示される。また、水素ガスを加圧して液体中に溶解させた状態からその液体の流速を上げてキャビテーションを起こさせる方法が例示される。さらに、超音波により水素ガスを微細化してもよい。   The fine bubble mixing unit 60 is provided in the middle of the fuel supply passage 41. The fine bubble mixing unit 60 is configured to refine the gas supplied from the gas supply unit 50 and to mix the refined gas into the liquid fuel flowing through the fuel passage 41. For example, a microvalve having a diameter of several μm to several tens of μm is known as a fine bubble. The fine bubble mixing unit 60 may be an apparatus using any method as long as fine bubbles can be mixed in the fuel. For example, a method of generating a two-layer swirling flow of liquid fuel and hydrogen gas, forming a cavity in the rotating shaft portion, generating shearing force, and cutting and crushing hydrogen gas is exemplified. Further, there is exemplified a method in which cavitation is caused by increasing the flow rate of the liquid from a state where hydrogen gas is pressurized and dissolved in the liquid. Furthermore, hydrogen gas may be refined by ultrasonic waves.

本実施形態の燃料噴射装置1は、電子制御装置(以下、「ECU」という。)70を備えている。ECU70は、燃料噴射装置1全体の制御を司る。ECU70の出力側には、燃料ポンプ20、燃料噴射弁30、リリーフバルブ42、脱泡部44、水素ガス供給ポンプ51a、空気供給ポンプ51b、電気分解層53、微細気泡混合部60等が接続されている。ECU70の入力側には、クランク角センサ、アクセル開度センサ、空燃比センサ等が接続されている。なお、図1では煩雑になることを避けるため、便宜上、ECU70と微細気泡混合部60とを連絡する制御線のみを図示している。   The fuel injection device 1 of this embodiment includes an electronic control device (hereinafter referred to as “ECU”) 70. The ECU 70 controls the entire fuel injection device 1. Connected to the output side of the ECU 70 are a fuel pump 20, a fuel injection valve 30, a relief valve 42, a defoaming unit 44, a hydrogen gas supply pump 51a, an air supply pump 51b, an electrolysis layer 53, a fine bubble mixing unit 60, and the like. ing. A crank angle sensor, an accelerator opening sensor, an air-fuel ratio sensor, and the like are connected to the input side of the ECU 70. In FIG. 1, for the sake of convenience, only a control line that communicates between the ECU 70 and the fine bubble mixing unit 60 is illustrated in order to avoid complexity.

また、ECU70は、燃料噴射装置1全体の制御を実行することは上述したが、さらに各センサの出力に基づいて内燃機関全体の制御を実行する。ECU70は、クランク角センサの出力に基づいて、機関回転数を算出する。また、ECU70は、アクセル開度センサ30により検出されるアクセル開度に基づいて、機関負荷を算出する。   Moreover, although ECU70 mentioned above performing control of the fuel-injection apparatus 1 further, based on the output of each sensor, it performs control of the whole internal combustion engine. The ECU 70 calculates the engine speed based on the output of the crank angle sensor. Further, the ECU 70 calculates the engine load based on the accelerator opening detected by the accelerator opening sensor 30.

次に、本実施形態における燃料噴射装置1の動作について説明する。
燃料ポンプ20が駆動されると、燃料貯留槽10から燃料供給通路41、デリバリパイプ40を経由して燃料噴射弁30に液体燃料が供給される。これにより、燃料噴射弁30から内燃機関へ液体燃料の噴射が可能となる。
また、水素ガス供給ポンプ51a及び空気供給ポンプ51bの駆動により、微細気泡混合部60に水素及び空気が供給される。微細気泡混合部60に気体が供給されると、気体が微細化され、燃料供給通路41を流れる液体燃料に混入される。微細化された気泡を含む燃料は液体として扱うことができるため、液体燃料のみの場合と同様に、燃料噴射弁30から内燃機関への噴射が可能となる。
Next, operation | movement of the fuel-injection apparatus 1 in this embodiment is demonstrated.
When the fuel pump 20 is driven, liquid fuel is supplied from the fuel storage tank 10 to the fuel injection valve 30 via the fuel supply passage 41 and the delivery pipe 40. Thereby, the liquid fuel can be injected from the fuel injection valve 30 to the internal combustion engine.
Moreover, hydrogen and air are supplied to the fine bubble mixing unit 60 by driving the hydrogen gas supply pump 51a and the air supply pump 51b. When gas is supplied to the fine bubble mixing unit 60, the gas is refined and mixed into the liquid fuel flowing through the fuel supply passage 41. Since the fuel containing the micronized bubbles can be handled as a liquid, the fuel injection valve 30 can be injected into the internal combustion engine as in the case of only the liquid fuel.

また、内燃機関の停止要求時には、リリーフバルブ42を開とし、微細気泡を含む燃料は、脱泡部44にて液体燃料と気体とに分離する。分離された液体燃料はリターン通路43を通って燃料貯留槽10に回収され、分離された気体は気体回収通路45を通って回収される。   Further, when the internal combustion engine is requested to stop, the relief valve 42 is opened, and the fuel containing fine bubbles is separated into liquid fuel and gas at the defoaming section 44. The separated liquid fuel is collected in the fuel storage tank 10 through the return passage 43, and the separated gas is collected through the gas collection passage 45.

本発明では、機関の運転状態に応じて噴霧粒径、ペネトレーションを最適化するように気体の混合量を調整する点に特徴を有している。そこで、図2に示すフローチャートに基づいて本実施形態の燃料噴射装置1の動作の一例を説明する。
最初のステップS10(以下、「ステップ」を省略し、単に記号「S」で示す)では、内燃機関の機関回転数および機関負荷を算出する。
The present invention is characterized in that the amount of gas mixture is adjusted so as to optimize the spray particle size and penetration according to the operating state of the engine. An example of the operation of the fuel injection device 1 of the present embodiment will be described based on the flowchart shown in FIG.
In the first step S10 (hereinafter, “step” is omitted and simply indicated by the symbol “S”), the engine speed and the engine load of the internal combustion engine are calculated.

次のS11では、内燃機関の停止要求の有無を判断する。内燃機関の停止要求があった場合(S11:YES)、図3中のS21へ移行する。内燃機関の停止要求がない場合(S11:NO)、S12へ移行する。
S12では、噴霧の微粒化が必要か否かを判断する。噴霧の微粒化が必要な場合(S12:YES)、S13へ移行する。噴霧の微粒化が必要ない場合(S12:NO)、液体燃料中に気体を供給せず、液体燃料のみを噴霧する。
In next S11, it is determined whether or not there is a request for stopping the internal combustion engine. When there is a request to stop the internal combustion engine (S11: YES), the process proceeds to S21 in FIG. When there is no request to stop the internal combustion engine (S11: NO), the process proceeds to S12.
In S12, it is determined whether atomization of the spray is necessary. If atomization of the spray is necessary (S12: YES), the process proceeds to S13. When atomization of the spray is not necessary (S12: NO), only the liquid fuel is sprayed without supplying gas into the liquid fuel.

S13では、水素添加が必要か否かを判断する。水素添加が必要な場合(S13:YES)、S14へ移行する。水素添加を必要とする運転状態とは、例えば、燃焼性を改善して失火限界を延ばしたい低温条件などである。水素添加が必要ない場合(S13:NO)、S18へ移行する。水素添加を必要としない運転状態とは、例えば、高負荷時などである。   In S13, it is determined whether hydrogenation is necessary. When hydrogenation is necessary (S13: YES), the process proceeds to S14. The operating state that requires hydrogenation is, for example, low temperature conditions where it is desired to improve the flammability and extend the misfire limit. When hydrogenation is not necessary (S13: NO), the process proceeds to S18. The operating state that does not require hydrogenation is, for example, during high loads.

水素添加が必要な場合(S13:YES)に移行するS14では、最適な噴霧状態となる水素添加割合を、S10の機関回転数及び機関負荷に応じて予め記憶されたマップデータから求める。S14で求められた水素添加割合に基づいて、水素必要量を算出し(S15)、水素生成処理を実行する(S16)。生成された水素は、微細気泡混合部60にて燃料供給通路41内の液体燃料に微細化し混合する(S17)。   In S14, which shifts to the case where hydrogen addition is necessary (S13: YES), the hydrogen addition ratio at which an optimum spray state is obtained is obtained from map data stored in advance according to the engine speed and engine load in S10. Based on the hydrogen addition ratio obtained in S14, a required hydrogen amount is calculated (S15), and a hydrogen generation process is executed (S16). The generated hydrogen is refined and mixed with the liquid fuel in the fuel supply passage 41 by the fine bubble mixing unit 60 (S17).

水素添加が必要ない場合(S13:NO)に移行するS18では、最適な噴霧状態となる空気添加割合を、S10の機関回転数及び機関負荷に応じて予め記憶されたマップデータから求める。S18で求められた空気添加割合に基づいて、空気必要量を算出し(S19)、必要な量の空気を微細気泡混合部60にて燃料供給通路41内の液体燃料に微細化し混合する(S20)。   In S18, where the hydrogen addition is not necessary (S13: NO), the air addition ratio at which the optimum spray state is obtained is obtained from the map data stored in advance according to the engine speed and the engine load in S10. Based on the air addition ratio obtained in S18, the required air amount is calculated (S19), and the required amount of air is refined and mixed with the liquid fuel in the fuel supply passage 41 by the fine bubble mixing unit 60 (S20). ).

内燃機関停止要求があった場合(図2中のS11:YES)に移行する図3中のS21では、燃料噴射弁30からの燃料噴射を停止する。次に、S22では、電気分解層53での水素の生成を停止する。続いてS23では、水素ガス供給ポンプ51a及び空気供給ポンプ51bの駆動を停止し、気体の供給を停止する。S24では、リリーフバルブ42を開にする。なお、S21〜S24での制御については、順番を入れ換えてもよいし、あるいは、並行に実行されるようにしてもよい。   In S21 in FIG. 3 which is shifted to when the internal combustion engine stop request is made (S11 in FIG. 2: YES), the fuel injection from the fuel injection valve 30 is stopped. Next, in S22, the generation of hydrogen in the electrolysis layer 53 is stopped. Subsequently, in S23, the driving of the hydrogen gas supply pump 51a and the air supply pump 51b is stopped, and the supply of gas is stopped. In S24, the relief valve 42 is opened. In addition, about control by S21-S24, order may be interchanged or you may make it perform in parallel.

続いて移行するS25では、微細気泡を含んだ燃料の回収が終了したか否かを判断する。微細気泡を含んだ燃料の回収が終了した場合(S25:YES)、燃料ポンプ20を停止し、図2へ戻り、本処理を終了する。微細気泡を含んだ燃料の回収が終了していない場合(S25:NO)、脱泡処理を継続する。すなわち、内燃機関停止要求があった場合、燃料噴射及び気体供給は停止するが、微細気泡を含んだ燃料の回収が終了するまで燃料ポンプ20の駆動を継続する。   Subsequently, in S25 to be shifted, it is determined whether or not the recovery of the fuel containing the fine bubbles is completed. When the collection of the fuel containing the fine bubbles is completed (S25: YES), the fuel pump 20 is stopped and the process returns to FIG. If the recovery of the fuel containing fine bubbles has not been completed (S25: NO), the defoaming process is continued. That is, when there is a request to stop the internal combustion engine, the fuel injection and the gas supply are stopped, but the drive of the fuel pump 20 is continued until the recovery of the fuel containing fine bubbles is completed.

微細気泡を含んだ燃料の回収終了の判断は、配管容量と燃料ポンプ20の供給液量に基づいて求められる所定時間の経過で判断してもよいし、リリーフバルブ42付近に設けられた気体混合量検知センサによって判断してもよい。
ここで、気体混合量と噴霧状態について、図4に基づいて説明する。横軸は気体混入量を表しており、縦軸は噴霧粒径、ペネトレーション、噴霧角を表している。気体混入量が少ない場合、噴霧粒径が大きく、ペネトレーションは強い。また、噴霧角は小さい。気体混入量が多い場合、噴霧粒径が小さくなり、ペネトレーションは低下する。また、噴霧角は大きくなる。例えば、噴霧粒径を小さくしたい場合には、気体混入量を多くし、ペネトレーションを強くしたい場合には、気体混入量を少なくする。
The determination of the end of the recovery of the fuel containing fine bubbles may be made after the elapse of a predetermined time determined based on the pipe capacity and the amount of liquid supplied to the fuel pump 20, or the gas mixture provided near the relief valve 42 You may judge by a quantity detection sensor.
Here, the gas mixing amount and the spray state will be described with reference to FIG. The horizontal axis represents the gas mixing amount, and the vertical axis represents the spray particle size, penetration, and spray angle. When the gas mixing amount is small, the spray particle size is large and the penetration is strong. Also, the spray angle is small. When the gas mixing amount is large, the spray particle size becomes small, and the penetration decreases. In addition, the spray angle increases. For example, when it is desired to reduce the spray particle size, the gas mixing amount is increased, and when it is desired to increase the penetration, the gas mixing amount is decreased.

ガソリン直噴エンジンの場合、通常、機関負荷が大きい場合には、ペネトレーションを小さくし、噴霧粒径を小さくし、噴霧角を大きくするように、気体混入量を多くする。また、ディーゼルエンジンの場合、通常、機関負荷が大きい場合には、ペネトレーションを大きくしたいので、気体混入量を少なくする。ただし、これはあくまでも大まかな目安である。
本実施形態におけるECU70は、「運転状態検知手段」、「対応関係記憶手段」、「気体供給制御手段」、「機関停止要求判断手段」、「燃料噴射制御手段」、「ポンプ駆動制御手段」、「回収終了判断手段」を構成する。対応関係記憶手段は、運転状態例えば内燃機関の負荷と回転数等に応じた最適な気体量を、ベンチテストなどによって予め最適な気体量を運転状態に合わせて算出して記憶している。
そして、図2中のS10が「運転状態検知手段」の機能としての処理に相当し、図2中のS14、S18のマップを記憶する構成が「対応関係記憶手段」に相当し、図2及び図3に示す処理が「気体供給量制御手段」の機能としての処理に相当する。また、図2中のS11が「機関停止要求判断手段」の機能としての処理に相当し、図3中のS21が「燃料噴射制御手段」の機能としての処理に相当し、図3中のS26が「ポンプ駆動制御手段」の機能としての処理に相当する。さらに、図3中のS25が「回収終了判断手段」の機能としての処理に相当する。
In the case of a gasoline direct injection engine, usually, when the engine load is large, the gas mixing amount is increased so that the penetration is decreased, the spray particle size is decreased, and the spray angle is increased. In the case of a diesel engine, usually, when the engine load is large, it is desired to increase the penetration, so that the gas mixing amount is reduced. However, this is only a rough guide.
The ECU 70 in the present embodiment includes an “operating state detection unit”, “correspondence relationship storage unit”, “gas supply control unit”, “engine stop request determination unit”, “fuel injection control unit”, “pump drive control unit”, It constitutes “collection end judging means”. The correspondence storage means stores an optimum gas amount corresponding to the operating state, for example, the load and the rotational speed of the internal combustion engine, by previously calculating the optimum gas amount according to the operating state by a bench test or the like.
2 corresponds to the processing as the function of the “driving state detection means”, the configuration for storing the maps of S14 and S18 in FIG. 2 corresponds to the “correspondence storage means”, and FIG. The process shown in FIG. 3 corresponds to the process as a function of the “gas supply amount control means”. Further, S11 in FIG. 2 corresponds to processing as a function of “engine stop request determining means”, S21 in FIG. 3 corresponds to processing as a function of “fuel injection control means”, and S26 in FIG. Corresponds to processing as a function of the “pump drive control means”. Further, S25 in FIG. 3 corresponds to processing as a function of “collection end determination means”.

上述の通り、本実施形態では、気体供給部50から水素と空気を供給するように構成されている。水素を供給する場合(S13:YES)、水素を微細化して液体燃料中に混合することにより、最適な噴霧状態とするだけでなく、燃焼効率の改善によるリーン限界の向上、燃料消費率の改善、NOx排出量の低減などの効果も奏される。   As described above, in this embodiment, hydrogen and air are supplied from the gas supply unit 50. When hydrogen is supplied (S13: YES), hydrogen is refined and mixed into the liquid fuel to not only achieve an optimal spray state, but also improve the lean limit and improve the fuel consumption rate by improving the combustion efficiency. In addition, effects such as reduction of NOx emission amount are also exhibited.

一方で、高負荷時など、水素を添加すると十分な熱量を供給できないため、燃料のみを燃焼させる必要がある場合(S13:NO)、空気を微細化して液体燃料中に混合することにより、水素を使用せずに噴霧状態を最適化することができる。
さらに、内燃機関停止要求時に、燃料噴射と気体供給は停止するが、微細気泡を含んだ液体燃料が回収されるまで燃料ポンプ20を駆動し続けることにより、配管中でのガス塊の発生を防ぎ、内燃機関再起動時に燃料調量性が低下したり、燃料噴射ができなくなったりすることを避け、好適に再始動することができる。
On the other hand, when hydrogen is added, a sufficient amount of heat cannot be supplied, such as at high loads, and when it is necessary to burn only the fuel (S13: NO), the hydrogen is refined and mixed into the liquid fuel. The spraying state can be optimized without using.
Further, when the internal combustion engine is requested to stop, fuel injection and gas supply are stopped, but by continuing to drive the fuel pump 20 until liquid fuel containing fine bubbles is recovered, generation of gas lumps in the piping is prevented. The fuel metering property is not lowered when the internal combustion engine is restarted, or fuel injection cannot be performed, and the engine can be restarted suitably.

(その他の実施形態)
上記の実施形態では、ガソリンエンジンに本発明を適用した形態について説明したが、本発明を適用する機関は、ガソリンエンジンに限らず、ディーゼルエンジンでもよい。また、機関に供給する燃料は、ガソリンに限らず、例えばアルコールやエーテルなどであってもよい。
上記の実施形態では、2種類の気体を水素と空気としたが、他の実施形態では、他の気体の組合せでもよいし、3種類以上の気体であってもよい。
また、上記の実施形態では、水素は電気分解により得ているが、他の実施形態では、燃料改質により得てもよいし、水素貯蔵タンクや液化水素タンクなどに貯蔵することで得てもよいし、あるいは水とマグネシウム等の金属とを反応させることによって得てもよい。
上述の気体回収通路から回収された気体は、本発明では、外部に放出可能な気体、例えば空気、酸素、窒素などであれば外部に放出してもよく、燃料貯留槽に回収してもよい。外部に放出できない気体、例えば水素であれば、図示しない気体貯留タンクに一時的に貯留し、内燃機関再始動時に、吸気ポートに放出したり、気体供給部に戻したりして燃料中に混合させてもよい。
(Other embodiments)
In the above embodiment, the embodiment in which the present invention is applied to a gasoline engine has been described. However, the engine to which the present invention is applied is not limited to a gasoline engine, and may be a diesel engine. The fuel supplied to the engine is not limited to gasoline, and may be alcohol or ether, for example.
In the above embodiment, the two types of gas are hydrogen and air. However, in other embodiments, a combination of other gases or three or more types of gases may be used.
In the above embodiment, hydrogen is obtained by electrolysis, but in other embodiments, it may be obtained by fuel reforming or obtained by storing it in a hydrogen storage tank or a liquefied hydrogen tank. Alternatively, it may be obtained by reacting water with a metal such as magnesium.
In the present invention, the gas recovered from the gas recovery passage described above may be discharged to the outside as long as it is a gas that can be discharged to the outside, such as air, oxygen, nitrogen, or the like, and may be recovered in the fuel storage tank. . If it is a gas that cannot be released to the outside, such as hydrogen, it is temporarily stored in a gas storage tank (not shown), and when the internal combustion engine is restarted, it is released into the intake port or returned to the gas supply unit and mixed into the fuel. May be.

また、上記のリリーフバルブは、エンジン停止要求がある場合に開にしたが、本発明では、エンジン停止要求がない場合にも開にしておき、余剰燃料を回収するようにしてもよい。さらに、微細気泡供給後に気体を供給する必要がない運転条件に変わった場合には、微細気泡を含んだ燃料を回収し、微細気泡を含まない燃料に置き換えることが好ましい。
さらに、上記の実施形態では、内燃機関の各気筒の内部へ液体燃料を直接噴射するが、吸気通路に噴射してもよい。
The relief valve is opened when there is an engine stop request. However, in the present invention, the surplus fuel may be recovered by opening it even when there is no engine stop request. Furthermore, when the operating conditions change so that it is not necessary to supply gas after supplying fine bubbles, it is preferable to recover the fuel containing fine bubbles and replace it with a fuel not containing fine bubbles.
Further, in the above embodiment, liquid fuel is directly injected into each cylinder of the internal combustion engine, but may be injected into the intake passage.

さらにまた、上記の実施形態では、燃料噴射弁は複数であるが、本発明では1つであってもよい。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
Furthermore, in the above embodiment, there are a plurality of fuel injection valves, but in the present invention, there may be one.
As mentioned above, this invention is not limited to the said embodiment at all, In the range which does not deviate from the meaning of invention, it can implement with a various form.

本発明の一実施形態の燃料噴射装置の構成を示すブロック図である。It is a block diagram which shows the structure of the fuel-injection apparatus of one Embodiment of this invention. 本発明の一実施形態の燃料噴射装置による気体混合量の調整処理を示すフローチャートである。It is a flowchart which shows the adjustment process of the gas mixing amount by the fuel-injection apparatus of one Embodiment of this invention. 本発明の一実施形態の燃料噴射装置による気体混合量の調整処理を示すフローチャートである。It is a flowchart which shows the adjustment process of the gas mixing amount by the fuel-injection apparatus of one Embodiment of this invention. 噴霧状態と気体混入量との関係を示す特性図である。It is a characteristic view which shows the relationship between a spraying state and the gas mixing amount.

符号の説明Explanation of symbols

1:燃料噴射装置、10:燃料貯留槽、20:燃料ポンプ、30:燃料噴射弁、40:デリバリパイプ(燃料分配管)、41:燃料供給通路、42:リリーフバルブ、43:リターン通路(回収通路)、44:脱泡部(回収手段)、45:気体回収通路、50:気体供給部(気体供給手段)、51a:水素ガス供給ポンプ(水素供給手段)、51b:空気供給ポンプ(非水素供給手段)、52a:水素ガス供給通路、52b:空気供給通路、53:電気分解層、54:水タンク、60:微細気泡混合部(微細気泡混合手段)、70:ECU(運転状態検知手段、対応関係記憶手段、気体供給制御手段、機関停止要求判断手段、燃料噴射制御手段、ポンプ駆動制御手段、回収終了判断手段)   1: fuel injection device, 10: fuel storage tank, 20: fuel pump, 30: fuel injection valve, 40: delivery pipe (fuel distribution pipe), 41: fuel supply passage, 42: relief valve, 43: return passage (recovery) Passage), 44: defoaming part (recovery means), 45: gas recovery passageway, 50: gas supply part (gas supply means), 51a: hydrogen gas supply pump (hydrogen supply means), 51b: air supply pump (non-hydrogen) Supply means), 52a: hydrogen gas supply passage, 52b: air supply passage, 53: electrolysis layer, 54: water tank, 60: fine bubble mixing section (fine bubble mixing means), 70: ECU (operating state detection means, Correspondence relation storage means, gas supply control means, engine stop request determination means, fuel injection control means, pump drive control means, recovery end determination means)

Claims (5)

微細気泡を含んだ液体燃料を機関に供給する燃料噴射装置であって、
燃料を噴射する燃料噴射弁と、
液体燃料が貯留される燃料貯留槽と、
前記燃料貯留槽から汲み上げた液体燃料を前記燃料噴射弁に圧送する燃料ポンプと、
気体を微細化し、微細化された気体を前記燃料ポンプにより圧送された液体燃料中に混合する微細気泡混合手段と、
前記微細気泡混合手段に気体を供給する気体供給手段と、
前記機関の運転状態を検知する運転状態検知手段と、
前記機関の運転状態と、当該運転状態に応じて噴霧状態を最適にする気体量との対応関係が予め記憶された対応関係記憶手段と、
前記運転状態検知手段にて検知された運転状態検知結果に対応する前記対応関係記憶手段から読み出された気体量を前記気体供給手段から液体燃料中に供給するように制御する気体供給制御手段と、
を備えることを特徴とする燃料噴射装置。
A fuel injection device for supplying liquid fuel containing fine bubbles to an engine,
A fuel injection valve for injecting fuel;
A fuel storage tank in which liquid fuel is stored;
A fuel pump that pumps liquid fuel pumped from the fuel storage tank to the fuel injection valve;
Microbubble mixing means for micronizing gas and mixing the micronized gas into the liquid fuel pumped by the fuel pump;
Gas supply means for supplying gas to the fine bubble mixing means;
An operating state detecting means for detecting the operating state of the engine;
Correspondence relationship storage means in which the correspondence relationship between the operation state of the engine and the amount of gas that optimizes the spray state according to the operation state is stored in advance;
Gas supply control means for controlling the gas amount read from the correspondence storage means corresponding to the operation state detection result detected by the operation state detection means to be supplied from the gas supply means into the liquid fuel; ,
A fuel injection device comprising:
前記気体供給手段は、
水素を供給する水素供給手段と、
水素以外の気体を供給する非水素供給手段と、
を有することを特徴とする請求項1に記載の燃料噴射装置。
The gas supply means includes
Hydrogen supply means for supplying hydrogen;
Non-hydrogen supply means for supplying a gas other than hydrogen;
The fuel injection device according to claim 1, comprising:
前記燃料噴射弁の入口に配設される燃料分配管と、
前記燃料分配管と前記燃料貯留槽とを連絡する回収通路と、
前記回収通路に配設され、微細気泡が混合された微細気泡混合燃料を微細気泡を形成する気体と液体燃料とに分離し、当該液体燃料を前記燃料貯留槽に回収する回収手段と、
を備えることを特徴とする請求項1または2に記載の燃料噴射装置。
A fuel distribution pipe disposed at an inlet of the fuel injection valve;
A collection passage that connects the fuel distribution pipe and the fuel storage tank;
A recovery means disposed in the recovery passage for separating the fine bubble mixed fuel in which the fine bubbles are mixed into gas and liquid fuel forming the fine bubbles, and recovering the liquid fuel in the fuel storage tank;
The fuel injection device according to claim 1, further comprising:
前記機関の停止要求を判断する機関停止要求判断手段と、
前記燃料噴射弁を制御する燃料噴射制御手段と、
前記燃料ポンプの駆動を制御するポンプ駆動制御手段と、
前記回収手段にて前記微細気泡混合燃料の回収が終了したことを判断する回収終了判断手段と、
を備え、
前記機関停止要求判別手段にて停止要求があったと判断された場合、
前記燃料噴射制御手段は、前記燃料噴射弁からの燃料噴射を停止し、
前記気体供給制御手段は、前記気体供給手段による気体の供給を停止し、
前記ポンプ駆動制御手段は、前記燃料ポンプの駆動を継続し、
しかる後、前記回収終了判断手段にて前記微細気泡混合燃料の回収が終了したと判断された場合、
前記ポンプ駆動制御手段は、前記燃料ポンプの駆動を停止することを特徴とする請求項3に記載の燃料噴射装置。
Engine stop request determination means for determining the engine stop request;
Fuel injection control means for controlling the fuel injection valve;
Pump drive control means for controlling the drive of the fuel pump;
A collection end judging means for judging that the collection of the fine bubble mixed fuel is finished in the collecting means;
With
If it is determined by the engine stop request determining means that there is a stop request,
The fuel injection control means stops fuel injection from the fuel injection valve;
The gas supply control means stops the gas supply by the gas supply means,
The pump drive control means continues to drive the fuel pump,
Thereafter, when it is determined by the recovery end determination means that the recovery of the fine bubble mixed fuel has ended,
The fuel injection device according to claim 3, wherein the pump drive control means stops driving the fuel pump.
前記微細気泡混合燃料中の気体混合量を検知する混合気体量検知センサを備え、
前記回収終了判断手段は、前記混合気体量検知センサに基づいて判断することを特徴とする請求項4に記載の燃料噴射装置。
A gas mixture detection sensor for detecting the gas mixture amount in the fine bubble mixed fuel,
The fuel injection device according to claim 4, wherein the recovery end determination unit makes a determination based on the mixed gas amount detection sensor.
JP2008106593A 2008-04-16 2008-04-16 Fuel injection device Expired - Fee Related JP4884420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008106593A JP4884420B2 (en) 2008-04-16 2008-04-16 Fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008106593A JP4884420B2 (en) 2008-04-16 2008-04-16 Fuel injection device

Publications (2)

Publication Number Publication Date
JP2009257175A true JP2009257175A (en) 2009-11-05
JP4884420B2 JP4884420B2 (en) 2012-02-29

Family

ID=41384904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008106593A Expired - Fee Related JP4884420B2 (en) 2008-04-16 2008-04-16 Fuel injection device

Country Status (1)

Country Link
JP (1) JP4884420B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115048A1 (en) * 2011-02-22 2012-08-30 伊藤レーシングサービス株式会社 Mixed fuel generation method, mixed fuel generation device and fuel supply device
US9765713B2 (en) 2014-07-11 2017-09-19 Huan-Hsin Kou Hydrogen fuel assist device for an internal combustion engine system
KR101934856B1 (en) * 2017-05-30 2019-01-04 충남대학교산학협력단 Microfluidic Chip with an Ideal-mixing Micro-tank

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299585A (en) * 1997-02-27 1998-11-10 Honda Motor Co Ltd Vaporized fuel release preventing device for internal combustion engine
JP2004044574A (en) * 2002-05-16 2004-02-12 Bosch Automotive Systems Corp Dme fuel supply device of diesel engine
JP2006329009A (en) * 2005-05-24 2006-12-07 Toyota Motor Corp Internal combustion engine using hydrogen
JP2007024012A (en) * 2005-07-21 2007-02-01 Toyota Motor Corp Fuel feed device
JP2007077930A (en) * 2005-09-15 2007-03-29 Toyota Motor Corp Hydrogen-using internal combustion engine
JP2007146672A (en) * 2005-11-24 2007-06-14 Toyota Motor Corp Internal combustion engine utilizing hydrogen
JP2007170295A (en) * 2005-12-22 2007-07-05 Honda Motor Co Ltd Fuel injection device for internal combustion engine
JP2007218235A (en) * 2006-02-20 2007-08-30 Toyota Motor Corp Fuel supply device of internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299585A (en) * 1997-02-27 1998-11-10 Honda Motor Co Ltd Vaporized fuel release preventing device for internal combustion engine
JP2004044574A (en) * 2002-05-16 2004-02-12 Bosch Automotive Systems Corp Dme fuel supply device of diesel engine
JP2006329009A (en) * 2005-05-24 2006-12-07 Toyota Motor Corp Internal combustion engine using hydrogen
JP2007024012A (en) * 2005-07-21 2007-02-01 Toyota Motor Corp Fuel feed device
JP2007077930A (en) * 2005-09-15 2007-03-29 Toyota Motor Corp Hydrogen-using internal combustion engine
JP2007146672A (en) * 2005-11-24 2007-06-14 Toyota Motor Corp Internal combustion engine utilizing hydrogen
JP2007170295A (en) * 2005-12-22 2007-07-05 Honda Motor Co Ltd Fuel injection device for internal combustion engine
JP2007218235A (en) * 2006-02-20 2007-08-30 Toyota Motor Corp Fuel supply device of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115048A1 (en) * 2011-02-22 2012-08-30 伊藤レーシングサービス株式会社 Mixed fuel generation method, mixed fuel generation device and fuel supply device
JP2012172606A (en) * 2011-02-22 2012-09-10 Ito Racing Service Co Ltd Mixed fuel generation method, mixed fuel generation device, and fuel supply device
US9765713B2 (en) 2014-07-11 2017-09-19 Huan-Hsin Kou Hydrogen fuel assist device for an internal combustion engine system
KR101934856B1 (en) * 2017-05-30 2019-01-04 충남대학교산학협력단 Microfluidic Chip with an Ideal-mixing Micro-tank

Also Published As

Publication number Publication date
JP4884420B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
US7789047B2 (en) Hydrogen-fueled internal combustion engine
US8464694B2 (en) Method and system for providing fuel to internal combustion engines
US7412947B2 (en) Internal combustion engine system with hydrogen generation capability
USRE45413E1 (en) Multi fuel co-injection system for internal combustion and turbine engines
JP5913106B2 (en) Fuel homogenization improvement system
JP5276113B2 (en) Liquid fuel adjustment method and system
JP2002161822A (en) Fuel system for internal combustion engine
JP4884420B2 (en) Fuel injection device
CN113864071B (en) Engine using hydrogen and diesel mixed fuel and control method
JP2005291077A (en) Fuel injection device
US20090078232A1 (en) Emulsion system for diesel fuel and water for an internal combustion engine
EP2294305B1 (en) Sonic system and method for producing liquid-gas mixtures
CN101180462B (en) Hydrogen-fueled internal combustion engine
JP2019506558A (en) Method and apparatus for open-loop or closed-loop control of the amount of fuel mixture
JP4404034B2 (en) Internal combustion engine using hydrogen
RU2168649C1 (en) Device for admission of hydrogen into fuel of internal combustion engine
JP5119409B2 (en) Fuel supply device
JP6935363B2 (en) Fuel supply device
JP4193860B2 (en) Internal combustion engine using hydrogen
JPS63243428A (en) Liquefied fuel additive combustion equipment
PL408041A1 (en) System of multi-fuel feeding of combustion engines
JP2007247418A (en) Liquid injector
JP2011226378A (en) Fuel injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4884420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees