JP2009255621A - Hull frictional resistance reducing device - Google Patents

Hull frictional resistance reducing device Download PDF

Info

Publication number
JP2009255621A
JP2009255621A JP2008104002A JP2008104002A JP2009255621A JP 2009255621 A JP2009255621 A JP 2009255621A JP 2008104002 A JP2008104002 A JP 2008104002A JP 2008104002 A JP2008104002 A JP 2008104002A JP 2009255621 A JP2009255621 A JP 2009255621A
Authority
JP
Japan
Prior art keywords
air
ship
frictional resistance
hull
lattice structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008104002A
Other languages
Japanese (ja)
Inventor
Fumitoshi Ochi
文俊 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008104002A priority Critical patent/JP2009255621A/en
Publication of JP2009255621A publication Critical patent/JP2009255621A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate any continuous jetting of air to a ship bottom for reducing the hull frictional resistance. <P>SOLUTION: An air reservoir forming member 3 of a square lattice structure assembled of flat plates along the vertical direction is mounted on a lower side of a ship bottom shell plate 2 in an airtight manner, and an air reservoir 4 with its upper end being closed is formed in the bottom shell plate 2. An air jetting port 5 is formed at predetermined parts of the ship bottom on the stem side from the air reservoir 4, and connected to an air jetting device 6 mounted on a hull 1 via an air pipe 7. Air 8 is jetted to the ship bottom from the air jetting port 5 by operating the air jetting device 6 while the ship is proceeding forward, and bubbles of the air 8 are trapped by each air reservoir 4 by their buoyancy. By allowing the layer of the air 8 held by each air reservoir 4 by each buoyancy to be present in a boundary layer between the ship bottom and water, the frictional resistance of the ship bottom is reduced to enhance the propulsion performance of the ship. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、船舶の航行時に船体表面に作用する摩擦抵抗を低減できるようにするために用いる船体摩擦抵抗低減装置に関するものである。   The present invention relates to a hull frictional resistance reducing device used for reducing frictional resistance acting on the surface of a hull during navigation of a ship.

船舶の航行時には、船体の浸水部が水中で移動するため、この船体浸水部の周りには、流体としての水(海水又は淡水)の粘性のために該水による境界層が形成され、この境界層の中では、水の流速は船体表面が零で船体表面から離れるに従い急激に大きく変化することから、船体浸水部の表面には水の摩擦抵抗が生じ、この摩擦抵抗が船体の推進抵抗(船体抵抗)の大きな要素の一つとなっている。特に、タンカー等の大型で比較的速度の遅い船舶では、上記摩擦抵抗が船体抵抗の大部分を占めるとされている。   During the navigation of a ship, the inundated part of the hull moves in the water, so a boundary layer is formed around the hull inundated part due to the viscosity of water (seawater or fresh water) as a fluid. In the stratum, the water flow velocity changes drastically as the hull surface is zero and moves away from the hull surface, creating a frictional resistance of water on the surface of the inundated part of the hull. This is one of the major factors in ship resistance. In particular, it is said that the frictional resistance occupies most of the hull resistance in a large-sized ship such as a tanker having a relatively low speed.

そのため、上記船体の浸水部の表面に作用する水の摩擦抵抗を減少させて推進性能を向上させるための手段の一つとして、水中に空気を噴出する装置を用いて、船底に沿って気泡を流したり、空気層を流すようにする手法が従来提案されてきている。   Therefore, as one of the means for improving the propulsion performance by reducing the frictional resistance of water acting on the surface of the flooded part of the hull, bubbles are generated along the bottom of the ship using a device that blows air into the water. Conventionally, a method of flowing air or flowing an air layer has been proposed.

この種の船底に沿って気泡や空気層を流す手法によれば、この気泡や空気層で船体浸水部の表面と水との間の境界層を覆うことで、船体に働く摩擦抵抗を低減できるという効果が確認されてきている(たとえば、特許文献1参照)。   According to this type of method of flowing bubbles and air layers along the bottom of the ship, the frictional resistance acting on the hull can be reduced by covering the boundary layer between the surface of the water-immersed part of the hull and water with these bubbles and air layers. Has been confirmed (for example, see Patent Document 1).

特開2003−175884号公報JP 2003-175844 A

ところが、上記したように従来提案されている船底に沿って気泡や空気層を流す手法は、船体浸水部における水の摩擦抵抗を低減させるのに有効であるが、通常、船体は流線型で平滑な形状としてあり、しかも、船体は丸みを帯びているため、船底側に噴き込んだ気泡や空気層が船側部へ上昇して逃げ易く、又、船体の進行や揺動等の船体の運動に伴われて上記船体浸水部の表面を覆うための気泡や空気層が容易に散逸され易い。そのため、上記船体浸水部と水との境界層を気泡や空気層で覆った状態を維持するためには、水中に空気を噴出する装置を常に運転して、上記気泡や空気層を常時補充する必要が生じてしまう。しかし、VLCCのような大型のタンカー等では、満載時の喫水が20mにも達するため、このような船舶の船底部へ気泡や空気層を供給するには、上記水中に空気を噴出する装置に20mものヘッド(水頭)が要求され、このような大きなヘッドが要求される装置を常時運転するには、多くのエネルギーが必要とされるという問題がある。したがって、この船体抵抗を低減することによって得られる船舶の推進に要するエネルギーの削減効果をあまり高めることができないというのが実状である。   However, as described above, the conventionally proposed technique of flowing bubbles and air layers along the bottom of the ship is effective in reducing the frictional resistance of water in the hull inundated part, but the hull is usually streamlined and smooth. The shape and shape of the hull is rounded, so bubbles and air layers injected into the bottom of the hull are easily lifted to the side of the hull and escape, and the hull moves and swings. It is easy to dissipate bubbles and air layers for covering the surface of the above-mentioned hull-immersed part. Therefore, in order to maintain the state where the boundary layer between the hull-immersed part and water is covered with air bubbles or air layers, a device that ejects air into the water is always operated to constantly replenish the air bubbles and air layers. Necessity arises. However, in a large tanker such as a VLCC, the draft when fully loaded reaches as much as 20 m. Therefore, in order to supply bubbles and an air layer to the bottom of such a ship, the above-described device for ejecting air into the water is used. A head (water head) of 20 m is required, and there is a problem that a large amount of energy is required to always operate an apparatus that requires such a large head. Therefore, the actual situation is that the reduction effect of energy required for propulsion of the ship obtained by reducing the hull resistance cannot be enhanced so much.

そこで、本発明は、空気層を船底に保持することができて、船底側へ空気を常時供給する必要をなくすことができる船体摩擦抵抗低減装置を提供しようとするものである。   Accordingly, the present invention is intended to provide a hull frictional resistance reduction device that can hold an air layer at the bottom of the ship and eliminate the need to constantly supply air to the bottom of the ship.

本発明は、上記課題を解決するために、請求項1に対応して、船舶の船底外板の下面の所要の領域に、船首尾方向及び船幅方向に並ぶように複数の空気溜りを設け、且つ該各空気溜りを設けた領域の船首側の所要個所に、空気噴込装置に接続した空気噴出口を設けて、該空気噴出口より船底へ噴き込まれる空気を、上記各空気溜りに保持させるようにしてなる構成とする。   In order to solve the above-mentioned problems, the present invention provides a plurality of air reservoirs corresponding to claim 1 so as to be aligned in the bow-stern direction and the ship width direction in a required region of the lower surface of the ship bottom skin. In addition, an air outlet connected to an air injection device is provided at a required position on the bow side of the area where each air reservoir is provided, and the air injected from the air outlet to the ship bottom is supplied to each air reservoir. It is set as the structure which makes it hold | maintain.

又、上記構成における空気溜りを、船底外板の所要の領域の下面に取り付けた格子構造の空気溜り形成部材により形成するようにした構成とする。   Further, the air reservoir in the above configuration is formed by an air reservoir forming member having a lattice structure attached to the lower surface of a required region of the ship bottom skin.

更に、上記構成における空気溜り形成部材を、正方格子構造、又は、空気溜りの位置が船首尾方向で重ならないよう千鳥配置の方形の格子隙間を有する格子構造、又は、六角格子構造とした構成とする。   Furthermore, the air pool forming member in the above configuration is a square grid structure, or a grid structure having a square grid gap in a staggered arrangement so that the positions of the air pools do not overlap in the bow-stern direction, or a hexagonal grid structure To do.

上述の請求項1に対応する構成における空気溜りを、船舶の船底部に設けた凹部の内側に取り付けた格子構造の仕切部材により形成するようにした構成とする。   The air reservoir in the configuration corresponding to the above-described claim 1 is configured to be formed by a partition member having a lattice structure attached to the inside of a recess provided in the bottom of the ship.

上記構成における仕切部材を、正方格子構造、又は、上記と同様の千鳥配置の方形の格子隙間を有する格子構造、又は、六角格子構造とした構成とする。   The partition member in the above configuration has a square lattice structure, a lattice structure having a staggered square lattice gap similar to the above, or a hexagonal lattice structure.

本発明の船体摩擦抵抗低減装置によれば、以下のような優れた効果を発揮する。
(1)船舶の船底外板の下面の所要の領域に、船首尾方向及び船幅方向に並ぶように複数の空気溜りを設け、且つ該各空気溜りを設けた領域の船首側の所要個所に、空気噴込装置に接続した空気噴出口を設けて、該空気噴出口より船底へ噴き込まれる空気を、上記各空気溜りに保持させるようにしてなる構成としてあるので、各空気溜りに保持された空気の層により船底部の境界層を覆うことができるため、船底部における摩擦抵抗を低減させることができて、船舶の推進性能を向上させることができる。
(2)しかも、上記空気溜り内に満たされた空気は、浮力により該空気溜りに保持させることができて、船体の運動によっても容易に散逸されないものとすることができるため、船底への空気の噴き込みを常時継続する必要をなくすことができて、空気噴込装置の運転を停止することが可能になると共に、該空気噴込装置を停止しても、船底部の摩擦抵抗低減効果を維持することができる。よって、船体の摩擦抵抗低減によるエネルギーの削減効率を従来に比して高いものとすることが可能になる。
(3)空気溜りを、船底外板の所要の領域の下面に取り付けた格子構造の空気溜り形成部材により形成するようにした構成、又は、船舶の船底部に設けた凹部の内側に取り付けた格子構造の仕切部材により形成するようにした構成とすることにより、上記(1)(2)の効果を得るための装置構成を容易に実現できる。
(4)空気溜り形成部材や仕切部材を、正方格子構造、又は、千鳥配置の方形の格子隙間を有する格子構造、又は、六角格子構造とすることにより、方形又は六角形の同一形状の空気溜りを隙間なく形成することができる。よって、各空気溜りに空気の保持を均一に行わせることが可能になるため、上記空気溜りを設けた船底外板の領域に全面に亘り均等な摩擦抵抗低減効果を得ることが可能となる。
According to the hull frictional resistance reducing device of the present invention, the following excellent effects are exhibited.
(1) A plurality of air reservoirs are provided in a required area on the lower surface of the ship bottom skin of the ship so as to be aligned in the bow-stern direction and the width direction of the ship, and the areas on the bow side of the areas where the respective air reservoirs are provided The air jets connected to the air jetting device are provided so that the air jetted from the air jets to the bottom of the ship is held in the air reservoirs. Since the boundary layer at the bottom of the ship can be covered with the air layer, the frictional resistance at the bottom of the ship can be reduced, and the propulsion performance of the ship can be improved.
(2) In addition, the air filled in the air reservoir can be held in the air reservoir by buoyancy, and can not be easily dissipated by the movement of the hull. It is possible to eliminate the need for continuous injection of the air and to stop the operation of the air injection device, and even if the air injection device is stopped, the frictional resistance reduction effect at the bottom of the ship is reduced. Can be maintained. Therefore, it becomes possible to make the energy reduction efficiency by reducing the frictional resistance of the hull higher than before.
(3) A structure in which the air reservoir is formed by an air reservoir forming member having a lattice structure attached to the lower surface of a required region of the ship bottom skin, or a lattice attached to the inside of a recess provided in the ship bottom. By adopting a configuration in which the partition member having the structure is formed, the device configuration for obtaining the effects (1) and (2) can be easily realized.
(4) A square or hexagonal air reservoir having a square lattice structure or a hexagonal lattice structure having a square lattice structure, a staggered square lattice gap, or a hexagonal lattice structure. Can be formed without gaps. Therefore, since it is possible to uniformly hold the air in each air reservoir, it is possible to obtain a uniform frictional resistance reduction effect over the entire surface of the bottom plate provided with the air reservoir.

以下、本発明を実施するための最良の形態を図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1(イ)(ロ)(ハ)及び図2(イ)(ロ)は本発明の船体摩擦抵抗低減装置の実施の一形態を示すもので、以下のようにしてある。   FIGS. 1 (a), (b), and (c) and FIGS. 2 (a) and (b) show one embodiment of the hull frictional resistance reduction device of the present invention, and are as follows.

すなわち、船体1の船底外板2の下面(表面)に、鉛直方向に沿う平板を格子状に組んだ格子構造としてなる空気溜り形成部材3の上端部を気密に取り付けて、該空気溜り形成部材3の各格子隙間に、船底外板2によって上側が閉塞された空気溜り4を設ける。   That is, an upper end portion of an air reservoir forming member 3 having a lattice structure in which flat plates along the vertical direction are assembled in a lattice shape is airtightly attached to the lower surface (front surface) of the ship bottom outer plate 2 of the hull 1. An air reservoir 4 whose upper side is closed by a ship bottom skin 2 is provided in each lattice gap 3.

更に、上記空気溜り形成部材3の設置個所よりも船首寄りの船底部所要個所に、空気噴出口5を設け、該空気噴出口5に、船体1に搭載した空気噴込装置6を、空気配管7を介し接続して、該空気噴込装置6の運転により、上記空気配管7を通して上記空気噴出口5へ空気8を送給し、該空気噴出口5より上記船体1の船首部寄りの船底へ空気を噴き込むことができるようにしてある。   Further, an air outlet 5 is provided at a required position on the bottom of the ship near the bow of the air reservoir forming member 3, and an air injection device 6 mounted on the hull 1 is connected to the air outlet 5 with an air pipe. 7, and by operating the air injection device 6, the air 8 is supplied to the air outlet 5 through the air pipe 7, and the ship bottom near the bow of the hull 1 from the air outlet 5. Air can be blown into.

詳述すると、タンカーやバルクキャリア等、船体1の平行部が長く、しかも船速が比較的遅くて造波抵抗よりも摩擦抵抗が大きい船舶における船体平行部の真下を向いた船底外板2の下面に、上記空気溜り形成部材3を取り付けるようにしてある。   More specifically, the bottom shell 2 of the ship bottom 1 facing the bottom of the parallel part of the ship, such as a tanker or a bulk carrier, has a long parallel part of the hull 1 and has a relatively slow ship speed and a friction resistance higher than the wave resistance. The air reservoir forming member 3 is attached to the lower surface.

上記空気溜り形成部材3は、船首尾方向Lに延びる薄い鋼板と船幅方向Wに延びる薄い鋼板を正方格子状に組み立ててなる正方格子構造として、各格子隙間に、船尾寄りの端部が船首尾方向Lと直交する方向に仕切られた方形の空気溜り4を形成することができるようにしてある。これにより、空気溜り4に満たされた空気が、船舶の前進航行時に空気溜り4の船尾寄りの端部に平均して押し付けられるようにすることで、空気溜り4内の空気が逃げ難くなるようにしてある。又、該各空気溜り4を、船首尾方向Lと船幅方向Wにそれぞれ整列させて形成できるようにしてある。   The air pool forming member 3 has a square lattice structure formed by assembling a thin steel plate extending in the stern direction L and a thin steel plate extending in the ship width direction W into a square lattice shape. A rectangular air pocket 4 partitioned in a direction orthogonal to the success direction L can be formed. As a result, the air filled in the air reservoir 4 is pressed against the stern end of the air reservoir 4 on average when the ship is traveling forward so that the air in the air reservoir 4 is less likely to escape. It is. Further, the air reservoirs 4 can be formed so as to be aligned in the fore-and-aft direction L and the ship width direction W, respectively.

更に、船舶の前進航行に伴い船底に沿って船首側より船尾側へ相対的に流れる水の流れが生じている状態であっても、浮力によって上記各空気溜り4の内側に入り込んだ空気8の気泡を該各空気溜り4に保持できるようにするために、上記空気溜り形成部材3は、たとえば、各格子隙間の内側に形成される個々の空気溜り4の高さ寸法yが5cm程度、対辺寸法xが10cm程度となるように、高さ寸法及び格子隙間の対辺寸法がそれぞれ設定してある。   Further, even in a state where water flows relatively along the bottom of the ship from the bow side to the stern side as the ship advances forward, the air 8 that has entered the inside of each air reservoir 4 due to buoyancy is generated. In order to enable the air bubbles to be held in the respective air reservoirs 4, the air reservoir forming member 3 has, for example, a height dimension y of each air reservoir 4 formed inside each lattice gap of about 5 cm, The height dimension and the opposite dimension of the lattice gap are set so that the dimension x is about 10 cm.

上記空気噴出口5は、上記船舶の航行時に上記空気溜り形成部材3により形成してある空気溜り4の下方を通る流線の上流側となる船首寄りの船底部所要個所に設けるようにしてある。これにより、上記船舶を航行させながら上記空気噴込装置6より空気配管7を通して導かれる空気8を空気噴出口5より船底へ噴き込むと、この船底へ噴き込まれた空気8が気泡となって、船舶の航行より船底に沿って相対的に船尾側へ流れる水の流れに伴われて上記空気溜り形成部材3により形成してある空気溜り4の下方へ導かれるようにしてあり、このようにして上記各空気溜り4の下方に達した空気8が、浮力によって該各空気溜り4に入るようにしてある。   The air outlet 5 is provided at a required portion of the ship bottom near the bow on the upstream side of the stream line passing below the air reservoir 4 formed by the air reservoir forming member 3 when the ship is sailing. . Accordingly, when the air 8 guided from the air injection device 6 through the air pipe 7 is injected into the ship bottom from the air outlet 5 while navigating the ship, the air 8 injected into the ship bottom becomes bubbles. The water is guided to the lower side of the air reservoir 4 formed by the air reservoir forming member 3 along with the flow of water flowing relatively toward the stern side along the bottom of the ship from the navigation of the ship. Thus, the air 8 that has reached the bottom of each air reservoir 4 enters each air reservoir 4 by buoyancy.

なお、図示する便宜上、図1(イ)(ロ)(ハ)では、空気溜り4を拡大して記載してある。(後述する図3(イ)(ロ)、図5、図6(イ)(ロ)でも同様。)   For convenience of illustration, the air reservoir 4 is shown enlarged in FIGS. 1 (a), (b), and (c). (The same applies to FIGS. 3 (a) and (b), FIG. 5, and FIGS. 6 (a) and (b) described later.)

以上の構成としてある船体摩擦抵抗低減装置を使用する場合は、先ず、該船体摩擦抵抗低減装置を装備した船舶を所要速度で前進航行させながら、上記空気噴込装置6を運転して、上記空気噴出口5より空気8を船底側へ噴き込むと、この船底に噴き込まれた空気8が気泡となって、船舶の航行により船底に沿って相対的に船尾側へ流れる水の流れに搬送されて上記空気溜り形成部材3により形成してある各空気溜り4の下方に達する。この各空気溜り4の下方に達した空気(気泡)8は、浮力によって該各空気溜り4に入り込んでトラップされるようになる。その後、或る空気溜り4が空気8で満たされると、該空気溜り4に収まらない分の空気(気泡)8は、より船尾側へ送られて、まだ空気8によって満たされていない空気溜り4へ入るようになる。よって、上記船舶の船底部に空気溜り形成部材3により形成されている各空気溜り4が、船首側より船尾側へ順次空気8で満たされるようになる。   When using the hull frictional resistance reducing device having the above-described configuration, first, the air injection device 6 is operated while the ship equipped with the hull frictional resistance reducing device is traveling forward at a required speed, and the air When the air 8 is injected from the jet outlet 5 toward the bottom of the ship, the air 8 injected into the bottom of the ship becomes bubbles and is conveyed to the flow of water that flows relatively toward the stern along the bottom of the ship. Thus, it reaches below each air reservoir 4 formed by the air reservoir forming member 3. The air (bubbles) 8 reaching below the air reservoirs 4 enters the air reservoirs 4 by buoyancy and are trapped. Thereafter, when a certain air reservoir 4 is filled with air 8, air (bubbles) 8 that does not fit in the air reservoir 4 is sent to the stern side, and the air reservoir 4 not yet filled with the air 8. To enter. Accordingly, each air reservoir 4 formed by the air reservoir forming member 3 on the bottom of the ship is sequentially filled with the air 8 from the bow side to the stern side.

上記のようにして、図1(ハ)に示す如く、船底部に設けてある各空気溜り4が空気8で満たされると、この各空気溜り4に保持された空気8の層によって船底部の境界層が覆われるようになる。このため、上記船舶では、船底部における摩擦抵抗が軽減されるようになることから、船体1全体での推進抵抗が減少する。   As described above, as shown in FIG. 1 (c), when each air reservoir 4 provided at the bottom of the ship is filled with air 8, the layer of the air 8 held in each air reservoir 4 The boundary layer becomes covered. For this reason, in the said ship, since the frictional resistance in a ship bottom part comes to be reduced, the propulsion resistance in the hull 1 whole reduces.

なお、上記のようにして船体1の推進抵抗が減少すると、上記船舶では、推進装置の出力に対する船速の伸びが高まるため、この推進装置の出力に対する船速の伸びが高まる現象に基づいて、上記各空気溜り4が空気8で満たされたことを知ることができる。よって、以降は、上記空気噴込装置6の運転を停止する。   When the propulsion resistance of the hull 1 is reduced as described above, in the ship, since the increase in the ship speed with respect to the output of the propulsion device increases, based on the phenomenon that the increase in the ship speed with respect to the output of the propulsion device increases. It can be known that each air reservoir 4 is filled with air 8. Therefore, after that, the operation of the air injection device 6 is stopped.

上記のように空気噴込装置6を停止しても、上記各空気溜り4では、浮力により一旦入り込んだ空気8の気泡が、保持されたままとなるため、上記船舶の船底部は、各空気溜り4に満たされた空気8の層によって船底部の境界層が継続して覆われ、よって、船底部の摩擦抵抗の軽減が維持されるようになる。   Even if the air injection device 6 is stopped as described above, in each air reservoir 4, the bubbles of the air 8 once entered due to buoyancy remain held. The boundary layer at the bottom of the ship is continuously covered by the layer of air 8 filled in the reservoir 4, so that the reduction in frictional resistance at the bottom of the ship is maintained.

このように、本発明の船体抵抗低減装置によれば、船舶の船底部に設けた各空気溜り4に保持させた空気8の気泡により該船舶の船底部と水との摩擦抵抗を低減させることができる。しかも、タンカーやバルクキャリア等、船体1の平行部が長い船型の船舶では、船底の面積が、該平行部の面積の約1/2に達することがあり、又、船速が比較的遅い船舶では、船体抵抗中の摩擦抵抗が占める割合が造波抵抗に比して大きいため、上記のように船体平行部の船底部に作用する摩擦抵抗を低減させることで、船舶全体では船体抵抗の大幅な削減化を図ることが可能になり、よって、該船舶の推進性能を向上させることができる。   Thus, according to the hull resistance reducing apparatus of the present invention, the frictional resistance between the bottom of the ship and water is reduced by the bubbles of the air 8 held in each air reservoir 4 provided at the bottom of the ship. Can do. Moreover, in a ship having a long parallel part of the hull 1 such as a tanker or a bulk carrier, the area of the bottom of the ship may reach about ½ of the area of the parallel part, and the ship speed is relatively slow. Since the ratio of frictional resistance in hull resistance is larger than wave resistance, reducing the frictional resistance acting on the bottom of the parallel part of the hull as described above greatly increases the hull resistance for the entire ship. Therefore, the propulsion performance of the ship can be improved.

更に、上記各空気溜り4に一旦入った空気8の気泡は、船舶の航行時等に生じる船体1の運動によっても容易に散逸することがないため、上記各空気溜り4に空気8が満たされた後は、船底への空気8の噴き込みを常時継続する必要をなくすことができて、空気噴込装置6の運転を停止することが可能になる。又、上記各空気溜り4の空気が多少散逸しても、上記空気噴込装置6の運転を再開すれば、上記各空気溜り4を空気8の気泡で満たすことが可能なため、少ないエネルギーの投入で、船体摩擦抵抗低減効果を得ることができる。よって、船体1の摩擦抵抗低減によるエネルギーの削減効率を従来に比して高いものとすることが可能になる。   Further, since the bubbles of the air 8 once entered into the respective air reservoirs 4 are not easily dissipated by the movement of the hull 1 generated during navigation of the ship, the air reservoirs 4 are filled with the air 8. After that, it is possible to eliminate the necessity of continuously injecting the air 8 into the ship bottom, and the operation of the air injection device 6 can be stopped. Further, even if the air in each air reservoir 4 is somewhat dissipated, if the operation of the air injection device 6 is resumed, each air reservoir 4 can be filled with bubbles of air 8, so that less energy is consumed. By loading, the hull frictional resistance reduction effect can be obtained. Therefore, it becomes possible to make the energy reduction efficiency by the reduction of the frictional resistance of the hull 1 higher than before.

次に、図3(イ)(ロ)は本発明の実施の他の形態として、図1(イ)(ロ)(ハ)及び図2(イ)(ロ)の実施の形態の変形例を示すもので、図1(イ)(ロ)(ハ)及び図2(イ)(ロ)に示したと同様の構成において、空気噴出口5を、船底外板2における空気溜り形成部材3の設置個所よりも船首寄りの船底部所要個所に設けた構成に代えて、空気噴込装置6に空気配管7を介し接続した空気噴出口5を、上記船底外板2に空気溜り形成部材3を取り付けることで形成する空気溜り4のうち、最も船首寄りに位置する空気溜り4の内部と対応する位置の船底部に設けるようにしたものである。   Next, FIG. 3 (a) (b) is a modification of the embodiment of FIGS. 1 (a) (b) (c) and FIGS. 2 (a) (b) as another embodiment of the present invention. In the configuration similar to that shown in FIGS. 1 (a), (b), (c) and FIGS. 2 (a), (b), the air outlet 5 is provided with the air pool forming member 3 in the ship bottom skin 2. Instead of the configuration provided at the required part of the ship bottom near the bow, the air outlet 5 connected to the air injection device 6 via the air pipe 7 is attached, and the air reservoir forming member 3 is attached to the ship bottom skin 2. Among the air reservoirs 4 formed in this way, they are provided at the bottom of the ship corresponding to the interior of the air reservoir 4 located closest to the bow.

その他の構成は図1(イ)(ロ)(ハ)及び図2(イ)(ロ)に示したものと同様であり、同一のものには同一の符号が付してある。   Other configurations are the same as those shown in FIGS. 1 (a), (b), and (c) and FIGS. 2 (a) and (b), and the same components are denoted by the same reference numerals.

以上の構成としてある本実施の形態の船体摩擦抵抗低減装置を装備した船舶を所要速度で前進航行させながら、上記空気噴込装置6を運転して、空気配管7を通して導かれる空気8を空気噴出口5より船底に噴き出すと、図3(ロ)に示すように、先ず、上記船底外板2に空気溜り形成部材3を取り付けることで形成する空気溜り4のうちの最も船首寄りに位置する空気溜り4が空気8で満たされた後、該最も船首寄りに位置する空気溜り4より溢れ出る空気8の気泡が、船舶の航行により船底に沿って相対的に船尾側へ流れる水の流れに搬送されて、その船尾側に配置されている別の空気溜り4に入るようになるため、上記船舶の船底部に空気溜り形成部材3により形成されている各空気溜り4が、船首側より船尾側へ順次空気8で満たされるようになる。   While the ship equipped with the hull frictional resistance reduction device of the present embodiment having the above-described configuration is traveling forward at a required speed, the air injection device 6 is operated, and the air 8 guided through the air pipe 7 is injected into the air. When jetted from the outlet 5 to the bottom of the ship, as shown in FIG. 3 (b), first, the air located closest to the bow of the air pool 4 formed by attaching the air pool forming member 3 to the ship bottom skin 2. After the reservoir 4 is filled with the air 8, the bubbles of the air 8 overflowing from the air reservoir 4 located closest to the bow are transported to the flow of water flowing toward the stern side relatively along the bottom of the ship. In order to enter another air reservoir 4 arranged on the stern side, each air reservoir 4 formed by the air reservoir forming member 3 at the bottom of the ship is connected to the stern side from the bow side. Sequentially filled with air 8 It becomes so that.

よって、本実施の形態によっても、図1(イ)(ロ)(ハ)及び図2(イ)(ロ)に示したと同様の効果を得ることができる。   Therefore, according to this embodiment, the same effects as those shown in FIGS. 1A, 1B, and 2A, 2B can be obtained.

次いで、図4(イ)(ロ)は本発明の実施の更に他の形態として、図1(イ)(ロ)(ハ)及び図2(イ)(ロ)の実施の形態の別の変形例を示すもので、図4(イ)は、図1(イ)(ロ)(ハ)及び図2(イ)(ロ)に示したと同様の構成において、鉛直方向に沿う平板を格子状に組んだ格子構造の空気溜り形成部材を、船首尾方向Lに延びる薄い鋼板と船幅方向Wに延びる薄い鋼板を正方格子状に組み立ててなる正方格子構造の空気溜り形成部材3とすることに代えて、船首尾方向Lに延びる薄い鋼板と船幅方向Wに延びる薄い鋼板により、方形の格子隙間が千鳥状に配置された格子構造を有する空気溜り形成部材3aとしたもので、該空気溜り形成部材3aを、船舶の船底外板2の下面に取り付けることで、該空気溜り形成部材3aの格子隙間に、船尾寄りの端部が船首尾方向Lと直交する方向に仕切られた方形の空気溜り4を、千鳥状に配列した状態で形成できるようにしてある。   Next, FIG. 4 (a) (b) is another modification of the embodiment of the present invention, and another modification of the embodiment of FIG. 1 (b) (b) (c) and FIG. 2 (b) (b). FIG. 4 (a) shows an example. In the same configuration as shown in FIGS. 1 (a), (b), and (c) and FIGS. 2 (a) and (b), flat plates along the vertical direction are arranged in a lattice shape. Instead of the air lattice forming member having the assembled lattice structure, the air reservoir forming member 3 having a square lattice structure formed by assembling a thin steel plate extending in the stern direction L and a thin steel plate extending in the ship width direction W into a square lattice shape. The air reservoir forming member 3a having a lattice structure in which square lattice gaps are arranged in a staggered manner by a thin steel plate extending in the stern direction L and a thin steel plate extending in the ship width direction W. By attaching the member 3a to the lower surface of the ship bottom skin 2 of the ship, the air reservoir forming member 3a Child gap, a rectangular air reservoir 4 partitioned in the direction in which the end of the stern closer is orthogonal to the stern direction L, are also available formed in a state arranged in a staggered manner.

又、図4(ロ)は、鉛直方向に沿う平板を格子状に組んだ格子構造の空気溜り形成部材を、船首尾方向Lに延びる薄い鋼板と船幅方向Wに延びる薄い鋼板を正方格子状に組み立ててなる正方格子構造の空気溜り形成部材3とすることに代えて、船幅方向Wの薄い鋼板と、該鋼板に対し120度異なる2つの方向にそれぞれ沿う薄い鋼板とを六角格子構造に組み立ててなる空気溜り形成部材3bとしたもので、該空気溜り形成部材3bを、船舶の船底外板2の下面に取り付けることで、該空気溜り形成部材3bの格子隙間に、船尾寄りの端部が船首尾方向Lと直交する方向に仕切られた六角形の空気溜り4を隙間なく形成できるようにしてある。   FIG. 4 (b) shows an air reservoir forming member having a lattice structure in which flat plates along the vertical direction are assembled in a lattice shape, a thin steel plate extending in the fore-and-aft direction L and a thin steel plate extending in the ship width direction W in a square lattice shape. Instead of the air lattice forming member 3 having a square lattice structure assembled into a hexagonal lattice structure, a thin steel plate in the ship width direction W and a thin steel plate along two directions different from each other by 120 degrees with respect to the steel plate. The air reservoir forming member 3b is assembled, and the air reservoir forming member 3b is attached to the lower surface of the ship bottom outer plate 2 so that the stern end of the air reservoir forming member 3b is inserted into the lattice gap of the air reservoir forming member 3b. The hexagonal air reservoir 4 partitioned in a direction orthogonal to the bow-stern direction L can be formed without a gap.

図4(イ)(ロ)において、その他の構成は図1(イ)(ロ)(ハ)及び図2(イ)(ロ)に示したものと同様であり、同一のものには同一の符号が付してある。   4 (a) and (b), the other configurations are the same as those shown in FIGS. 1 (a), (b), and (c) and FIGS. 2 (a) and (b). The code | symbol is attached | subjected.

上記図4(イ)(ロ)の実施の形態によっても、上記図1(イ)(ロ)(ハ)及び図2(イ)(ロ)の実施の形態と同様の効果を得ることができる。更に、図4(イ)(ロ)の実施の形態のものでは、船幅方向に並ぶ2つの空気溜り4の中間位置の船尾側に別の空気溜り4が配されているため、上記船幅方向に並ぶ2つの空気溜り4の中間位置の下方を通過する空気8の気泡を、効率よくその船尾側に配されている空気溜り4に導くことができるため、船首尾方向Lに配置されている各空気溜り4に対する空気8の気泡の充填効率を高める効果が期待できる。   According to the embodiment shown in FIGS. 4 (a) and (b), the same effects as those of the embodiments shown in FIGS. 1 (a), (b), and (c) and FIGS. 2 (a) and (b) can be obtained. . Further, in the embodiment shown in FIGS. 4 (a) and 4 (b), since another air reservoir 4 is arranged on the stern side at the intermediate position between the two air reservoirs 4 arranged in the width direction of the boat, Since the bubbles of the air 8 passing below the intermediate position between the two air reservoirs 4 arranged in the direction can be efficiently guided to the air reservoir 4 arranged on the stern side, the air bubbles 4 are arranged in the stern direction L. The effect which raises the filling efficiency of the bubble of the air 8 with respect to each air reservoir 4 which can be anticipated can be anticipated.

図5は本発明の実施の更に他の形態として、図1(イ)(ロ)(ハ)及び図2(イ)(ロ)の実施の形態の応用例を示すもので、図1(イ)(ロ)(ハ)及び図2(イ)(ロ)の実施の形態と同様の構成において、船首尾方向に配列されている各空気溜り4のうち、所要の空気溜り4、たとえば、最も船尾寄りに位置する空気溜りを含む長手方向所要間隔の空気溜り4に、空気8の気泡がトラップされたことを検出するための気泡センサ9を設け、更に、該気泡センサ9からの信号に応じて空気噴込装置6の運転を制御するための制御器10を備える構成としたものである。   FIG. 5 shows an application example of the embodiment shown in FIGS. 1 (a), (b), and (c) and FIGS. 2 (a) and (b) as still another embodiment of the present invention. ) (B) (C) and FIG. 2 (B) and (B) in the same configuration as the embodiment, among the air pools 4 arranged in the bow-stern direction, the required air pool 4, for example, the most An air bubble sensor 9 for detecting that air bubbles are trapped is provided in the air reservoir 4 at a required interval in the longitudinal direction including the air reservoir located near the stern, and further, according to a signal from the air bubble sensor 9 Thus, the controller 10 is configured to control the operation of the air injection device 6.

その他の構成は図1(イ)(ロ)(ハ)及び図2(イ)(ロ)に示したものと同様であり、同一のものには同一の符号が付してある。   Other configurations are the same as those shown in FIGS. 1 (a), (b), and (c) and FIGS. 2 (a) and (b), and the same components are denoted by the same reference numerals.

本実施の形態によれば、船舶を所要速度で前進航行させながら、上記空気噴込装置6を運転して、空気噴出口5より船底に空気8を噴き込むときに、船首尾方向に配列してあって船首寄りに位置するものから順次空気8の気泡が満たされるようにしてある各空気溜り4のうち、船尾側へどの程度寄った位置の空気溜り4まで空気8で満たされたかを、上記センサ9によって検出することができるようになる。よって、上記気泡センサ9により最も船尾側に位置する空気溜り4まで空気8が満たされたことが検出された段階で、上記制御器10により上記空気噴込装置6の運転を自動的に停止させるようにすることが可能となる。   According to the present embodiment, when the air injection device 6 is operated while the ship is moving forward at a required speed and the air 8 is injected from the air outlet 5 to the bottom of the ship, they are arranged in the fore-and-aft direction. Of the air reservoirs 4 that are filled with bubbles of air 8 in order from the one located closer to the bow, how far the air reservoir 4 at the position closer to the stern side is filled with the air 8 It can be detected by the sensor 9. Therefore, the operation of the air injection device 6 is automatically stopped by the controller 10 when it is detected by the bubble sensor 9 that the air 8 has been filled up to the air reservoir 4 located closest to the stern side. It becomes possible to do so.

なお、上記図5と同様に気泡センサ9を具備した構成において、該気泡センサ9により最も船尾側に位置する空気溜り4まで空気8が満たされたことが検出された段階で、制御器10により上記空気噴込装置6の運転を自動的に停止させる構成に代えて、上記気泡センサ9により最も船尾側に位置する空気溜り4まで空気8が満たされたことが検出されたら、空気噴込装置6の運転を手動で停止させるようにしてもよい。   In the configuration including the bubble sensor 9 as in FIG. 5, the controller 10 detects when the bubble sensor 9 detects that the air 8 has been filled up to the air reservoir 4 located closest to the stern side. Instead of the configuration in which the operation of the air injection device 6 is automatically stopped, when the bubble sensor 9 detects that the air 8 has been filled up to the air reservoir 4 located closest to the stern side, the air injection device The operation of 6 may be manually stopped.

図6(イ)(ロ)は本発明の実施の更に他の形態を示すもので、図1(イ)(ロ)(ハ)及び図2(イ)(ロ)に示したと同様の構成において、船底外板2の下面に格子構造の空気溜り形成部材3を取り付けて、該空気溜り形成部材3の格子隙間の内側に空気溜り4を形成する構成に代えて、船体1の船底部に、空気溜り4に所望する高さ寸法と対応する所要の深さ寸法の凹部11を設け、更に、該凹部11の内側に、鉛直方向に沿う平板を、図2(ロ)に示したと同様の正方格子構造、又は、図4(イ)に示したと同様の千鳥配置された格子隙間を有する格子構造、又は、図4(ロ)に示したと同様の六角格子構造に組んでなる格子構造の仕切部材12を取り付けて、上記凹部11の内側に、上記仕切部材12により船尾寄りの端部が船首尾方向Lと直交する方向となるように隙間なく仕切られた方形又は六角形の空気溜り4を形成して設けた構成としてある。   FIGS. 6 (a) and 6 (b) show still another embodiment of the present invention. In the configuration similar to that shown in FIGS. 1 (a), (b) and (c) and FIGS. In place of the structure in which the air pool forming member 3 having a lattice structure is attached to the lower surface of the ship bottom skin 2 and the air pool 4 is formed inside the lattice gap of the air pool forming member 3, The air reservoir 4 is provided with a recess 11 having a required depth corresponding to the desired height, and a flat plate extending in the vertical direction is formed inside the recess 11 in the same square as shown in FIG. Partition member having a lattice structure or a lattice structure having a lattice gap arranged in a staggered manner similar to that shown in FIG. 4A or a hexagonal lattice structure similar to that shown in FIG. 12 is attached, and the end near the stern by the partition member 12 is placed inside the concave portion 11 at the bow. There a structure in which to form a square or hexagonal air reservoir 4 which are partitioned without gaps such that the direction orthogonal to the direction L.

その他の構成は図1(イ)(ロ)(ハ)及び図2(イ)(ロ)に示したものと同様であり、同一のものには同一の符号が付してある。   Other configurations are the same as those shown in FIGS. 1 (a), (b), and (c) and FIGS. 2 (a) and (b), and the same components are denoted by the same reference numerals.

本実施の形態によっても、船舶を所要速度で前進航行させた状態で、空気噴込装置6を運転して空気噴出口5より空気8の気泡を船底に噴き込むと、上記船底の凹部11の内側に設けてある各空気溜り4に、図6(ロ)に示すように空気8の気泡が満たされるようになる。よって本実施の形態によっても、図1(イ)(ロ)(ハ)及び図2(イ)(ロ)の実施の形態と同様の効果を得ることができる。   Also in this embodiment, when the air injection device 6 is operated and air bubbles are injected from the air outlet 5 into the bottom of the ship while the ship is traveling forward at the required speed, the concave portion 11 of the bottom of the ship is Each air reservoir 4 provided inside is filled with bubbles of air 8 as shown in FIG. Therefore, according to this embodiment, it is possible to obtain the same effect as that of the embodiment of FIGS. 1 (A), (B), and (C) and FIGS.

なお、本発明は、上記実施の形態にのみ限定されるものではなく、空気溜り4の対辺寸法xや高さ寸法yは、船舶の前進航行に伴い船底に沿って船首側より船尾側へ相対的に流れる水の流れが生じている状態であっても、浮力によって上記各空気溜り4の内側に入り込んだ空気8の気泡を該各空気溜り4に保持できるようにしてあれば、船舶の喫水の深さ寸法や、該船舶の航行速度等に応じて適宜変更してもよい。   The present invention is not limited only to the above-described embodiment, and the opposite side dimension x and height dimension y of the air reservoir 4 are relative to the stern side from the bow side along the ship bottom as the ship advances forward. Even if the flow of flowing water is generated, if the air bubbles that have entered inside the air reservoirs 4 can be held in the air reservoirs 4 by buoyancy, the drafts of the ship May be changed as appropriate according to the depth dimension of the ship, the navigation speed of the ship, and the like.

図3(イ)(ロ)の実施の形態、図6(イ)(ロ)の実施の形態に、図5の実施の形態の気泡センサ9と制御器10を設ける構成としてもよい。   The bubble sensor 9 and the controller 10 of the embodiment of FIG. 5 may be provided in the embodiment of FIGS. 3A and 3B and the embodiment of FIGS. 6A and 6B.

図6(イ)(ロ)の実施の形態における空気噴出口5を、図3(イ)(ロ)の実施の形態と同様に、船首尾方向に配列されている空気溜り4のうちの最も船首寄りに位置する空気溜り4の内側に設ける構成としてもよい。   As in the embodiment of FIGS. 3 (A) and 3 (B), the air outlet 5 in the embodiment of FIGS. 6 (A) and (B) is the most of the air reservoirs 4 arranged in the bow-stern direction. It is good also as a structure provided in the inside of the air pocket 4 located near the bow.

図3(イ)(ロ)の実施の形態、図5の実施の形態において、正方格子構造の空気溜り形成部材3に代えて、図4(イ)に示した如き千鳥配置の方形の格子隙間を有する空気溜り形成部材3a、又は、図4(ロ)に示した如き六角格子構造の空気溜り形成部材3bを用いるようにしてもよい。   In the embodiment of FIGS. 3 (a) and 3 (b) and the embodiment of FIG. 5, instead of the air reservoir forming member 3 having a square lattice structure, a rectangular lattice gap with a staggered arrangement as shown in FIG. Alternatively, an air reservoir forming member 3a having a hexagonal lattice structure as shown in FIG. 4B may be used.

本発明の船体摩擦抵抗低減装置は、タンカーやバルクキャリア等、船体1の平行部が長く、しかも船速が比較的遅くて造波抵抗よりも摩擦抵抗が大きい船舶の船体摩擦抵抗を低減させるのに適しているが、船体に作用する摩擦抵抗の低減を望む船舶であれば、その他の形式の船舶に適用してもよい。   The hull frictional resistance reduction device of the present invention reduces the hull frictional resistance of a ship such as a tanker or a bulk carrier that has a long parallel portion of the hull 1 and that has a relatively slow ship speed and a frictional resistance that is greater than the wave resistance. However, as long as the ship desires to reduce the frictional resistance acting on the hull, it may be applied to other types of ships.

その他本発明の要旨を逸脱しない範囲内で種々変更を加え得ることは勿論である。   Of course, various modifications can be made without departing from the scope of the present invention.

本発明の船体摩擦抵抗低減装置の実施の一形態を示すもので、(イ)は一部切断概略側面図、(ロ)は(イ)のA−A方向矢視図、(ハ)は船底に空気を噴き込んだ状態を示す一部切断概略側面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of a hull frictional resistance reducing device according to the present invention. It is a partial cutting schematic side view which shows the state which injected the air into. 図1の装置における空気溜り形成部材により形成した空気溜りを拡大して示すもので、(イ)は切断側面図、(ロ)は底面図である。FIG. 2 is an enlarged view of an air reservoir formed by an air reservoir forming member in the apparatus of FIG. 1, (a) is a cut side view, and (b) is a bottom view. 本発明の実施の他の形態を示すもので、(イ)は一部切断概略側面図、(ロ)は船底に空気を噴き込んだ状態を示す一部切断概略側面図である。FIG. 4 shows another embodiment of the present invention, in which (A) is a partially cut schematic side view, and (B) is a partially cut schematic side view showing a state in which air is blown into the ship bottom. 本発明の実施の更に他の形態を示すもので、(イ)(ロ)はいずれも空気溜り形成部材の別の例をそれぞれ示す概略底面図である。FIG. 5 shows still another embodiment of the present invention, and (A) and (B) are schematic bottom views respectively showing other examples of the air reservoir forming member. 本発明の実施の更に他の形態を示す一部切断概略側面図である。It is a partially cut away schematic side view which shows other form of implementation of this invention. 本発明の実施の更に他の形態を示すもので、(イ)は一部切断概略側面図、(ロ)は船底に空気を噴き込んだ状態を示す一部切断概略側面図である。FIG. 5 shows still another embodiment of the present invention, in which (A) is a partially cut schematic side view, and (B) is a partially cut schematic side view showing a state where air is blown into the ship bottom.

符号の説明Explanation of symbols

2 船底外板
3,3a,3b 空気溜り形成部材
4 空気溜り
5 空気噴出口
6 空気噴込装置
8 空気
11 凹部
12 仕切部材
2 Ship bottom skin 3, 3a, 3b Air pool forming member 4 Air pool 5 Air outlet 6 Air injection device 8 Air 11 Recess 12 Partition member

Claims (5)

船舶の船底外板の下面の所要の領域に、船首尾方向及び船幅方向に並ぶように複数の空気溜りを設け、且つ該各空気溜りを設けた領域の船首側の所要個所に、空気噴込装置に接続した空気噴出口を設けて、該空気噴出口より船底へ噴き込まれる空気を、上記各空気溜りに保持させるようにしてなる構成を有することを特徴とする船体摩擦抵抗低減装置。   A plurality of air reservoirs are provided in a required area on the lower surface of the ship's bottom skin plate in a bow-stern direction and a ship width direction, and air jets are applied to required areas on the bow side of the areas where the respective air reservoirs are provided. A hull frictional resistance reduction device having a structure in which an air jet port connected to a squeeze device is provided, and the air jetted from the air jet port to the ship bottom is held in each air reservoir. 空気溜りを、船底外板の所要の領域の下面に取り付けた格子構造の空気溜り形成部材により形成するようにした請求項1記載の船体摩擦抵抗低減装置。   2. The hull frictional resistance reduction device according to claim 1, wherein the air pocket is formed by an air pool forming member having a lattice structure attached to a lower surface of a required region of the ship bottom skin. 空気溜り形成部材を、正方格子構造、又は、千鳥配置の方形の格子隙間を有する格子構造、又は、六角格子構造とした請求項2記載の船体摩擦抵抗低減装置。   The hull frictional resistance reduction device according to claim 2, wherein the air pool forming member is a square lattice structure, a lattice structure having a square lattice gap in a staggered arrangement, or a hexagonal lattice structure. 空気溜りを、船舶の船底部に設けた凹部の内側に取り付けた格子構造の仕切部材により形成するようにした請求項1記載の船体摩擦抵抗低減装置。   The hull frictional resistance reduction device according to claim 1, wherein the air pocket is formed by a partition member having a lattice structure attached to an inner side of a concave portion provided in a ship bottom portion of a ship. 仕切部材を、正方格子構造、又は、千鳥配置の方形の格子隙間を有する格子構造、又は、六角格子構造とした請求項4記載の船体摩擦抵抗低減装置。   The hull frictional resistance reduction device according to claim 4, wherein the partition member has a square lattice structure, a lattice structure having a square lattice gap in a staggered arrangement, or a hexagonal lattice structure.
JP2008104002A 2008-04-11 2008-04-11 Hull frictional resistance reducing device Withdrawn JP2009255621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008104002A JP2009255621A (en) 2008-04-11 2008-04-11 Hull frictional resistance reducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104002A JP2009255621A (en) 2008-04-11 2008-04-11 Hull frictional resistance reducing device

Publications (1)

Publication Number Publication Date
JP2009255621A true JP2009255621A (en) 2009-11-05

Family

ID=41383629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104002A Withdrawn JP2009255621A (en) 2008-04-11 2008-04-11 Hull frictional resistance reducing device

Country Status (1)

Country Link
JP (1) JP2009255621A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101012648B1 (en) * 2010-04-01 2011-02-09 대우조선해양 주식회사 Air supply method of air cavity vessel
JP2011246076A (en) * 2010-05-29 2011-12-08 National Institute For Materials Science Adhesion structure and underwater moving apparatus using the same
KR101191459B1 (en) 2011-01-19 2012-10-15 현대중공업 주식회사 Air-cavity by attachable and detachable tube typed wall
KR101224311B1 (en) * 2011-01-19 2013-01-21 현대중공업 주식회사 Air-cavity by attachable and detachable wall
KR101484802B1 (en) 2010-12-24 2015-01-20 현대중공업 주식회사 Apparatus for preventing air loss of air cavity vessel
CN108082388A (en) * 2017-11-30 2018-05-29 中国船舶工业***工程研究院 A kind of micro-nano structure and the modified mutually compound bionic, drag-reducing surface texture of hydrophobic modification
CN108472694A (en) * 2015-12-23 2018-08-31 波恩莱茵弗里德里希·威廉大学 The network retained for stabilizing gas under liquid
WO2021075001A1 (en) * 2019-10-16 2021-04-22 株式会社トライアンドイー Bubble retainer for waterborne vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078092A (en) * 1973-11-13 1975-06-25
JPH0814216A (en) * 1994-06-30 1996-01-16 Kenji Inaba Fluid resistance reducing structure on body surface
JP2005048904A (en) * 2003-07-30 2005-02-24 National Institute Of Advanced Industrial & Technology Method and device of reducing fluidity resistance
JP2006514896A (en) * 2002-05-07 2006-05-18 ディーケー・グループ・エヌ.エー. エヌ.ブイ. Air cavity ship having wedge-shaped cavities, longitudinally displaced cavities, and rotation control means, and a method of building the air cavity ship

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078092A (en) * 1973-11-13 1975-06-25
JPH0814216A (en) * 1994-06-30 1996-01-16 Kenji Inaba Fluid resistance reducing structure on body surface
JP2006514896A (en) * 2002-05-07 2006-05-18 ディーケー・グループ・エヌ.エー. エヌ.ブイ. Air cavity ship having wedge-shaped cavities, longitudinally displaced cavities, and rotation control means, and a method of building the air cavity ship
JP2005048904A (en) * 2003-07-30 2005-02-24 National Institute Of Advanced Industrial & Technology Method and device of reducing fluidity resistance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101012648B1 (en) * 2010-04-01 2011-02-09 대우조선해양 주식회사 Air supply method of air cavity vessel
JP2011246076A (en) * 2010-05-29 2011-12-08 National Institute For Materials Science Adhesion structure and underwater moving apparatus using the same
KR101484802B1 (en) 2010-12-24 2015-01-20 현대중공업 주식회사 Apparatus for preventing air loss of air cavity vessel
KR101191459B1 (en) 2011-01-19 2012-10-15 현대중공업 주식회사 Air-cavity by attachable and detachable tube typed wall
KR101224311B1 (en) * 2011-01-19 2013-01-21 현대중공업 주식회사 Air-cavity by attachable and detachable wall
CN108472694A (en) * 2015-12-23 2018-08-31 波恩莱茵弗里德里希·威廉大学 The network retained for stabilizing gas under liquid
US20180362118A1 (en) * 2015-12-23 2018-12-20 Rheinische Friedrich-Wilhelms Universität Bonn Grid structures for stable gas retention under liquids
JP2019510662A (en) * 2015-12-23 2019-04-18 ライニッシェ フリードリヒ−ヴィルヘルム ウニヴェルズィテート ボン Lattice structure for stable gas retention under liquid
CN108082388A (en) * 2017-11-30 2018-05-29 中国船舶工业***工程研究院 A kind of micro-nano structure and the modified mutually compound bionic, drag-reducing surface texture of hydrophobic modification
WO2021075001A1 (en) * 2019-10-16 2021-04-22 株式会社トライアンドイー Bubble retainer for waterborne vehicle

Similar Documents

Publication Publication Date Title
JP2009255621A (en) Hull frictional resistance reducing device
US7997221B2 (en) Apparatus for reducing drag on a nautical vessel
KR101348081B1 (en) Air cavity and air lubrication type ship with stern of step shape forming at propeller area
JP2009274705A (en) Frictional resistance reduction ship and method for operating the same
JP2017507073A (en) Air lubrication system and ship equipped with such a system
JP2008143345A (en) Hull frictional resistance reduction device
TWI647147B (en) Flat bottom boat and method of controlling at least one air cavity length
JP5797418B2 (en) Bubble blowing device for reducing frictional resistance of ships
JP2009248611A (en) Frictional resistance reduction device for ship
JP2008013128A (en) Hull friction resistance reduction device
JP5311541B2 (en) Ship bubble holding device
KR101616261B1 (en) Ship provided with bubble resistance reduction device, and method for reducing resistance of ship
JP2009262598A (en) Antiroll method and device of multihull
JP2007537917A (en) Method and apparatus for reducing water friction on a ship hull
WO2017169035A1 (en) Ship bottom structure of twin skeg ship, and twin skeg ship
KR20130080513A (en) The coefficient drop type boat hull construction
JP5806251B2 (en) Ship equipped with bubble resistance reduction device and ship resistance reduction method
JP5799982B2 (en) Ship bubble holding device
US7059260B1 (en) Steering control by means of selected segmented drag reduction
JPH09151913A (en) Method of reducing friction of ship etc and friction reduced ship
JP2009292202A (en) Method for reducing frictional resistance force between ship body and water
KR101487416B1 (en) Propulsion reinforced ship
JP2007246041A (en) Low frictional resistance enlarged ship
JP2011088515A (en) Frictional resistance reducing ship
JP2002079986A (en) Ship reduced in friction resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121225

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121227