JP2009255111A - Defect repair method for high temperature component, high temperature component, and repair material charging apparatus - Google Patents

Defect repair method for high temperature component, high temperature component, and repair material charging apparatus Download PDF

Info

Publication number
JP2009255111A
JP2009255111A JP2008105390A JP2008105390A JP2009255111A JP 2009255111 A JP2009255111 A JP 2009255111A JP 2008105390 A JP2008105390 A JP 2008105390A JP 2008105390 A JP2008105390 A JP 2008105390A JP 2009255111 A JP2009255111 A JP 2009255111A
Authority
JP
Japan
Prior art keywords
defect
brazing
repair material
loading
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008105390A
Other languages
Japanese (ja)
Inventor
Daizo Saito
大蔵 斎藤
Reki Takaku
歴 高久
Hiroaki Yoshioka
洋明 吉岡
Kazuhiro Kitayama
和弘 北山
Yoshiaki Sakai
義明 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008105390A priority Critical patent/JP2009255111A/en
Publication of JP2009255111A publication Critical patent/JP2009255111A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To secure a repaired part in a high temperature strength equal to a portion unnecessary for repairing or to a repairing material without causing any deformation due to repair. <P>SOLUTION: The defect repair method for the high temperature component, which repaires a defective fracture 21 caused in a stationary blade 11 of a gas turbine to be operated under a high temperature condition, includes: a charging process (Fig.2(C)) for charging a blazing repair material 20 into the defect 21; and a blazing process (Fig.2(D)) for blazing the fracture defect 21 by a diffusion heat process using a blazing repair material 20. In the charging process, when the blazing repair material 20 is charged in the defect 21, the stationary blade 11 is vibrated to charge the blazing repair material 20 in the defect 21. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガスタービンの静翼のような高温部品に生じたき裂などの欠陥を補修する高温部品の欠陥補修方法、欠陥が補修された高温部品、及び前記欠陥補修方法において使用される補修材装填装置に関する。   The present invention relates to a method for repairing a defect in a high-temperature part for repairing a defect such as a crack generated in a high-temperature part such as a stationary blade of a gas turbine, a high-temperature part in which the defect is repaired, and a repair material used in the defect repair method. The present invention relates to a loading device.

ガスタ−ビン発電プラントは、ガスタ−ビンと同軸に設けられた圧縮機の駆動によって圧縮された圧縮空気を燃焼器ライナに案内し、この燃焼器ライナの燃焼室内で燃料とともに燃焼させ、燃焼により発生した高温の燃焼ガスを、トランジションピ−ス及び静翼を経て動翼へ導き、この動翼を回転駆動させてガスタ−ビンに仕事をさせるようになっている。   A gas turbine power generation plant guides compressed air compressed by driving a compressor provided coaxially with a gas turbine to a combustor liner, burns it with fuel in the combustion chamber of the combustor liner, and is generated by combustion. The high-temperature combustion gas is guided to the moving blade through the transition piece and the stationary blade, and the moving blade is driven to rotate to cause the gas turbine to work.

この種のガスタ−ビンの高温部品である燃焼器ライナ、トランジションピ−ス、静翼及び動翼には、Ni基、Co基、またはNi−Fe基の耐熱超合金が用いられるが、ガスタ−ビンの運転とともに種々の損傷が発生する。まず、これらの高温部品は、高温の燃焼ガス雰囲気に晒されるため材質劣化が生じるとともに、動翼については、高速回転により生ずる遠心応力の作用でクリ−プ損傷が蓄積する。また、ガスタ−ビンの高温部品は、起動時には比較的低温環境域から高温環境域に、停止時には逆に高温環境域から低温環境域にそれぞれ推移する段階で熱疲労が生じ、疲労損傷が蓄積する。これらの損傷(材質劣化、クリ−プ損傷、疲労損傷)は重畳して蓄積する。   Ni-based, Co-based, or Ni-Fe-based heat-resistant superalloys are used for combustor liners, transition pieces, stationary blades, and moving blades, which are high-temperature parts of this type of gas turbine. Various damages occur with the operation of the bin. First, since these high-temperature parts are exposed to a high-temperature combustion gas atmosphere, material deterioration occurs, and creeping damage accumulates on the rotor blades due to the action of centrifugal stress caused by high-speed rotation. Also, high-temperature parts of gas turbines are subject to thermal fatigue at the stage of transition from a relatively low temperature environment area to a high temperature environment area at startup and conversely from a high temperature environment area to a low temperature environment area at the time of shutdown, and fatigue damage accumulates. . These damages (material deterioration, creep damage, fatigue damage) accumulate and accumulate.

ところで、ガスタ−ビンの高温部品の保守管理は、機器の設計段階で決まるクリ−プあるいは疲労寿命と、実機の運転、立地上の環境により設定される設計寿命とを基に、同一機種あるいは同一運転形態をとるガスタ−ビンを分類し、分類された各グル−プの先行機の実績を用いて設計寿命を補正し、後続機の保守管理を行っている。近年では、特許文献1に記載のように、ガスタ−ビンの高温部品の劣化、損傷診断を効率的に精度良く予測する保守管理方法が実施されつつある。いずれの保守管理方法においても、ガスタ−ビンの高温部品は、必要に応じて定検毎に補修が繰り返えされ、管理寿命に到達した後に一律に廃却となり、非常に高価な新品と交換される。   By the way, the maintenance management of high-temperature parts of the gas turbine is the same model or the same based on the creep or fatigue life determined in the equipment design stage and the design life set by the actual machine operation and location environment. The gas turbines taking the operation form are classified, the design life is corrected using the results of the preceding machines of each classified group, and the maintenance of the subsequent machines is performed. In recent years, as described in Patent Document 1, a maintenance management method for efficiently and accurately predicting deterioration and damage diagnosis of high-temperature parts of a gas turbine is being implemented. Regardless of the maintenance management method, the high-temperature parts of the gas turbine are repeatedly repaired at regular inspections as necessary, and after reaching the management life, they are uniformly discarded and replaced with very expensive new ones. Is done.

ガスタ−ビン静翼の定検毎の補修においては、使用によりき裂が発生した場合、き裂周辺を除去し、溶接補修することで再使用が可能となる。また、溶接補修の他に、ろう付けによってき裂を補修する方法もある。このような溶接補修またはろう付け補修の例を、下記の特許文献2〜5に示す。   In the repair for each regular inspection of the gas turbine stationary blade, if a crack occurs due to use, it can be reused by removing the periphery of the crack and repairing the weld. In addition to welding repair, there is a method of repairing a crack by brazing. Examples of such welding repair or brazing repair are shown in Patent Documents 2 to 5 below.

特許文献2には、発電用ガスタービン静翼の精密鋳造時に生じた欠陥あるいは使用中に生じたき裂の補修方法として、クリープ特性、耐熱疲労特性及び耐腐食性に優れたCo基合金の材料を用いた溶接方法が提案されている。   Patent Document 2 discloses a Co-based alloy material excellent in creep characteristics, thermal fatigue characteristics and corrosion resistance as a repair method for defects generated during precision casting of gas turbine stationary blades for power generation or cracks generated during use. The welding method used has been proposed.

また、特許文献3には、高温金属(合金)部品に発生した、高温腐食生成物で充満したき裂の補修方法として、水酸化ナトリウム及び/又は水酸化カリウム水溶液に高温金属部品を浸漬して、高温腐食生成物を除去した後に、Niろう材又はCoろう材によりき裂を補修する方法が提案されている。   Patent Document 3 describes a method for repairing a crack generated in a high-temperature metal (alloy) part and filled with a high-temperature corrosion product by immersing the high-temperature metal part in sodium hydroxide and / or potassium hydroxide aqueous solution. A method of repairing a crack with a Ni brazing material or a Co brazing material after removing a hot corrosion product has been proposed.

更に、特許文献4には、き裂が生じたジェットエンジンの静翼を水素雰囲気中に曝露し、酸化物を還元し、アクリルレジンとろう材を補修材としてき裂に塗布し、高温、真空中でろう付けしてき裂を補修する方法が提案されている。   Further, Patent Document 4 discloses that a jet engine stationary blade in which a crack has occurred is exposed to a hydrogen atmosphere, oxides are reduced, acrylic resin and brazing material are applied to the crack as repair materials, and a high temperature, vacuum is applied. A method for repairing cracks by brazing has been proposed.

特許文献5には、ガスタービン静翼でき裂が発生している表面部位の酸化層を、き裂が一部残存する形で削り、この削り部内に補修材を充填し、不活性ガスによる加圧下での熱処理により、ろう材を溶融させてき裂を補修する方法が提案されている。
特開平10−293049号公報 特開平11−117705号公報 特開平6−234066号公報 特開平6−344129号公報 特開2006−46147号公報
In Patent Document 5, an oxide layer at a surface portion where a gas turbine stationary blade is cracked is shaved so that a part of the crack remains, a repair material is filled in the shaved portion, and an inert gas is added. There has been proposed a method of repairing a crack by melting a brazing material by heat treatment under pressure.
Japanese Patent Laid-Open No. 10-293049 JP-A-11-117705 JP-A-6-234066 JP-A-6-344129 JP 2006-46147 A

ところが、上述の特許文献において、特許文献2に記載のき裂の溶接補修では、溶接後に溶接変形が生じて、ガスタービン静翼を再使用できない場合がある。また、特許文献3〜5に記載のろう付け補修においては、ろう付け補修後に、補修部内にある程度のボイドが生じて、補修部の高温強度が低下する恐れがある。   However, in the above-described patent document, in the crack welding repair described in Patent Document 2, welding deformation may occur after welding, and the gas turbine stationary blade may not be reused. Further, in the brazing repair described in Patent Documents 3 to 5, a certain amount of voids are generated in the repaired part after the brazing repair, and the high temperature strength of the repaired part may be reduced.

本発明の目的は、上述の事情を考慮してなされたものであり、補修による変形を生じさせることなく、且つ補修部分を補修不要箇所または材料と同等の高温強度に確保できる高温部品の欠陥補修方法、及びこの方法により欠陥が補修された高温部品を提供することにある。   The object of the present invention has been made in consideration of the above-mentioned circumstances, and repairs defects in high-temperature parts that can ensure the high-temperature strength equivalent to that of parts that do not require repair or the repair parts without causing deformation due to repair. It is an object of the present invention to provide a method and a high temperature part in which defects are repaired by this method.

また、本発明の他の目的は、高温部品の欠陥内へのろう付け補修材の装填と高温部品の振動とを同時に実施できる補修材装填装置を提供することにある。   Another object of the present invention is to provide a repair material loading apparatus capable of simultaneously loading a brazing repair material into a defect of a high temperature part and vibration of the high temperature part.

本発明に係る高温部品の欠陥補修方法は、高温状態で運転されるエネルギー機関の高温部品に生じた欠陥を補修する高温部品の欠陥補修方法において、前記欠陥内にろう付け補修材を装填する装填工程と、前記ろう付け補修材を用いた拡散熱処理によって前記欠陥をろう付け加工するろう付け工程とを有し、前記装填工程では、前記欠陥内に前記ろう付け補修材を装填する際に前記高温部品を振動させ、前記欠陥内に前記ろう付け補修材を装填することを特徴とするものである。   A defect repair method for a high-temperature part according to the present invention is a defect repair method for a high-temperature part for repairing a defect generated in a high-temperature part of an energy engine operated in a high-temperature state, in which a brazing repair material is loaded in the defect. And a brazing step of brazing the defect by diffusion heat treatment using the brazing repair material, and in the loading step, the high temperature is applied when the brazing repair material is loaded into the defect. A component is vibrated, and the brazing repair material is loaded into the defect.

また、本発明に係る高温部品は、高温状態で運転されるエネルギー機関の高温部品であって、上述の高温部品の欠陥補修方法により欠陥が補修されて構成されたことを特徴とするものである。   The high-temperature component according to the present invention is a high-temperature component of an energy engine that is operated in a high-temperature state, wherein the defect is repaired by the above-described defect repair method for a high-temperature component. .

更に、本発明に係る補修材装填装置は、高温部品の欠陥内へろう付け補修材を装填する補修材装填装置であって、前記ろう付け補修材を収容し、先端側に注入口が設けられた収容部を備え、前記注入口の反対側に設けられた押圧部材により、前記収容部内のろう付け補修材を押圧して、前記注入口から前記欠陥内へ装填する装填機構部と、振動子を備え、駆動源の回転動作により前記振動子を進退動作させて、前記高温部品に振動を付与する振動機構部と、を有することを特徴とするものである。   Furthermore, a repair material loading device according to the present invention is a repair material loading device for loading a brazing repair material into a defect of a high-temperature part, which accommodates the brazing repair material, and has an inlet provided on the tip side. A loading mechanism section that presses the brazing repair material in the housing section with a pressing member provided on the opposite side of the injection port, and loads the defect into the defect from the injection port; And a vibration mechanism that applies vibration to the high-temperature component by moving the vibrator forward and backward by a rotation operation of a drive source.

本発明に係る高温部品の欠陥補修方法及び高温部品によれば、高温部品に生じた欠陥内にろう付け補修材を装填する際に高温部品を振動させて、欠陥内にろう付け補修材を装填するので、次に実施するろう付け工程において、溶融したろう付け補修材中にボイドが発生することを防止でき、この結果、補修部分を補修不要箇所または材料と同等の高温強度に確保できる。また、ろう付け補修材を用い、ろう付け加工により欠陥を補修するので、高温部品に補修による変形を生じさせることがない。   According to the defect repairing method and the high temperature part of the high temperature part according to the present invention, when the brazing repair material is loaded in the defect generated in the high temperature part, the high temperature part is vibrated and the brazing repair material is loaded in the defect. Therefore, in the next brazing step, voids can be prevented from being generated in the molten brazing repair material, and as a result, the repaired portion can be secured at a high temperature strength equivalent to that of the portion where no repair is required or the material. Moreover, since a defect is repaired by brazing using a brazing repair material, deformation due to the repair does not occur in high-temperature parts.

また、本発明に係る補修材装填装置によれば、高温部品の欠陥内にろう付け補修材を装填する装填機構部と、振動子の進退動作により前記高温部品に振動を付与する振動機構部とを有することから、高温部品の欠陥内にろう付け補修材を装填しながら、この高温部品を振動させることができる。   Further, according to the repair material loading device according to the present invention, a loading mechanism portion for loading the brazing repair material into the defect of the high temperature component, and a vibration mechanism portion for applying vibration to the high temperature component by advancing and retreating operation of the vibrator, Therefore, the high temperature component can be vibrated while the brazing repair material is loaded in the defect of the high temperature component.

以下、本発明を実施するための最良の形態を、図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

[A]第1の実施の形態(図1〜図9)
図1は、本発明に係る高温部品の欠陥補修方法における第1の実施の形態であるガスタービン静翼の欠陥補修方法が適用されるガスタービンの一部を示す部分断面図である。図2(A)〜(E)は、図1の静翼におけるき裂の補修手順を示す工程図である。
[A] First embodiment (FIGS. 1 to 9)
FIG. 1 is a partial cross-sectional view showing a part of a gas turbine to which a defect repairing method for a gas turbine stationary blade, which is a first embodiment in a defect repairing method for a high-temperature part according to the present invention, is applied. 2A to 2E are process diagrams showing a crack repair procedure in the stationary blade of FIG.

図1に示すガスタービン10は、高温状態で運転されるエネルギー機関の一例であり、図示しない圧縮機からの圧縮空気と燃料とが図示しないに燃料器ライナの燃焼室内で混合され燃焼して燃焼ガスとなり、この燃焼ガスがトランジションピース(不図示)及び静翼11に案内されて動翼12へ導入され、この動翼12が植設されたタービンロータ13を回転させる。このタービンロータ13の回転により、発電機などが回転駆動される。   A gas turbine 10 shown in FIG. 1 is an example of an energy engine operated in a high temperature state, and compressed air and fuel from a compressor (not shown) are mixed and burned in a combustion chamber of a fuel liner, not shown. The combustion gas is guided by a transition piece (not shown) and a stationary blade 11 and introduced into the moving blade 12, and the turbine rotor 13 in which the moving blade 12 is implanted is rotated. The generator and the like are driven to rotate by the rotation of the turbine rotor 13.

タービンロータ13は、複数のロータディスク14が軸方向に結合されて構成され、各ロータディスク14の周囲に動翼12が複数枚植設される。また、静翼11は、タービンケーシング15にシュラウドセグメント16やリテイニングリング17、サポートリング18を介して支持される。これらの静翼11は、各ロータディスク14の動翼12の前方に配置されて、動翼12と共にタービン段落を構成する。このタービン段落は、燃焼ガスの流れ方向(矢印A)の上流側から下流側へ向かって第1段落、第2段落、第3段落と称される。   The turbine rotor 13 is configured by connecting a plurality of rotor disks 14 in the axial direction, and a plurality of rotor blades 12 are implanted around each rotor disk 14. Further, the stationary blade 11 is supported by the turbine casing 15 via a shroud segment 16, a retaining ring 17, and a support ring 18. These stationary blades 11 are arranged in front of the rotor blades 12 of each rotor disk 14 and constitute a turbine stage together with the rotor blades 12. The turbine paragraphs are referred to as a first paragraph, a second paragraph, and a third paragraph from the upstream side to the downstream side in the combustion gas flow direction (arrow A).

上述のガスタービン10における静翼11は高温部品である。また、この静翼11はNi基、Co基、またはNi−Fe基などの耐熱超合金により構成されるが、高温の燃焼ガス雰囲気に晒されるなどの原因で損傷を受けやすく、き裂21(図2)等の欠陥が生じやすい。しかし、この静翼11は、高価な耐熱超合金にて構成されているため、損傷が致命的である場合を除いて、き裂21等の欠陥を補修して再使用に供される。   The stationary blade 11 in the gas turbine 10 described above is a high-temperature component. The vane 11 is made of a heat-resistant superalloy such as a Ni base, a Co base, or a Ni—Fe base, but is easily damaged due to exposure to a high-temperature combustion gas atmosphere, and the crack 21 ( Defects such as FIG. However, since the stationary blade 11 is made of an expensive heat-resistant superalloy, the defect such as the crack 21 is repaired and reused except when the damage is fatal.

本実施の形態においては、静翼11に発生したき裂21に対し、図2に示す補修手順を実施して補修する。この補修手順は、き裂21の表面に生じた酸化層22を洗浄により除去する洗浄工程(図2(A)及び(B))と、洗浄されたき裂21内にろう付け補修材20を装填する装填工程(図2(C))と、ろう付け補修材20を用いた拡散熱処理によってき裂21をろう付け加工するろう付け工程(図2(D))と、静翼11の表面を仕上げ加工する表面仕上げ工程(図2(E))とを順次実施するものである。   In the present embodiment, the crack 21 generated on the stationary blade 11 is repaired by performing the repair procedure shown in FIG. This repair procedure includes a cleaning step (FIGS. 2A and 2B) for removing the oxide layer 22 generated on the surface of the crack 21 by cleaning, and the brazing repair material 20 is loaded into the cleaned crack 21. Loading step (FIG. 2C), brazing step of brazing the crack 21 by diffusion heat treatment using the brazing repair material 20 (FIG. 2D), and finishing the surface of the stationary blade 11 The surface finishing step to be processed (FIG. 2E) is sequentially performed.

この補修手順の前提となる補修手順の実験例について、図3〜図5を用いて説明する。この実験例では、静翼11と同じ材料で、実験室的にき裂21を模擬した試験材23を用いて実験を行った。ここで用いた試験材23の材料は、表1に示す組成のCo基超合金である。また、き裂21を模擬するために、ワイヤカット加工によってスリット24を作製している。

Figure 2009255111
An experimental example of the repair procedure which is the premise of this repair procedure will be described with reference to FIGS. In this experimental example, an experiment was performed using the same material as the stationary blade 11 and a test material 23 simulating the crack 21 in the laboratory. The material of the test material 23 used here is a Co-base superalloy having the composition shown in Table 1. Moreover, in order to simulate the crack 21, the slit 24 is produced by wire cutting.
Figure 2009255111

本実験例においては、酸化層22を除去する洗浄工程と表面仕上げ工程は実施せず、まず、スリット24を含めた試験材23全体の脱脂洗浄を、例えばアセトン等を用いて実施する。   In the present experimental example, the cleaning step and the surface finishing step for removing the oxide layer 22 are not performed, and first, degreasing cleaning of the entire test material 23 including the slit 24 is performed using, for example, acetone.

次に、装填工程を実施し、図3に示すように、試験材23のスリット24内にろう付け補修材20を装填し、このろう付け補修材20を試験材23の表面に盛り上げる。ここで、ろう付け補修材20は、図2(C)にも示すように、Ni基溶融合金粉末28と、Co基非溶融合金粉末29とを配合したものである。Ni基溶融合金粉末28は、Ni−Cr−Co−Si−B系であり、ろう付け加工により溶融する。また、Co基非溶融合金粉末はCo−Ni−Cr系であり、ろう付け加工によって溶融せず、補修部の強度確保のために配合される。   Next, a loading step is performed, and the brazing repair material 20 is loaded into the slit 24 of the test material 23 as shown in FIG. 3, and the brazing repair material 20 is raised on the surface of the test material 23. Here, as shown in FIG. 2C, the brazing repair material 20 is a mixture of Ni-based molten alloy powder 28 and Co-based non-molten alloy powder 29. The Ni-based molten alloy powder 28 is a Ni—Cr—Co—Si—B system and melts by brazing. Further, the Co-based non-molten alloy powder is a Co—Ni—Cr system and does not melt by brazing, and is blended to ensure the strength of the repaired portion.

この装填工程においては、次に、振動装置25のベース26上に試験材23を載置し、ベース26に設けられたクランプ27を用いて試験材23をベース26に固定保持する。そして、振動装置25を稼働させて試験材23に振動を付与し加振する。試験材23のスリット24に装填されたろう付け補修材20は、Ni基溶融合金粉末28及びCo基非溶融合金粉末29が共に粉末であることから、振動が付与された後にはこれらの粉末28と29間の隙間が無くなりまたは少なくなって、盛り上げられたろう付け補修材20の高さが低くなる。そのため、振動付与(加振)後に、ろう付け補修材20が再度装填される。このようにして、この装填工程において、試験材23のスリット24内にろう付け補修材20が隙間なく装填される。   Next, in this loading process, the test material 23 is placed on the base 26 of the vibration device 25, and the test material 23 is fixedly held on the base 26 using a clamp 27 provided on the base 26. Then, the vibration device 25 is operated to apply vibration to the test material 23 and vibrate. The brazing repair material 20 loaded in the slit 24 of the test material 23 is composed of both the Ni-based molten alloy powder 28 and the Co-based non-molten alloy powder 29. Therefore, after the vibration is applied, As a result, the height of the raised brazing repair material 20 is lowered. Therefore, the brazing repair material 20 is loaded again after applying vibration (vibration). Thus, in this loading process, the brazing repair material 20 is loaded into the slit 24 of the test material 23 without any gap.

その後、ろう付け補修材20を用いてスリット24をろう付け加工するろう付け工程を実施する。このろう付け工程では、スリット24内にろう付け補修材20が装填され、且つこのろう付け補修材20が表面に盛り付けられた試験材23を真空熱処理炉に投入し、1200℃の条件で拡散熱処理を実施する。つまり、ろう付け補修材20を溶融させ、この溶融状態のろう付け補修材20をスリット24内で、試験材23の材料に拡散反応により固着させる。この拡散熱処理によって試験材23のスリット24がろう付け加工されて補修され、補修部31(図4(A))が形成される。   Then, the brazing process of brazing the slit 24 using the brazing repair material 20 is performed. In this brazing process, the brazing repair material 20 is loaded into the slit 24, and the test material 23 on which the brazing repair material 20 is placed is placed in a vacuum heat treatment furnace, and diffusion heat treatment is performed at 1200 ° C. To implement. That is, the brazing repair material 20 is melted, and the molten brazing repair material 20 is fixed to the material of the test material 23 in the slit 24 by a diffusion reaction. By this diffusion heat treatment, the slit 24 of the test material 23 is brazed and repaired to form a repaired portion 31 (FIG. 4A).

上述の実験終了後、試験材23のスリット24が補修された補修部31について、断面観察を行った。その結果、図4(B)に示すように、この補修部31では、Ni基溶融合金粉末28が溶融したNi基溶融合金32とCo基非溶融合金粉末29とが後述のボイド34(図5(B))の存在なく緊密に充填されていることが確認された。   After the above experiment was completed, a cross-sectional observation was performed on the repaired portion 31 in which the slit 24 of the test material 23 was repaired. As a result, as shown in FIG. 4B, in the repair portion 31, the Ni-based molten alloy 32 in which the Ni-based molten alloy powder 28 is melted and the Co-based non-molten alloy powder 29 are formed into a void 34 described later (FIG. 5). (B)) was confirmed to be closely packed without being present.

これに対し、装填工程において、スリット24内にろう付け補修材20が装填されたが、振動装置25による振動が付与されず、その後ろう付け工程が実施された試験材23の補修部33(図5(A))では、Ni基溶融合金粉末28が溶融したNi基溶融合金32とCo基非溶融合金粉末29との間にボイド34が認められた。   On the other hand, in the loading process, the brazing repair material 20 is loaded in the slit 24, but the vibration by the vibration device 25 is not applied, and the repairing portion 33 (see FIG. 5 (A)), a void 34 was observed between the Ni-based molten alloy 32 in which the Ni-based molten alloy powder 28 was melted and the Co-based non-molten alloy powder 29.

従って、装填工程において、試験材23のスリット24内にろう付け補修材20が装填された後、この試験材23が加振された場合には、スリット24の補修部31におけるろう付け補修材20中にボイド34が存在せず、スリット24内にろう付け補修材20が緊密に充填されるため、この補修部31の高温強度は、補修が不要な箇所または材料と同等の値を示すものと推定される。   Accordingly, in the loading process, when the brazing repair material 20 is loaded into the slit 24 of the test material 23 and then this test material 23 is vibrated, the brazing repair material 20 in the repair portion 31 of the slit 24. Since the void 34 does not exist in the slit 24 and the brazing repair material 20 is closely filled in the slit 24, the high-temperature strength of the repair portion 31 exhibits a value equivalent to that of a portion or material that does not require repair. Presumed.

さて、図2に補修手順を示す本実施の形態において補修の対象となる静翼11は、実プラントで設計寿命半ばの静翼であり、ガスタービン10の第1段落を構成する静翼である。この静翼11も、表1に示す材料と同等のCo基超合金から構成されている。この静翼11におけるき裂21の補修は、前述の洗浄工程(図2(A)及び(B))、装填工程(図2(C))、ろう付け工程(図2(D))、及び表面仕上げ工程(図2(E))を順次実施するものであるが、このうちの装填工程とろう付け工程は前述の実験例と同様である。   Now, the stationary blade 11 to be repaired in the present embodiment whose repair procedure is shown in FIG. 2 is a stationary blade having a mid-design life in an actual plant, and is a stationary blade constituting the first stage of the gas turbine 10. . This stationary blade 11 is also made of a Co-base superalloy equivalent to the material shown in Table 1. Repair of the crack 21 in the stationary blade 11 includes the above-described cleaning process (FIGS. 2A and 2B), the loading process (FIG. 2C), the brazing process (FIG. 2D), and The surface finishing step (FIG. 2 (E)) is sequentially performed, and the loading step and the brazing step are the same as in the above-described experimental example.

まず、洗浄工程(図2(A)及び(B))は、静翼11を水素雰囲気中で熱処理することで、静翼11におけるき裂21の表面に生じた酸化層22を除去する。この水素雰囲気中での熱処理を水素洗浄と称する。   First, in the cleaning step (FIGS. 2A and 2B), the stationary blade 11 is heat-treated in a hydrogen atmosphere to remove the oxide layer 22 generated on the surface of the crack 21 in the stationary blade 11. This heat treatment in a hydrogen atmosphere is referred to as hydrogen cleaning.

次に、実験例と同様にして装填工程(図2(C))を実施し、静翼11のき裂21内にろう付け補修材20を装填し、この装填の際に静翼11を振動させて、き裂21内にろう付け補修材20を隙間なく装填する。   Next, the loading step (FIG. 2C) is performed in the same manner as in the experimental example, and the brazing repair material 20 is loaded into the crack 21 of the stationary blade 11, and the stationary blade 11 is vibrated during this loading. Then, the brazing repair material 20 is loaded into the crack 21 without a gap.

具体的には、図2(C)に示すように、まず、静翼11の欠陥21内にろう付け補修材20を装填し、このろう付け補修材20を静翼11の表面に盛り上げる。次に、図6に示すように、ろう付け補修材20が装填された静翼11を、振動装置25よりも大型の振動装置35のベース36に載置し、このベース36に設けられたクランプ37を用いて静翼11をベース36に固定保持する。この状態で振動装置35を稼働させ、静翼11に振動を付与して加振する。静翼11の加振により、ろう付け補修材20を構成するNi基溶融合金粉末28とCo基非溶融合金粉末29との間に隙間が無くなりまたは少なくなって、静翼11の表面に盛り付けられたろう付け補修材20の高さが低くなる。このため、静翼11の加振後にろう付け補修材20を再度装填して、ろう付け補修材20を所定の高さとする。   Specifically, as shown in FIG. 2C, first, the brazing repair material 20 is loaded into the defect 21 of the stationary blade 11, and the brazing repair material 20 is raised on the surface of the stationary blade 11. Next, as shown in FIG. 6, the stationary blade 11 loaded with the brazing repair material 20 is placed on a base 36 of a vibration device 35 larger than the vibration device 25, and a clamp provided on the base 36. 37 is used to fix and hold the stationary blade 11 to the base 36. In this state, the vibration device 35 is operated to apply vibration to the stationary blade 11 and vibrate. Due to the vibration of the stator blade 11, the gap between the Ni-based molten alloy powder 28 and the Co-based non-molten alloy powder 29 constituting the brazing repair material 20 is eliminated or reduced, and the stator blade 11 is placed on the surface of the stator blade 11. The height of the brazing repair material 20 becomes low. For this reason, after the stationary blade 11 is vibrated, the brazing repair material 20 is loaded again so that the brazing repair material 20 has a predetermined height.

次のろう付け工程(図2(E))でも、実験例と同様に、き裂21内にろう付け補修材20が装填され、且つ表面にろう付け補修材20が盛り付けられた静翼11を、真空熱処理炉に投入し、1200℃の条件で拡散熱処理を実施してき裂21をろう付け加工し、補修部38を形成する。このろう付け加工後に表面仕上げ工程(図2(E)を実施して、静翼11の表面を仕上げ加工し、補修済みの静翼11を得る。   In the next brazing step (FIG. 2 (E)), the braided repair material 20 is loaded in the crack 21 and the brazing repair material 20 is placed on the surface as in the experimental example. Then, it is put into a vacuum heat treatment furnace, diffusion heat treatment is performed under the condition of 1200 ° C., the crack 21 is brazed, and the repair portion 38 is formed. After the brazing process, a surface finishing step (FIG. 2E) is performed to finish the surface of the stationary blade 11 to obtain a repaired stationary blade 11.

補修済みの静翼11の補修部38について断面観察を行った結果、図2(E)及び図7に示すように、Ni基溶融合金粉末28が溶融したNi基溶融合金32とCo基非溶融合金粉末29とが、ボイド34(図8)の存在なく、き裂21内に緊密に充填されていることが確認された。これに対し、装填工程においてき裂21内にろう付け補修材20が装填されたが、振動装置35による加振がなされず、その後ろう付け加工が実施されて表面仕上げされた静翼11の補修部39(図8)では、Ni基溶融合金粉末28が溶融したNi基溶融合金32とCo基非溶融合金粉末29との間にボイド34が認められた。   As a result of cross-sectional observation of the repaired portion 38 of the repaired stationary blade 11, as shown in FIGS. 2E and 7, the Ni-based molten alloy 32 in which the Ni-based molten alloy powder 28 is melted and the Co-based non-melted It was confirmed that the alloy powder 29 was tightly filled in the crack 21 without the presence of the void 34 (FIG. 8). On the other hand, the brazing repair material 20 is loaded into the crack 21 in the loading process, but the vibration device 35 is not vibrated, and the brazing process is then performed to repair the stationary blade 11 that has been surface-finished. In part 39 (FIG. 8), a void 34 was observed between the Ni-based molten alloy 32 in which the Ni-based molten alloy powder 28 was melted and the Co-based non-molten alloy powder 29.

次に、装填工程で加振を施してき裂21を補修した静翼11の補修部38を含めた試験片(加振試験片)について、クリープ破断時間を検出して補修部38の高温強度を確認した。このときには、装填工程で加振を施さずにき裂21を補修した静翼11の補修部39を含めた試験片(非加振試験片)と、補修が不必要な静翼11の材料からなる試験片(補修不要試験片)についても、同様にクリープ破断時間を検出した。   Next, for the test piece (vibration test piece) including the repaired portion 38 of the stationary blade 11 that has been subjected to vibration during the loading process and repaired the crack 21, the creep rupture time is detected and the high-temperature strength of the repaired portion 38 is increased. confirmed. At this time, from the test piece (non-vibration test piece) including the repaired portion 39 of the stationary blade 11 that has repaired the crack 21 without applying vibration in the loading process, and the material of the stationary blade 11 that does not require repair. As for the test piece (repair unnecessary test piece), the creep rupture time was similarly detected.

図9に示すように、非加振試験片はクリープ破断時間が短く、高温強度が低いことが確認された。一方、加振試験片は、補修不要試験片と同等のクリープ破断時間であり、高温強度が高いことが確認された。   As shown in FIG. 9, it was confirmed that the non-vibration test piece had a short creep rupture time and a low high-temperature strength. On the other hand, it was confirmed that the vibration test piece had the same creep rupture time as the repair-free test piece and had high high-temperature strength.

従って、本実施の形態によれば、次の効果(1)〜(3)を奏する。   Therefore, according to the present embodiment, the following effects (1) to (3) are obtained.

(1)静翼11に生じたき裂21内にろう付け補修材20を装填する際に静翼11を振動させて、き裂21内にろう付け補修材20を隙間なく装填するので、次に実施するろう付け工程において、溶融したろう付け補修材20中にボイド34の発生を防止できる。この結果、静翼11の補修部38を補修不要箇所または補修不要材料と同等の高温強度に確保できる。   (1) When the brazing repair material 20 is loaded in the crack 21 generated in the stationary blade 11, the stationary blade 11 is vibrated and the brazing repair material 20 is loaded in the crack 21 without gaps. In the brazing process to be performed, generation of voids 34 in the molten brazing repair material 20 can be prevented. As a result, the repaired portion 38 of the stationary blade 11 can be secured at a high temperature strength equivalent to that of a repair unnecessary portion or a repair unnecessary material.

(2)ろう付け補修材20を用い、ろう付け加工により静翼11の欠陥21を補修するので、静翼11に補修による変形を生じさせることがなく、この補修済みの静翼11を再使用することが可能となる。   (2) Since the defect 21 of the stationary blade 11 is repaired by brazing using the brazing repair material 20, the stationary blade 11 is reused without causing deformation of the stationary blade 11 due to the repair. It becomes possible to do.

(3)静翼11の欠陥21の表面に生じた酸化層22が水素洗浄により除去されるので、酸化層22を切削加工して除去する場合に比べ、コスト低減できる。   (3) Since the oxide layer 22 generated on the surface of the defect 21 of the stationary blade 11 is removed by hydrogen cleaning, the cost can be reduced as compared with the case where the oxide layer 22 is removed by cutting.

[B]第2の実施の形態(図10、図11)
図10は、本発明に係る高温部品の欠陥補修方法における第2の実施の形態であるガスタービン静翼の欠陥補修方法の装填工程を、そのとき使用する補修材充填装置と共に示す断面模式図である。この第2の実施の形態において、前記第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second embodiment (FIGS. 10 and 11)
FIG. 10 is a schematic cross-sectional view showing a loading process of a defect repair method for a gas turbine stationary blade, which is a second embodiment of the defect repair method for a high-temperature part according to the present invention, together with a repair material filling device used at that time. is there. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態が前記第1の実施の形態と異なる点は、装填工程において、静翼11のき裂21内にろう付け補修材20を装填開始してから終了するまでの間、静翼11を振動させて、き裂21内にろう付け補修材20を隙間なく装填させた点であり、この装填工程において、図10の補修材装填装置40が使用される。   The present embodiment is different from the first embodiment in that, in the loading process, the stationary blade 11 is from the start of loading the brazing repair material 20 into the crack 21 of the stationary blade 11 until the end. And the brazing repair material 20 is loaded into the crack 21 without any gap. In this loading process, the repair material loading device 40 of FIG. 10 is used.

この補修材装填装置40は、前記実施の形態と同様な洗浄工程終了後に、静翼11のき裂21内へろう付け補修材20を装填するものであるが、装填機構部41の他に振動機構部42を有する。   The repair material loading device 40 loads the brazing repair material 20 into the crack 21 of the stationary blade 11 after the completion of the cleaning process similar to the above embodiment. A mechanism unit 42 is provided.

装填機構部41は、ケーシング43に設けられてろう付け補修材20を収容し、先端側に注入口45が形成された収容部44と、ケーシング43内において注入口45と反対側に摺動自在に配設された押圧部材としてのピストン46と、を有してなる。ピストン46は、収容部44の一壁面を構成し、例えば圧縮空気により収容部44内のろう付け補修材20を押圧することで、このろう付け補修材20を注入口45から静翼11のき裂21内へ注入し装填する。   The loading mechanism portion 41 is provided in the casing 43 and accommodates the brazing repair material 20, and the accommodation portion 44 in which the injection port 45 is formed on the tip side, and the casing 43 is slidable on the opposite side to the injection port 45. And a piston 46 serving as a pressing member. The piston 46 constitutes one wall surface of the housing portion 44, and, for example, presses the brazing repair material 20 in the housing portion 44 with compressed air, so that the brazing repair material 20 is removed from the inlet 45 by the stationary blade 11. Inject and load into the fissure 21.

振動機構部42は、図11にも示すように、振動子47と、ケーシング43内に設置された駆動源としての駆動モータ48と、この駆動モータ48のモータ軸に回転一体に取り付けられたカム49と、振動子47に植設されたピン50とケーシング43との間で振動子47の基端をカム49に圧接するスプリング51と、を有して構成される。駆動モータ48のモータ軸の回転動作により、カム49を介して振動子47がケーシング43に対して進退運動し、この振動子47の先端が静翼11に振動を付与して、この静翼11を加振する。   As shown in FIG. 11, the vibration mechanism unit 42 includes a vibrator 47, a drive motor 48 as a drive source installed in the casing 43, and a cam that is rotatably integrated with the motor shaft of the drive motor 48. 49 and a spring 51 that presses the base end of the vibrator 47 against the cam 49 between the pin 50 implanted in the vibrator 47 and the casing 43. Due to the rotation of the motor shaft of the drive motor 48, the vibrator 47 moves forward and backward with respect to the casing 43 through the cam 49, and the tip of the vibrator 47 imparts vibration to the stationary blade 11. Vibrates.

上述のように構成された補修材装填装置40を用いることで、装填機構部41により静翼11のき裂21内にろう付け補修材20を装填させながら、同時に、振動機構部42によって静翼11を振動させることができるので、静翼11のき裂21内へのろう付け補修材20の装填の開始から終了まで、静翼11を振動させることが可能となる。   By using the repair material loading device 40 configured as described above, the brazing repair material 20 is loaded into the crack 21 of the stationary blade 11 by the loading mechanism portion 41, and at the same time, the stationary blade by the vibration mechanism portion 42. 11 can be vibrated, so that the stationary blade 11 can be vibrated from the start to the end of loading of the brazing repair material 20 into the crack 21 of the stationary blade 11.

上述のような装填工程を実施した後、前記実施形態と同様にしてろう付け工程及び表面仕上げ工程を実施し、き裂21が補修されて補修部が形成された補修済みの静翼11を得る。この補修済みの静翼11の補修部においても、き裂21内に、溶融したろう付け補修材20が緊密に充填されてボイド34が存在せず、上記補修部を含む静翼11の試験片のクリープ破断時間は、補修不要な静翼11の材料と同程度の値となった。   After performing the loading process as described above, the brazing process and the surface finishing process are performed in the same manner as in the above-described embodiment, and the repaired stationary blade 11 in which the crack 21 is repaired and the repaired part is formed is obtained. . Also in the repaired portion of the repaired stator blade 11, the melted brazing repair material 20 is tightly filled in the crack 21 and the void 34 does not exist, and the test piece of the stator blade 11 including the repair portion is provided. The creep rupture time of this was the same value as the material of the stationary blade 11 that does not require repair.

従って、本実施の形態においても、前記第1の実施の形態の効果(1)〜(3)と同様な効果を奏するほか、次の効果(4)及び(5)を奏する。   Therefore, this embodiment also provides the following effects (4) and (5) in addition to the same effects as the effects (1) to (3) of the first embodiment.

(4)補修材装填装置40によれば、静翼11の欠陥21内にろう付け補修材20を装填する装填機構部41と、振動子47の進退動作により静翼11に振動を付与する振動機構部42とを有することから、静翼11のき裂21内にろう付け補修材20を装填しながら、この静翼11を振動させることができる。   (4) According to the repairing material loading device 40, the loading mechanism 41 that loads the brazing repair material 20 into the defect 21 of the stationary blade 11 and the vibration that imparts vibration to the stationary blade 11 by the advance / retreat operation of the vibrator 47. Since the mechanical portion 42 is included, the stationary blade 11 can be vibrated while the brazing repair material 20 is loaded into the crack 21 of the stationary blade 11.

(5)装填工程において補修材装填装置40を用い、静翼11のき裂21内へのろう付け補修材20の装填開始から終了まで静翼11を振動させることから、大型の振動装置35を用いる必要がなく、しかも装填工程を短時間で実施できる。   (5) Since the repairing material loading device 40 is used in the loading process and the stationary blade 11 is vibrated from the start to the end of the brazing repair material 20 into the crack 21 of the stationary blade 11, the large vibration device 35 is used. There is no need to use it, and the loading process can be carried out in a short time.

以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this.

例えば、上記両実施の形態では、装填工程における静翼11のき裂21へのろう付け補修材20の装填と静翼11への加振とが大気中で実施されるものを述べたが、これらの装填と加振の少なくとも一方、好ましくは両者を真空中(例えば真空熱処理炉内)で実施してもよい。この場合には、き裂21内に装填されるろう付け補修材20中に空気の混入が防止されるので、次のろう付け工程で、き裂21内に充填される溶融したろう付け補修材20中にボイド34の存在を積極的に排除でき、補修部の高温強度をより一層向上させることができる。   For example, in both of the above-described embodiments, it has been described that the brazing repair material 20 is loaded into the crack 21 of the stationary blade 11 and the vibration to the stationary blade 11 is performed in the atmosphere in the loading process. At least one of these loading and vibration, preferably both may be performed in a vacuum (for example, in a vacuum heat treatment furnace). In this case, since air is prevented from being mixed into the brazing repair material 20 loaded in the crack 21, the molten brazing repair material filled in the crack 21 in the next brazing step. The presence of the void 34 in 20 can be positively eliminated, and the high temperature strength of the repaired portion can be further improved.

また、上記両実施の形態では、ろう付け工程後に表面仕上げ工程を実施するものを述べたが、これらの両工程間に、き裂21がろう付け加工された静翼11を熱間等方圧加圧処理する加圧工程を実施してもよい。この場合には、ろう付け加工後のき裂21内の溶融したろう付け補修材20中にボイド34が例え存在する場合にも、上記加圧処理によりボイド34を消滅させることができるので、補修部の高温強度をより一層向上させることができる。   In the above-described embodiments, the surface finishing process is performed after the brazing process. However, the hot air isotropic pressure is applied to the stationary blade 11 with the crack 21 brazed between these processes. You may implement the pressurization process to pressurize. In this case, even if the void 34 exists in the molten brazing repair material 20 in the crack 21 after the brazing process, the void 34 can be eliminated by the pressure treatment, so that the repair is performed. The high temperature strength of the part can be further improved.

更に、本発明はガスタービン10の静翼11に限らず、同じく高温部品である動翼12、燃焼器ライナ、トランジションピースなどに対しても適用できる。また、本発明は、蒸気タービンやジェットエンジンなどのように、高温状態で運転されるエネルギー機関に対しても適用可能である。   Furthermore, the present invention can be applied not only to the stationary blade 11 of the gas turbine 10, but also to the moving blade 12, the combustor liner, the transition piece, and the like, which are also high temperature components. The present invention is also applicable to energy engines that are operated at high temperatures, such as steam turbines and jet engines.

本発明に係る高温部品の欠陥補修方法における第1の実施の形態であるガスタービン静翼の欠陥補修方法が適用されるガスタービンの一部を示す部分断面図。The fragmentary sectional view which shows a part of gas turbine to which the defect repair method of the gas turbine stationary blade which is 1st Embodiment in the defect repair method of the high temperature components which concerns on this invention is applied. (A)〜(E)は、図1の静翼におけるき裂の補修手順を示す工程図。(A)-(E) is process drawing which shows the repair procedure of the crack in the stationary blade of FIG. 図2の補修手順の前提となる実験例において、装填工程における試験材への加振状況を示す模式図。The schematic diagram which shows the vibration condition to the test material in a loading process in the experiment example used as the premise of the repair procedure of FIG. (A)は、装填工程において試験材を加振した場合におけるき裂補修後の試験材を示す断面模式図、(B)は図4(A)のIVB部拡大断面図。(A) is a cross-sectional schematic diagram which shows the test material after crack repair when the test material is vibrated in the loading process, and (B) is an IVB portion enlarged cross-sectional view of FIG. 4 (A). (A)は、装填工程において試験材を加振しなかった場合におけるき裂補修後の試験材を示す断面模式図、(B)は、図5(A)のVB部拡大断面図。(A) is a cross-sectional schematic diagram showing the test material after crack repair when the test material is not vibrated in the loading step, and (B) is an enlarged cross-sectional view of the VB portion of FIG. 5 (A). 図2(C)の装填工程における静翼への加振状況を示す模式図。The schematic diagram which shows the vibration condition to a stationary blade in the loading process of FIG.2 (C). 装填工程において静翼を加振した場合におけるき裂補修後の静翼の補修部を示す断面模式図。The cross-sectional schematic diagram which shows the repair part of the stator blade after crack repair when a stator blade is vibrated in a loading process. 装填工程において静翼を加振しなかった場合におけるき裂補修後の静翼の補修部を示す断面模式図。The cross-sectional schematic diagram which shows the repair part of the stator blade after crack repair when the stator blade is not vibrated in a loading process. き裂補修部に対して実施したクリープ破断試験の結果を示すグラフ。The graph which shows the result of the creep rupture test implemented with respect to the crack repairing part. 本発明に係る高温部品の欠陥補修方法における第2の実施の形態であるガスタービン静翼の欠陥補修方法の装填工程を、そのとき使用する補修材充填装置と共に示す断面模式図。The cross-sectional schematic diagram which shows the loading process of the defect repair method of the gas turbine stationary blade which is 2nd Embodiment in the defect repair method of the high temperature components which concerns on this invention with the repair material filling apparatus used at that time. 図10の補修材装填装置の一部を拡大して示す模式図。The schematic diagram which expands and shows a part of repair material loading apparatus of FIG.

符号の説明Explanation of symbols

10 ガスタービン(エネルギー機関)
11 静翼(高温部品)
20 ろう付け補修材
21 き裂(欠陥)
22 酸化層
28 Ni基溶融合金粉末
29 Co基非溶融合金粉末
32 Ni基溶融合金
34 ボイド
35 振動装置
38 補修部
40 補修材装填装置
41 装填機構部
42 振動機構部
44 収容部
45 注入口
46 ピストン(押圧部材)
47 振動子
48 駆動モータ(駆動源)
49 カム
10 Gas turbine (energy engine)
11 Stator blade (high temperature parts)
20 Brazing repair material 21 Crack (defect)
22 Oxide layer 28 Ni-based molten alloy powder 29 Co-based non-molten alloy powder 32 Ni-based molten alloy 34 Void 35 Vibration device 38 Repair unit 40 Repair material loading device 41 Loading mechanism unit 42 Vibration mechanism unit 44 Storage unit 45 Inlet 46 Piston (Pressing member)
47 Vibrator 48 Drive motor (drive source)
49 cam

Claims (10)

高温状態で運転されるエネルギー機関の高温部品に生じた欠陥を補修する高温部品の欠陥補修方法において、
前記欠陥内にろう付け補修材を装填する装填工程と、
前記ろう付け補修材を用いた拡散熱処理によって前記欠陥をろう付け加工するろう付け工程とを有し、
前記装填工程では、前記欠陥内に前記ろう付け補修材を装填する際に前記高温部品を振動させ、前記欠陥内に前記ろう付け補修材を装填することを特徴とする高温部品の欠陥補修方法。
In the defect repairing method for high-temperature parts, which repairs defects that occur in high-temperature parts of energy engines that are operated at high temperatures.
A loading step of loading a brazing repair material into the defect;
A brazing step of brazing the defect by diffusion heat treatment using the brazing repair material,
In the loading step, the high temperature component defect repairing method is characterized in that when the brazing repair material is loaded into the defect, the high temperature component is vibrated and the brazing repair material is loaded into the defect.
前記装填工程では、高温部品の欠陥内にろう付け補修材を装填した後に、前記高温部品を振動させて、前記欠陥内に前記ろう付け補修材を装填することを特徴とする請求項1に記載の高温部品の欠陥補修方法。 2. In the loading step, after the brazing repair material is loaded into a defect of a high-temperature part, the high-temperature component is vibrated to load the brazing repair material into the defect. To repair defects in high-temperature parts. 前記装填工程では、高温部品の欠陥内にろう付け補修材を装填開始してから終了するまでの間、前記高温部品を振動させて、前記欠陥内に前記ろう付け補修材を装填することを特徴とする請求項1に記載の高温部品の欠陥補修方法。 In the loading step, the brazing repair material is vibrated in the defect by vibrating the high temperature component from the start to the end of loading the brazing repair material in the defect of the high temperature component. The defect repairing method for high-temperature parts according to claim 1. 前記ろう付け補修材は、ろう付け加工により溶融する溶融合金粉末と、ろう付け加工により溶融せず強度確保のための非溶融合金粉末とが配合されたものであることを特徴とする請求項1に記載の高温部品の欠陥補修方法。 2. The brazing repair material is a mixture of a molten alloy powder that melts by brazing and a non-molten alloy powder that does not melt by brazing and ensures strength. Defect repair method for high-temperature parts described in 1. 前記装填工程では、ろう付け補修材の装填と高温部品の振動との少なくとも一方を真空中で実行することを特徴とする請求項1に記載の高温部品の欠陥補修方法。 2. The defect repairing method for a high-temperature part according to claim 1, wherein at least one of loading of a brazing repair material and vibration of the high-temperature part is performed in a vacuum in the loading step. 前記ろう付け工程後に、欠陥がろう付け加工された高温部品を熱間等方圧加圧処理する加圧工程を実施することを特徴とする請求項1に記載の高温部品の欠陥補修方法。 The method for repairing a defect in a high-temperature part according to claim 1, wherein after the brazing process, a pressurizing process is performed in which a high-temperature part in which defects are brazed is subjected to a hot isostatic pressing process. 前記装填工程前に、高温部品の欠陥の表面に生じた酸化層を、水素雰囲気中で熱処理する水素洗浄処理によって除去する洗浄工程を実施することを特徴とする請求項1に記載の高温部品の欠陥補修方法。 2. The high temperature component according to claim 1, wherein a cleaning step of removing an oxide layer formed on a defect surface of the high temperature component by a hydrogen cleaning treatment in a hydrogen atmosphere is performed before the loading step. Defect repair method. 前記高温部品の欠陥が、ガスタービンの静翼または動翼に発生したき裂であることを特徴とする請求項1に記載の高温部品の欠陥補修方法。 The defect repairing method for a high-temperature part according to claim 1, wherein the defect of the high-temperature part is a crack generated in a stationary blade or a moving blade of a gas turbine. 高温状態で運転されるエネルギー機関の高温部品であって、
請求項1乃至8のいずれか1項に記載の欠陥補修方法により欠陥が補修されて構成されたことを特徴とする高温部品。
A high temperature part of an energy engine operated in a high temperature state,
A high-temperature part comprising a defect repaired by the defect repairing method according to claim 1.
高温部品の欠陥内へろう付け補修材を装填する補修材装填装置であって、
前記ろう付け補修材を収容し、先端側に注入口が設けられた収容部を備え、前記注入口の反対側に設けられた押圧部材により、前記収容部内のろう付け補修材を押圧して、前記注入口から前記欠陥内へ装填する装填機構部と、
振動子を備え、駆動源の回転動作により前記振動子を進退動作させて、前記高温部品に振動を付与する振動機構部と、を有することを特徴とする補修材装填装置。
A repair material loading device for loading a brazing repair material into a defect in a high temperature part,
The brazing repair material is accommodated, and a brazing repair material in the housing portion is pressed by a pressing member provided on the opposite side of the pouring port, including a housing portion provided with an inlet on the tip side, A loading mechanism for loading into the defect from the inlet;
A repairing material loading apparatus comprising: a vibrator, and a vibration mechanism that applies vibration to the high-temperature component by moving the vibrator forward and backward by a rotation operation of a drive source.
JP2008105390A 2008-04-15 2008-04-15 Defect repair method for high temperature component, high temperature component, and repair material charging apparatus Pending JP2009255111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105390A JP2009255111A (en) 2008-04-15 2008-04-15 Defect repair method for high temperature component, high temperature component, and repair material charging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105390A JP2009255111A (en) 2008-04-15 2008-04-15 Defect repair method for high temperature component, high temperature component, and repair material charging apparatus

Publications (1)

Publication Number Publication Date
JP2009255111A true JP2009255111A (en) 2009-11-05

Family

ID=41383225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105390A Pending JP2009255111A (en) 2008-04-15 2008-04-15 Defect repair method for high temperature component, high temperature component, and repair material charging apparatus

Country Status (1)

Country Link
JP (1) JP2009255111A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120292A (en) * 2011-03-18 2011-07-13 中国航空工业集团公司北京航空制造工程研究所 Vacuum brazing repairing method for cracks of high-temperature alloy thin-wall part
JP2012154197A (en) * 2011-01-24 2012-08-16 Toshiba Corp Damage-repairing method of transition piece, and transition piece
CN106493506A (en) * 2016-11-16 2017-03-15 中国人民解放军第五七九工厂 A kind of aero-engine cobalt base superalloy component failure soldering repair method
JP2017089488A (en) * 2015-11-10 2017-05-25 株式会社東芝 Wear portion repair method of gas turbine component and gas turbine component
CN114080291A (en) * 2019-06-28 2022-02-22 松下知识产权经营株式会社 Repair welding system, repair welding method, inspection device, and robot control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154197A (en) * 2011-01-24 2012-08-16 Toshiba Corp Damage-repairing method of transition piece, and transition piece
CN102120292A (en) * 2011-03-18 2011-07-13 中国航空工业集团公司北京航空制造工程研究所 Vacuum brazing repairing method for cracks of high-temperature alloy thin-wall part
JP2017089488A (en) * 2015-11-10 2017-05-25 株式会社東芝 Wear portion repair method of gas turbine component and gas turbine component
CN106493506A (en) * 2016-11-16 2017-03-15 中国人民解放军第五七九工厂 A kind of aero-engine cobalt base superalloy component failure soldering repair method
CN114080291A (en) * 2019-06-28 2022-02-22 松下知识产权经营株式会社 Repair welding system, repair welding method, inspection device, and robot control device
CN114080291B (en) * 2019-06-28 2024-05-03 松下知识产权经营株式会社 Repair welding system, repair welding method, inspection device, and robot control device

Similar Documents

Publication Publication Date Title
JP5726545B2 (en) Transition piece damage repair method and transition piece
JP5341457B2 (en) Defect repair method for high temperature parts and high temperature parts
JP2017020501A (en) Systems and methods for turbine blade repair
JP5734766B2 (en) Gas turbine combustor liner repair and regeneration method
JP2009056511A (en) Method of repairing nickel-based alloy article
JP2009255111A (en) Defect repair method for high temperature component, high temperature component, and repair material charging apparatus
US20130081269A1 (en) Systems and methods for repairing holes
JP2016079922A (en) Damage repair method for combustor liner and combustor liner
EP3064310A1 (en) Automated weld repair of combustor liners
JP2009041449A (en) Repair method for gas turbine rotor vane
JP2017020421A (en) Method of repairing turbine component, and turbine component
JP2007516842A (en) High strength superalloy bonding method for preparing turbine blades
JP2012112290A (en) Repairing method for damaged high-temperature parts of gas turbine, and high-temperature parts of gas turbine
JP5254116B2 (en) Damage repair method for high temperature parts and high temperature parts
JP6462485B2 (en) Turbine parts repair method and turbine parts
EP2113633A2 (en) Method to weld repair blade outer air seals
JP5885625B2 (en) Transition piece damage repair method and transition piece
JP2001055928A (en) Repair and regeneration treatment method for gas turbine high-temperature component
KR102295676B1 (en) Braze repair of turbomachinery engine components
JP2009068400A (en) Gas turbine blade and method for repairing gas turbine blade
JP2017206971A (en) Method for repairing wear portion of gas turbine component, and gas turbine component
JP6567394B2 (en) Method for repairing worn parts of gas turbine parts
JP7259080B2 (en) Tip Repair of Turbine Components Using Composite Tip Boron-Based Presintered Preforms
Klimczuk Repairability analysis of the energy gas turbine rotor blade second stage shroud by high-temperature brazing
JP2002364382A (en) Material degradation and damage recovering treatment method for prime mover part

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100424