JP2009255169A - Flux-cored wire for extra-low hydrogen welding, and method for producing the same - Google Patents

Flux-cored wire for extra-low hydrogen welding, and method for producing the same Download PDF

Info

Publication number
JP2009255169A
JP2009255169A JP2009049398A JP2009049398A JP2009255169A JP 2009255169 A JP2009255169 A JP 2009255169A JP 2009049398 A JP2009049398 A JP 2009049398A JP 2009049398 A JP2009049398 A JP 2009049398A JP 2009255169 A JP2009255169 A JP 2009255169A
Authority
JP
Japan
Prior art keywords
wire
flux
less
welding
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009049398A
Other languages
Japanese (ja)
Other versions
JP5310108B2 (en
Inventor
Kazuhiro Kojima
一浩 児嶋
Toshinaga Hasegawa
俊永 長谷川
Ryuichi Shimura
竜一 志村
Tadashi Kasuya
正 糟谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009049398A priority Critical patent/JP5310108B2/en
Publication of JP2009255169A publication Critical patent/JP2009255169A/en
Application granted granted Critical
Publication of JP5310108B2 publication Critical patent/JP5310108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flux-cored wire for extra-low hydrogen welding, which achieves the welding of high tensile strength steel having tensile strength in a class of ≥690 MPa under a satisfactory welding operation, and to provide a method for producing the same. <P>SOLUTION: Disclosed is a flux-cored wire for extra-low hydrogen welding obtained by filling flux into an outer skin made of steel, which has a composition comprising, by mass% to the total mass of the wire, 0.04 to 0.20% C, 0.1 to 1.5% Si and 0.6 to 2.5% Mn, comprising one or more kinds selected from Mg, Ca, Al, Zr and rare earth metals by 0.01 to 2.00% in total, and the balance iron with inevitable impurities, and in which the value of PTS=C+Si/24+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5(%) is 0.36 to 1.0 mass% to the whole wire, the total hydrogen content in the wire is ≤6.0 ppm by the mass ratio of the whole wire, and the outer skin made of steel has no slit-shaped joints having the risk of air infiltration. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、フラックス入り極低水素溶接用ワイヤ及びその製造方法に関し、特に、建設機械、海洋構造物等における引張強さが690MPa級以上の高張力鋼の溶接に使用される場合に、低水素であるために高強度でも低温割れの危険が少なく、優れた溶接施工性が得られる、フラックス入り極低水素溶接用ワイヤ及びその製造方法に関する。   The present invention relates to a flux-cored ultra-low hydrogen welding wire and a method for manufacturing the same, and in particular, when used for welding high-strength steel having a tensile strength of 690 MPa or more in construction machinery, offshore structures, and the like. Therefore, the present invention relates to a flux-cored ultra-low hydrogen welding wire and a method for producing the same, which can reduce the risk of cold cracking even at high strength and can provide excellent weldability.

フラックス入りワイヤにはフラックスを充填した後に、鋼製外皮を巻き締めて製造するもの(Cタイプ)と、鋼性外皮を溶接することにより継ぎ目を無くし、外気との接触を遮断したタイプのもの(Oタイプ)の両方があるが、本発明ではOタイプに属するものである。   Flux-cored wires are manufactured by winding the steel outer shell after filling the flux (C type), and by welding the steel outer shell to eliminate the seam and cut off contact with the outside air ( O type) in the present invention belongs to the O type.

また、フラックス入りワイヤは大きく分けてスラグ系フラックス入りワイヤと称されているスラグ成分を主としたフラックスを充填したワイヤと、メタル系フラックス入りワイヤと称されている金属成分を主としたフラックスを充填したワイヤの双方があるが、本発明はメタル系フラックス入りワイヤを対象としている。   Also, flux-cored wires can be broadly divided into a wire filled with a flux mainly composed of slag component called slag-based flux-cored wire and a flux mainly composed of metal component called metal-based flux-cored wire. Although there are both filled wires, the present invention is directed to metal-based flux-cored wires.

尚、本発明のフラックス入りワイヤは、ガスシールドアーク溶接を主たる適用先としているが、サブマージアーク用の溶接ワイヤとして使用しても差し支えない。   The flux-cored wire of the present invention is mainly applied to gas shielded arc welding, but may be used as a welding wire for submerged arc.

高張力鋼は、建設機械や船舶、海洋構造物分野などで使用されている。これらの溶接には施工性と利便性の点から手溶接やガスシールド溶接が広く使われており、そのガスシールド溶接にはソリッドワイヤとフラックス入りワイヤが使われるのが通常である。   High-strength steel is used in the fields of construction machinery, ships and offshore structures. For these weldings, manual welding and gas shield welding are widely used in terms of workability and convenience, and solid wire and flux-cored wire are usually used for the gas shield welding.

ソリッドワイヤについては、例えば引張強さ690MPa級以上の高強度鋼用の溶接ワイヤが既に市販されており、十分な使用実績を確立している。一方、フラックス入りワイヤにおいては、引張強さ590MPa級鋼用では市販されているが、引張強さ690MPa級以上の高張力鋼用溶接ワイヤに関しては、十分に市場で使われていないのが実情である。   As for the solid wire, for example, a welding wire for high-strength steel having a tensile strength of 690 MPa or higher is already on the market, and a sufficient track record has been established. On the other hand, flux-cored wire is commercially available for tensile strength of 590 MPa class steel, but in reality, welding wire for high strength steel with tensile strength of 690 MPa class or higher is not sufficiently used in the market. is there.

引張強さ690MPa級以上の高強度鋼でフラックス入りワイヤが使用されていない理由は、フラックス入りワイヤを用いた溶接金属ではソリッドワイヤの場合に比べて、溶接部における拡散性水素量が高く、溶接低温割れが懸念されているためである。   The reason why flux-cored wires are not used in high-strength steels with a tensile strength of 690 MPa or higher is that weld metal using flux-cored wires has a higher amount of diffusible hydrogen in the weld area than solid wires, and welding This is because there is concern about cold cracking.

ワイヤ中の水素量を低減する技術に関しては、例えばプライマー塗装鋼板の溶接におけるピット等の発生抑制を主目的に、特許文献1や特許文献2で既に提唱されている。また、490MPa級強度レベルのフラックス入りワイヤの水素量を低減する手段としては、特許文献3にあるように、ワイヤを焼鈍する方法が既に開示されている。   With regard to the technology for reducing the amount of hydrogen in the wire, for example, Patent Document 1 and Patent Document 2 have already been proposed mainly for the purpose of suppressing the occurrence of pits and the like in welding of primer-coated steel sheets. As means for reducing the amount of hydrogen in a flux-cored wire having a strength level of 490 MPa, as disclosed in Patent Document 3, a method of annealing the wire has already been disclosed.

特開平09−239587号公報Japanese Patent Application Laid-Open No. 09-239587 特開平10−286692号公報Japanese Patent Laid-Open No. 10-286692 特開平09−57489号公報JP 09-57489 A

しかしながら、上記特許文献1、2に記載の発明は、本発明のワイヤとはその目的が明らかに異なり、当該知見を引張強さ690MPa級以上の高強度鋼にそのまま適用することはできない。   However, the inventions described in Patent Documents 1 and 2 are clearly different in purpose from the wire of the present invention, and the knowledge cannot be applied as it is to high-strength steel having a tensile strength of 690 MPa or higher.

ワイヤの水素量を低減する方法として特許文献3に開示されているワイヤ焼鈍技術も、690MPa級以上のフラックス入りワイヤにおいて効果があるかどうかは明確には示されていない。690MPa級以上のフラック入りワイヤに関しては、溶接金属の強度特性を690MPa級以上に確保するために、Mnなどの焼入性元素をワイヤ中に含有させる必要があるが、これら焼入性元素には、いわゆる水素吸蔵合金と呼ばれるものがあり、単純な490MPa級ワイヤにおけるワイヤ焼鈍による水素低減効果が、水素吸蔵合金が多くなる傾向にある690MPa級以上のワイヤに対しても同等な水素低減効果があるかどうかは明確ではない。ちなみに、水素吸蔵合金としてよく知られている元素としては、Mg、Ni、V、Ti、Nb、Mnなどが挙げられる。   Whether the wire annealing technique disclosed in Patent Document 3 as a method for reducing the amount of hydrogen in the wire is effective for a flux-cored wire of 690 MPa or higher is not clearly shown. With regard to 690 MPa class or higher-flaked wires, it is necessary to contain a hardenable element such as Mn in the wire in order to ensure the strength characteristics of the weld metal to be 690 MPa class or higher. There is a so-called hydrogen storage alloy, and the hydrogen reduction effect by wire annealing in a simple 490 MPa class wire is equivalent to the 690 MPa class or more wire in which the hydrogen storage alloy tends to increase. Whether it is not clear. Incidentally, elements well known as hydrogen storage alloys include Mg, Ni, V, Ti, Nb, Mn, and the like.

そこで、本発明は、高張力鋼の溶接において、フラックス入りワイヤの特長である優れた溶融効率、良好な止端部のビード形状等を維持しつつ、溶接部の拡散性水素量をソリッドワイヤと同程度に低減し、引張強さが690MPa級以上である高張力鋼の溶接を良好な溶接施工性の下に可能とする、フラックス入り極低水素溶接用ワイヤ及びその製造方法を提供することを目的とするものである。   Therefore, in the present invention, in the welding of high-strength steel, while maintaining the excellent melting efficiency and the good bead shape of the toe, which are the features of the flux-cored wire, To provide a flux-cored ultra-low hydrogen welding wire and a method for manufacturing the same, which can be welded to high-strength steel with a tensile strength of 690 MPa class or higher with good welding workability and reduced to the same extent. It is the purpose.

上記課題を解決するための本発明の要旨は、以下の通りである。   The gist of the present invention for solving the above problems is as follows.

(1) 鋼製外皮にフラックスを充填したフラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、
C:0.04%以上、0.20%以下、
Si:0.1%以上、1.5%以下、
Mn:0.6%以上、2.5%以下
を含有するとともに、Mg、Ca、Al、Zr、REMの一種または二種以上を、合計で、0.01%以上、2.00%以下含有し、残部が鉄及び不可避不純物から構成され、下記(式1)に示すPTSの値がワイヤ全体に対する質量%で0.36%以上、1.0%以下であり、ワイヤ中の全水素量がワイヤ全体の質量比で6.0ppm以下であり、鋼製外皮に外気浸入の危険性のあるスリット状の継ぎ目が無いことを特徴とする、フラックス入り極低水素溶接用ワイヤ。
PTS=C+Si/24+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V
/5(%) ・ ・ ・ (式1)
(1) In a flux-cored wire in which a steel outer sheath is filled with flux, in mass% with respect to the total mass of the wire,
C: 0.04% or more, 0.20% or less,
Si: 0.1% or more, 1.5% or less,
Mn: 0.6% or more and 2.5% or less, and one or more of Mg, Ca, Al, Zr, and REM in total, 0.01% or more and 2.00% or less The balance is composed of iron and inevitable impurities, and the PTS value shown in the following (formula 1) is 0.36% or more and 1.0% or less by mass% with respect to the whole wire, and the total amount of hydrogen in the wire is A flux-cored ultra-low hydrogen welding wire characterized in that the mass ratio of the whole wire is 6.0 ppm or less, and there is no slit-like seam in the steel outer skin that is likely to enter the outside air.
PTS = C + Si / 24 + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V
/ 5 (%) (1)

(2) さらに、ワイヤ全質量に対する質量%で、
Cu:0.1〜1.0%、
Ni:0.1〜5.0%、
Cr:0.1〜2.0%、
Mo:0.1〜2.0%、
Nb:0.001〜0.100%、
V:0.001〜0.200%、
Ti:0.01〜0.50%(純金属又は合金状態)、
B:0.001〜0.050%
の一種または二種以上を含有することを特徴とする、上記(1)に記載のフラックス入り極低水素溶接用ワイヤ。
(2) Furthermore, in mass% relative to the total mass of the wire
Cu: 0.1 to 1.0%
Ni: 0.1 to 5.0%,
Cr: 0.1 to 2.0%,
Mo: 0.1 to 2.0%,
Nb: 0.001 to 0.100%,
V: 0.001 to 0.200%,
Ti: 0.01 to 0.50% (pure metal or alloy state),
B: 0.001 to 0.050%
The flux-containing ultra-low hydrogen welding wire according to (1) above, which contains one or more of the above.

(3) ワイヤ全質量に対する質量%で、Na、Kの酸化物、またはフッ化物の一種または二種以上の合計がアーク安定剤として、0.1〜0.5%の範囲で含有されていることを特徴とする、上記(1)または(2)に記載のフラックス入り極低水素溶接用ワイヤ。   (3) Mass% with respect to the total mass of the wire, and one or more of Na, K oxide, or fluoride is contained as an arc stabilizer in the range of 0.1 to 0.5%. The flux-containing ultra-low hydrogen welding wire as described in (1) or (2) above.

(4) 鋼帯をこれの長手方向に送りながら成形ロールによりオープン管に成形し、この成形途中でオープン管の開口部からフラックスを供給し、開口部の相対するエッジ面を突合せ溶接し、溶接により得られた管に縮径と焼鈍を実施する際に、ワイヤ直径が10.0mm以下となるまで縮径された後に、ワイヤを700℃以上、1000℃以下の温度で焼鈍することを特徴とする、上記(1)ないし(3)のいずれか1項に記載のフラックス入り極低水素溶接用ワイヤの製造方法。   (4) The steel strip is formed into an open tube with a forming roll while feeding it in the longitudinal direction. Flux is supplied from the opening of the open tube in the middle of forming, and the opposite edge surfaces of the opening are butt welded and welded. When performing diameter reduction and annealing on the tube obtained by the above, the wire is annealed at a temperature of 700 ° C. or more and 1000 ° C. or less after the wire diameter is reduced to 10.0 mm or less. The method for producing a flux-cored ultra-low hydrogen welding wire according to any one of (1) to (3) above.

本発明のフラックス入りワイヤによれば、引張強さ690MPa級以上の高張力鋼の溶接において、フラックス入りワイヤの特長である高溶融効率、良好な止端部のビード形状等を維持しつつ、溶接部の拡散性水素量をソリッドワイヤと同程度に低減できるため、既存の溶接ワイヤでは実現できなかったような優れた溶接施工性の下で、引張強さ690MPa級以上である高張力鋼の溶接が可能となる。   According to the flux cored wire of the present invention, in the welding of high strength steel having a tensile strength of 690 MPa or more, welding is performed while maintaining the high melting efficiency and the good bead shape of the toe portion which are the features of the flux cored wire. The amount of diffusible hydrogen in the joints can be reduced to the same level as that of solid wires, so it is possible to weld high-strength steels with a tensile strength of 690 MPa or higher under excellent welding workability that could not be realized with existing welding wires. Is possible.

溶接ワイヤ中の全水素量と溶接継ぎ手における拡散性水素量の関係を示す図である。It is a figure which shows the relationship between the total amount of hydrogen in a welding wire, and the amount of diffusible hydrogen in a welding joint. ワイヤの全水素量とワイヤ製造時の焼鈍温度との関係を示す図である。It is a figure which shows the relationship between the total amount of hydrogen of a wire, and the annealing temperature at the time of wire manufacture.

本発明者らは、前記課題を解決するためにまず、ワイヤ全体の含有水分量と、このワイヤを使用して作成された溶接継ぎ手の拡散性水素量を調査し、ワイヤの製造条件、特にフラックス入りワイヤの焼鈍条件について検討し、溶接継ぎ手の拡散性水素量がソリッドワイヤと同等以下となる技術を確定した。   In order to solve the above-mentioned problems, the present inventors first investigated the moisture content of the entire wire and the amount of diffusible hydrogen in the welded joint made using this wire, and the manufacturing conditions of the wire, particularly the flux We examined the annealing conditions of the cored wire and determined a technology that would allow the diffusible hydrogen content of the welded joint to be equal to or less than that of the solid wire.

まず、ワイヤ成分の規定理由を述べる。なお、各成分についての%は質量%を意味する。   First, the reason for defining the wire component will be described. In addition,% about each component means the mass%.

Cは、材質的に溶接金属の強度を向上させる元素である。したがって、添加量が少なすぎると、十分な溶接金属強度が得られなくなるため、0.04%以上は必要である。しかし、0.20%を超えて過剰に添加すると、高炭素マルテンサイトが多く形成されて低温靭性が低下する。以上の理由からCの添加量は0.04%以上、0.20%以下とする。   C is an element that improves the strength of the weld metal in terms of material. Therefore, if the addition amount is too small, sufficient weld metal strength cannot be obtained, so 0.04% or more is necessary. However, if it is added excessively exceeding 0.20%, a lot of high carbon martensite is formed and the low temperature toughness is lowered. For these reasons, the amount of C added is set to 0.04% or more and 0.20% or less.

Siは、溶接金属の脱酸と焼入れ性確保の目的のため、純金属又は合金状態(例えば、Fe−Si、Mg−Si、SiC等)で添加しているが、0.1%未満では脱酸が不足して靭性不足となりやすく、1.5%を超えると、硬化組織を形成するだけでなく、スラグ量が多くなりビード形状を悪化させる。以上の理由からSiの添加量は0.1%以上、1.5%以下とする。   Si is added in a pure metal or alloy state (for example, Fe-Si, Mg-Si, SiC, etc.) for the purpose of deoxidizing the weld metal and ensuring hardenability. If the acid is insufficient and the toughness is insufficient, and if it exceeds 1.5%, not only a hardened structure is formed, but also the amount of slag increases and the bead shape deteriorates. For these reasons, the amount of Si added is 0.1% or more and 1.5% or less.

Mnは、溶接金属の焼入れ性を向上し、強度と靭性を確保することを目的として添加される。0.6%未満では焼入れ性が不足して強度が低下し、2.5%を超えると硬化相を形成し靭性が低下する。以上の理由からMnの添加量は0.6%以上、2.5%以下とする。   Mn is added for the purpose of improving the hardenability of the weld metal and ensuring strength and toughness. If it is less than 0.6%, the hardenability is insufficient and the strength is lowered, and if it exceeds 2.5%, a hardened phase is formed and the toughness is lowered. For these reasons, the amount of Mn added is 0.6% or more and 2.5% or less.

Mg、Ca、Al、Zr、REMは、いずれも強脱酸元素であり、溶接金属中の酸素量低減のために添加することが必須である。また、脱酸効果を発現するためには、酸化物やフッ化物の状態ではなく、金属または合金状態(例えば、Al−Mg、Fe−Al、Ca−Si、Ca−Si−Mn、Ca−Si−Ba、Cu−Zr、REM−Ca−Si等)で添加されることが必要である。ワイヤ中における、これら元素の含有量合計が0.01%未満では脱酸効果が不足し溶接金属の靭性が低下する。また、2.00%超の添加はアークが不安定となり、溶接作業性に支障をきたす。これらの元素は、1種または2種以上を任意に選択して添加しても脱酸効果に格別の相違はない。以上の理由からMg、Ca、Al、Zr、REMの1種または2種以上の合計添加量は0.01%以上、2.00%以下とした。   Mg, Ca, Al, Zr, and REM are all strong deoxidizing elements, and it is essential to add them in order to reduce the amount of oxygen in the weld metal. Moreover, in order to express the deoxidation effect, it is not an oxide or fluoride state but a metal or alloy state (for example, Al—Mg, Fe—Al, Ca—Si, Ca—Si—Mn, Ca—Si). -Ba, Cu-Zr, REM-Ca-Si, etc.). If the total content of these elements in the wire is less than 0.01%, the deoxidation effect is insufficient and the toughness of the weld metal is lowered. Further, if the content exceeds 2.00%, the arc becomes unstable, which hinders welding workability. There is no particular difference in the deoxidation effect even if one or more of these elements are arbitrarily selected and added. For the above reasons, the total amount of one or more of Mg, Ca, Al, Zr, and REM is set to 0.01% or more and 2.00% or less.

以上が本発明のフラックス入り極低水素溶接用ワイヤの基本成分で、以下に述べる成分を必要に応じて添加する事ができる。なお、残部は鉄及び不可避不純物である。   The above are the basic components of the flux-containing ultra-low hydrogen welding wire of the present invention, and the components described below can be added as necessary. The balance is iron and inevitable impurities.

Cuは、ワイヤの外表面にめっきされ、溶接時の供電抵抗を低下するとともに、材質的には溶接金属の強度と靭性の向上を目的として添加することができる。しかしながら、0.1%未満ではその効果が不十分であるため含有量の下限値は0.1%以上が好ましい。一方、1.0%を超えると硬化相を形成し靭性が低下する。以上の理由から、Cuの添加量は、0.1〜1.0%とするのが好ましい。   Cu is plated on the outer surface of the wire to lower the power supply resistance during welding and can be added for the purpose of improving the strength and toughness of the weld metal in terms of material. However, if the content is less than 0.1%, the effect is insufficient, so the lower limit of the content is preferably 0.1% or more. On the other hand, if it exceeds 1.0%, a cured phase is formed and the toughness is lowered. For the above reasons, the amount of Cu added is preferably 0.1 to 1.0%.

Niは、溶接金属の強度を向上させると共に、靭性向上を目的に添加することができる。高強度になっても靭性を大きく低下させない元素として他の焼入れ性元素よりも多量に添加できる。しかしながら0.1%未満ではその効果が不十分であるため含有量の下限値は0.1%以上が好ましい。一方、5.0%を超えて過剰に添加すると凝固割れが生じやすくなる。以上の理由から、Niの添加量は、0.1〜5.0%とするのが好ましい。   Ni can be added for the purpose of improving the strength of the weld metal and improving toughness. It can be added in a larger amount than other hardenable elements as an element that does not significantly reduce toughness even when the strength is increased. However, if the content is less than 0.1%, the effect is insufficient, so the lower limit of the content is preferably 0.1% or more. On the other hand, when it exceeds 5.0% and it adds excessively, it will become easy to produce a solidification crack. For the above reasons, the addition amount of Ni is preferably 0.1 to 5.0%.

Crは、溶接金属の強度向上を目的に添加することができる。しかしながら0.1%未満ではその効果が不十分であるため含有量の下限値は0.1%以上が好ましい。一方、2.0%を超えて過剰に添加すると靭性の低下を生じやすくなる。以上の理由から、Crの添加量は、0.1〜2.0%とするのが好ましい。   Cr can be added for the purpose of improving the strength of the weld metal. However, if the content is less than 0.1%, the effect is insufficient, so the lower limit of the content is preferably 0.1% or more. On the other hand, when it exceeds 2.0% and it adds excessively, it will become easy to produce the fall of toughness. For the above reasons, the amount of Cr added is preferably 0.1 to 2.0%.

Moは、溶接金属の強度確保を目的に添加することができる。しかしながら0.1%未満ではその効果が不十分であるため含有量の下限値は0.1%以上が好ましい。一方、2.0%を超えて過剰に添加すると靭性の低下を生じやすくなる。以上の理由から、Moの添加量は、0.1〜2.0%とするのが好ましい。   Mo can be added for the purpose of ensuring the strength of the weld metal. However, if the content is less than 0.1%, the effect is insufficient, so the lower limit of the content is preferably 0.1% or more. On the other hand, when it exceeds 2.0% and it adds excessively, it will become easy to produce the fall of toughness. For the above reasons, the addition amount of Mo is preferably 0.1 to 2.0%.

Nbは、微細な炭窒化物を形成し溶接金属の耐力および強度向上効果を持つために添加することができる。しかしながら0.001%未満ではその効果が不十分であるため含有量の下限値は0.001%以上が好ましい。一方、0.100%を超えて過剰に添加すると靭性の低下を生じやすくなる。以上の理由から、Nbの添加量は、0.001〜0.100%とするのが好ましい。   Nb can be added to form a fine carbonitride and have an effect of improving the proof stress and strength of the weld metal. However, if the content is less than 0.001%, the effect is insufficient, so the lower limit of the content is preferably 0.001% or more. On the other hand, when it exceeds 0.100% and it adds excessively, it will become easy to produce the fall of toughness. For the above reasons, the amount of Nb added is preferably 0.001 to 0.100%.

Vは、微細な炭窒化物を形成し溶接金属の耐力および強度向上効果を持つために添加することができる。しかしながら、0.001%未満ではその効果が不十分であるため含有量の下限値は0.001%以上が好ましい。一方、0.200%を超えて過剰に添加すると靭性の低下を生じやすくなる。以上の理由から、Vの添加量は、0.001〜0.200%とするのが好ましい。   V can be added to form a fine carbonitride and have an effect of improving the proof stress and strength of the weld metal. However, if the content is less than 0.001%, the effect is insufficient, so the lower limit of the content is preferably 0.001% or more. On the other hand, when it exceeds 0.200% and it adds excessively, it will become easy to produce the fall of toughness. For the above reasons, the amount of V added is preferably 0.001 to 0.200%.

Tiは、溶接金属のミクロ組織微細化効果を持つことから、靭性向上を目的に金属または合金状態(例えば、Fe−Ti、TiC等)で添加することができる。しかしながら、0.01%未満ではその効果が不十分であるため含有量の下限値は0.01%以上が好ましい。一方、0.50%以上では硬化組織を形成し、靭性が低下する。以上の理由から、Tiの添加量は、0.01〜0.50%とするのが好ましい。   Since Ti has the effect of refining the microstructure of the weld metal, it can be added in a metal or alloy state (for example, Fe-Ti, TiC, etc.) for the purpose of improving toughness. However, if the content is less than 0.01%, the effect is insufficient, so the lower limit of the content is preferably 0.01% or more. On the other hand, if it is 0.50% or more, a hardened structure is formed and the toughness is lowered. For the above reasons, the addition amount of Ti is preferably 0.01 to 0.50%.

Bは、溶接金属の焼入れ性を向上する元素であり、靭性改善のために微量添加することができる。ただし、0.001%未満ではその効果が不十分であるため含有量の下限値は0.001%以上が好ましい。一方、0.050%を超える過剰添加では硬化組織を形成して、靭性低下を招く危険性がある。以上の理由から、Bの添加量は、0.001〜0.050%とするのが好ましい。   B is an element that improves the hardenability of the weld metal and can be added in a small amount to improve toughness. However, since the effect is insufficient if it is less than 0.001%, the lower limit of the content is preferably 0.001% or more. On the other hand, if it exceeds 0.050%, there is a risk that a hardened structure is formed and the toughness is reduced. For the above reasons, the amount of B added is preferably 0.001 to 0.050%.

次に、請求項1の式1で規定するPTSについて説明する。すなわち、下記(式1)で規定したPTSは、いわゆる炭素当量に相当するもので、各元素の炭素当量に相当する値の合計値であり、溶接金属の引張り強さと靭性を確保するのに必要な値を求めた結果である。PTSが0.36%未満では、溶接金属において目的とする強度690MPaを満たせず、PTSが1.0%を超えると、溶接金属の強度が過剰となり、溶接金属の靭性が低下する。そこで、本発明では、PTSの範囲は、0.36〜1.0%とする。
PTS=C+Si/24+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V
/5(%) ・ ・ ・ (式1)
Next, PTS prescribed | regulated by Formula 1 of Claim 1 is demonstrated. That is, the PTS defined in the following (Formula 1) corresponds to a so-called carbon equivalent, and is a total value corresponding to the carbon equivalent of each element, and is necessary to ensure the tensile strength and toughness of the weld metal. This is the result of obtaining the correct value. If the PTS is less than 0.36%, the target strength of 690 MPa is not satisfied in the weld metal, and if the PTS exceeds 1.0%, the strength of the weld metal becomes excessive and the toughness of the weld metal decreases. Therefore, in the present invention, the range of PTS is set to 0.36 to 1.0%.
PTS = C + Si / 24 + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V
/ 5 (%) (1)

次に、ワイヤ中の含有水素量を6.0ppm以下と規定した理由について述べる。溶接時に溶接部に侵入する水素は、溶接後に溶接金属から鋼材側に拡散し、溶接熱影響部に集積して低温割れの発生原因となる。この水素源は溶接材料が保有する水分、大気から混入する水分、鋼表面に付着した錆びやスケール等が上げられるが、十分に溶接部の清浄性、ガスシールドの条件が管理された溶接の下では、溶接ワイヤ中に主として水分で含有される水素量で溶接継ぎ手の拡散性水素量は決定される。図1は、溶接ワイヤ中の全水素量と溶接継ぎ手における拡散性水素量の関係を示す。拡散性水素量は、JIS Z3118、ガスクロマトグラフにより測定した。図1に示すように溶接継ぎ手の拡散性水素量とワイヤ中の水素量とは明瞭な相関関係が確認された。ソリッドワイヤを使用した場合は、溶接継ぎ手の拡散性水素量は通常1.5ml/100gr程度であるが、図1の結果より、フラックス入りワイヤを使用した溶接でも、ワイヤの全水素量を6.0ppm以下にすれば、ソリッドワイヤと同等の拡散性水素量が達成されることが明らかとなった。   Next, the reason why the amount of hydrogen contained in the wire is specified to be 6.0 ppm or less will be described. Hydrogen that enters the weld during welding diffuses from the weld metal to the steel after welding, accumulates in the heat affected zone, and causes cold cracking. This hydrogen source can increase moisture contained in the welding material, moisture mixed in from the atmosphere, rust and scale attached to the steel surface, etc., but under the welding where the cleanliness of the weld and the gas shield conditions are sufficiently controlled. Then, the amount of diffusible hydrogen in the welding joint is determined by the amount of hydrogen contained mainly in the welding wire. FIG. 1 shows the relationship between the total amount of hydrogen in the welding wire and the amount of diffusible hydrogen in the weld joint. The amount of diffusible hydrogen was measured by JIS Z3118, gas chromatograph. As shown in FIG. 1, a clear correlation between the amount of diffusible hydrogen in the weld joint and the amount of hydrogen in the wire was confirmed. When solid wire is used, the amount of diffusible hydrogen in the weld joint is usually about 1.5 ml / 100 gr. However, from the results shown in FIG. It has been clarified that the diffusible hydrogen amount equivalent to that of the solid wire can be achieved when the concentration is 0 ppm or less.

本発明のワイヤは、アーク安定性の向上を目的として、ワイヤ全質量に対する質量%で、Na、Kの酸化物、またはフッ化物(例えば、Na2O、NaF、K2O、KF、K2SiF6、K2ZrF6等)の一種または二種以上を添加することができる。ただし、その含有量は、0.1%未満ではその効果が不十分であるため、0.1%以上の含有量が好ましい。一方、0.5%を超えて過剰に添加されるとアークが不安定となる。従って、アーク安定剤の含有量は、0.1〜0.5%とするのが好ましい。   The wire of the present invention is made of Na, K oxide or fluoride (for example, Na2O, NaF, K2O, KF, K2SiF6, K2ZrF6, etc.) in mass% with respect to the total mass of the wire for the purpose of improving arc stability. One kind or two or more kinds can be added. However, if the content is less than 0.1%, the effect is insufficient, so a content of 0.1% or more is preferable. On the other hand, if it exceeds 0.5% and is added excessively, the arc becomes unstable. Therefore, the content of the arc stabilizer is preferably 0.1 to 0.5%.

その他、PおよびSは、共に有害な不純物であり、溶接時に高温割れの原因となるだけでなく、溶接金属における靭性低下の原因にもなるため、極力低いことが望ましく、より具体的にはPはワイヤ全質量に対して質量%で0.02%以下、Sはワイヤ全質量に対して質量%で0.01%以下であることが好ましい。また、鉄粉は、フラックス充填率の調整のために使用できるが、溶接金属中に酸素量を持ち込むため少ない方が望ましい。   In addition, P and S are both harmful impurities and not only cause hot cracking during welding, but also cause toughness deterioration in the weld metal. Therefore, it is desirable that P and S be as low as possible. Is preferably 0.02% or less by mass% with respect to the total mass of the wire, and S is preferably 0.01% or less by mass% with respect to the total mass of the wire. Moreover, although iron powder can be used for adjustment of a flux filling rate, it is desirable that the amount be small because oxygen content is brought into the weld metal.

Nは、溶接金属中に窒化物を形成し、溶接金属の靭性を低下させるだけでなく、過剰に含有された場合にはブローホール等の溶接欠陥を生じる危険性も高くなる。このため、その含有量は生産性を阻害しない範囲で、極力低減されることが好ましい。好ましくは、0.005%以下である。   N not only forms nitrides in the weld metal and lowers the toughness of the weld metal, but also increases the risk of causing weld defects such as blowholes when contained in excess. For this reason, it is preferable that the content is reduced as much as possible in the range which does not inhibit productivity. Preferably, it is 0.005% or less.

また、ワイヤ中のその他成分(残部)としては、鋼製外皮のFe、フラックス中に添加された鉄粉及び合金成分中のFeを含む。   Moreover, as other components (remainder) in the wire, Fe in the steel outer shell, iron powder added in the flux, and Fe in the alloy components are included.

次に、本発明のフラックス入り極低水素溶接用ワイヤの製造方法について説明する。
本発明のフラックス入り極低水素溶接用ワイヤの製造方法では、鋼帯をこれの長手方向に送りながら成形ロールによりオープン管(U字型)に成形して鋼製外皮とし、この成形途中でオープン管の開口部からフラックスを供給し、開口部の相対するエッジ面を突合せ溶接し、溶接により得られた管に縮径と焼鈍を実施する際に、ワイヤ直径が10.0mm以下となるまで縮径された後に、ワイヤを700℃以上、1000℃以下の温度で焼鈍することを特徴としている。
Next, the manufacturing method of the flux-cored ultra low hydrogen welding wire of this invention is demonstrated.
In the method for producing a flux-cored ultra-low hydrogen welding wire according to the present invention, a steel strip is formed into an open pipe (U-shaped) by a forming roll while feeding the steel strip in the longitudinal direction thereof to form a steel outer shell. Flux is supplied from the opening of the pipe, the opposite edge surfaces of the opening are butt welded, and when the diameter and annealing of the pipe obtained by welding are performed, the wire diameter is reduced to 10.0 mm or less. After the diameter, the wire is annealed at a temperature of 700 ° C. or more and 1000 ° C. or less.

まず、本発明者らが今回新たに知見した、ワイヤ水素量を安定して6.0ppm以下とする具体的な内容を以下に説明する。ワイヤの全水素量とワイヤ製造時の焼鈍温度との関係を図2に示す。図2より、焼鈍温度を700℃以上とすることにより、ワイヤ中の水分が十分に除去され、ワイヤ全水素量を6.0ppm以下とすることが可能となる。なお、従来技術によるワイヤ焼鈍の場合は、特許文献3にある技術では焼鈍温度の下限が620℃など、本発明の規定している焼鈍温度より低い焼鈍温度を許容しているが、これは、すでに述べたように、従来技術の適用範囲が、490MPa級のワイヤであるため、690MPa級以上のフラックス入りワイヤを目的とする本発明とは本質的に異なることからくる。鋼製外皮の継ぎ目に隙間のあるCタイプのフラックス入りワイヤでは、ワイヤを焼鈍すると鋼製外皮の熱変形により隙間が拡大したり、内包するフラックスが酸化したりするため、焼鈍は行わないのが通常であり、水分を十分に減ずることは不可能である。一方、本発明が対象とするフラックス入りワイヤは隙間のないOタイプであることから、焼鈍処理を行っても鋼製外皮の継ぎ目が開口することはなく、内包するフラックスは外気との接触が遮断されているので酸化や窒化などの変質は無い。   First, the specific content that the present inventors have newly discovered to stabilize the amount of wire hydrogen to 6.0 ppm or less will be described below. The relationship between the total amount of hydrogen in the wire and the annealing temperature during wire production is shown in FIG. From FIG. 2, by setting the annealing temperature to 700 ° C. or higher, moisture in the wire is sufficiently removed, and the total hydrogen amount of the wire can be reduced to 6.0 ppm or less. In the case of wire annealing according to the prior art, the technique disclosed in Patent Document 3 allows an annealing temperature lower than the annealing temperature defined in the present invention, such as a lower limit of annealing temperature of 620 ° C., As already described, the scope of application of the prior art is 490 MPa class wire, and therefore, this is essentially different from the present invention intended for flux-cored wire of 690 MPa class or higher. For C-type flux-cored wires with gaps in the seam of the steel outer shell, annealing is not performed because the gap expands due to thermal deformation of the steel outer shell or the contained flux is oxidized when the wire is annealed. It is normal and it is impossible to reduce moisture sufficiently. On the other hand, the flux-cored wire targeted by the present invention is an O-type with no gaps, so that even if annealing is performed, the seam of the steel outer shell does not open, and the contained flux blocks the contact with the outside air. Therefore, there is no alteration such as oxidation or nitridation.

これまでの引張強さ590MPa級鋼用のOタイプフラックス入りワイヤでも、650℃程度での熱処理を行うことはあったが、その目的は線引き工程で生じるワイヤの硬化を除去し、また、ワイヤ表面に付着した潤滑剤などの不純物を取り除く目的であり、本発明が目的とする690MPa級以上の引張り強度を有するフラックス入りワイヤの水素量を提言することを目的とするものではなく、さらに、ワイヤ全水素量を6.0ppmに低減された690MPa級以上の引張り強度を有するフラックス入りワイヤは存在しなかった。尚、1000℃を超える高温で焼鈍を行うと、鋼製外皮の軟化が著しくなり、伸線工程でワイヤが破断する危険性が高くなるため、焼鈍温度の上限は1000℃とした。   Conventional O-type flux-cored wires for 590 MPa class steel have been heat treated at about 650 ° C., but the purpose is to remove the hardening of the wire that occurs in the drawing process, The purpose of the present invention is not to propose the amount of hydrogen in a flux-cored wire having a tensile strength of 690 MPa class or higher, which is an object of the present invention, There was no flux-cored wire having a tensile strength of 690 MPa class or more in which the amount of hydrogen was reduced to 6.0 ppm. In addition, if annealing is performed at a high temperature exceeding 1000 ° C., the steel outer shell becomes extremely softened, and the risk of the wire breaking in the wire drawing process increases. Therefore, the upper limit of the annealing temperature is set to 1000 ° C.

尚、焼鈍を行う際にはワイヤ直径を10mm以下とすることが必須である。この理由は、10mmを超える太径のワイヤを焼鈍すると、ワイヤ内の空隙に溜まっている空気量が多すぎて、フラックスが窒化や酸化してしまい、ワイヤが変質してしまうからである。また、ワイヤ焼鈍による水素低減効果は、ワイヤ内部の水素が焼鈍中に鋼製外皮を透過してワイヤ外に逃げていくプロセスであるが、ワイヤが太いということはそれだけ水素の拡散距離が長いことでもあり、効率よく水素を低減する観点からは好ましくはない。一方、本発明に規定するように10mm以下の直径まで縮径された場合は、管内空隙、及びフラックス中の空気は縮径によって後方(管の送りとは逆方向)に押し出され、オープン管の状態にある管の開口部から外部へ排出されるため、管内に残存する空気量は無視できる程度に十分に減少している。尚、ワイヤ直径の下限値は特に規定しないが、2mm未満では生産性を阻害するので、2mm以上のワイヤ直径で焼鈍を実施するのが好ましい。   In addition, when performing annealing, it is essential that a wire diameter shall be 10 mm or less. The reason for this is that if a wire having a large diameter exceeding 10 mm is annealed, the amount of air accumulated in the voids in the wire is excessive, and the flux is nitrided or oxidized, and the wire is altered. In addition, the hydrogen reduction effect by wire annealing is a process in which hydrogen inside the wire penetrates the steel outer shell during annealing and escapes to the outside of the wire. The thicker the wire, the longer the hydrogen diffusion distance. However, it is not preferable from the viewpoint of efficiently reducing hydrogen. On the other hand, when the diameter is reduced to a diameter of 10 mm or less as defined in the present invention, the air in the pipe and the air in the flux are pushed backward (opposite to the pipe feed) by the reduced diameter, and the open pipe Since the air is exhausted from the opening of the tube in the state, the amount of air remaining in the tube is sufficiently reduced to be negligible. The lower limit value of the wire diameter is not particularly defined, but if it is less than 2 mm, productivity is hindered, so it is preferable to perform annealing with a wire diameter of 2 mm or more.

以下、本発明の効果を実施例により具体的に説明する。   Hereinafter, the effect of the present invention will be described in detail with reference to examples.

鋼帯を鋼製外皮として使用し、U字型に成形して、この段階でフラックスを充填し、フラックス充填後にO字型に成形して、鋼製外皮の継ぎ目部を溶接する。この後に縮径と焼鈍を実施して、ワイヤ径が1.2mmφのフラックス入りワイヤを試作した。試作したフラックス入りワイヤの組成および製造条件を表1−1乃至表1−4に示す。なお、表1−1〜4におけるβとはアーク安定剤のことであり、溶接アークを安定させるために添加されているもので、溶接継手の強度や靭性に影響を与えるものではない。本実施例では、アーク安定剤として、NaO、KO、NaF、KFの合計量を表のβの欄に記載している。また、鋼製外皮として用いた鋼は、すべての試作フラックス入りワイヤに対して同じものを用いている。その成分は、質量%で、C:0.03%、Si:0.25%、Mn;0.4%、P;0.003%、S;0.002%、で、残部は鉄および不可避不純物である。すなわち、この成分に対して、不足している元素をフラックスに充填することにより表1−1〜4に示すワイヤ成分を持つフラックス入りワイヤを試作した。そのため、例えば、表1−1の番号16の試作ワイヤは、Niが0.1%含有されたワイヤであるが、この場合のNiはすべてフラックスに充填されたNiによるものである。但し、本発明においては、Niなどの合金元素をフラックスのみに含有させる場合に限定されるものではない。鋼製外皮にNiが含有されている場合でも、ワイヤ全質量に対しての成分範囲が、本発明の範囲内であればよい。Niなどの合金元素を鋼製外皮に充填するのか、フラックスに充填するのかは、ワイヤ製造コストなどの観点から決定されるべきもので、当該者であれば容易に判断できるものである。 The steel strip is used as a steel outer shell, formed into a U-shape, filled with flux at this stage, formed into an O-shape after filling the flux, and the seam of the steel outer shell is welded. Thereafter, reduction in diameter and annealing were performed, and a flux-cored wire having a wire diameter of 1.2 mmφ was made as a prototype. Tables 1-1 to 1-4 show the compositions and manufacturing conditions of the prototyped flux-cored wires. Note that β in Tables 1-1 to 4 is an arc stabilizer, which is added to stabilize the welding arc, and does not affect the strength and toughness of the welded joint. In this example, the total amount of Na 2 O, K 2 O, NaF, and KF is described in the β column of the table as the arc stabilizer. Moreover, the steel used as the steel outer shell is the same for all prototype flux-cored wires. Its components are, by mass, C: 0.03%, Si: 0.25%, Mn; 0.4%, P; 0.003%, S; 0.002%, the balance being iron and inevitable It is an impurity. That is, a flux-cored wire having the wire components shown in Tables 1-1 to 4 was manufactured by filling the flux with an insufficient element for this component. Therefore, for example, the trial wire number 16 in Table 1-1 is a wire containing 0.1% of Ni, but in this case, all of Ni is due to Ni filled in the flux. However, the present invention is not limited to the case where an alloy element such as Ni is contained only in the flux. Even when Ni is contained in the steel outer sheath, the component range relative to the total mass of the wire may be within the range of the present invention. Whether the alloy element such as Ni is filled in the steel outer shell or the flux is to be determined from the viewpoint of the wire manufacturing cost and the like, and can be easily determined by the person concerned.

Figure 2009255169
Figure 2009255169

Figure 2009255169
Figure 2009255169

Figure 2009255169
Figure 2009255169

Figure 2009255169
Figure 2009255169

このワイヤを用いて、20mm厚の鋼板を予熱100℃で溶接した。溶接は、Ar+20%COガスを用いたガスシ−ルド溶接で行い、JIS Z3111(溶着金属の引張及び衝撃試験方法)に準拠した方法で溶接試験体を作成し、溶接終了後72時間後に溶接金属をX線で非破壊検査した。また、溶接金属からは、JIS Z3111に準拠したA1号引張り試験片と4号シャルピー試験片を採取し、溶接金属の強度と靭性を試験した。その結果を表2−1乃至表2−3に示す。なお、その評価は、引張強さ690MPa以上、且つ0℃でのシャルピー衝撃試験で、吸収エネルギーが30J以上、且つ溶接欠陥の発生が認められず、ビード外観良なものを合格とした。また、ワイヤ焼鈍時に変質があったか否かの判断は、ワイヤ中の窒素を分析し、これがワイヤ全質量に対して0.010%以下であった場合は変質無しとして合格とし、これを超えたものは不合格とした。 Using this wire, a 20 mm thick steel plate was welded at 100 ° C. preheating. Welding is performed by gas shield welding using Ar + 20% CO 2 gas, and a weld specimen is prepared by a method in accordance with JIS Z3111 (Method for tensile and impact test of weld metal). Were examined non-destructively by X-ray. Also, from the weld metal, No. A1 tensile test piece and No. 4 Charpy test piece based on JIS Z3111 were collected, and the strength and toughness of the weld metal were tested. The results are shown in Tables 2-1 to 2-3. In the evaluation, a tensile strength of 690 MPa or more, a Charpy impact test at 0 ° C., an absorption energy of 30 J or more, no occurrence of weld defects, and a good bead appearance were accepted. In addition, the judgment of whether or not there was any alteration during wire annealing was made by analyzing the nitrogen in the wire, and if it was 0.010% or less of the total mass of the wire, it was deemed acceptable, and exceeded this Was rejected.

以上の試験結果から、本発明のフラックス入り極低水素溶接用ワイヤ及びその製造方法により、優れた施工性を維持しつつ、高強度鋼の溶接が可能となるので、本発明の産業的な意義は非常に多大であると結論づけられる。   From the above test results, it is possible to weld high-strength steel while maintaining excellent workability by the flux-cored ultra-low hydrogen welding wire of the present invention and its manufacturing method. It can be concluded that is very large.

Figure 2009255169
Figure 2009255169

Figure 2009255169
Figure 2009255169

Figure 2009255169
Figure 2009255169

Claims (4)

鋼製外皮にフラックスを充填したフラックス入りワイヤにおいて、ワイヤ全質量に対す
る質量%で、
C :0.04%以上、0.20%以下、
Si:0.1%以上、1.5%以下、
Mn:0.6%以上、2.5%以下
を含有するとともに、
Mg、Ca、Al、Zr、REMの一種または二種以上を、合計で、0.01%以上、2.00%以下含有し、残部が鉄及び不可避不純物から構成され、下記(式1)に示すPTSの値がワイヤ全体に対する質量%で0.36%以上、1.0%以下であり、ワイヤ中の全水素量がワイヤ全体の質量比で6.0ppm以下であり、鋼製外皮に外気浸入の危険性のあるスリット状の継ぎ目が無いことを特徴とする、フラックス入り極低水素溶接用ワイヤ。
PTS=C+Si/24+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V
/5(%) ・ ・ ・ (式1)
In the flux-cored wire in which the steel outer shell is filled with flux,
C: 0.04% or more, 0.20% or less,
Si: 0.1% or more, 1.5% or less,
Mn: containing not less than 0.6% and not more than 2.5%,
One or more of Mg, Ca, Al, Zr, and REM are contained in a total of 0.01% or more and 2.00% or less, and the balance is composed of iron and inevitable impurities. The PTS value shown is 0.36% or more and 1.0% or less in terms of mass% with respect to the entire wire, and the total hydrogen content in the wire is 6.0 ppm or less in terms of the mass ratio of the entire wire. A flux-filled ultra-low hydrogen welding wire, characterized by the absence of slit-like seams that can enter.
PTS = C + Si / 24 + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V
/ 5 (%) (1)
さらに、ワイヤ全質量に対する質量%で、
Cu:0.1〜1.0%、
Ni:0.1〜5.0%、
Cr:0.1〜2.0%、
Mo:0.1〜2.0%、
Nb:0.001〜0.100%、
V :0.001〜0.200%、
Ti:0.01〜0.50%(純金属又は合金状態)、
B :0.001〜0.050%
の一種または二種以上を含有することを特徴とする、請求項1に記載のフラックス入り極低水素溶接用ワイヤ。
Furthermore, in mass% relative to the total mass of the wire
Cu: 0.1 to 1.0%
Ni: 0.1 to 5.0%,
Cr: 0.1 to 2.0%,
Mo: 0.1 to 2.0%,
Nb: 0.001 to 0.100%,
V: 0.001 to 0.200%,
Ti: 0.01 to 0.50% (pure metal or alloy state),
B: 0.001 to 0.050%
The flux-containing ultra-low hydrogen welding wire according to claim 1, comprising one or more of the following.
ワイヤ全質量に対する質量%で、Na、Kの酸化物、またはフッ化物の一種または二種以上の合計がアーク安定剤として、0.1〜0.5%の範囲で含有されていることを特徴とする、請求項1または2に記載のフラックス入り極低水素溶接用ワイヤ。   The total content of one or more of Na, K oxides or fluorides is contained in the range of 0.1 to 0.5% as an arc stabilizer in mass% relative to the total mass of the wire. The flux-cored ultra-low hydrogen welding wire according to claim 1 or 2. 鋼帯をこれの長手方向に送りながら成形ロールによりオープン管に成形し、この成形途中でオープン管の開口部からフラックスを供給し、開口部の相対するエッジ面を突合せ溶接し、溶接により得られた管に縮径と焼鈍を実施する際に、ワイヤ直径が10.0mm以下となるまで縮径された後に、ワイヤを700℃以上、1000℃以下の温度で焼鈍することを特徴とする、請求項1ないし3のいずれか1項に記載のフラックス入り極低水素溶接用ワイヤの製造方法。   The steel strip is formed into an open tube with a forming roll while feeding it in the longitudinal direction. Flux is supplied from the opening of the open tube in the middle of this forming, and the opposite edge surfaces of the opening are butt welded and obtained by welding. When carrying out the diameter reduction and annealing on the pipe, the wire is annealed at a temperature of 700 ° C. or more and 1000 ° C. or less after the wire diameter is reduced to 10.0 mm or less. Item 4. The method for producing a flux-cored ultra-low hydrogen welding wire according to any one of Items 1 to 3.
JP2009049398A 2008-03-28 2009-03-03 Flux-filled ultra-low hydrogen welding wire and manufacturing method thereof Active JP5310108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049398A JP5310108B2 (en) 2008-03-28 2009-03-03 Flux-filled ultra-low hydrogen welding wire and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008086332 2008-03-28
JP2008086332 2008-03-28
JP2009049398A JP5310108B2 (en) 2008-03-28 2009-03-03 Flux-filled ultra-low hydrogen welding wire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009255169A true JP2009255169A (en) 2009-11-05
JP5310108B2 JP5310108B2 (en) 2013-10-09

Family

ID=41383274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049398A Active JP5310108B2 (en) 2008-03-28 2009-03-03 Flux-filled ultra-low hydrogen welding wire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5310108B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005531A (en) * 2009-06-26 2011-01-13 Nippon Steel Corp Flux-cored welding wire for high-tensile steel and method for manufacturing the same
JP2011156565A (en) * 2010-02-02 2011-08-18 Kobe Steel Ltd Flux-cored wire
CN102240868A (en) * 2011-05-13 2011-11-16 天津雷公焊接材料有限公司 High-tenacity wear-resisting overlaying alloy welding wire for cold-rolling support roller
CN102485409A (en) * 2010-12-01 2012-06-06 株式会社神户制钢所 Filling flux welding wire
CN102485410A (en) * 2010-12-01 2012-06-06 株式会社神户制钢所 Filling flux welding wire
RU2477334C1 (en) * 2011-07-12 2013-03-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Welding wire from low-carbon alloy steel
JP2013123711A (en) * 2011-12-13 2013-06-24 Jfe Steel Corp Low-hydrogen type flux cored wire and multi-electrode submerged arc welding method using the same
CN103302416A (en) * 2012-03-08 2013-09-18 株式会社神户制钢所 Flux-cored wire for gas protection of arc welding
KR101568538B1 (en) * 2013-12-24 2015-11-11 주식회사 포스코 Material for submerged arc welding
KR101568518B1 (en) * 2013-12-24 2015-11-11 주식회사 포스코 Flux cored arc weld wire
JP2015199106A (en) * 2014-04-10 2015-11-12 日鐵住金溶接工業株式会社 Flux-cored wire for carbon dioxide gas shielded arc welding
JP2016124023A (en) * 2015-01-07 2016-07-11 日鐵住金溶接工業株式会社 HIGH-TENSION STEEL Ar-CO2 MIXTURE GAS SHIELD ARC-WELDING FLUX-CORED WIRE
JP2016526486A (en) * 2013-07-08 2016-09-05 リンカーン グローバル,インコーポレイテッド High fracture toughness welds on thick workpieces
US10065272B2 (en) 2012-12-27 2018-09-04 Posco Super high-strength flux cored arc welded joint having excellent impact toughness, and welding wire for manufacturing same
CN112226668A (en) * 2020-10-13 2021-01-15 五矿营口中板有限责任公司 Method for manufacturing low-alloy steel plate containing aluminum and suitable for large-line weldable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227893B (en) * 2019-06-24 2021-05-14 江苏鼎胜新能源材料股份有限公司 Preparation method of brazing material containing zirconium element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950992A (en) * 1982-09-16 1984-03-24 Daido Steel Co Ltd Welding wire
JPS62296993A (en) * 1986-06-13 1987-12-24 Nippon Steel Corp Steel wire for mag pulse high speed welding
JPH03146295A (en) * 1989-10-31 1991-06-21 Nippon Steel Corp Flux cored wire for gas shielded arc welding
JP2008093715A (en) * 2006-10-13 2008-04-24 Nippon Steel Corp High yield strength and high toughness flux-cored wire for gas-shielded arc welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950992A (en) * 1982-09-16 1984-03-24 Daido Steel Co Ltd Welding wire
JPS62296993A (en) * 1986-06-13 1987-12-24 Nippon Steel Corp Steel wire for mag pulse high speed welding
JPH03146295A (en) * 1989-10-31 1991-06-21 Nippon Steel Corp Flux cored wire for gas shielded arc welding
JP2008093715A (en) * 2006-10-13 2008-04-24 Nippon Steel Corp High yield strength and high toughness flux-cored wire for gas-shielded arc welding

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005531A (en) * 2009-06-26 2011-01-13 Nippon Steel Corp Flux-cored welding wire for high-tensile steel and method for manufacturing the same
JP2011156565A (en) * 2010-02-02 2011-08-18 Kobe Steel Ltd Flux-cored wire
CN102485409B (en) * 2010-12-01 2014-08-27 株式会社神户制钢所 Filling flux welding wire
CN102485410A (en) * 2010-12-01 2012-06-06 株式会社神户制钢所 Filling flux welding wire
JP2012115877A (en) * 2010-12-01 2012-06-21 Kobe Steel Ltd Flux-cored wire
JP2012115878A (en) * 2010-12-01 2012-06-21 Kobe Steel Ltd Flux-cored wire
CN102485409A (en) * 2010-12-01 2012-06-06 株式会社神户制钢所 Filling flux welding wire
CN102485410B (en) * 2010-12-01 2014-09-03 株式会社神户制钢所 Filling flux welding wire
CN102240868A (en) * 2011-05-13 2011-11-16 天津雷公焊接材料有限公司 High-tenacity wear-resisting overlaying alloy welding wire for cold-rolling support roller
RU2477334C1 (en) * 2011-07-12 2013-03-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Welding wire from low-carbon alloy steel
JP2013123711A (en) * 2011-12-13 2013-06-24 Jfe Steel Corp Low-hydrogen type flux cored wire and multi-electrode submerged arc welding method using the same
CN103302416A (en) * 2012-03-08 2013-09-18 株式会社神户制钢所 Flux-cored wire for gas protection of arc welding
US10065272B2 (en) 2012-12-27 2018-09-04 Posco Super high-strength flux cored arc welded joint having excellent impact toughness, and welding wire for manufacturing same
JP2016526486A (en) * 2013-07-08 2016-09-05 リンカーン グローバル,インコーポレイテッド High fracture toughness welds on thick workpieces
KR101568538B1 (en) * 2013-12-24 2015-11-11 주식회사 포스코 Material for submerged arc welding
KR101568518B1 (en) * 2013-12-24 2015-11-11 주식회사 포스코 Flux cored arc weld wire
JP2015199106A (en) * 2014-04-10 2015-11-12 日鐵住金溶接工業株式会社 Flux-cored wire for carbon dioxide gas shielded arc welding
JP2016124023A (en) * 2015-01-07 2016-07-11 日鐵住金溶接工業株式会社 HIGH-TENSION STEEL Ar-CO2 MIXTURE GAS SHIELD ARC-WELDING FLUX-CORED WIRE
CN112226668A (en) * 2020-10-13 2021-01-15 五矿营口中板有限责任公司 Method for manufacturing low-alloy steel plate containing aluminum and suitable for large-line weldable
CN112226668B (en) * 2020-10-13 2021-06-22 五矿营口中板有限责任公司 Method for manufacturing low-alloy steel plate containing aluminum and suitable for large-line weldable

Also Published As

Publication number Publication date
JP5310108B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5310108B2 (en) Flux-filled ultra-low hydrogen welding wire and manufacturing method thereof
JP4558780B2 (en) Flux-cored wire for submerged arc welding of low-temperature steel
JP5387168B2 (en) Welding wire for high strength steel with flux and manufacturing method thereof
JP5157606B2 (en) TIG welding method of high strength steel using flux cored wire
JP5339871B2 (en) Flux-cored wire for submerged arc welding of low temperature steel and welding method.
JP6766867B2 (en) Flux-cored wire, welded joint manufacturing method, and welded joint
JP5387192B2 (en) Flux-cored wire for gas shield welding
JP2008190035A (en) Ferritic stainless steel sheet for water heater
JP6265051B2 (en) Flux-cored wire with excellent fatigue strength and cold cracking resistance of welded joints
JP6390204B2 (en) Flux-cored wire for gas shielded arc welding
JPWO2017154120A1 (en) Flux-cored wire, welded joint manufacturing method, and welded joint
JP6155810B2 (en) High Ni flux cored wire for gas shielded arc welding
JP6874425B2 (en) Manufacturing method of flux-cored wire and welded joint for gas shielded arc welding
JP6891630B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP6953789B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP4864506B2 (en) Submerged arc weld metal of high strength steel
JP5064928B2 (en) Flux-cored wire for submerged arc welding for high-strength steel.
JP2019048323A (en) Flux-cored wire for gas shield arc-welding, and method of manufacturing weld joint
JP4722811B2 (en) Flux-cored wire for submerged arc welding for high-strength steel.
JP2011206828A (en) Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding
JP6939574B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP4424484B2 (en) Welded joints with excellent cold cracking resistance and steel for welding materials
JP6728806B2 (en) High Ni flux-cored wire for gas shield arc welding and method for manufacturing welded joint
JP2008168312A (en) HIGH Ni FLUX-CORED WIRE HAVING EXCELLENT HIGH-TEMPERATURE CRACK RESISTANT CHARACTERISTIC, AND FILLET WELDING METHOD USING THE SAME
JP6881025B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R151 Written notification of patent or utility model registration

Ref document number: 5310108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350