JP2009256726A - Plated steel sheet for can and method of manufacturing the same - Google Patents

Plated steel sheet for can and method of manufacturing the same Download PDF

Info

Publication number
JP2009256726A
JP2009256726A JP2008106985A JP2008106985A JP2009256726A JP 2009256726 A JP2009256726 A JP 2009256726A JP 2008106985 A JP2008106985 A JP 2008106985A JP 2008106985 A JP2008106985 A JP 2008106985A JP 2009256726 A JP2009256726 A JP 2009256726A
Authority
JP
Japan
Prior art keywords
steel sheet
tin
plated steel
phosphate
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008106985A
Other languages
Japanese (ja)
Other versions
JP4920627B2 (en
Inventor
Hiromitsu Date
博充 伊達
Hiromasa Shoji
浩雅 莊司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008106985A priority Critical patent/JP4920627B2/en
Publication of JP2009256726A publication Critical patent/JP2009256726A/en
Application granted granted Critical
Publication of JP4920627B2 publication Critical patent/JP4920627B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plated steel sheet for a can which has excellent secondary adhesion to an organic coating film and excellent corrosion resistance, and to provide a method manufacturing the same. <P>SOLUTION: The plated steel sheet has a tin alloy layer on the steel sheet so that metal tin is distributed on the tin alloy layer to have 5-98% area rate. The steel sheet has further a chemical conversion layer including 0.5-5.0 mg/m<SP>2</SP>phosphate expressed in terms of P on the surface layer and further has 8-60 mg/m<SP>2</SP>zirconium oxide (IV) expressed in terms of Zr on the chemical conversion layer. The method of manufacturing the plated steel sheet is also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、飲料缶、食缶等に使用される、有機皮膜の二次密着性、耐食性に優れた缶用めっき鋼板及びその製造方法に関する。   TECHNICAL FIELD The present invention relates to a plated steel sheet for cans, which is used for beverage cans, food cans and the like, and has excellent secondary adhesion and corrosion resistance of organic films, and a method for producing the same.

従来、缶用材料として使用されてきた表面処理鋼板は、ブリキやLTS、TNS等の錫めっき鋼板、ニッケルめっき鋼板(TFS-NT)、電解クロムめっき鋼板(TFS-CT)が主なものである。通常、これらの鋼板のめっき表面には化成処理が施され、それによって塗料や樹脂フィルムとの密着性を確保している。   Conventionally, surface-treated steel sheets that have been used as can materials are tin-plated steel sheets such as tinplate, LTS, and TNS, nickel-plated steel sheets (TFS-NT), and electrolytic chrome-plated steel sheets (TFS-CT). . Usually, the plating surface of these steel plates is subjected to chemical conversion treatment, thereby ensuring adhesion with paints and resin films.

現在、商品化されている缶用表面処理鋼板の化成処理の殆どは、重クロム酸塩又はクロム酸を主成分とする水溶液を用いた、浸漬処理又は陰極電解処理である。例外として、特許文献1及び2に開示されているブリキのリン酸塩水溶液中での陰陽極電解処理が知られているが、用途は内面を無塗装のまま使用する粉乳用缶に限定されている。この陰陽極電解処理が粉乳用缶以外の飲料缶、食缶に使用されない主たる理由は、塗料や樹脂フィルムのような有機皮膜の密着性が不十分であるためである。   Most of the chemical conversion treatment of the surface-treated steel sheet for cans currently commercialized is immersion treatment or cathodic electrolysis treatment using an aqueous solution mainly composed of dichromate or chromic acid. As an exception, the negative anodization in tin phosphate aqueous solution disclosed in Patent Documents 1 and 2 is known, but the application is limited to cans for milk powder that uses the inner surface without painting. Yes. The main reason why this negative anodization treatment is not used in beverage cans and food cans other than powdered milk cans is that the adhesion of organic coatings such as paints and resin films is insufficient.

一方、重クロム酸塩又はクロム酸を主成分とする水溶液を用いた、浸漬処理又は陰極電解処理によって得られたクロム(III)酸化膜は、有機皮膜の密着性を向上させる効果が大きく、これに代わる化成処理は、種々検討されているものの、実用化には至っていないのが現状である。例えば、特許文献3には、浸漬処理によってリン酸系皮膜を形成させたDI缶用電気めっきブリキが開示されている。また、特許文献4には、フィチン酸又はフィチン酸塩溶液中で陽極処理する方法が開示されている。   On the other hand, the chromium (III) oxide film obtained by dipping or cathodic electrolysis using an aqueous solution containing dichromate or chromic acid as a main component has a great effect of improving the adhesion of the organic film. Although various chemical conversion treatments have been studied, they have not yet been put into practical use. For example, Patent Document 3 discloses an electroplating tin for DI can in which a phosphoric acid-based film is formed by immersion treatment. Patent Document 4 discloses a method of anodizing in a phytic acid or phytate solution.

近年は、錫めっき層上に、シランカップリング剤を使用した皮膜を施す技術が多く開示されている。例えば、特許文献5には、錫めっき鋼板のSn層又はFe-Sn合金層上に、シランカップリング剤塗布層を設けた鋼板及び缶が開示されており、特許文献6には、錫めっき層上に、下層としてP、Snを含有する化成皮膜、上層としてシランカップリング層を有する錫めっき鋼板が開示されている。また、特許文献6に類似した技術として、特許文献7乃至16が開示されている。   In recent years, many techniques for applying a film using a silane coupling agent on a tin plating layer have been disclosed. For example, Patent Document 5 discloses a steel sheet and a can provided with a silane coupling agent coating layer on a Sn layer or Fe-Sn alloy layer of a tin-plated steel sheet, and Patent Document 6 discloses a tin-plated layer. A tin-plated steel sheet having a chemical conversion film containing P and Sn as a lower layer and a silane coupling layer as an upper layer is disclosed. Further, Patent Documents 7 to 16 are disclosed as techniques similar to Patent Document 6.

特開昭52-68832号公報JP 52-68832 A 特開昭52-75626号公報JP 52-75626 A 特開昭59-47396号公報JP 59-47396 A 特開昭52-92837号公報JP 52-92837 A 特開2002-285354号公報JP 2002-285354 A 特開2001-316851号公報JP 2001-316851 特開2002-275643号公報JP 2002-275643 A 特開2002-206191号公報JP 2002-206191 A 特開2002-275657号公報JP 2002-275657 A 特開2002-339081号公報Japanese Patent Laid-Open No. 2002-339081 特開2003-3281号公報JP2003-3281 特開2003-175564号公報JP2003-175564A 特開2003-183853号公報Japanese Patent Laid-Open No. 2003-183853 特開2003-239084号公報JP2003-239084 特開2003-253466号公報JP 2003-253466 A 特開2004-68063号公報JP 2004-68063 A

しかしながら、前記特許文献に記載された化成皮膜はいずれも、缶用めっき鋼板として用いるに必要な有機皮膜の二次密着性、耐食性等の性能を備えているとは言い難い。   However, it is difficult to say that any of the chemical conversion films described in the above-mentioned patent documents has performances such as secondary adhesion and corrosion resistance of an organic film necessary for use as a plated steel sheet for cans.

そこで、本発明は、上記従来技術の問題点を解決し、有機皮膜の二次密着性、耐食性に優れた缶用めっき鋼板、及び、その製造方法を提供することを目的とする。   Then, this invention solves the problem of the said prior art, and aims at providing the plated steel plate for cans excellent in the secondary adhesiveness of an organic membrane | film | coat, and corrosion resistance, and its manufacturing method.

本発明者らは、上記の課題に対して鋭意検討し、極めて良好な有機皮膜の二次密着性が得られる錫めっき鋼板の層構造と、それを実現する方法を構築して本発明に至ったものである。   The present inventors diligently studied the above-mentioned problems, and constructed a layer structure of a tin-plated steel sheet that can obtain a very good secondary adhesion of an organic film, and a method for realizing the same, and led to the present invention. It is a thing.

即ち、本発明の主旨とするところは、
(1) 鋼板上に錫合金層を有し、該錫合金層上に金属錫が5〜98%の面積率で分布するめっき鋼板であって、それらの上層に、P量として0.5〜5.0mg/m2のリン酸塩を含む化成処理層、さらに該化成処理層上にZr量として8〜60mg/m2の酸化ジルコニウム(IV)を有することを特徴とする缶用めっき鋼板、
(2) 前記金属錫と前記錫合金とのSnの合計量が、0.56〜11.2g/m2であることを特徴とする前記1に記載の缶用めっき鋼板、
(3) 前記錫合金層が、Sn量として0.1〜1.8g/m2のFe-Sn合金層、Ni量として2〜100mg/m2のFe-Ni-Sn合金層の1種又は2種から成ることを特徴とする前記1又は2に記載の缶用めっき鋼板、
(4) 鋼板を電気錫めっき、及び、錫の加熱溶融処理によって金属錫を5〜98%の面積率で分布させた後、液温30〜50℃、pH1.5〜3.5のリン酸系水溶液中で2〜30A/dm2、0.1〜2秒の陰極電解処理、さらにフッ化物イオンと1〜10g/Lのジルコニウム(IV)を含むpH3〜5の水溶液中で陰極電解処理を施すことを特徴とする缶用めっき鋼板の製造方法、
(5) 前記のリン酸系溶液中での陰極電解処理後、0.2〜5A/dm2、0.1〜2秒の陽極電解処理を施すことを特徴とする前記4記載の缶用めっき鋼板の製造方法、
(6) 前記電気錫めっきの前に、電気Fe-Ni合金めっき又は電気NiめっきをNi量として2〜100mg/m2施すことを特徴とする前記4又は5に記載の缶用めっき鋼板の製造方法、
である。
That is, the main point of the present invention is that
(1) A plated steel sheet having a tin alloy layer on a steel sheet, and metal tin being distributed on the tin alloy layer at an area ratio of 5 to 98%, and the P layer has a P content of 0.5 to 5.0 mg. / chemical conversion layer comprising a phosphate m 2, and more plated steel sheet for cans, characterized in that it comprises a zirconium oxide 8~60mg / m 2 (IV) of Zr amount in the chemical conversion layer,
(2) The plated steel sheet for cans according to 1 above, wherein the total amount of Sn of the metal tin and the tin alloy is 0.56 to 11.2 g / m 2 ,
(3) The tin alloy layer is composed of one or two Fe-Sn alloy layers with an Sn content of 0.1 to 1.8 g / m 2 and Fe to Ni-Sn alloy layers with an Ni content of 2 to 100 mg / m 2. The plated steel sheet for cans according to 1 or 2, characterized by comprising:
(4) Phosphoric acid aqueous solution having a liquid temperature of 30 to 50 ° C. and a pH of 1.5 to 3.5 after metal tin is distributed at an area ratio of 5 to 98% by electrotin plating on the steel sheet and heating and melting of tin. 2 to 30 A / dm 2 , 0.1 to 2 seconds of cathodic electrolysis, and further cathodic electrolysis in an aqueous solution of pH 3 to 5 containing fluoride ions and 1 to 10 g / L of zirconium (IV) A method for producing a plated steel sheet for cans,
(5) The method for producing a plated steel sheet for cans according to 4 above, wherein after the cathodic electrolysis in the phosphoric acid solution, anodic electrolysis is performed at 0.2 to 5 A / dm 2 for 0.1 to 2 seconds. ,
(6) Manufacture of plated steel sheet for cans according to 4 or 5 above, wherein 2-100 mg / m 2 of electric Fe-Ni alloy plating or electric Ni plating is applied as the amount of Ni before the electric tin plating. Method,
It is.

本発明により、極めて良好な有機皮膜の二次密着性、耐食性を具備した缶用めっき鋼板及びその製造方法を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a plated steel sheet for cans having a very good organic film secondary adhesion and corrosion resistance and a method for producing the same.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

本発明で使用する鋼板には、特に制限を設ける必要はない。従来から缶用鋼板に使用されているアルミキルド鋼や低炭素鋼等の成分系の鋼板が使用できる。また、鋼板の厚みや調質度は、使用目的に適したグレードを選択すればよい。   There is no particular limitation on the steel sheet used in the present invention. Component steel plates such as aluminum killed steel and low carbon steel that have been conventionally used for steel plates for cans can be used. Moreover, what is necessary is just to select the grade suitable for the intended purpose for the thickness and tempering degree of a steel plate.

本発明の主たる構成は、鋼板上に錫合金層を有し、該錫合金層上に金属錫が5〜98%の面積率で分布するめっき鋼板であって、それらの上層に、P量として0.5〜5.0mg/m2のリン酸塩を含む化成処理層、さらに該化成処理層上にZr量として8〜60mg/m2の酸化ジルコニウム(IV)を有することを特徴とする缶用めっき鋼板である。 The main configuration of the present invention is a plated steel sheet having a tin alloy layer on a steel sheet, and metal tin is distributed on the tin alloy layer at an area ratio of 5 to 98%, and the P layer is formed on the upper layer of the steel sheet. A plated steel sheet for cans comprising a chemical conversion treatment layer containing 0.5 to 5.0 mg / m 2 of phosphate, and further having a zirconium oxide (IV) of 8 to 60 mg / m 2 as the amount of Zr on the chemical conversion treatment layer It is.

酸化ジルコニウム(IV)の付着量は、Zrとして8〜60mg/m2であることが必要である。8mg/m2未満では、十分な有機皮膜密着性が確保されない。一方、60mg/m2を超えると、酸化ジルコニウム(IV)は凝集破壊し易くなるため、むしろ密着性は低下してしまう。より好ましい酸化ジルコニウム(IV)の付着量は、Zrとして10〜40mg/m2であり、この範囲であれば、特に優れた有機皮膜密着性が得られる。酸化ジルコニウム(IV)の形状は限定しないが、層状ではなく、粒状であることが好ましい。粒径は、鋼板面に投影した粒の像の面積と同じ面積の円換算で0.1〜0.4μmであることが望ましい。このような粒状酸化ジルコニウム(IV)が有機皮膜の密着性を向上させる理由は明らかではないが、塗料や樹脂フィルムは粘度の低い状態で積層させるため、粒状の酸化ジルコニウム(IV)を包み込むように流動した後に硬化することで、いわゆるアンカー効果が得られるためではないかと推定している。 The adhesion amount of zirconium (IV) oxide needs to be 8 to 60 mg / m 2 as Zr. If it is less than 8 mg / m 2 , sufficient organic film adhesion cannot be ensured. On the other hand, when it exceeds 60 mg / m 2 , zirconium oxide (IV) is liable to cohesive failure, so that the adhesion is rather lowered. The more preferable amount of zirconium (IV) deposited is 10 to 40 mg / m 2 as Zr, and particularly within this range, particularly excellent organic film adhesion can be obtained. The shape of zirconium oxide (IV) is not limited, but is preferably not granular but granular. The grain size is preferably 0.1 to 0.4 μm in terms of a circle having the same area as the area of the image of the grain projected on the steel plate surface. The reason why such granular zirconium oxide (IV) improves the adhesion of the organic film is not clear, but the paint and resin film are laminated in a low viscosity state so that the granular zirconium oxide (IV) is wrapped. It is presumed that the so-called anchor effect can be obtained by hardening after flowing.

但し、錫めっき鋼板に直接酸化ジルコニウム(IV)を付着させても、密着力が不十分である。このような鋼板の最表面に塗料や樹脂皮膜を積層させても、錫めっき鋼板と酸化ジルコニウム(IV)との界面で剥離しやすい。リン酸塩層は、錫めっき鋼板と上層の酸化ジルコニウム(IV)とを強固に結び付ける効果が顕著である。リン酸塩層は、P量として0.5〜5.0mg/m2であることが必要である。P量は、予め作成した検量線を用いて、蛍光X線強度から測定することができる。リン酸塩がPの量として0.5mg/m2未満であるとリン酸塩の被覆率が十分では無く酸化ジルコニウムの下地として充分機能しないため、酸化ジルコニウム(IV)の密着が確保できず、剥離が生じやすい。一方、P量として5.0mg/m2を超えるリン酸塩は、凝集破壊し易くなるため、有機皮膜の一次密着性、二次密着性の確保ができない。 However, even if zirconium oxide (IV) is directly attached to the tin-plated steel sheet, the adhesion is insufficient. Even if a paint or a resin film is laminated on the outermost surface of such a steel plate, it is easy to peel off at the interface between the tin-plated steel plate and zirconium oxide (IV). The phosphate layer has a remarkable effect of firmly binding the tin-plated steel sheet and the upper zirconium oxide (IV). The phosphate layer is required to have a P amount of 0.5 to 5.0 mg / m 2 . The amount of P can be measured from the fluorescent X-ray intensity using a calibration curve prepared in advance. If the phosphate is less than 0.5 mg / m 2 in terms of the amount of P, the phosphate coverage is not sufficient and it does not function sufficiently as a base of zirconium oxide. Is likely to occur. On the other hand, phosphates exceeding 5.0 mg / m 2 as the amount of P are liable to cohesive failure, so the primary adhesion and secondary adhesion of the organic film cannot be ensured.

前記リン酸塩は通常リン酸鉄とリン酸錫とからなる。リン酸鉄は、リン酸錫と比較して凝集破壊しにくいため、有機皮膜の一次及び二次密着性の確保に寄与する。しかし、リン酸鉄は酸性溶液に対しては耐性が強くなく、酸性溶液と直接接触すると徐々に溶解してしまう。そのため、酸性食品容器として使用し、内面の有機皮膜に欠陥が生じた場合、欠陥部から鋼板−有機皮膜界面に酸性溶液が浸入し、皮膜の剥離部分が広がってしまうという問題がある。従って、全面をリン酸鉄で覆うのは好ましくなく、金属錫層を形成し、その表面をリン酸錫層で被覆するのが好ましい。リン酸錫は酸性溶液に比較的耐性があり、鋼板−有機皮膜界面への酸性溶液の浸入を防ぐ効果がある。   The phosphate usually consists of iron phosphate and tin phosphate. Iron phosphate contributes to securing the primary and secondary adhesion of the organic coating because it is less susceptible to cohesive failure than tin phosphate. However, iron phosphate is not very resistant to acidic solutions and gradually dissolves when in direct contact with acidic solutions. Therefore, when it uses as an acidic food container and a defect arises in the organic film of an inner surface, there exists a problem that an acidic solution permeates into a steel plate-organic film interface from a defective part, and the peeling part of a film will spread. Therefore, it is not preferable to cover the entire surface with iron phosphate, and it is preferable to form a metal tin layer and cover the surface with a tin phosphate layer. Tin phosphate is relatively resistant to acidic solutions and has the effect of preventing the penetration of acidic solutions into the steel sheet-organic coating interface.

金属錫による錫合金層の被覆面積率は、5〜98%であることが必要である。5%未満では、酸性溶液の鋼板−有機皮膜界面への浸入を阻止する効果が不十分である。一方、98%を超えると、リン酸鉄の面積率が低くなり過ぎ、有機皮膜の密着性が確保されない。   The coverage area ratio of the tin alloy layer with metallic tin is required to be 5 to 98%. If it is less than 5%, the effect of preventing the acid solution from entering the steel plate-organic film interface is insufficient. On the other hand, if it exceeds 98%, the area ratio of iron phosphate becomes too low, and the adhesion of the organic film is not ensured.

錫合金層は、Fe-Sn合金、Fe-Ni-Sn合金のいずれでも、また、両者が混在しても差し支えない。Fe-Sn合金の場合、組成はFeSn2となるが、この量はSn量として0.1〜1.8g/m2であることが好ましい。錫めっき後に錫の加熱溶融工程(リフロー処理)を経る錫めっき鋼板では、必然的に0.1g/m2の錫合金層は不可避的に生じるものであるし、一方、1.8g/m2を超えると、曲げ、カーリング等の加工工程で微小なクラックが生じ易くなり、腐食の起点となる恐れがあるため、好ましくない。Fe-Ni-Sn合金の場合、この量はNi量として2〜100mg/m2であることが好ましい。Niを添加するのは合金層の過剰な生成を妨げるためであるが、Niが2mg/m2未満では、その効果が不十分である。一方、100mg/m2を超えると、Ni-Sn合金量が増加し、合金層中の鉄比率が低下がすることにより、リン酸鉄の生成量が少なくなってしまって有機皮膜の一次及び二次密着性の確保が難しくなるため、好ましくない。 The tin alloy layer may be either an Fe—Sn alloy, an Fe—Ni—Sn alloy, or a mixture of both. In the case of the Fe—Sn alloy, the composition is FeSn 2, and this amount is preferably 0.1 to 1.8 g / m 2 as the Sn amount. In a tin-plated steel sheet that undergoes a tin heating and melting step (reflow treatment) after tin plating, a tin alloy layer of 0.1 g / m 2 is inevitably formed, whereas it exceeds 1.8 g / m 2 Then, it is not preferable because minute cracks are likely to be generated in processing steps such as bending and curling, and there is a risk of starting corrosion. In the case of the Fe—Ni—Sn alloy, this amount is preferably 2 to 100 mg / m 2 as the Ni amount. Ni is added to prevent excessive formation of the alloy layer, but if Ni is less than 2 mg / m 2 , the effect is insufficient. On the other hand, if it exceeds 100 mg / m 2 , the amount of Ni-Sn alloy increases, and the iron ratio in the alloy layer decreases, resulting in a decrease in the amount of iron phosphate produced and the primary and secondary organic coatings. Since it becomes difficult to ensure the next adhesion, it is not preferable.

金属錫付着量は、0.56〜11.2g/m2が好ましい。0.56g/m2未満では、錫のリフロー処理において前記面積率の金属錫を残存させるのが困難である。一方、11.2g/m2を超えると、鋼板表面はほぼ金属錫で被覆されてしまい、必要な面積率の錫合金層が得られない。 The metal tin adhesion amount is preferably 0.56 to 11.2 g / m 2 . If it is less than 0.56 g / m 2, it is difficult to leave the metal tin having the area ratio in the tin reflow treatment. On the other hand, if it exceeds 11.2 g / m 2 , the steel sheet surface is almost covered with metallic tin, and a tin alloy layer having a required area ratio cannot be obtained.

次に、有機皮膜の二次密着性に優れた缶用めっき鋼板の製造方法について詳述する。   Next, the manufacturing method of the plating steel plate for cans excellent in the secondary adhesiveness of an organic film is explained in full detail.

鋼板のめっき前処理の方法及び用いる錫めっき浴については、本発明では特に規定しないが、前処理として電解アルカリ脱脂及び希硫酸酸洗を施した後、有機光沢添加剤を含むフェノールスルホン酸浴、硫酸浴等の酸性錫めっき浴で電気錫めっきを施すと、良好な錫めっきが得られる。なお、錫めっきの前に、Fe-Ni合金めっきを施してもよい。あるいは、ニッケルめっきを施した後、加熱してニッケルを鋼板表面層に拡散させて、Fe-Ni合金層を形成させてもよい。錫めっき後の鋼板は、水又は錫めっき液が希釈された液の入った槽に浸漬され、乾燥された後、リフロー処理が施される。リフロー処理は、錫めっき鋼板を錫の融点である232℃以上に加熱する工程であるが、300℃を超えると、Fe-Sn合金化が過度に促進されてしまうので、好ましくない。加熱の手段としては、電気抵抗加熱や誘導加熱、又は、それらを組み合わせて用いるとよい。リフロー処理の直後にクエンチ処理することで、Fe-Sn合金層又はFe-Ni-Sn合金層や、表面の酸化錫層の過剰な生成を防ぐことが必要である。クエンチ処理は、錫を溶融した錫めっき鋼板を水に浸漬して行う。ストリップを連続的にリフロー処理及びクエンチ処理すると、クエンチ槽の水は約80℃まで上昇するが、リフロー処理で加熱された鋼板は、この程度の温度まで冷却されればよいので、差し支えない。   The method for pre-plating the steel sheet and the tin plating bath to be used are not particularly defined in the present invention, but after performing electrolytic alkaline degreasing and dilute sulfuric acid pickling as pre-treatment, a phenol sulfonic acid bath containing an organic gloss additive, When tin is electroplated in an acidic tin plating bath such as a sulfuric acid bath, good tin plating is obtained. Note that Fe—Ni alloy plating may be performed before tin plating. Or after giving nickel plating, it may heat and diffuse nickel to a steel plate surface layer, and may form an Fe-Ni alloy layer. The steel plate after tin plating is dipped in a bath containing water or a solution obtained by diluting a tin plating solution, dried, and then subjected to a reflow treatment. The reflow treatment is a step of heating the tin-plated steel sheet to 232 ° C. or higher, which is the melting point of tin, but if it exceeds 300 ° C., Fe—Sn alloying is excessively promoted, which is not preferable. As a heating means, electric resistance heating, induction heating, or a combination thereof may be used. It is necessary to prevent excessive formation of the Fe—Sn alloy layer or the Fe—Ni—Sn alloy layer or the surface tin oxide layer by quenching immediately after the reflow treatment. The quenching process is performed by immersing a tin-plated steel sheet in which tin is melted in water. When the strip is continuously reflowed and quenched, the water in the quench bath rises to about 80 ° C. However, the steel sheet heated by the reflow treatment may be cooled to this temperature, so that it does not matter.

クエンチ処理後、以下に述べる方法で化成処理を施す。   After the quench treatment, chemical conversion treatment is performed by the method described below.

まず、液温30〜50℃、pH1.5〜3.5のリン酸系水溶液中で、陰極電流密度2〜30A/dm2、0.1〜2秒の陰極電解処理を施す。pH1.5〜3.5のリン酸系水溶液におけるリン酸の化学種は、主としてリン酸とリン酸二水素イオンであり、微量のリン酸水素イオンも存在する。前記リン酸系水溶液中の水素イオンのほかのカチオン成分としては、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン、アンモニウムイオンの中から選ばれる1種又は2種以上が問題なく使用できる。 First, cathodic electrolysis is performed in a phosphoric acid aqueous solution having a liquid temperature of 30 to 50 ° C. and a pH of 1.5 to 3.5 at a cathode current density of 2 to 30 A / dm 2 for 0.1 to 2 seconds. The chemical species of phosphoric acid in a phosphoric acid aqueous solution having a pH of 1.5 to 3.5 are mainly phosphoric acid and dihydrogen phosphate ions, and a trace amount of hydrogen phosphate ions is also present. As the cation component other than hydrogen ions in the phosphoric acid aqueous solution, one or more selected from sodium ions, potassium ions, calcium ions, magnesium ions, and ammonium ions can be used without any problem.

リン酸塩水溶液中での陰極電解処理は、主としてリフロー処理で錫めっき鋼板の表面に生じた酸化錫や酸化鉄を、金属に還元するとともに、リン酸塩層を形成させる工程である。酸化錫が多く残存すると、リン酸塩皮膜の形成の妨げになる。陰極電流密度は2A/dm2未満では、リフロー処理で生じた酸化錫や酸化鉄の還元が十分にできない。一方、陰極電流密度を30A/dm2より高くしても、陰極表面で発生する水素ガスの量が多くなるばかりで効率的ではない。電解時間は0.1秒より短いと、酸化錫や酸化鉄の還元が十分にできない。一方、提示した電解条件であれば電解時間は2秒までに酸化錫や酸化鉄は十分に還元されるため、これより長くしても生産性を低下させるばかりで、性能の向上は認められない。 Cathodic electrolytic treatment in a phosphate aqueous solution is a step of reducing tin oxide and iron oxide generated on the surface of a tin-plated steel sheet mainly by reflow treatment to a metal and forming a phosphate layer. If a large amount of tin oxide remains, formation of a phosphate film is hindered. When the cathode current density is less than 2 A / dm 2 , the reduction of tin oxide and iron oxide generated by the reflow treatment cannot be sufficiently performed. On the other hand, even if the cathode current density is made higher than 30 A / dm 2 , the amount of hydrogen gas generated on the cathode surface is increased, which is not efficient. If the electrolysis time is shorter than 0.1 seconds, tin oxide or iron oxide cannot be sufficiently reduced. On the other hand, with the proposed electrolysis conditions, tin oxide and iron oxide are sufficiently reduced by 2 seconds of electrolysis, so even longer than that, productivity is reduced and performance is not improved. .

リン酸塩水溶液中での陰極電解処理に次いで、適当な条件で陽極電解処理を施すと、リン酸塩皮膜の形成がより進行するので好ましい。陽極電解処理では、鋼板表面の錫や鉄がゆっくりと酸化溶解し、処理液中のリン酸イオンと結合することでリン酸鉄やリン酸錫が形成すると考えられる。陽極電解処理の陽極電流密度は0.2〜5A/dm2、電解時間は0.1〜2秒が適当である。0.2A/dm2未満、あるいは0.1秒未満では、リン酸塩の生成を促進する効果が不十分であり、陰極電解処理だけ行った場合と比べて改善する効果がない。一方、5A/dm2超えると錫や鉄の溶解速度が速すぎて、生成するリン酸塩層が疎で脆くなる。電解時間が2秒を超えると、生産性を低下させるし、リン酸塩層が厚くなって、かえって脆い皮膜となってしまう。 Subsequent to cathodic electrolysis in an aqueous phosphate solution, anodic electrolysis is preferably performed under suitable conditions because the formation of a phosphate film further proceeds. In the anodic electrolytic treatment, tin and iron on the steel sheet surface are slowly oxidized and dissolved, and iron phosphate and tin phosphate are formed by binding with phosphate ions in the treatment liquid. The anode current density of the anodic electrolytic treatment is suitably 0.2 to 5 A / dm 2 and the electrolysis time is suitably 0.1 to 2 seconds. If it is less than 0.2 A / dm 2 or less than 0.1 second, the effect of promoting the formation of phosphate is insufficient, and there is no improvement effect compared with the case where only the cathodic electrolysis is performed. On the other hand, if it exceeds 5 A / dm 2, the dissolution rate of tin and iron is too high, and the resulting phosphate layer becomes sparse and brittle. When the electrolysis time exceeds 2 seconds, the productivity is lowered, and the phosphate layer becomes thick, which results in a brittle film.

前記の化成処理後、鋼板をさらに、フッ化物イオンと1〜10g/Lのジルコニウム(IV)を含むpH3〜5、浴温30〜55℃の水溶液中で、電流密度1〜15A/dm2、電解時間0.1〜2秒で陰極電解処理を施す。ジルコニウム(IV)濃度が1g/L未満では、粒状の酸化ジルコニウム(IV)がほとんど析出せず、十分な二次塗料密着性と耐食性が得られない。一方、ジルコニウム(IV)濃度が10g/Lより高いと、付着量の制御が困難となり、粒状の酸化ジルコニウム(IV)の析出量が過多となり、安定した一次、二次塗料密着性と耐食性が得られない。フッ化物イオンの濃度は限定しないが、1.0〜12g/Lの範囲が好ましい。1.0g/L未満では粒状の酸化ジルコニウム(IV)が析出しにくく、12g/Lを超えると錫めっき表面を溶解する作用が強く、処理液の劣化が促進されるし、鋼板の外観も劣化するので好ましくない。pH3未満ではリン酸錫層の表面が溶解し過ぎてしまう。一方、pH5を超えると、処理液の電気伝導度が低下して、電解処理が困難になる。浴温30〜55℃、電流密度1〜15A/dm2、電解時間0.1〜2秒で陰極電解すると、好ましい付着量の粒状の酸化ジルコニウム(IV)が鋼板表面方向に均一に分布するので、有機皮膜の二次密着性が非常に優れた皮膜を得ることができる。電流密度が1A/dm2未満では、粒状の酸化ジルコニウム(IV)がほとんど析出しない。一方、15A/dm2を超える電流密度でも析出量はほとんど多くならず、水素ガスの発生に使われる電気エネルギーの割合が増えるので無駄である。電解時間は0.1秒未満では粒状の酸化ジルコニウム(IV)がほとんど析出しない。一方、2秒を超える電解時間をかけることは生産性を低下させるし、酸化ジルコニウム(IV)が析出する反応が起こりにくくなって、析出量があまり増えないため無駄である。 After the chemical conversion treatment, the steel sheet is further subjected to a current density of 1 to 15 A / dm 2 in an aqueous solution containing fluoride ions and 1 to 10 g / L of zirconium (IV) at a pH of 3 to 5 and a bath temperature of 30 to 55 ° C., Cathodic electrolysis is performed with an electrolysis time of 0.1 to 2 seconds. When the zirconium (IV) concentration is less than 1 g / L, granular zirconium oxide (IV) hardly precipitates, and sufficient secondary paint adhesion and corrosion resistance cannot be obtained. On the other hand, if the zirconium (IV) concentration is higher than 10 g / L, it becomes difficult to control the amount of adhesion, and the amount of granular zirconium oxide (IV) deposited becomes excessive, and stable primary and secondary paint adhesion and corrosion resistance are obtained. I can't. The concentration of fluoride ions is not limited, but is preferably in the range of 1.0 to 12 g / L. If it is less than 1.0 g / L, granular zirconium oxide (IV) is difficult to precipitate, and if it exceeds 12 g / L, the action of dissolving the tin plating surface is strong, the deterioration of the treatment liquid is promoted, and the appearance of the steel sheet is also deteriorated. Therefore, it is not preferable. If the pH is less than 3, the surface of the tin phosphate layer will be excessively dissolved. On the other hand, if it exceeds pH5, the electrical conductivity of the treatment liquid is lowered and the electrolytic treatment becomes difficult. When cathodic electrolysis is performed at a bath temperature of 30 to 55 ° C., a current density of 1 to 15 A / dm 2 , and an electrolysis time of 0.1 to 2 seconds, a preferable amount of granular zirconium oxide (IV) is uniformly distributed in the steel sheet surface direction, so that organic A film with very excellent secondary adhesion of the film can be obtained. When the current density is less than 1 A / dm 2 , granular zirconium oxide (IV) hardly precipitates. On the other hand, even when the current density exceeds 15 A / dm 2 , the amount of precipitation is hardly increased, and the proportion of electric energy used to generate hydrogen gas increases, which is useless. When the electrolysis time is less than 0.1 seconds, particulate zirconium oxide (IV) hardly precipitates. On the other hand, it takes a long time for electrolysis to exceed 2 seconds, which decreases productivity and makes it difficult to cause a reaction in which zirconium (IV) oxide precipitates, and the amount of precipitation does not increase so much.

処理浴に添加する好ましいジルコニウム(IV)化合物として、(NH4)2ZrF6を挙げることができる。(NH4)2ZrF6溶解して所定のジルコニウム(IV)となるよう水溶液を調製すれば、処理液には適量のフッ化物イオンが供給される。 As a preferred zirconium (IV) compound to be added to the treatment bath, (NH 4 ) 2 ZrF 6 can be mentioned. If an aqueous solution is prepared so that (NH 4 ) 2 ZrF 6 is dissolved to form a predetermined zirconium (IV), an appropriate amount of fluoride ions is supplied to the treatment liquid.

以下、実施例によって、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail by way of examples.

低炭素冷延鋼帯を連続焼鈍、次いで、調質圧延して得た板厚0.18mm、調質度T-5CAの鋼帯を使用した。めっき前処理として、10mass%水酸化ナトリウム溶液中で電解脱脂した後、5mass%希硫酸で酸洗した。   A steel strip having a thickness of 0.18 mm and a tempering degree of T-5CA obtained by continuous annealing and then temper rolling of a low carbon cold rolled steel strip was used. As a pretreatment for plating, electrolytic degreasing was carried out in a 10 mass% sodium hydroxide solution, followed by pickling with 5 mass% dilute sulfuric acid.

一部の鋼帯には、Fe-Ni合金めっき、又は、Niめっきを施した。Niめっきを施した鋼帯は、その後に焼鈍してNiを拡散させて、Fe-Ni合金層を形成させた。   Some steel strips were plated with Fe-Ni alloy or Ni. The steel strip subjected to Ni plating was then annealed to diffuse Ni and form a Fe—Ni alloy layer.

次いで、フェロスタン浴を用いて電気錫めっきを施した。錫イオンを20g/L、フェノールスルホン酸イオンを75g/L、界面活性剤を5g/L含む43℃のめっき液中で、陰極電流密度20A/dm2で陰極電解した。陽極には、白金めっきしたチタンを用いた。錫めっきの付着量は、電解時間で調節した。 Subsequently, electrotin plating was performed using a ferrostan bath. Cathodic electrolysis was performed at a cathode current density of 20 A / dm 2 in a plating solution at 43 ° C. containing 20 g / L of tin ions, 75 g / L of phenolsulfonic acid ions, and 5 g / L of surfactant. As the anode, platinum-plated titanium was used. The amount of tin plating was adjusted by the electrolysis time.

錫めっき後は、水または錫めっき液を10倍希釈した溶液に浸漬し、ゴムロールで液切りをした後、冷風で乾燥し、通電加熱によって10秒間で250℃まで昇温させて錫をリフローし、直ちに70℃の水でクエンチした。   After tin plating, immerse it in a 10-fold diluted solution of water or tin plating solution, drain it with a rubber roll, dry it with cold air, raise the temperature to 250 ° C for 10 seconds by energization heating, and reflow the tin. Quench immediately with 70 ° C. water.

引き続き、該錫めっき鋼板に、下記のように化成処理を施した。   Subsequently, the tin-plated steel sheet was subjected to chemical conversion treatment as follows.

全リン酸濃度をリン酸換算で35g/L、カチオンを4g/L含む液温40℃の処理液中で陰極電解処理した。いくつかの実施例では、同じ組成の水溶液中で陽極電解処理を施した。   Cathodic electrolysis treatment was performed in a treatment solution having a total phosphoric acid concentration of 35 g / L in terms of phosphoric acid and a cation content of 4 g / L and a liquid temperature of 40 ° C. In some examples, anodic electrolysis was performed in an aqueous solution of the same composition.

リン酸系水溶液中での電解処理後、さらに酸化ジルコニウム(IV)処理を施した。Zrを1〜10g/L含むように(NH4)2ZrF6の水溶液を調製した。pHは3〜65の範囲に入っていたので、pH調整せずにこの水溶液中で陰極電解処理を施した。浴温は40℃とした。電解処理後、ゴムロールで液を絞った後、速やかに水洗、乾燥した。なお、比較のため、この処理を施さない条件も行った。 After electrolytic treatment in a phosphoric acid aqueous solution, zirconium oxide (IV) treatment was further performed. An aqueous solution of (NH 4 ) 2 ZrF 6 was prepared so as to contain 1 to 10 g / L of Zr. Since the pH was in the range of 3 to 65, cathodic electrolysis was performed in this aqueous solution without adjusting the pH. The bath temperature was 40 ° C. After the electrolytic treatment, the solution was squeezed with a rubber roll, and then quickly washed with water and dried. For comparison, conditions for not performing this treatment were also performed.

P、Zr、Niの付着量は、蛍光X線強度から、予め作成した検量線を使って算出した。Sn付着量は、1mol/Lの希塩酸中で錫めっき鋼板を陽極とする電解剥離法により求めた。なお、Pがリン酸錫、リン酸鉄として存在することは、AES(オージェ電子分光分析)による微小領域におけるSn、Fe、P、Oの比率と、XPS(X線光電子分光分析)によるSn、Fe、P、Oの結合状態の解析によって確認した。   The adhesion amount of P, Zr, and Ni was calculated from the fluorescent X-ray intensity using a calibration curve prepared in advance. The amount of Sn deposited was determined by an electrolytic stripping method using a tin-plated steel sheet as an anode in 1 mol / L dilute hydrochloric acid. In addition, the presence of P as tin phosphate and iron phosphate means that the ratio of Sn, Fe, P, O in a small region by AES (Auger electron spectroscopy), Sn by XPS (X-ray photoelectron spectroscopy), This was confirmed by analyzing the bonding state of Fe, P, and O.

上記処理材について、以下に示す(A)〜(D)の各項目について評価試験を実施した。
(A) 塗料一次密着性
評価材に、エポキシ・フェノール系塗料を60mg/dm2塗布し、210℃で10分間の焼き付けを行った。さらに、190℃で15分間、230℃で90秒間の追い焼きを行った。この塗装板から、5mm×100mmの大きさの試料を切り出した。2枚の同一水準の試料を、塗装面が向かい合わせになるようにし、間に厚さ100μmのフィルム状のナイロン接着剤を挟んだ。これを、つかみ代を残して、ホットプレスで200℃で60秒間予熱した後、2.9×105Paの圧力をかけて200℃で50秒間圧着し、引張試験片とした。つかみ部をそれぞれ90゜の角度で曲げてT字状とし、引張試験機のチャックでつかんで引っ張り、剥離強度を測定して、塗料一次密着性を評価した。試験片幅5mm当たりの測定強度が、68N以上を◎、49N以上68N未満を○、29N以上49N未満を△、29N未満を×とした。
About the said processing material, the evaluation test was implemented about each item of (A)-(D) shown below.
(A) Paint primary adhesion The evaluation material was coated with 60 mg / dm 2 of epoxy / phenolic paint and baked at 210 ° C. for 10 minutes. Further, the baking was performed at 190 ° C. for 15 minutes and at 230 ° C. for 90 seconds. A sample having a size of 5 mm × 100 mm was cut out from the coated plate. Two samples of the same level were coated with the coated surfaces facing each other, and a film-like nylon adhesive having a thickness of 100 μm was sandwiched between them. This was left pre-heated with a hot press at 200 ° C. for 60 seconds, and then pressure-bonded at 2.9 × 10 5 Pa for 50 seconds at 200 ° C. to obtain a tensile test piece. Each of the grip portions was bent at a 90 ° angle to form a T shape, and was pulled with a chuck of a tensile tester, and the peel strength was measured to evaluate the primary adhesion of the paint. The measured strength per 5 mm of the test piece width was 68N or more, 以上, 49N or more and less than 68N, ◯, 29N or more and less than 49N, or less than 29N.

(B) 塗料二次密着性
評価材に、前記(A)と同様の方法で、塗装、焼付け、ナイロン接着剤を挟んで圧着を施し、試験片を作製した。これを125℃、30分のレトルト処理をし、直後につかみ部をそれぞれ90゜の角度で曲げてT字状とし、引張試験機のチャックでつかんで引っ張り、剥離強度を測定して、塗料二次密着性を評価した。試験片幅5mm当たりの測定強度が、42N以上を◎、34N以上42N未満を○、25N以上34N未満を△、25N未満を×とした。
(B) Paint secondary adhesion In the same manner as in (A) above, the evaluation material was coated, baked, and pressure-bonded with a nylon adhesive sandwiched between them to prepare test pieces. This was retorted at 125 ° C for 30 minutes. Immediately after that, the gripping portions were bent at 90 ° angles to form a T-shape. The next adhesion was evaluated. The measured strength per test piece width of 5 mm was evaluated as ◎ for 42 N or more, ◯ for 34 N or more and less than 42 N, Δ for 25 N or more and less than 34 N, and × for less than 25 N.

(C) 耐食性
評価材の缶内面に相当する面の塩化物イオンを含む酸性溶液中における耐食性を評価するため、UCC(アンダーカッティング・コロージョン)試験を行った。エポキシ・フェノール系塗料を50mg/dm2塗布し、205℃で10分間の焼き付けを行った。さらに180℃で10分間の追い焼きを行った。この塗装板から、50mm×50mmの大きさの試料を切り出した。塗膜にカッターで地鉄に達するまでクロスカットを入れ、端面と裏面を塗料でシールした後、1.5%クエン酸と1.5%塩化ナトリウムからなる55℃の試験液中に、大気開放下で96時間浸漬した。水洗・乾燥後、速やかにスクラッチ部及び平面部をテープで剥離して、クロスカット部近傍の腐食状況、クロスカット部のピッティング腐食及び平面部の塗膜剥離状況を観察して、耐食性を評価した。テープによる剥離も腐食も認められないものを◎(非常に良好)、スクラッチ部から0.2mm未満のテープ剥離又は目視で認められない僅かな腐食の一方又は両方が認められたものを○(良好)、スクラッチ部から0.2mm以上0.5mm以下のテープ剥離又は目視で認められる小さい腐食の一方又は両方が認められたものを△(やや不良)、0.5mmを超えるテープ剥離が生じたものを×(不良)とした。
(C) Corrosion resistance In order to evaluate the corrosion resistance in the acidic solution containing chloride ions on the surface corresponding to the inner surface of the can of the evaluation material, a UCC (under cutting corrosion) test was conducted. An epoxy / phenolic paint was applied at 50 mg / dm 2 and baked at 205 ° C. for 10 minutes. Further, it was baked for 10 minutes at 180 ° C. A sample having a size of 50 mm × 50 mm was cut out from the coated plate. Make a cross cut in the coating film until it reaches the ground iron with a cutter, seal the end and back with paint, and then in a test solution at 1.5C consisting of 1.5% citric acid and 1.5% sodium chloride for 96 hours in the open air Soaked. After washing and drying, the scratch and flat parts are peeled off with tape, and the corrosion status near the crosscut part, the pitting corrosion of the crosscut part, and the paint film peeling situation on the flat part are evaluated to evaluate the corrosion resistance. did. ◎ (excellent) where no peeling or corrosion due to tape was observed, ○ (good) where one or both of tape peeling less than 0.2 mm from scratch or slight corrosion not visually recognized △ (slightly bad) when one or both of tape peeling of 0.2 mm or more and 0.5 mm or less or small corrosion visually recognized from the scratch part was observed, and × (bad) when tape peeling exceeding 0.5 mm occurred ).

(D) 外観
評価材の化成処理ままの外観を、光沢、色調、ムラの総合的なものとして、目視で評価した。非常に良好な外観であるものを◎、商品として問題のない良好な外観であるものを○、商品としては外観にやや不良な点があるものを△、外観不良で商品にならないものを×とした。
(D) Appearance The appearance of the evaluation material as it was subjected to chemical conversion treatment was visually evaluated as an overall gloss, color tone, and unevenness. ◎ for a very good appearance, ◯ for a good appearance with no problem as a product, △ for a product with a slightly poor appearance, × for a product with a poor appearance that does not become a product did.

以上の性能評価結果から、総合評価を◎(非常に良好)、○(良好)、△(やや不良)、×(不良)の4段階に分類し、◎、○を合格レベルとした。   Based on the above performance evaluation results, the overall evaluation was classified into four stages: ◎ (very good), ○ (good), △ (slightly bad), and × (bad), and ◎ and ○ were regarded as acceptable levels.

上記に記載しなかった試験条件を表1及び表2に、評価結果を表3及び表4に示した。   The test conditions not described above are shown in Tables 1 and 2, and the evaluation results are shown in Tables 3 and 4.

Figure 2009256726
Figure 2009256726

Figure 2009256726
Figure 2009256726

Figure 2009256726
Figure 2009256726

Figure 2009256726
Figure 2009256726

本発明の実施例1〜41は、全ての評価項目及び総合評価で、◎又は○であり、求められる性能を満足した。   Examples 1-41 of this invention were (double-circle) or (circle) in all the evaluation items and comprehensive evaluation, and satisfy | filled the calculated | required performance.

比較例1は、リン酸塩溶液中での電解処理、ジルコニウム(IV)陰極電解処理を施さなかった例である。PとZrの付着がないため、十分な塗料密着性と耐食性が得られなかった。   Comparative Example 1 is an example in which the electrolytic treatment in the phosphate solution and the zirconium (IV) cathodic electrolytic treatment were not performed. Since there was no adhesion of P and Zr, sufficient paint adhesion and corrosion resistance could not be obtained.

比較例2は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施したが、ジルコニウム処理を施さなかった例である。Zrが付着しないため、一次、二次塗料密着性と耐食性が劣っていた。   Comparative Example 2 is an example in which cathodic electrolytic treatment and anodic electrolytic treatment were performed in a phosphate solution, but zirconium treatment was not performed. Since Zr did not adhere, the primary and secondary paint adhesion and corrosion resistance were poor.

比較例3は、リン酸塩溶液での電解処理を施さずにジルコニウム(IV)陰極電解処理を施した例である。リン酸塩皮膜が形成されないため、一次、二次塗料密着性と耐食性が劣っていた。   Comparative Example 3 is an example in which zirconium (IV) cathodic electrolysis was performed without performing electrolysis with a phosphate solution. Since the phosphate film was not formed, the primary and secondary paint adhesion and corrosion resistance were inferior.

比較例4は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、リン酸塩溶液のpHが低いために錫めっき面がエッチングされ、光沢外観が失われた。また、P付着量が多すぎるため、塗料密着性、耐食性が劣っていた。   Comparative Example 4 is an example in which cathodic electrolysis and anodic electrolysis were performed in a phosphate solution, and further zirconium (IV) cathodic electrolysis was performed. However, since the pH of the phosphate solution was low, tin plating was performed. The surface was etched and the glossy appearance was lost. Moreover, since there was too much P adhesion amount, coating-material adhesiveness and corrosion resistance were inferior.

比較例5は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、リン酸塩溶液のpHが高いためにP付着量が少なく、塗料密着性、耐食性が劣っていた。   Comparative Example 5 is an example in which cathodic electrolysis and anodic electrolysis were performed in a phosphate solution, and further zirconium (IV) cathodic electrolysis was performed. The amount was small and the paint adhesion and corrosion resistance were poor.

比較例6は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、リン酸塩陰極電解処理の電流密度が低かったため、鋼板の酸化層の還元が不十分で、Zrが充分に付着せず、塗料密着性と耐食性が劣っていた。   Comparative Example 6 is an example in which cathodic electrolysis and anodic electrolysis were performed in a phosphate solution, and further zirconium (IV) cathodic electrolysis was performed, but the current density of phosphate cathodic electrolysis was low. The reduction of the oxidized layer of the steel sheet was insufficient, Zr did not adhere sufficiently, and the paint adhesion and corrosion resistance were poor.

比較例7は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、リン酸塩陰極電解処理の電解時間が短かったため、鋼板の酸化層の還元が不十分で、Zrが充分に付着せず、塗料密着性と耐食性が劣っていた。   Comparative Example 7 is an example in which cathodic electrolysis and anodic electrolysis were performed in a phosphate solution, and further zirconium (IV) cathodic electrolysis was performed, but the electrolysis time of phosphate cathodic electrolysis was short. The reduction of the oxidized layer of the steel sheet was insufficient, Zr did not adhere sufficiently, and the paint adhesion and corrosion resistance were poor.

比較例8は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、リン酸塩陰極電解処理の電解時間が長かったため、P付着量が過剰となって、塗料密着性、耐食性が劣っていた。   Comparative Example 8 is an example in which cathodic electrolysis and anodic electrolysis were performed in a phosphate solution, and further zirconium (IV) cathodic electrolysis was performed, but the electrolysis time of phosphate cathodic electrolysis was long. , P adhesion amount became excessive, paint adhesion and corrosion resistance were inferior.

比較例9は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、リン酸塩陽極電解処理の電流密度が低かったため、鋼板の酸化層の還元が不十分で、Zrが充分に付着せず、塗料密着性と耐食性が劣っていた。   Comparative Example 9 is an example in which cathodic electrolysis and anodic electrolysis were performed in a phosphate solution, and further zirconium (IV) cathodic electrolysis was performed, but the current density of the phosphate anodic electrolysis was low. The reduction of the oxidized layer of the steel sheet was insufficient, Zr did not adhere sufficiently, and the paint adhesion and corrosion resistance were poor.

比較例10は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、リン酸塩陽極電解処理の電流密度が高かったため、外観が劣化し、また、P付着量が過剰となって、塗料密着性、耐食性が劣っていた。   Comparative Example 10 is an example in which cathodic electrolysis and anodic electrolysis were performed in a phosphate solution, and further zirconium (IV) cathodic electrolysis was performed. However, the current density of phosphate anodic electrolysis was high. The appearance deteriorated, the P adhesion amount became excessive, and the paint adhesion and corrosion resistance were inferior.

比較例11は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、リン酸塩陽極電解処理の電解時間が長かったため、外観が劣化し、また、P付着量が過剰となって、塗料密着性、耐食性が劣っていた。   Comparative Example 11 is an example in which cathodic electrolysis and anodic electrolysis were performed in a phosphate solution, and further zirconium (IV) cathodic electrolysis was performed, but the electrolysis time of phosphate anodic electrolysis was long. The appearance deteriorated, the P adhesion amount became excessive, and the paint adhesion and corrosion resistance were inferior.

比較例12は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、ジルコニウム(IV)陰極電解処理液中のZr(IV)濃度が低いため、酸化ジルコニウム(IV)が粒状にならず、かつ付着量が不足で、塗料密着性と耐食性が劣っていた。   Comparative Example 12 is an example in which cathodic electrolysis and anodic electrolysis were performed in a phosphate solution, and further zirconium (IV) cathodic electrolysis was performed. IV) Since the concentration was low, the zirconium (IV) oxide was not granular, the amount of adhesion was insufficient, and the paint adhesion and corrosion resistance were inferior.

比較例13は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、ジルコニウム(IV)陰極電解処理液中のZr(IV)濃度が高いため、Zr付着量が過多となり、塗料密着性、耐食性、外観が劣っていた。   Comparative Example 13 is an example in which cathodic electrolytic treatment and anodic electrolytic treatment were performed in a phosphate solution, and further zirconium (IV) cathodic electrolytic treatment was performed. IV) Since the concentration was high, the Zr adhesion amount was excessive, and the paint adhesion, corrosion resistance, and appearance were inferior.

比較例14は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、ジルコニウム(IV)陰極電解処理液のpHが低いため、下地のリン酸塩皮膜がエッチングされてP付着量が少なくなり、塗料密着性、耐食性が劣っていた。   Comparative Example 14 is an example in which cathodic electrolysis and anodic electrolysis were performed in a phosphate solution, and further zirconium (IV) cathodic electrolysis was performed, but the pH of the zirconium (IV) cathodic electrolysis solution was low. Therefore, the underlying phosphate film was etched to reduce the P adhesion amount, and the paint adhesion and corrosion resistance were inferior.

比較例15は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、ジルコニウム(IV)陰極電解処理液のpHが高いため、電気伝導度が不足して充分な電流密度の処理ができなかった。   Comparative Example 15 is an example in which cathodic electrolysis and anodic electrolysis were performed in a phosphate solution, and further zirconium (IV) cathodic electrolysis was performed, but the pH of the zirconium (IV) cathodic electrolysis solution was high. For this reason, the electrical conductivity is insufficient, and a process with a sufficient current density cannot be performed.

比較例16は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、ジルコニウム(IV)陰極電解処理液の電流密度が低いため、酸化ジルコニウム(IV)が粒状にならず、かつ付着量が不足で、塗料密着性と耐食性が劣っていた。   Comparative Example 16 is an example in which a cathodic electrolysis treatment and an anodic electrolysis treatment were performed in a phosphate solution, and further a zirconium (IV) cathodic electrolysis treatment was performed. Since it was low, zirconium oxide (IV) did not become granular, the amount of adhesion was insufficient, and paint adhesion and corrosion resistance were inferior.

比較例17は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、ジルコニウム(IV)陰極電解処理液の電流密度が高いため、Zr付着量が過多となり、塗料密着性、耐食性、外観が劣っていた。   Comparative Example 17 is an example in which a cathodic electrolysis treatment and an anodic electrolysis treatment were performed in a phosphate solution, and further a zirconium (IV) cathodic electrolysis treatment was performed. Due to the high amount, the Zr adhesion amount was excessive, and the paint adhesion, corrosion resistance, and appearance were inferior.

比較例18は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、ジルコニウム(IV)陰極電解処理の電解時間が短いため、酸化ジルコニウム(IV)が粒状にならず、かつ付着量が不足で、塗料密着性と耐食性が劣っていた。   Comparative Example 18 is an example in which cathodic electrolysis and anodic electrolysis were performed in a phosphate solution, and further zirconium (IV) cathodic electrolysis was performed, but the electrolysis time of zirconium (IV) cathodic electrolysis was short. Therefore, zirconium oxide (IV) did not become granular, the amount of adhesion was insufficient, and paint adhesion and corrosion resistance were inferior.

比較例19は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、ジルコニウム(IV)陰極電解処理の電解時間が長いため、Zr付着量が過多となり、塗料密着性、耐食性、外観が劣っていた。   Comparative Example 19 is an example in which cathodic electrolysis and anodic electrolysis were performed in a phosphate solution, and further zirconium (IV) cathodic electrolysis was performed, but the electrolysis time of zirconium (IV) cathodic electrolysis was long. Therefore, the amount of Zr adhesion was excessive, and the paint adhesion, corrosion resistance, and appearance were inferior.

比較例20は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、錫付着量が少ないため、光沢外観が得られなかった。また、金属錫の面積率が低く、リン酸錫の面積が確保できないため耐食性が劣っていた。   Comparative Example 20 is an example in which cathodic electrolysis and anodic electrolysis were performed in a phosphate solution, and further zirconium (IV) cathodic electrolysis was performed. There wasn't. Moreover, since the area ratio of metallic tin was low and the area of tin phosphate could not be secured, the corrosion resistance was inferior.

比較例21は、リン酸塩溶液中で、陰極電解処理、陽極電解処理を施し、さらにジルコニウム(IV)陰極電解処理を施した例であるが、錫付着量が多く、金属錫で全面覆われているため、リン酸鉄層がなく、塗料密着性不十分だった。   Comparative Example 21 is an example in which cathodic electrolysis and anodic electrolysis were performed in a phosphate solution, and further zirconium (IV) cathodic electrolysis was performed, but the amount of tin adhesion was large and the entire surface was covered with metallic tin. Therefore, there was no iron phosphate layer and paint adhesion was insufficient.

Claims (6)

鋼板上に錫合金層を有し、該錫合金層上に金属錫が5〜98%の面積率で分布するめっき鋼板であって、それらの上層に、P量として0.5〜5.0mg/m2のリン酸塩からなる化成処理層、さらに該化成処理層上にZr量として8〜60mg/m2の酸化ジルコニウム(IV)を有することを特徴とする缶用めっき鋼板。 A plated steel sheet having a tin alloy layer on the steel sheet, and metal tin distributed on the tin alloy layer at an area ratio of 5 to 98%, and the upper layer thereof has a P content of 0.5 to 5.0 mg / m 2 A plated steel sheet for cans, comprising: a chemical conversion treatment layer comprising a phosphate, and zirconium oxide (IV) having a Zr content of 8 to 60 mg / m 2 on the chemical conversion treatment layer. 前記金属錫と前記錫合金とのSnの合計量が、0.56〜11.2g/m2であることを特徴とする請求項1に記載の缶用めっき鋼板。 2. The plated steel sheet for can according to claim 1, wherein the total amount of Sn of the metal tin and the tin alloy is 0.56 to 11.2 g / m 2 . 前記錫合金層が、Sn量として0.1〜1.8g/m2のFe-Sn合金層、Ni量として2〜100mg/m2のFe-Ni-Sn合金層の1種又は2種から成ることを特徴とする請求項1又は2に記載の缶用めっき鋼板。 The tin alloy layer is composed of one or two of an Fe-Sn alloy layer having an Sn content of 0.1 to 1.8 g / m 2 and an Fe-Ni-Sn alloy layer having an Ni content of 2 to 100 mg / m 2. The plated steel sheet for cans according to claim 1 or 2, characterized in that 鋼板を電気錫めっき、及び、錫の加熱溶融処理によって金属錫を5〜98%の面積率で分布させた後、液温30〜50℃、pH1.5〜3.5のリン酸系水溶液中で2〜30A/dm2、0.1〜2秒の陰極電解処理、さらにフッ化物イオンと1〜10g/Lのジルコニウム(IV)を含むpH3〜5の水溶液中で1〜15A/dm2、0.1〜2秒の陰極電解処理を施すことを特徴とする缶用めっき鋼板の製造方法。 After the steel sheet is electroplated and metal tin is distributed at an area ratio of 5 to 98% by heating and melting the tin, the solution is heated in a phosphoric acid aqueous solution having a liquid temperature of 30 to 50 ° C. and a pH of 1.5 to 3.5. -30 A / dm 2 , 0.1-2 seconds cathodic electrolysis, 1-15 A / dm 2 , 0.1-2 seconds in pH 3-5 aqueous solution containing fluoride ions and 1-10 g / L zirconium (IV) A method for producing a plated steel sheet for cans, characterized by performing the cathodic electrolysis treatment. 前記のリン酸系溶液中での陰極電解処理後、0.2〜5A/dm2、0.1〜2秒の陽極電解処理を施すことを特徴とする請求項4に記載の缶用めっき鋼板の製造方法。 The method for producing a plated steel sheet for cans according to claim 4, wherein after the cathodic electrolysis treatment in the phosphoric acid solution, an anodic electrolysis treatment of 0.2 to 5 A / dm 2 and 0.1 to 2 seconds is performed. 前記電気錫めっきの前に、電気Fe-Ni合金めっき又は電気NiめっきをNi量として2〜100mg/m2施すことを特徴とする請求項4又は5に記載の缶用めっき鋼板の製造方法。 6. The method for producing a plated steel sheet for cans according to claim 4, wherein 2 to 100 mg / m 2 of an Fe-Ni alloy plating or an electric Ni plating is applied as the amount of Ni before the electric tin plating.
JP2008106985A 2008-04-16 2008-04-16 Plated steel sheet for can and manufacturing method thereof Expired - Fee Related JP4920627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008106985A JP4920627B2 (en) 2008-04-16 2008-04-16 Plated steel sheet for can and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008106985A JP4920627B2 (en) 2008-04-16 2008-04-16 Plated steel sheet for can and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009256726A true JP2009256726A (en) 2009-11-05
JP4920627B2 JP4920627B2 (en) 2012-04-18

Family

ID=41384506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008106985A Expired - Fee Related JP4920627B2 (en) 2008-04-16 2008-04-16 Plated steel sheet for can and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4920627B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133594B2 (en) * 2010-06-04 2012-03-13 Nippon Steel Corporation Steel sheet for container use
US20120064369A1 (en) * 2009-06-04 2012-03-15 Akira Tachiki Steel sheet for container use with excellent organic film performance and method of production of same
WO2012035765A1 (en) * 2010-09-15 2012-03-22 Jfeスチール株式会社 Surface-treated steel sheet, method for producing same, and resin-coated steel sheet using same
JP2015503679A (en) * 2012-01-12 2015-02-02 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Tinplate surface passivation method
JP2015140474A (en) * 2014-01-30 2015-08-03 Jfeスチール株式会社 Steel sheet for vessel, and production method thereof
JP2015140468A (en) * 2014-01-30 2015-08-03 Jfeスチール株式会社 Steel sheet for vessel, and production method thereof
WO2016076073A1 (en) * 2014-11-10 2016-05-19 新日鐵住金株式会社 Plated steel sheet and method for producing same
WO2016088750A1 (en) * 2014-12-01 2016-06-09 新日鐵住金株式会社 Surface-treated steel sheet and method for manufacturing surface-treated steel sheet
WO2016148105A1 (en) * 2015-03-16 2016-09-22 新日鐵住金株式会社 Surface-treated steel sheet and method for producing same
CN106661737A (en) * 2014-10-09 2017-05-10 新日铁住金株式会社 Chemical conversion treated steel sheet, and method for producing chemical conversion treated steel sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204265A1 (en) * 2016-05-24 2017-11-30 新日鐵住金株式会社 Sn-plated steel sheet
WO2017204266A1 (en) * 2016-05-24 2017-11-30 新日鐵住金株式会社 Sn alloy-plated steel sheet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293996A (en) * 1993-04-06 1994-10-21 Nippon Steel Corp Stock for welded can excellent in high speed seam weldability, corrosion resistance, heat resistance and adhesion of paint
JP2000226676A (en) * 1999-02-08 2000-08-15 Nippon Steel Corp Steel sheet for laminate welded can
JP2002206191A (en) * 2000-11-08 2002-07-26 Kawasaki Steel Corp Tinned steel sheet and chemical conversion solution
JP2007284789A (en) * 2006-03-24 2007-11-01 Nippon Steel Corp Steel sheet for container having excellent can-making workability
WO2008029916A1 (en) * 2006-09-08 2008-03-13 Nippon Steel Corporation Steel plate for container, and method for production thereof
WO2008123632A1 (en) * 2007-04-04 2008-10-16 Nippon Steel Corporation Plated steel sheet for can and process for producing the same
WO2009104773A1 (en) * 2008-02-18 2009-08-27 新日本製鐵株式会社 Plated steel sheet for can and process for producing the plated steel sheet
JP2009249691A (en) * 2008-04-07 2009-10-29 Nippon Steel Corp Steel sheet for vessel having excellent weldability, appearance and adhesion in can making

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293996A (en) * 1993-04-06 1994-10-21 Nippon Steel Corp Stock for welded can excellent in high speed seam weldability, corrosion resistance, heat resistance and adhesion of paint
JP2000226676A (en) * 1999-02-08 2000-08-15 Nippon Steel Corp Steel sheet for laminate welded can
JP2002206191A (en) * 2000-11-08 2002-07-26 Kawasaki Steel Corp Tinned steel sheet and chemical conversion solution
JP2007284789A (en) * 2006-03-24 2007-11-01 Nippon Steel Corp Steel sheet for container having excellent can-making workability
WO2008029916A1 (en) * 2006-09-08 2008-03-13 Nippon Steel Corporation Steel plate for container, and method for production thereof
WO2008123632A1 (en) * 2007-04-04 2008-10-16 Nippon Steel Corporation Plated steel sheet for can and process for producing the same
WO2009104773A1 (en) * 2008-02-18 2009-08-27 新日本製鐵株式会社 Plated steel sheet for can and process for producing the plated steel sheet
JP2009249691A (en) * 2008-04-07 2009-10-29 Nippon Steel Corp Steel sheet for vessel having excellent weldability, appearance and adhesion in can making

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120064369A1 (en) * 2009-06-04 2012-03-15 Akira Tachiki Steel sheet for container use with excellent organic film performance and method of production of same
US9212423B2 (en) * 2009-06-04 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Steel sheet for container use with excellent organic film performance and method of production of same
US8133594B2 (en) * 2010-06-04 2012-03-13 Nippon Steel Corporation Steel sheet for container use
TWI454374B (en) * 2010-09-15 2014-10-01 Jfe Steel Corp Surface treated sheet, its production method, and resin film coated steel sheet
JP2012062508A (en) * 2010-09-15 2012-03-29 Jfe Steel Corp Surface-treated steel sheet, method for producing the same, and resin-coated steel sheet using the same
US9169577B2 (en) 2010-09-15 2015-10-27 Jfe Steel Corporation Surface-treated steel sheet, method for manufacturing the same, and resin-covered steel sheet using the same
WO2012035765A1 (en) * 2010-09-15 2012-03-22 Jfeスチール株式会社 Surface-treated steel sheet, method for producing same, and resin-coated steel sheet using same
CN103108989B (en) * 2010-09-15 2016-01-20 杰富意钢铁株式会社 Surface treated steel plate, its manufacture method and use its resin-coated steel sheet
CN103108989A (en) * 2010-09-15 2013-05-15 杰富意钢铁株式会社 Surface-treated steel sheet, method for producing same, and resin-coated steel sheet using same
JP2015503679A (en) * 2012-01-12 2015-02-02 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Tinplate surface passivation method
JP2015140474A (en) * 2014-01-30 2015-08-03 Jfeスチール株式会社 Steel sheet for vessel, and production method thereof
JP2015140468A (en) * 2014-01-30 2015-08-03 Jfeスチール株式会社 Steel sheet for vessel, and production method thereof
CN106661737A (en) * 2014-10-09 2017-05-10 新日铁住金株式会社 Chemical conversion treated steel sheet, and method for producing chemical conversion treated steel sheet
US10301721B2 (en) 2014-10-09 2019-05-28 Nippon Steel & Sumitomo Metal Corporation Chemical treatment steel sheet, and method for producing chemical treatment steel sheet
CN106661737B (en) * 2014-10-09 2019-05-17 新日铁住金株式会社 The manufacturing method of chemical conversion treatment steel plate and chemical conversion treatment steel plate
EP3205744A4 (en) * 2014-10-09 2018-02-28 Nippon Steel & Sumitomo Metal Corporation Chemical conversion treated steel sheet, and method for producing chemical conversion treated steel sheet
WO2016076073A1 (en) * 2014-11-10 2016-05-19 新日鐵住金株式会社 Plated steel sheet and method for producing same
JPWO2016076073A1 (en) * 2014-11-10 2017-04-27 新日鐵住金株式会社 Plated steel sheet and manufacturing method thereof
JP6008068B1 (en) * 2014-12-01 2016-10-19 新日鐵住金株式会社 Surface-treated steel sheet and method for producing surface-treated steel sheet
WO2016088750A1 (en) * 2014-12-01 2016-06-09 新日鐵住金株式会社 Surface-treated steel sheet and method for manufacturing surface-treated steel sheet
JPWO2016148105A1 (en) * 2015-03-16 2017-04-27 新日鐵住金株式会社 Surface-treated steel sheet
WO2016148105A1 (en) * 2015-03-16 2016-09-22 新日鐵住金株式会社 Surface-treated steel sheet and method for producing same

Also Published As

Publication number Publication date
JP4920627B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4920627B2 (en) Plated steel sheet for can and manufacturing method thereof
JP5015239B2 (en) Plated steel sheet for can and manufacturing method thereof
JP4864493B2 (en) Plated steel sheet for cans
JP5332836B2 (en) Plated steel sheet for cans
TWI490369B (en) Steel sheet for container
JP5304000B2 (en) Steel plate for containers with excellent weldability, appearance, and can manufacturing process adhesion
JP4681672B2 (en) Plated steel sheet for can and manufacturing method thereof
JP4869976B2 (en) Plated steel sheet for can and manufacturing method thereof
JP6146541B2 (en) Plated steel sheet and manufacturing method thereof
JP5338163B2 (en) Method for producing tin-plated steel sheet
JP5338162B2 (en) Method for producing tin-plated steel sheet
JP2010180452A (en) Plated steel sheet for can and method for producing the same
JPS63277794A (en) Production of steel sheet coated with sn-based multilayered plating and having superior adhesion to paint
JP4720459B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP5505085B2 (en) Method for producing tin-plated steel sheet
JP5626417B2 (en) Tinned steel sheet
JP5338823B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP5626416B2 (en) Tinned steel sheet
JP3434927B2 (en) Manufacturing method of steel plate for welding can with excellent paint appearance
JP2010255080A (en) Tin-plated steel sheet and method for manufacturing the same
JP2012062510A (en) Tinned steel sheet, its manufacturing method and chemical conversion treatment liquid
JPH0971878A (en) Production of steel sheet for welded can excellent in weldability, corrosion resistance, appearance and adhesion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R151 Written notification of patent or utility model registration

Ref document number: 4920627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees