JP2009256771A - High strength spring steel having excellent delayed fracture resistance, and method for producing the same - Google Patents

High strength spring steel having excellent delayed fracture resistance, and method for producing the same Download PDF

Info

Publication number
JP2009256771A
JP2009256771A JP2008248976A JP2008248976A JP2009256771A JP 2009256771 A JP2009256771 A JP 2009256771A JP 2008248976 A JP2008248976 A JP 2008248976A JP 2008248976 A JP2008248976 A JP 2008248976A JP 2009256771 A JP2009256771 A JP 2009256771A
Authority
JP
Japan
Prior art keywords
less
delayed fracture
steel
strength
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008248976A
Other languages
Japanese (ja)
Other versions
JP5353161B2 (en
Inventor
Keiichi Maruta
慶一 丸田
Hideto Kimura
秀途 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008248976A priority Critical patent/JP5353161B2/en
Publication of JP2009256771A publication Critical patent/JP2009256771A/en
Application granted granted Critical
Publication of JP5353161B2 publication Critical patent/JP5353161B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a spring steel which suppresses the increase of production cost caused by the charge of large quantities of expensive alloy elements such as Ni and Cu, and further, V, Mo or the like, further has high strength and high toughness, and further has excellent delayed fracture resistance. <P>SOLUTION: Disclosed is a high strength spring steel having a componential composition comprising 0.40 to 0.65% C, 1 to 2% Si, ≤0.8% Mn, ≤0.01% S, 0.05 to 0.60% Mo, 0.3 to 1.5% Cr and 0.0005 to 0.0100% B, and the balance Fe with inevitable impurities, and having a structure in which the fraction of martensite is ≥90% and also the grain size of old austenite is ≤10 μm, and having a tensile strength of ≥1,900 MPa and the total elongation of ≥10%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば自動車懸架ばねの素材となる高強度ばね鋼およびその製造方法に関するものであり、特に、現状では高価な合金元素が用いられている引張強さが1900MPa以上の材料の代替となる、高強度かつ高靭性で、しかも優れた耐遅れ破壊特性を兼ね備えた鋼およびその製造方法に関する。   The present invention relates to a high-strength spring steel used as a material for automobile suspension springs, for example, and a method for producing the same, and in particular, is an alternative to a material having a tensile strength of 1900 MPa or more, which currently uses expensive alloy elements. The present invention relates to a steel having high strength and toughness and excellent delayed fracture resistance, and a method for producing the same.

近年、自動車の低燃費化を目的とした、車両の軽量化が強く求められるようになり、あらゆる部品における高強度化が指向されてきている。特に、足回り部品の中では懸架ばねに対する軽量化すなわち高強度化への業界の要望は強く、焼入れ焼戻し後の強度が2000MPaクラスの高強度素材が適用され始めている。   In recent years, there has been a strong demand for lighter vehicles for the purpose of reducing the fuel consumption of automobiles, and there has been a trend toward increasing the strength of all parts. In particular, among suspension parts, there is a strong demand from the industry to reduce the weight of suspension springs, that is, to increase the strength, and high strength materials having a strength after quenching and tempering of 2000 MPa are beginning to be applied.

ところで、このように高強度化が進む場合に最も懸念されるのが、遅れ破壊である。遅れ破壊は、主に環境から侵入する水素が原因であり、鋼の引張強さが1200MPa以上になると、生じやすくなる。
ここで、高強度かつ遅れ破壊にも優れる材料として、マルエージ鋼が良く知られている。これは、強度レベルも2000MPaを超えるような超高強度で、しかも高い耐食性により、腐食に伴って鋼表面に生じる水素を減らし、耐遅れ破壊特性を確保している。ただし、Ni量が15〜20%もあり、低合金鋼と比較して圧倒的に高価であり、一般的な高強度部材製造用の素材鋼としては用いられない。
By the way, when the strength is increased in this way, the most feared is the delayed fracture. Delayed fracture is mainly caused by hydrogen entering from the environment, and it tends to occur when the tensile strength of steel is 1200 MPa or more.
Here, maraging steel is well known as a material having high strength and excellent delayed fracture. This is an ultra-high strength with a strength level exceeding 2000 MPa and high corrosion resistance, thereby reducing hydrogen generated on the steel surface due to corrosion and ensuring delayed fracture resistance. However, the amount of Ni is 15 to 20%, which is overwhelmingly expensive compared to low alloy steel, and is not used as a general steel material for manufacturing high strength members.

そこで、低合金鋼を超える特性を有し、かつ上記範囲程度の高強度を有するばね鋼としては、特許文献1〜4に記載の技術が知られている。
まず、特許文献1には、Vを添加して高強度化を測ると同時に、Vの析出物によって必要特性を維持することが開示されている。
特許文献2には、Niを添加して鋼の耐食性を高めて、腐食によって発生する水素を抑えて耐遅れ破壊特性を確保することが記載されている。
特許文献3には、NiとCuを併用することで高い耐食性を維持して、ばねとしての特性を発揮させるものが提案されている。
さらに、特許文献4には、MoおよびVを添加して高温で焼き戻すことにより、析出物を生成させて水素のトラップサイトとして活用することが記載されている。
特開2006-342400号公報 特開2004-315944号公報 特許第3918587号公報 特開2002-115023号公報
Then, the technique of patent documents 1-4 is known as spring steel which has the characteristic exceeding a low alloy steel, and has the high intensity | strength about the said range.
First, Patent Document 1 discloses that V is added to measure the increase in strength, and at the same time, necessary characteristics are maintained by the precipitates of V.
Patent Document 2 describes that Ni is added to increase the corrosion resistance of steel and suppress hydrogen generated by corrosion to ensure delayed fracture resistance.
Patent Document 3 proposes a combination of Ni and Cu that maintains high corrosion resistance and exhibits the characteristics as a spring.
Furthermore, Patent Literature 4 describes that Mo and V are added and tempered at a high temperature to generate precipitates and use them as hydrogen trap sites.
JP 2006-342400 A JP 2004-315944 A Japanese Patent No. 3918587 Japanese Patent Laid-Open No. 2002-115023

上記した特許文献1〜4に記載の技術に共通するものは、まずNiやV等の合金元素をある程度以上添加して、400℃以上の焼戻しを行うことによって、これら元素を析出物として活用しようとするところにある。従って、合金元素添加によるコスト上昇が大きな問題となるばかりでなく、均一な析出物分散が必要となるために、焼戻し温度をある程度以上に高くして一定時間の処理を必要とする、操業上の問題も抱えている。   What is common to the techniques described in Patent Documents 1 to 4 described above is that alloy elements such as Ni and V are first added to some extent, and tempering at 400 ° C. or higher is performed to use these elements as precipitates. It is in place. Therefore, not only the increase in cost due to the addition of alloy elements becomes a major problem, but also a uniform precipitate dispersion is required, so that the tempering temperature is raised to a certain level and treatment for a certain time is required. I also have problems.

そこで、本発明は、上記の従来技術の問題点に鑑みて、NiやCu、さらにはVやMo等の高価な合金元素の大量投入による製造コストの増加を抑制し、しかも高強度かつ高靭性であり、しかも耐遅れ破壊特性に優れるばね鋼を安価に提供しようとするものである。   Therefore, in view of the above-mentioned problems of the prior art, the present invention suppresses an increase in manufacturing cost due to a large amount of expensive alloy elements such as Ni, Cu, and V and Mo, and has high strength and high toughness. Furthermore, the present invention intends to provide spring steel with excellent delayed fracture resistance at low cost.

発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、在来の技術のように多量の合金元素を含有する成分系でなくとも、C、Si、Mo、CrおよびBを適正範囲で添加し、Sの最大含有量を規定し、また製造方法においては、150℃〜400℃の低温度域で焼戻しを行うことによって、強度範囲が1900MPa以上で高い耐腐食性が得られることを見出し、本発明を完成するに到った。   As a result of intensive studies to solve the above problems, the inventors have determined that C, Si, Mo, Cr, and B are in an appropriate range even if the component system does not contain a large amount of alloy elements as in the conventional technology. In addition, the maximum content of S is specified, and in the manufacturing method, tempering is performed at a low temperature range of 150 ° C. to 400 ° C., so that high corrosion resistance can be obtained at a strength range of 1900 MPa or more. The headline and the present invention have been completed.

すなわち、本発明の要旨構成は、次のとおりである。
(1)質量%で、
C:0.40%以上0.65%以下、
Si:1%以上2%以下、
Mn:0.8%以下、
S:0.01%以下、
Mo:0.05%以上0.60%以下、
Cr:0.3%以上1.5%以下および
B:0.0005%以上0.0100%以下
を含み、残部がFeおよび不可避的不純物の成分組成を有し、さらにマルテンサイト分率が90%以上かつ旧オーステナイト粒径が10μm以下の組織を有し、引張強度が1900MPa以上、全伸びが10%以上であることを特徴とする耐遅れ破壊特性に優れた高強度ばね用鋼。
That is, the gist configuration of the present invention is as follows.
(1) In mass%,
C: 0.40% to 0.65%,
Si: 1% or more and 2% or less,
Mn: 0.8% or less,
S: 0.01% or less,
Mo: 0.05% or more and 0.60% or less,
Cr: 0.3% or more and 1.5% or less and B: 0.0005% or more and 0.0100% or less, with the balance being a component composition of Fe and inevitable impurities, a martensite fraction of 90% or more, and a prior austenite grain size of 10 μm A high-strength spring steel with excellent delayed fracture resistance, characterized by the following structure, tensile strength of 1900 MPa or more and total elongation of 10% or more.

(2)前記成分組成は、さらに質量%で、
Al:1.0%以下、
Ti:0.2%以下および
V:0.14%以下
のうちから選んだ1種または2種以上を含有することを特徴とする前記(1)に記載の耐遅れ破壊特性に優れた高強度ばね用鋼。
(2) The component composition is further in mass%,
Al: 1.0% or less,
The high strength spring steel excellent in delayed fracture resistance according to (1) above, containing one or more selected from Ti: 0.2% or less and V: 0.14% or less.

(3)前記成分組成は、さらに質量%で、
W:0.1%以下および
Nb:0.1%以下
のうちから選んだ1種または2種を含有することを特徴とする前記(1)または(2)に記載の耐遅れ破壊特性に優れた高強度ばね用鋼。
(3) The component composition is further mass%,
W: 0.1% or less and
Nb: High strength spring steel excellent in delayed fracture resistance as described in (1) or (2) above, comprising one or two selected from 0.1% or less.

(4)前記(1)ないし(3)のいずれかに記載の成分組成を有する鋼を素材として、熱間圧延、そして伸線したのち、昇温速度100℃/s以上にてAc点以上(Ac点+200℃)以下の温度域に加熱し、5〜60s保持後に200℃以下まで焼入れ処理を施し、その後、昇温速度50℃/s以上で、150℃以上400℃以下の温度域まで加熱し、2〜60s保持後に空冷する焼戻し処理を施すことを特徴とする耐遅れ破壊特性に優れた高強度ばね用鋼の製造方法。 (4) Using the steel having the component composition described in any one of (1) to (3) above as a raw material, hot rolling and wire drawing, and then ac 3 points or more at a heating rate of 100 ° C./s or more (Ac 3 points + 200 ° C) Heated to a temperature range of less than or equal to 200 ° C after holding for 5 to 60 seconds, then temperature range of 150 ° C to 400 ° C at a rate of temperature rise of 50 ° C / s or higher A method for producing a steel for high-strength springs with excellent delayed fracture resistance, characterized by subjecting to a tempering treatment in which the steel is heated up to 2-60 seconds and then air-cooled after being held for 2 to 60 seconds.

本発明によれば、高価な合金元素の大量含有によることなく、耐腐食性に優れる高強度かつ高靭性のばね鋼を安価に提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the high strength and toughness spring steel which is excellent in corrosion resistance can be provided at low cost without being based on a large amount of expensive alloy elements.

以下に、本発明の詳細を説明する。
まず、本発明において、鋼の成分組成を上記の範囲に限定した理由について説明する。
なお、以下の説明において、成分元素の%表示は、特に断らない限り、全て質量%を意味するものである。
C:0.40%以上0.65%以下
Cは、必要な強度を確保するために必須の元素であり、0.40%未満では所定の強度確保が難しい。一方、0.65%を超えると、規定温度域で焼戻した際には、通常使用したい強度域以上の強度となり、靭性および冷間でのコイリング性が著しく低下する。従って、C含有量は0.40%以上0.65%以下とした。
Details of the present invention will be described below.
First, the reason why the component composition of steel is limited to the above range in the present invention will be described.
In addition, in the following description, unless otherwise indicated,% display of a component element means the mass%.
C: 0.40% or more and 0.65% or less C is an essential element for ensuring the necessary strength, and if it is less than 0.40%, it is difficult to ensure a predetermined strength. On the other hand, if it exceeds 0.65%, when it is tempered in the specified temperature range, the strength is higher than the strength range that is normally desired to be used, and the toughness and cold coiling properties are significantly reduced. Therefore, the C content is set to 0.40% or more and 0.65% or less.

Si:1%以上2%以下
Siは、鋼の溶製時に脱酸剤として作用させる。また、本発明では、ばね鋼としての耐へたり性を維持するために必須の元素であり、そのためには1%以上で含有させる。但し、2%を超えると、冷間でのコイリング性を著しく低下させるため、上限を2%とした。
Si: 1% to 2%
Si acts as a deoxidizer during the melting of steel. Moreover, in this invention, it is an essential element in order to maintain the sag-proof property as spring steel, and for that purpose, it is contained at 1% or more. However, if it exceeds 2%, the coiling property in the cold state is remarkably lowered, so the upper limit was made 2%.

Mn:0.8%以下
Mnは、鋼の焼入れ性を向上させ強度増加に有益なので、好ましくは0.3%以上で含有させる。ただし、0.8%を超えて含有させると、焼入れ性が過剰となり鋼の延性が低下し、結果として冷間でのコイリング性が低下されるため、上限を0.8%とする。
Mn: 0.8% or less
Mn improves the hardenability of the steel and is beneficial for increasing the strength, so it is preferably contained at 0.3% or more. However, if the content exceeds 0.8%, the hardenability becomes excessive and the ductility of the steel decreases, and as a result the cold coiling property decreases, so the upper limit is made 0.8%.

S:0.01%以下
Sは、積極的に添加されることはなく、不可避的に混入される成分である。粒界に偏析して耐遅れ破壊特性を低下させ、またMnSを生成して外部環境下では腐食の起点となる、おそれもある。そこで、上限を0.01%とした。なお、Sは、経済性により下限を設定する必要は特にない。
S: 0.01% or less S is a component that is inevitably mixed without being actively added. There is also a risk that segregation at the grain boundary will deteriorate the delayed fracture resistance, and MnS may be generated to cause corrosion in the external environment. Therefore, the upper limit was made 0.01%. Note that there is no particular need to set a lower limit for S due to economy.

Mo:0.05%以上0.60%以下
Moは、本発明において、特に重要な元素であり、延性を大きく損なうことなく強度を向上させる。また、外部環境からの水素の浸入を抑制する効果を有する。この効果を発揮させるためには、0.05%以上の含有が必要である。一方、Moを0.60%以上含有させても、効果が飽和し大きく向上する事はない。そこで、経済性を考慮して上限を0.60%に限定した。
Mo: 0.05% or more and 0.60% or less
Mo is a particularly important element in the present invention, and improves the strength without greatly impairing the ductility. In addition, it has an effect of suppressing the intrusion of hydrogen from the external environment. In order to exert this effect, it is necessary to contain 0.05% or more. On the other hand, even if Mo is contained in an amount of 0.60% or more, the effect is saturated and does not greatly improve. Therefore, the upper limit was limited to 0.60% in consideration of economy.

Cr:0.3%以上1.5%以下
Crは、焼入れ性の向上に有効であり、また表層部に生成する錆を緻密化して腐食性を向上させ、その結果、耐遅れ破壊特性を向上させる効果を有する。しかし、過度に含有すると、炭化物安定効果によって残留炭化物の生成を助長し、強度の低下をまねく。また、CrはPやSの粒界偏析をある程度助長する。従って、Crの含有はできる限り低減することが望ましいが、1.5%までは許容できる。なお、上記の有益な作用を発現させるためには、0.3%以上で含有させる。
Cr: 0.3% to 1.5%
Cr is effective for improving hardenability, and also has the effect of densifying the rust generated in the surface layer portion to improve the corrosivity and, as a result, the delayed fracture resistance. However, when it contains excessively, the production | generation of a residual carbide is promoted by the carbide | carbonized_material stabilization effect, and the fall of intensity | strength will be caused. Cr also promotes the grain boundary segregation of P and S to some extent. Therefore, it is desirable to reduce the Cr content as much as possible, but up to 1.5% is acceptable. In addition, in order to express said beneficial effect, it is contained at 0.3% or more.

B:0.0005%以上0.0100%以下
Bは、粒界部に濃化して粒界強度の向上に寄与する最も重要な元素である。遅れ破壊は、主にオーステナイト粒界で発生するものであり、この粒界を強化することは耐遅れ破壊特性の向上に大きく寄与する。そのためには0.0005%以上の含有が必要である。しかし、0.0100%を超えて含有しても、その効果は飽和するため、0.0100%以下に限定した。
B: 0.0005% or more and 0.0100% or less B is the most important element which is concentrated at the grain boundary part and contributes to the improvement of the grain boundary strength. Delayed fracture occurs mainly at austenite grain boundaries, and strengthening the grain boundaries greatly contributes to the improvement of delayed fracture resistance. For that purpose, the content of 0.0005% or more is necessary. However, even if the content exceeds 0.0100%, the effect is saturated, so the content is limited to 0.0100% or less.

また、本発明では、上記の基本成分に加えて、次に示す成分の1種又は2種以上含有することができる。
Al:1.0%以下
Alは、脱酸に有効な元素であり、また、焼入れ時のオーステナイト粒成長を抑制することによって、強度の維持に有効な元素であるため、好ましくは0.02%以上で添加する。しかしながら、含有量が1.0%を超えて含有させても、その効果は飽和してコスト上昇を招く不利が生じるだけでなく、冷間でのコイリング性も低下する。よって、1.0%以下の範囲とすることが好ましい。
Moreover, in this invention, in addition to said basic component, it can contain 1 type, or 2 or more types of the component shown next.
Al: 1.0% or less
Al is an element effective for deoxidation, and is an element effective for maintaining strength by suppressing austenite grain growth during quenching. Therefore, Al is preferably added at 0.02% or more. However, even if the content exceeds 1.0%, the effect is saturated and not only disadvantageously causes an increase in cost, but also cold coiling property is lowered. Therefore, it is preferable to set it as 1.0% or less of range.

Ti:0.2%以下
Tiは、不可避的不純物として混入するNと結合して、BがBNとなってBの効果が消失することを防止する。この効果を得るためには0.005%以上で添加することが好ましいが、0.2%を超えて添加すると、TiNが大量に形成されて強度や靭性の低下を招くため、Tiは0.2%以下とすることが好ましい。
Ti: 0.2% or less
Ti combines with N mixed as an unavoidable impurity to prevent B from becoming BN and the effect of B disappearing. In order to obtain this effect, it is preferable to add at 0.005% or more, but if added over 0.2%, TiN is formed in a large amount and causes a decrease in strength and toughness, so Ti should be 0.2% or less. Is preferred.

V:0.14%以下
Vは、炭化物として析出し、結晶粒微細化へ寄与するほかに、析出物が水素のトラップサイトとして有効に働くため、添加することにより特性が向上する。しかし、本発明では、急速加熱による効果で微細化が図れるため、0.14%以下の添加で十分な効果が見られるが、一層の効果を得るためには0.09%以上添加することが好ましい。一方、0.14%を超えて添加しても、その効果は飽和する。よって、添加する場合は、0.14%とする。
V: 0.14% or less V is precipitated as a carbide and contributes to the refinement of crystal grains. In addition, since the precipitate works effectively as a hydrogen trap site, the characteristics improve when added. However, in the present invention, miniaturization can be achieved by the effect of rapid heating, so that a sufficient effect is seen with addition of 0.14% or less. However, in order to obtain a further effect, 0.09% or more is preferably added. On the other hand, even if added over 0.14%, the effect is saturated. Therefore, when adding, it is 0.14%.

Nb:0.1%以下
Nbは、焼入れ性の向上効果のほかに、析出強化元素として強度や靭性の向上に寄与する。この効果を発現させるためには、0.005%以上で添加することが好ましい。しかし、0.1%を超えて添加しても、その効果は飽和するため、0.1%以下とすることが好ましい。
Nb: 0.1% or less
Nb contributes to the improvement of strength and toughness as a precipitation strengthening element in addition to the effect of improving hardenability. In order to exhibit this effect, it is preferable to add 0.005% or more. However, even if added in excess of 0.1%, the effect is saturated, so 0.1% or less is preferable.

W:0.1%以下
Wは、安定した炭化物を形成し、強化元素として有効であるため、好ましくは0.05%以上で添加する。一方、0.1%を超えると、延性を低下させて冷間でのコイリング性を低下させるため、0.1%以下とすることが好ましい。
W: 0.1% or less W is preferably added at 0.05% or more because W forms a stable carbide and is effective as a strengthening element. On the other hand, if it exceeds 0.1%, the ductility is lowered and the cold coiling property is lowered.

以上の成分組成を有する鋼塊は、転炉による溶製においても真空溶製によるものでも使用できる。そして、鋼塊または連鋳スラブは、加熱されて熱間圧延され、酸洗してスケール除去された後に伸線されて所定の太さに整えられて、ばね用に供される。   The steel ingot having the above component composition can be used in both melting by a converter and vacuum melting. The ingot or continuous cast slab is heated and hot-rolled, pickled and scaled, drawn, adjusted to a predetermined thickness, and used for a spring.

さらに、本発明のばね用鋼の組織について説明する。
マルテンサイト分率:90%以上
マルテンサイトは、強度を得るために必須の組織である。本発明の場合には、体積率で90%以上のマルテンサイト組織とすることで優れた特性が得られる。すなわち、マルテンサイトの体積率が90%未満では、強度の上昇に寄与しない残留オーステナイト相等の未変態相や、炭化物等の析出物の量が多くなりすぎて、1900MPa以上という高強度化の達成は困難となる。
Furthermore, the structure of the spring steel of the present invention will be described.
Martensite fraction: 90% or more Martensite is an essential structure for obtaining strength. In the case of the present invention, excellent characteristics can be obtained by making the martensite structure 90% or more by volume. That is, when the volume fraction of martensite is less than 90%, the amount of untransformed phases such as retained austenite phase, which does not contribute to the increase in strength, and precipitates such as carbides are excessive, and the achievement of high strength of 1900 MPa or more is achieved. It becomes difficult.

旧オーステナイト粒径:10μm以下
本発明では、旧オーステナイト粒径の調整も重要である。旧オーステナイト粒径を微細化することによって、粒界に析出し遅れ破壊特性を低下させる膜状炭化物の析出を抑制し、粒界強度を向上させる。そのためには、旧オーステナイト粒径は10μm以下であることが必要である。
Prior austenite particle size: 10 μm or less In the present invention, it is also important to adjust the prior austenite particle size. By refining the prior austenite grain size, the precipitation of film-like carbides that precipitate at the grain boundaries and lower the delayed fracture characteristics is suppressed, and the grain boundary strength is improved. For this purpose, the prior austenite particle size needs to be 10 μm or less.

以上の成分組成および鋼組織を有し、且つ引張強度が1900MPa以上および全伸び10%以上が必要である。すなわち、引張強度が1900MPa未満では、ばねの高強度化に対応できない。また、全伸びが10%未満では、冷間でのばね成形が著しく困難となる。   It has the above component composition and steel structure, and a tensile strength of 1900 MPa or more and a total elongation of 10% or more are required. That is, if the tensile strength is less than 1900 MPa, it is not possible to cope with an increase in spring strength. On the other hand, if the total elongation is less than 10%, it is very difficult to form a spring in the cold.

次に、本発明の鋼を得るための製造条件について説明する。
前述した鋼を得るためには、伸線材に、極めて短時間の焼入れ焼戻し処理を施すことが有効である。
Ac点以上に加熱して焼入れることで、マルテンサイト分率を90%以上とできるが、長時間の加熱および(Ac点+200℃)を超える温度域での加熱は、旧オーステナイト粒を粗大化させることになる。そこで、鋼線のサイズにもよるが、焼入れ時の昇温速度を100℃/s以上として、Ac点以上(Ac点+200℃)以下の温度域に5〜60s保持して、焼入れする工程が、上述したマルテンサイト分率90%以上、旧オーステナイト粒径10μm以下を達成する上で最も有効である。
Next, production conditions for obtaining the steel of the present invention will be described.
In order to obtain the steel described above, it is effective to subject the wire drawing material to a quenching and tempering treatment for a very short time.
By heating to Ac 3 points or more and quenching, the martensite fraction can be increased to 90% or more. However, long-time heating and heating in a temperature range exceeding (Ac 3 points + 200 ° C) It will be coarsened. Therefore, although it depends on the size of the steel wire, the rate of temperature rise during quenching is 100 ° C / s or higher, and the steel is quenched by holding it in a temperature range of Ac 3 points or higher (Ac 3 points + 200 ° C) for 5 to 60 seconds. The process is most effective in achieving the martensite fraction of 90% or more and the prior austenite grain size of 10 μm or less.

次に、焼戻し処理では、粒内炭化物をできるだけ細かく分散させることが重要となる。粗大な炭化物が出ると、母相と局部電池を形成して溶解してビットが形成され、そこを起点に腐食が進み、ひいては遅れ破壊特性も低下することになる。さらに、上記の引張強度、全伸びを達成するためにも、焼戻し条件が重要である。このためには、できるだけ早い昇温速度、具体的には50℃/s以上で150〜400℃温度域に加熱して2〜60s保持して焼戻すことが有効である。   Next, in the tempering process, it is important to disperse the intragranular carbide as finely as possible. When coarse carbides are formed, a matrix cell and a local battery are formed and melted to form a bit. Corrosion proceeds from that point, and the delayed fracture characteristics are also lowered. Furthermore, tempering conditions are important in order to achieve the above-described tensile strength and total elongation. For this purpose, it is effective to heat up at the fastest possible rate of temperature rise, specifically 50 ° C./s or more to 150 to 400 ° C. and hold for 2 to 60 s to temper.

かくして得られたばね鋼材は、安価に製造できるにもかかわらず、優れた強度靭性および耐遅れ破壊特性を有し、1900MPa以上の高強度を必要とする自動車用懸架ばねへの適用が可能である。   Although the spring steel material thus obtained can be manufactured at low cost, it has excellent strength toughness and delayed fracture resistance, and can be applied to automobile suspension springs requiring high strength of 1900 MPa or more.

<実施例1>
表1に示す成分組成の鋼を真空溶製にて製造した。これらの鋼から製造したビレットを、1100℃に加熱して熱間鍛造し、25mmΦの丸棒とした。その後、50℃で1時間のノルマライジング処理を行ってから、15mmΦまで伸線加工した。得られた線材について、高周波加熱による焼入れ焼き戻しを施した。焼入れは、昇温速度200℃/sで980℃に加熱し5s保持後、100℃以下に水焼入れした。その後、昇温速度100℃/sで210℃に加熱し、30s保持後に放冷した。
<Example 1>
Steels having the composition shown in Table 1 were manufactured by vacuum melting. Billets made from these steels were heated to 1100 ° C. and hot forged to give a 25 mmφ round bar. Then, after normalizing at 50 ° C. for 1 hour, the wire was drawn to 15 mmΦ. The obtained wire was quenched and tempered by induction heating. Quenching was performed by heating to 980 ° C. at a temperature rising rate of 200 ° C./s, holding for 5 s, and then water quenching to 100 ° C. or less. Then, it heated at 210 degreeC with the temperature increase rate of 100 degreeC / s, and stood to cool after 30-s hold | maintain.

この焼入れ焼戻しされた線材より、ミクロ引張試験片(平行部6mmΦ、つかみ部12mmΦ)、シャルピー試験片(10mm×5mm、Uノッチ2mm)、図1に示す遅れ破壊評価試験片を採取して、各々の試験片を以下の試験に供した。   From this quenched and tempered wire, a micro tensile test piece (parallel portion 6 mmΦ, gripping portion 12 mmΦ), Charpy test piece (10 mm × 5 mm, U notch 2 mm), and a delayed fracture evaluation test piece shown in FIG. The test piece was subjected to the following test.

引張強さは、上記ミクロ引張試験片を用いて、引張試験を引張速度5mm/minで実施した。靭性は、上記シャルピー試験片を用いてシャルピー試験を室温(25℃)で実施し、吸収エネルギーにより評価した。   For the tensile strength, a tensile test was performed at a tensile speed of 5 mm / min using the micro tensile test piece. Toughness was evaluated by absorbed energy by conducting a Charpy test at room temperature (25 ° C.) using the Charpy test piece.

遅れ破壊の評価は、以下の手順で実施した。すなわち、上記遅れ破壊評価試験片を、酢酸にてpH1.5に調整した5%NaCl溶液に浸漬し、この試験片にある一定の荷重をかける定荷重型試験を施した。試験時間が200時間を超えた段階で試験は中断し、破断なしと評価した。荷重を変えて試験をすることで、破断時間−荷重曲線が得られる。破断の起きなくなる荷重から下限界応力を求めて、この値の大小にて耐遅れ破壊性を評価した。   Delayed fracture was evaluated according to the following procedure. That is, the delayed fracture evaluation test piece was immersed in a 5% NaCl solution adjusted to pH 1.5 with acetic acid, and a constant load type test was performed in which a certain load was applied to the test piece. The test was interrupted when the test time exceeded 200 hours, and it was evaluated that there was no fracture. By performing the test while changing the load, a fracture time-load curve is obtained. The lower limit stress was determined from the load at which breakage does not occur, and the delayed fracture resistance was evaluated by the magnitude of this value.

旧オーステナイト粒径の測定は、水500gに対しピクリン酸50gを溶解させたピクリン酸水溶液に、ドデシルベンゼンスルホン酸ナトリウム11g、塩化第1鉄1gおよびシュウ酸1.5gを添加したものを腐食液として作用させ、腐食によって粒界を現出させた後、倍率1000倍にて観察撮影し、得られた画像から切断法にて粒径を求めた。   The prior austenite particle size is measured by adding 11 g of sodium dodecylbenzenesulfonate, 1 g of ferrous chloride and 1.5 g of oxalic acid to a picric acid aqueous solution in which 50 g of picric acid is dissolved in 500 g of water. The grain boundary was revealed by corrosion, and then observed and photographed at a magnification of 1000 times, and the particle size was determined by a cutting method from the obtained image.

以上の引張強さ、靭性、腐食疲労、遅れ破壊強度および組織の評価結果を表1に併記する。表1より、本発明の範囲内にある鋼は強度が1900MPa以上で、靭性、腐食疲労、耐遅れ破壊性がともに優れていることがわかる。   The above tensile strength, toughness, corrosion fatigue, delayed fracture strength, and microstructure evaluation results are also shown in Table 1. From Table 1, it can be seen that the steels within the scope of the present invention have a strength of 1900 MPa or more and are excellent in toughness, corrosion fatigue, and delayed fracture resistance.

Figure 2009256771
Figure 2009256771

<実施例2>
この事例では、表1に示した成分以外の成分の効果を調べた。すなわち、表2に示す成分組成になる鋼を真空溶製にて製造した。その後、実施例1と同じ条件に従って各評価を行った。その評価結果を、表2に併記する。表2から、Alが過度に含有されると、延性の低下を招き、またV、WおよびNbについては、その添加効果が飽和することがわかる。
<Example 2>
In this case, the effects of components other than those shown in Table 1 were examined. That is, steel having the composition shown in Table 2 was manufactured by vacuum melting. Then, each evaluation was performed according to the same conditions as Example 1. The evaluation results are also shown in Table 2. From Table 2, it can be seen that when Al is excessively contained, ductility is lowered and the effect of addition of V, W and Nb is saturated.

Figure 2009256771
Figure 2009256771

<実施例3>
この事例では、焼入れ条件および焼戻し条件の影響を調べた。
すなわち、実施例1と同じ方法によって、表1の記号2(Ac点=871℃)と同じ伸線材を準備した。この素材に、熱処理を施す際に、高周波加熱および炉加熱を使い分ける事で、昇温速度、加熱温度および保持時間をそれぞれ独立に変えて試験片を製造した。得られた試験片を用いて実施例1と同じ要領で基礎評価を実施した。また、試験片の採取と同時に、下記の条件に従ってばねを作製し、ばね疲労試験を行った。疲労試験は、平均応力=650MPaおよび振幅応力:550MPaの条件にて、各鋼につきN=10で疲労試験を行った。そして、記号2の疲労寿命(破断繰り返し数)の平均値を基準値として、各鋼の疲労寿命(破断繰り返し数)の平均値を基準値で割ることで、ばね疲労特性の評価値とした。

コイル平均径:115.1mm、
総巻数:6.0
有効巻数:4.5
自由高さ:320mm
ばね定数:25.2N/mm
<Example 3>
In this case, the effect of quenching and tempering conditions was investigated.
That is, the same wire drawing material as symbol 2 in Table 1 (Ac 3 points = 871 ° C.) was prepared by the same method as in Example 1. When heat-treating this material, a test piece was manufactured by changing the heating rate, heating temperature and holding time independently by separately using high-frequency heating and furnace heating. Basic evaluation was performed in the same manner as in Example 1 using the obtained test piece. Simultaneously with the collection of the test piece, a spring was produced according to the following conditions and a spring fatigue test was performed. The fatigue test was conducted with N = 10 for each steel under the conditions of average stress = 650 MPa and amplitude stress: 550 MPa. Then, the average value of the fatigue life (number of repetitions of rupture) of symbol 2 was used as a reference value, and the average value of the fatigue life (number of repetitions of rupture) of each steel was divided by the reference value to obtain an evaluation value of spring fatigue characteristics.
Coil average diameter: 115.1mm
Total volume: 6.0
Effective number of turns: 4.5
Free height: 320mm
Spring constant: 25.2 N / mm

その結果を表3に併記する。焼入れ時の条件が本発明外のものは、旧オーステナイト粒径が粗大化して、耐遅れ破壊特性およびばね疲労特性が低下している。また、焼戻し条件が本発明の範囲外でも、耐遅れ破壊特性およびばね疲労特性が低下する。さらに、焼戻し時間が短すぎると、延性および靭性が低くなっていることがわかる。   The results are also shown in Table 3. When the quenching conditions are outside the scope of the present invention, the prior austenite grain size is coarsened, and the delayed fracture resistance and spring fatigue characteristics are reduced. Even if the tempering conditions are outside the range of the present invention, the delayed fracture resistance and spring fatigue characteristics are degraded. Furthermore, it can be seen that if the tempering time is too short, the ductility and toughness are low.

Figure 2009256771
Figure 2009256771

遅れ破壊評価試験片を示す図である。It is a figure which shows a delayed fracture evaluation test piece.

Claims (4)

質量%で、
C:0.40%以上0.65%以下、
Si:1%以上2%以下、
Mn:0.8%以下、
S:0.01%以下、
Mo:0.05%以上0.60%以下、
Cr:0.3%以上1.5%以下および
B:0.0005%以上0.0100%以下
を含み、残部がFeおよび不可避的不純物の成分組成を有し、さらにマルテンサイト分率が90%以上かつ旧オーステナイト粒径が10μm以下の組織を有し、引張強度が1900MPa以上、全伸びが10%以上であることを特徴とする高強度高靭性で耐遅れ破壊特性に優れた高強度ばね用鋼。
% By mass
C: 0.40% to 0.65%,
Si: 1% or more and 2% or less,
Mn: 0.8% or less,
S: 0.01% or less,
Mo: 0.05% or more and 0.60% or less,
Cr: 0.3% or more and 1.5% or less and B: 0.0005% or more and 0.0100% or less, with the balance being a component composition of Fe and inevitable impurities, a martensite fraction of 90% or more, and a prior austenite grain size of 10 μm A high-strength spring steel with the following structure, tensile strength of 1900 MPa or more and total elongation of 10% or more.
前記成分組成は、さらに質量%で、
Al:1.0%以下、
Ti:0.2%以下および
V:0.14%以下
のうちから選んだ1種または2種以上を含有することを特徴とする請求項1に記載の耐遅れ破壊特性に優れた高強度ばね用鋼。
The component composition is further mass%,
Al: 1.0% or less,
The steel for high strength springs with excellent delayed fracture resistance according to claim 1, characterized by containing one or more selected from Ti: 0.2% or less and V: 0.14% or less.
前記成分組成は、さらに質量%で、
W:0.1%以下および
Nb:0.1%以下
のうちから選んだ1種または2種を含有することを特徴とする請求項1または2に記載の耐遅れ破壊特性に優れた高強度ばね用鋼。
The component composition is further mass%,
W: 0.1% or less and
The high strength spring steel excellent in delayed fracture resistance according to claim 1 or 2, characterized by containing one or two selected from Nb: 0.1% or less.
請求項1ないし3のいずれかに記載の成分組成を有する鋼を素材として、熱間圧延、そして伸線したのち、昇温速度100℃/s以上にてAc点以上(Ac点+200℃)以下の温度域に加熱し、5〜60s保持後に200℃以下まで焼入れ処理を施し、その後、昇温速度50℃/s以上で、150℃以上400℃以下の温度域まで加熱し、2〜60s保持後に空冷する焼戻し処理を施すことを特徴とする耐遅れ破壊特性に優れた高強度ばね用鋼の製造方法。 The steel having the component composition according to any one of claims 1 to 3 is used as a raw material, and after hot rolling and wire drawing, at a temperature rising rate of 100 ° C / s or more, Ac 3 points or more (Ac 3 points + 200 ° C) ) Heat to the following temperature range, quench for up to 200 ° C after holding for 5 to 60 seconds, then heat to 150 ° C to 400 ° C at a temperature increase rate of 50 ° C / s or more, A method for producing high strength spring steel with excellent delayed fracture resistance, characterized by subjecting it to air cooling after holding for 60 s.
JP2008248976A 2008-03-27 2008-09-26 High strength spring steel with excellent delayed fracture resistance and method for producing the same Expired - Fee Related JP5353161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008248976A JP5353161B2 (en) 2008-03-27 2008-09-26 High strength spring steel with excellent delayed fracture resistance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008083971 2008-03-27
JP2008083971 2008-03-27
JP2008248976A JP5353161B2 (en) 2008-03-27 2008-09-26 High strength spring steel with excellent delayed fracture resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009256771A true JP2009256771A (en) 2009-11-05
JP5353161B2 JP5353161B2 (en) 2013-11-27

Family

ID=41384548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008248976A Expired - Fee Related JP5353161B2 (en) 2008-03-27 2008-09-26 High strength spring steel with excellent delayed fracture resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5353161B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121887A1 (en) * 2010-03-29 2011-10-06 Jfeスチール株式会社 Spring steel and method of manufacture for same
JP2013072104A (en) * 2011-09-27 2013-04-22 Sanyo Special Steel Co Ltd Steel excellent in toughness and wear resistance
WO2013179934A1 (en) * 2012-05-31 2013-12-05 株式会社神戸製鋼所 Steel wire for high-strength spring having exceptional coiling performance and hydrogen embrittlement resistance, and method for manufacturing same
WO2014097872A1 (en) * 2012-12-21 2014-06-26 株式会社神戸製鋼所 Steel wire rod for high-strength spring with excellent hydrogen embrittlement resistance and manufacturing process therefor and high-strength spring
WO2016158408A1 (en) * 2015-03-31 2016-10-06 日本発條株式会社 Method for manufacturing spring for suspension device, and spring for suspension device
WO2017018457A1 (en) * 2015-07-27 2017-02-02 新日鐵住金株式会社 Steel for suspension spring and method for manufacturing same
CN114875326A (en) * 2022-05-21 2022-08-09 湖南华菱湘潭钢铁有限公司 Production method of flat spring steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134545A (en) * 1994-11-11 1996-05-28 High Frequency Heattreat Co Ltd Production of coil spring and high-toughness and high tensile coil spring
JP2002180198A (en) * 2000-12-20 2002-06-26 Nippon Steel Corp High strength steel wire for spring
JP2004143482A (en) * 2002-10-22 2004-05-20 Nippon Steel Corp High strength cold formed spring steel wire and its production method
JP2007146284A (en) * 2005-10-31 2007-06-14 Jfe Steel Kk High-strength steel excellent in delayed fracture resistance characteristic and metal bolt
JP2007191776A (en) * 2006-01-23 2007-08-02 Kobe Steel Ltd High-strength spring steel superior in brittle fracture resistance and manufacturing method therefor
JP2007270293A (en) * 2006-03-31 2007-10-18 Nippon Steel Corp High strength bearing joint part having excellent delayed fracture resistance characteristic and method for manufacturing the same, and steel for high strength bearing jointing part

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134545A (en) * 1994-11-11 1996-05-28 High Frequency Heattreat Co Ltd Production of coil spring and high-toughness and high tensile coil spring
JP2002180198A (en) * 2000-12-20 2002-06-26 Nippon Steel Corp High strength steel wire for spring
JP2004143482A (en) * 2002-10-22 2004-05-20 Nippon Steel Corp High strength cold formed spring steel wire and its production method
JP2007146284A (en) * 2005-10-31 2007-06-14 Jfe Steel Kk High-strength steel excellent in delayed fracture resistance characteristic and metal bolt
JP2007191776A (en) * 2006-01-23 2007-08-02 Kobe Steel Ltd High-strength spring steel superior in brittle fracture resistance and manufacturing method therefor
JP2007270293A (en) * 2006-03-31 2007-10-18 Nippon Steel Corp High strength bearing joint part having excellent delayed fracture resistance characteristic and method for manufacturing the same, and steel for high strength bearing jointing part

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102884216B (en) * 2010-03-29 2014-08-06 杰富意钢铁株式会社 Spring steel and method of manufacture for same
JP2011246811A (en) * 2010-03-29 2011-12-08 Jfe Steel Corp Spring steel and method of manufacturing the same
CN102884216A (en) * 2010-03-29 2013-01-16 杰富意钢铁株式会社 Spring steel and method of manufacture for same
KR101311386B1 (en) * 2010-03-29 2013-09-25 제이에프이 스틸 가부시키가이샤 Spring steel and method for manufacturing the same
US9618070B2 (en) 2010-03-29 2017-04-11 Jfe Steel Corporation Spring steel and method for manufacturing the same
US8608874B2 (en) 2010-03-29 2013-12-17 Jfe Steel Corporation Spring steel and method for manufacturing the same
WO2011121887A1 (en) * 2010-03-29 2011-10-06 Jfeスチール株式会社 Spring steel and method of manufacture for same
JP2013072104A (en) * 2011-09-27 2013-04-22 Sanyo Special Steel Co Ltd Steel excellent in toughness and wear resistance
US20150101715A1 (en) * 2012-05-31 2015-04-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength steel wire for spring excellent in coiling performance and hydrogen embrittlement resistance and method for manufacturing same
JP2014005532A (en) * 2012-05-31 2014-01-16 Kobe Steel Ltd High strength spring steel wire with excellent coiling property and hydrogen embrittlement resistance and manufacturing method thereof
WO2013179934A1 (en) * 2012-05-31 2013-12-05 株式会社神戸製鋼所 Steel wire for high-strength spring having exceptional coiling performance and hydrogen embrittlement resistance, and method for manufacturing same
WO2014097872A1 (en) * 2012-12-21 2014-06-26 株式会社神戸製鋼所 Steel wire rod for high-strength spring with excellent hydrogen embrittlement resistance and manufacturing process therefor and high-strength spring
US9970072B2 (en) 2012-12-21 2018-05-15 Kobe Steel, Ltd. High-strength spring steel wire with excellent hydrogen embrittlement resistance, manufacturing process therefor, and high-strength spring
WO2016158408A1 (en) * 2015-03-31 2016-10-06 日本発條株式会社 Method for manufacturing spring for suspension device, and spring for suspension device
WO2017018457A1 (en) * 2015-07-27 2017-02-02 新日鐵住金株式会社 Steel for suspension spring and method for manufacturing same
CN107709597A (en) * 2015-07-27 2018-02-16 新日铁住金株式会社 Bearing spring steel and its manufacture method
JPWO2017018457A1 (en) * 2015-07-27 2018-05-24 新日鐵住金株式会社 Suspension spring steel and manufacturing method thereof
EP3330399A4 (en) * 2015-07-27 2019-03-27 Nippon Steel & Sumitomo Metal Corporation Steel for suspension spring and method for manufacturing same
CN107709597B (en) * 2015-07-27 2019-08-27 日本制铁株式会社 Bearing spring steel and its manufacturing method
CN114875326A (en) * 2022-05-21 2022-08-09 湖南华菱湘潭钢铁有限公司 Production method of flat spring steel

Also Published As

Publication number Publication date
JP5353161B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
US11118251B2 (en) Rolled wire rod for spring steel
JP4609138B2 (en) Manufacturing method of oil well pipe steel excellent in sulfide stress cracking resistance and oil well seamless steel pipe
JP4423254B2 (en) High strength spring steel wire with excellent coiling and hydrogen embrittlement resistance
JP4842407B2 (en) Steel wire for low-temperature annealing and manufacturing method thereof
JP3764715B2 (en) Steel wire for high-strength cold forming spring and its manufacturing method
KR101768785B1 (en) High-strength spring steel wire with excellent hydrogen embrittlement resistance, manufacturing process therefor, and high-strength spring
JP4381355B2 (en) Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof
JP5257082B2 (en) Steel wire rod excellent in cold forgeability after low-temperature annealing, method for producing the same, and method for producing steel wire rod excellent in cold forgeability
JP6027302B2 (en) High strength tempered spring steel
WO2008102573A1 (en) High-strength spring steel wire, high-strength springs and processes for production of both
JP5353161B2 (en) High strength spring steel with excellent delayed fracture resistance and method for producing the same
WO2014129379A1 (en) High-strength cold-rolled steel sheet having excellent bendability
JP6232324B2 (en) Stabilizer steel and stabilizer with high strength and excellent corrosion resistance, and method for producing the same
JP5543814B2 (en) Steel plate for heat treatment and method for producing steel member
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP6798557B2 (en) steel
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP3857835B2 (en) Steel for high strength bolt and method for producing high strength bolt
JP6459704B2 (en) Steel for cold forging parts
JPH1143737A (en) Cold forging steel excellent in grain coarsening preventing property and cold forgeability, and its production
JP5633426B2 (en) Steel for heat treatment
JP2024060594A (en) Steel material and its manufacturing method
JP2008274344A (en) High-strength steel pipe having excellent delayed fracture resistance and fatigue characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5353161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees