JP2009254929A - Reforming catalyst for manufacturing hydrogen suitable for hydrogen manufacture at low temperature, and hydrogen manufacturing method using the catalyst - Google Patents

Reforming catalyst for manufacturing hydrogen suitable for hydrogen manufacture at low temperature, and hydrogen manufacturing method using the catalyst Download PDF

Info

Publication number
JP2009254929A
JP2009254929A JP2008104245A JP2008104245A JP2009254929A JP 2009254929 A JP2009254929 A JP 2009254929A JP 2008104245 A JP2008104245 A JP 2008104245A JP 2008104245 A JP2008104245 A JP 2008104245A JP 2009254929 A JP2009254929 A JP 2009254929A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
noble metal
metal component
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008104245A
Other languages
Japanese (ja)
Inventor
Yasuhito Ogawa
泰仁 小川
Nobuto Kobayashi
伸人 小林
Yasushi Shiotani
靖 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sued Chemie Catalysts Japan Inc
Eneos Corp
Original Assignee
Japan Energy Corp
Sued Chemie Catalysts Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp, Sued Chemie Catalysts Japan Inc filed Critical Japan Energy Corp
Priority to JP2008104245A priority Critical patent/JP2009254929A/en
Publication of JP2009254929A publication Critical patent/JP2009254929A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam-reforming catalyst which suppresses adverse affects on reforming catalysts, reformed containers, and units positioned downstream of them due to sulfur poisoning and carbon deposition even in a steam-reforming reaction at low temperatures when hydrogen is manufactured using petroleum carbon hydride containing sulfur compounds that is difficult to desulfur due to their heaviness as raw fuel, and enables the effective manufacturing of hydrogen by shortening the starting time required for the start of the hydrogen manufacture, and a hydrogen manufacturing method using the catalyst. <P>SOLUTION: The reforming catalyst for manufacturing hydrogen is characterized in that the product of a noble metal component dispersion degree(%) and a noble metal component content(mass%) contained in the catalyst is 100 or more and the noble metal component dispersion degree(%) is 70% or less in the steam-reforming catalyst produced by allowing an alumina carrier to contain a rare earth metal and to support a noble metal component containing at least one of ruthenium, rhodium, and platinum. The method of manufacturing hydrogen from fuel oil for manufacturing hydrogen using the catalyst is provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、炭化水素を燃料油として水蒸気改質反応を行う水素製造用改質触媒に関する。さらに詳しくは、本発明は、石油系炭化水素を燃料油とする燃料電池向け水素製造において、低い温度での水蒸気改質反応においても炭素析出による改質触媒、改質器およびその下流に位置するユニットへの悪影響を抑制し、水素製造の開始に要する起動時間を短縮して効果的に水素を製造することができる水素製造用改質触媒、及び該触媒を用いた水素製造方法に関する。   The present invention relates to a reforming catalyst for hydrogen production that performs a steam reforming reaction using hydrocarbon as a fuel oil. More specifically, the present invention is located in a reforming catalyst, reformer, and downstream thereof by carbon deposition even in a steam reforming reaction at a low temperature in hydrogen production for fuel cells using petroleum-based hydrocarbon as fuel oil. The present invention relates to a hydrogen production reforming catalyst capable of effectively producing hydrogen by suppressing adverse effects on the unit and shortening the start-up time required for starting hydrogen production, and a hydrogen production method using the catalyst.

近年、環境意識が高まる中で、環境負荷の少ない水素を利用したエネルギーに注目が集まっている。水素を利用したエネルギー技術のひとつとして、水素と酸素の反応からオゾン層破壊や地球温暖化の原因と言われる二酸化炭素の直接排出を伴うことなく電気エネルギーを取り出すことができる燃料電池が注目されている。燃料電池の水素源としては天然ガス、液体燃料、石油系炭化水素など様々な原料が研究されている。特にLPガス、ナフサ、ガソリン、灯油などに代表される石油系炭化水素は広域かつ多量に流通していることから、水素源としても有望視されている。   In recent years, with increasing environmental awareness, attention has been focused on energy using hydrogen, which has a low environmental impact. As one of the energy technologies using hydrogen, fuel cells that can extract electrical energy from the reaction of hydrogen and oxygen without the direct emission of carbon dioxide, which is said to cause ozone depletion and global warming, are attracting attention. Yes. Various raw materials such as natural gas, liquid fuel, and petroleum hydrocarbons have been studied as hydrogen sources for fuel cells. In particular, petroleum hydrocarbons typified by LP gas, naphtha, gasoline, kerosene and the like are promising as hydrogen sources because they are widely distributed in large quantities.

炭化水素の水蒸気改質触媒としては、アルミナ等の担体にニッケルを担持したニッケル系触媒が知られているが、ニッケル系触媒は炭素析出による活性低下を引き起こしやすい欠点を有し、また炭素数の多い炭化水素を原料としたときは多量の水蒸気の共存が必要となって水蒸気原単位が運転コストを引き上げるため、石油系炭化水素には技術的にも経済的にも適用が難しいとされる。一方でルテニウム、ロジウムといった貴金属を用いた貴金属系触媒は、炭素析出抑制効果を持ち水蒸気の使用量を下げられることから、炭化水素用の改質触媒として近年注目されている。これらの貴金属系触媒は炭素析出抑制効果には優れるが、硫黄による触媒被毒を受けやすく、硫黄被毒を受けると炭素析出抑制効果が低下してしまう。   As a steam reforming catalyst for hydrocarbons, a nickel-based catalyst in which nickel is supported on a carrier such as alumina is known. However, a nickel-based catalyst has a drawback that it tends to cause a decrease in activity due to carbon deposition. When many hydrocarbons are used as raw materials, coexistence of a large amount of steam is required, and the steam unit increases the operating cost. Therefore, it is considered difficult to apply to petroleum hydrocarbons both technically and economically. On the other hand, noble metal-based catalysts using noble metals such as ruthenium and rhodium have recently attracted attention as reforming catalysts for hydrocarbons because they have an effect of suppressing carbon deposition and can reduce the amount of water vapor used. These noble metal catalysts are excellent in the effect of suppressing carbon deposition, but are susceptible to catalyst poisoning by sulfur, and the effect of suppressing carbon deposition is reduced when subjected to sulfur poisoning.

灯油などの石油系炭化水素から構成される燃料油には、ベンゾチオフェン化合物、ジベンゾチオフェン化合物といった重質で脱硫の困難な硫黄化合物が含まれるため、燃料油からこれらの難脱硫性硫黄化合物を完全に除去することは難しい。燃料油に含まれるこれらの難脱硫性硫黄化合物が微量であっても、長期間にわたって水素製造を行うと改質触媒はこれらの硫黄化合物による影響を積算的に受けることになる。改質触媒が硫黄被毒を受けると、改質触媒への炭素析出が促されるという問題がある(非特許文献1)ことから、石油系炭化水素から構成される燃料油を用いる水素製造では、硫黄被毒による改質触媒の性能低下を受けやすいという問題があった。   Fuel oils composed of petroleum hydrocarbons such as kerosene contain heavy and difficult-to-desulfurize sulfur compounds such as benzothiophene compounds and dibenzothiophene compounds. It is difficult to remove. Even if the amount of these hard-to-desulfurize sulfur compounds contained in the fuel oil is very small, if hydrogen is produced over a long period of time, the reforming catalyst is cumulatively affected by these sulfur compounds. When the reforming catalyst is subjected to sulfur poisoning, there is a problem that carbon deposition on the reforming catalyst is promoted (Non-Patent Document 1). Therefore, in hydrogen production using fuel oil composed of petroleum hydrocarbons, There was a problem that the performance of the reforming catalyst was easily deteriorated due to sulfur poisoning.

燃料電池向け水素を製造するには、改質触媒を有する改質器において通常550〜800℃の高温下で水蒸気改質反応および/または部分酸化反応を行う。この燃料電池システムにおいては、燃料油を改質するために必要な温度が低いほうが予熱量は小さくなり、水素製造に要する昇温時間が短くなることでシステム起動時間が短縮できるので有利になる。しかしながら、従来の改質触媒を用いて低い温度条件で水蒸気改質反応を行うと、燃料油が水素に転化される反応が十分な反応速度が得られず、燃料油から転化した炭素が改質触媒に析出して触媒の寿命を著しく損ない、また燃料油から転化した炭素によって改質器の閉塞が発生したり、改質触媒の下流に位置するユニットに析出した炭素の汚染が生じるなどの問題があった。これを回避するためには、たとえば水素製造の起動時においては改質触媒および改質器の温度が燃料油からの水素転化に必要な反応速度を得るために十分高い温度に達するのを待たなければならないので、燃料電池における水素製造の開始に必要な改質触媒の温度上昇を待つことによって発電開始までに要する時間(起動時間)が掛かるという問題があった。また改質触媒および改質器が高い温度に晒されることによって、改質触媒は熱劣化による性能低下を受けてその触媒寿命を損ない、また改質器はその耐久性低下を防ぐために高温耐久性の高い高価な材料が必要となるのでコストが増加するといった問題があった。   In order to produce hydrogen for a fuel cell, a steam reforming reaction and / or a partial oxidation reaction is usually performed at a high temperature of 550 to 800 ° C. in a reformer having a reforming catalyst. In this fuel cell system, the lower the temperature required for reforming the fuel oil, the smaller the preheating amount, and the shorter the temperature rise time required for hydrogen production, which is advantageous because the system startup time can be shortened. However, when a steam reforming reaction is performed at a low temperature condition using a conventional reforming catalyst, the reaction rate at which the fuel oil is converted to hydrogen cannot be obtained sufficiently, and the carbon converted from the fuel oil is reformed. Problems such as depositing on the catalyst and significantly impairing the life of the catalyst, clogging of the reformer due to carbon converted from fuel oil, and contamination of deposited carbon on units located downstream of the reforming catalyst was there. To avoid this, for example, at the start of hydrogen production, the temperature of the reforming catalyst and reformer must wait for the temperature to reach a sufficiently high temperature to obtain the reaction rate necessary for hydrogen conversion from fuel oil. Therefore, there is a problem that it takes time (start-up time) to start power generation by waiting for the temperature increase of the reforming catalyst necessary for starting hydrogen production in the fuel cell. In addition, when the reforming catalyst and reformer are exposed to a high temperature, the reforming catalyst suffers from a deterioration in performance due to thermal degradation, thereby impairing the life of the catalyst, and the reformer is resistant to high temperatures to prevent its durability from degrading. Therefore, there is a problem that the cost increases because expensive and expensive materials are required.

このように、灯油などの石油系炭化水素から構成される燃料油を用いて低い温度で水素製造を行うには、低い温度条件において燃料油から水素への転化を効率的に進めることができ、かつ硫黄被毒の影響を受けても炭素析出を起しにくい改質触媒が必要であった。   Thus, in order to produce hydrogen at a low temperature using a fuel oil composed of petroleum hydrocarbons such as kerosene, the conversion from fuel oil to hydrogen can be efficiently advanced under low temperature conditions, A reforming catalyst that hardly causes carbon deposition even under the influence of sulfur poisoning is required.

燃料油の改質に際して炭素析出を抑制する改質触媒としては、たとえば特開昭60−147242号公報にあるような、白金族金属の少なくとも1種よりなる活性主成分および銀と希土類金属の1種とよりなり、かつ銀と希土類元素を、活性主成分に対しそれぞれ原子比で0.1以上含有してなる助触媒を触媒担体に担持してなる水蒸気改質用触媒が提案されている。しかしながら、この技術は石油系炭化水素から構成される灯油などの燃料油に適用されたものではない。   As a reforming catalyst for suppressing carbon deposition during reforming of fuel oil, for example, as disclosed in JP-A-60-147242, an active main component composed of at least one platinum group metal and one of silver and rare earth metal are used. There has been proposed a steam reforming catalyst comprising a catalyst carrier on which a co-catalyst composed of seeds and containing silver and rare earth elements in an atomic ratio of 0.1 or more with respect to the active main component is supported. However, this technique is not applied to fuel oil such as kerosene composed of petroleum hydrocarbons.

また特開2000−61307号公報にあるような、60%以上の高い分散度で活性金属であるルテニウムを担持し、長期間維持する実用強度を備えた高分散型水蒸気改質触媒と、該触媒に接触させて水蒸気/炭素比2.8〜10、原料供給量10h-1以下、反応圧力を2気圧以上に保つ水素製造方法が提案されている。しかしながら、この技術は750〜900℃の高温加圧条件での水蒸気改質反応に適用するためのもので、550℃より低い温度条件での水蒸気改質反応に適用されたものではない。 Further, as disclosed in JP 2000-61307 A, a highly dispersed steam reforming catalyst having a practical strength capable of supporting ruthenium, which is an active metal with a high dispersity of 60% or more, and maintaining it for a long period of time, and the catalyst Has been proposed in which a water vapor / carbon ratio of 2.8 to 10, a raw material supply amount of 10 h -1 or less, and a reaction pressure of 2 atm or more are proposed. However, this technique is intended to be applied to a steam reforming reaction under a high temperature pressurization condition of 750 to 900 ° C., and is not applied to a steam reforming reaction under a temperature condition lower than 550 ° C.

また特開2001−276623号公報にあるような、炭化水素の改質活性を有するルテニウムを触媒外表面から触媒中心までの1/3までの部分に全ルテニウム量の50%以上を担持させた触媒が提案されている。しかしながら、この技術は石油系炭化水素から構成される灯油などの燃料油に適用されたものではない。   Further, as disclosed in JP-A-2001-276623, a catalyst in which ruthenium having a hydrocarbon reforming activity is supported by 50% or more of the total ruthenium in a portion of 1/3 from the outer surface of the catalyst to the center of the catalyst. Has been proposed. However, this technique is not applied to fuel oil such as kerosene composed of petroleum hydrocarbons.

また特開2007−703号公報にあるような、水酸化物を前駆体としてなる活性成分を高分散で担体に担持させた触媒が提案されている。しかしながら、この技術は700〜800℃の高い温度条件での水蒸気改質反応に適用するためのもので、550℃より低い温度条件での水蒸気改質反応に適用されたものではない。   In addition, a catalyst in which an active component having a hydroxide as a precursor is supported on a carrier in a highly dispersed manner as disclosed in JP-A-2007-703 has been proposed. However, this technique is intended to be applied to a steam reforming reaction under a high temperature condition of 700 to 800 ° C., and is not applied to a steam reforming reaction under a temperature condition lower than 550 ° C.

また特開2007−98385号公報にあるような、無機酸化物担体上に、ルテニウムを触媒基準、金属換算で0.5〜10質量%と、アルカリ金属を触媒基準、金属換算で0.5〜10質量%含み、ルテニウム分散度が50%以上であり、EPMAにより、触媒断面の中心を通るように触媒外表面から他の外表面まで一方向にアルカリ金属及びルテニウムについて線分析測定したときに、ルテニウムが存在する領域にアルカリ金属も多く存在することを特徴とする水素製造用触媒が提案されている。しかしながらこの方法はアルカリ金属に実質カリウムを使用しているが、カリウムは揮発性が高い金属であるため使用中に流動するガス流によって触媒からカリウムが流出して改質触媒の下流に位置するユニットや他の触媒を汚染する恐れがある(非特許文献2)。   Further, on an inorganic oxide support as disclosed in JP-A-2007-98385, ruthenium as a catalyst standard, 0.5 to 10% by mass in terms of metal, and alkali metal as a catalyst standard, 0.5 to 0.5 in terms of metal. When 10% by mass, ruthenium dispersity is 50% or more, and EPMA is used for linear analysis measurement of alkali metal and ruthenium in one direction from the outer surface of the catalyst so as to pass through the center of the cross section of the catalyst, A catalyst for producing hydrogen has been proposed in which a large amount of alkali metal is present in a region where ruthenium is present. However, although this method uses substantial potassium as the alkali metal, since potassium is a highly volatile metal, the unit is located downstream of the reforming catalyst because potassium flows out of the catalyst by the gas stream flowing during use. And other catalysts may be contaminated (Non-patent Document 2).

このように、石油系炭化水素を燃料油とする燃料電池向け水素製造において、従来の技術で提供される水素製造用改質触媒及び水素製造方法では、改質反応温度の低い温度での水素製造の問題を解決することはできなかった。
特開昭60−147242号公報 特開2000−61307号公報 特開2001−276623号公報 特開2007−703号公報 特開2007−98385号公報 燃料協会誌 68,39(1989) Oil Gas Journal 74,(7),73(1976)
As described above, in hydrogen production for fuel cells using petroleum-based hydrocarbons as fuel oil, the hydrogen production reforming catalyst and the hydrogen production method provided in the prior art provide hydrogen production at a low reforming reaction temperature. Could not solve the problem.
JP 60-147242 A JP 2000-61307 A JP 2001-276623 A Japanese Patent Laid-Open No. 2007-703 JP 2007-98385 A Fuel Association 68, 39 (1989) Oil Gas Journal 74, (7), 73 (1976)

石油精製プラントや燃料電池などに関し、ベンゾチオフェン化合物、ジベンゾチオフェン化合物などの重質で脱硫の困難な硫黄化合物を含有する石油系炭化水素を原燃料として水素を製造する場合において、低い温度での水蒸気改質反応においても硫黄被毒や炭素析出による改質触媒、改質器およびその下流に位置するユニットへの悪影響を抑制し、水素製造の開始に要する起動時間を短縮して効果的に水素を製造することができる水蒸気改質触媒、及び該触媒を用いた水素製造方法を提供する。 When producing hydrogen from petroleum-based hydrocarbons containing heavy and difficult-to-desulfurize sulfur compounds such as benzothiophene compounds and dibenzothiophene compounds for petroleum refineries and fuel cells, steam at low temperatures The reforming reaction also suppresses adverse effects on the reforming catalyst, reformer and downstream unit due to sulfur poisoning and carbon deposition, and shortens the start-up time required to start hydrogen production, effectively reducing hydrogen. Provided are a steam reforming catalyst that can be produced, and a method for producing hydrogen using the catalyst.

本発明者らは、上記課題を解決するために鋭意検討した結果、水蒸気改質活性を有するルテニウム、ロジウム、白金などの貴金属成分の担体上での状態に着目し、触媒に含まれる貴金属成分が特定の条件を満たすときに、燃料油に含まれる硫黄化合物による積算的な硫黄被毒の影響や初期の急激な触媒活性の低下を抑制し、低い温度条件においても水蒸気改質反応に触媒機能が有効に機能することによって炭素析出を大幅に抑制し、かつ潮解性を有しない希土類金属を用いることによって改質触媒、改質器およびその下流に位置するユニットへの悪影響を抑制することを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have focused on the state of a noble metal component such as ruthenium, rhodium, and platinum having steam reforming activity on the support, and the noble metal component contained in the catalyst is When specific conditions are met, the effects of cumulative sulfur poisoning due to sulfur compounds contained in the fuel oil and a rapid decline in initial catalytic activity are suppressed, and the catalytic function of the steam reforming reaction is maintained even at low temperature conditions. It has been found that carbon deposition is significantly suppressed by functioning effectively, and that adverse effects on the reforming catalyst, the reformer and the unit located downstream thereof are suppressed by using a rare earth metal that does not have deliquescence, The present invention has been completed.

即ち、本発明の水素製造用改質触媒は、
アルミナ担体に、ルテニウム、ロジウム、白金の少なくとも1種を含む貴金属成分と希土類金属を含有させてなる水蒸気改質触媒において、触媒に含まれる貴金属成分含有量(質量%)と貴金属成分分散度(%)の積が100以上で、かつ貴金属成分分散度(%)が70%以下であることを特徴とする。
That is, the reforming catalyst for hydrogen production of the present invention is
In a steam reforming catalyst comprising an alumina support containing a noble metal component containing at least one of ruthenium, rhodium and platinum and a rare earth metal, the noble metal component content (% by mass) and the degree of noble metal component dispersion (%) ) Product is 100 or more and the dispersity (%) of the noble metal component is 70% or less.

本発明の水素製造用燃料油の他の好適例においては、触媒中の希土類金属の含有量が、触媒の表面積に対して0.1〜5 μmol/m2である。 In another preferred embodiment of the fuel oil for hydrogen production of the present invention, the content of rare earth metal in the catalyst is 0.1 to 5 μmol / m 2 with respect to the surface area of the catalyst.

本発明の水素製造用燃料油の他の好適例においては、貴金属成分がルテニウムである。   In another preferred embodiment of the fuel oil for hydrogen production according to the present invention, the noble metal component is ruthenium.

本発明の水素製造用燃料油の他の好適例においては、希土類金属がランタンまたはセリウムを含む。   In another preferred embodiment of the fuel oil for hydrogen production according to the present invention, the rare earth metal contains lanthanum or cerium.

本発明の水素製造用改質触媒の製造方法は、アルミナ担体に、希土類金属を含浸法で導入し、前記希土類金属を含有させたアルミナ担体を酸素存在下600〜800℃で焼成した後、ルテニウム化合物、ロジウム化合物及び白金化合物から選ばれる少なくとも1種の化合物を担持させ、次いで液相で65〜100℃の温度において還元処理を行うことを特徴とする。
また、本発明の水素製造方法は、上述の水素製造用改質触媒を具備する改質部に水素製造用燃料油を供して、改質部の触媒層の入口温度を500℃以下で水蒸気改質反応を開始し、水素を含有する生成物を得ることを特徴とする。
In the method for producing a reforming catalyst for hydrogen production according to the present invention, a rare earth metal is introduced into an alumina support by an impregnation method, the alumina support containing the rare earth metal is calcined at 600 to 800 ° C. in the presence of oxygen, and then ruthenium. It is characterized by carrying at least one compound selected from a compound, a rhodium compound and a platinum compound, and then performing a reduction treatment at a temperature of 65 to 100 ° C. in a liquid phase.
In the hydrogen production method of the present invention, the hydrogen production fuel oil is provided to the reforming section having the above-described hydrogen production reforming catalyst, and the steam reforming is performed at a catalyst layer inlet temperature of 500 ° C. or less. It is characterized by starting a quality reaction and obtaining a product containing hydrogen.

本発明によって提供された水素製造用改質触媒及び該触媒を用いた水素製造方法によって、低い温度での水蒸気改質反応においても炭素析出による触媒性能の低下を抑制し、かつ改質触媒、改質器およびその下流に位置するユニットへの悪影響を抑制することで、低い温度での改質反応開始が可能となり、起動に要する時間の短い燃料電池システムの運用が可能となる。また改質触媒の活性劣化やコーキングによる改質器の閉塞を抑制し、長期の水素製造が可能となる。また改質温度の低下によって、改質触媒の熱劣化による性能低下を低減し、高温耐久性の高価な材料を用いることなく改質器の耐久性向上、改質器構造の簡易化や材料のコスト低減による経済的な水素製造を実施することが可能となる。
また、本発明の水素製造用改質触媒の製造方法により、上記の優れた特性を有する水素製造用改質触媒を提供することが可能となる。
The reforming catalyst for hydrogen production provided by the present invention and the hydrogen production method using the catalyst suppress the deterioration of the catalyst performance due to carbon deposition even in the steam reforming reaction at a low temperature, and By suppressing the adverse effects on the mass unit and the unit located downstream thereof, it is possible to start the reforming reaction at a low temperature, and it is possible to operate the fuel cell system with a short startup time. Further, the deterioration of the reforming catalyst activity and the blocking of the reformer due to coking are suppressed, and long-term hydrogen production becomes possible. In addition, lowering the reforming temperature reduces the performance degradation due to thermal degradation of the reforming catalyst, improving the durability of the reformer without using high-temperature durable expensive materials, simplifying the reformer structure, It becomes possible to implement economical hydrogen production by cost reduction.
In addition, according to the method for producing a reforming catalyst for hydrogen production of the present invention, it is possible to provide a reforming catalyst for hydrogen production having the above excellent characteristics.

以下、本発明の内容をさらに詳細に説明する。   Hereinafter, the contents of the present invention will be described in more detail.

本発明に用いる水素製造用改質触媒は、アルミナ担体に希土類金属を含有させ、貴金属成分を担持させてなる水蒸気改質触媒において、触媒に含まれる貴金属成分含有量(質量%)と貴金属成分分散度(%)の積が100以上で、かつ貴金属成分分散度(%)が70%以下であることあることを特徴とする。   The reforming catalyst for hydrogen production used in the present invention is a steam reforming catalyst in which a rare earth metal is contained in an alumina support and a noble metal component is supported, the noble metal component content (mass%) contained in the catalyst and the noble metal component dispersion The product of the degree (%) is 100 or more, and the precious metal component dispersion degree (%) is 70% or less.

尚、貴金属成分含有量および貴金属成分分散度はそれぞれ式1、式2で求められる値である。   Note that the noble metal component content and the noble metal component dispersion are values obtained by Equations 1 and 2, respectively.

貴金属成分含有量(質量%)=(触媒に含まれる貴金属成分の総量(g)÷触媒の総質量(g))×100 ・・・ (式1) Noble metal component content (% by mass) = (total amount of precious metal component contained in catalyst (g) ÷ total mass of catalyst (g)) × 100 (Equation 1)

貴金属成分分散度(%)=(触媒1g当たりに吸着したCO分子のモル数÷触媒1g当たりに含まれる貴金属成分のモル数)×100 ・・・ (式2)
ここで、貴金属成分分散度は、貴金属成分に対する化学吸着量を測定する公知の方法により測定することができる。この方法としては、例えばCOガスを用いるパルスインジェクション法を用いることができる。
以下に該パルスインジェクション法について説明する。
COガスのパルスを連続的に触媒を入れた測定セルに注入すると、初めの数パルスまではCOが貴金属成分の表面に吸着され、セルから流出するCO量は注入したCO量より低下するが、貴金属成分表面にCOが吸着され定常状態になると、注入したCOのほとんどが流出するようになる。定常時に流出されるCO量から初めの吸着時のCO量を引き、その差分の和をCO吸着量として求めることができる。このようにして求められたCO吸着量から、貴金属成分に吸着したCOのモル数を算出する。このようにして算出されたCOの吸着量モル数と貴金属成分のモル数から、式(2)により貴金属成分分散度が求められる。
貴金属成分含有量は触媒に含まれる活性成分の量を、貴金属成分分散度は実際の改質反応に作用する貴金属の活性点の割合を示すものであり、従って貴金属成分含有量(質量%)と貴金属成分分散度(%)の積は、単位重量当たりの触媒に含まれる改質反応触媒活性点の数を示す指標であり、この値が大きいほど触媒に導入された活性成分である貴金属成分が改質反応に効率的に作用する。
Noble metal component dispersion (%) = (number of moles of CO molecules adsorbed per gram of catalyst / number of moles of noble metal component contained per gram of catalyst) × 100 (Equation 2)
Here, the degree of dispersion of the noble metal component can be measured by a known method for measuring the amount of chemical adsorption with respect to the noble metal component. As this method, for example, a pulse injection method using CO gas can be used.
The pulse injection method will be described below.
When a pulse of CO gas is continuously injected into a measurement cell containing a catalyst, CO is adsorbed on the surface of the noble metal component until the first few pulses, and the amount of CO flowing out of the cell is lower than the amount of injected CO. When CO is adsorbed on the surface of the noble metal component and enters a steady state, most of the injected CO flows out. The amount of CO at the first adsorption is subtracted from the amount of CO that flows out in a steady state, and the sum of the differences can be obtained as the amount of CO adsorption. The number of moles of CO adsorbed to the noble metal component is calculated from the CO adsorption amount thus determined. The precious metal component dispersion degree is obtained from the calculated number of adsorbed moles of CO and the number of moles of the noble metal component according to the equation (2).
The noble metal component content indicates the amount of the active component contained in the catalyst, and the noble metal component dispersion degree indicates the ratio of the active site of the noble metal that acts on the actual reforming reaction. Therefore, the noble metal component content (mass%) and The product of the dispersion degree (%) of the noble metal component is an index indicating the number of reforming reaction catalyst active points contained in the catalyst per unit weight. The larger this value, the more the noble metal component that is the active component introduced into the catalyst. It works efficiently on the reforming reaction.

本発明に用いる水素製造用改質触媒に含まれる貴金属成分含有量(質量%)と貴金属成分分散度(%)の積は100以上が好ましく、さらに好ましくは140以上である。貴金属成分含有量(質量%)と貴金属成分分散度(%)の積が100よりも少ないと、反応速度の低い温度条件において燃料油を水素に転化するための十分な改質反応触媒活性点を確保することができないため好ましくない。   The product of the noble metal component content (% by mass) and the noble metal component dispersity (%) contained in the hydrogen production reforming catalyst used in the present invention is preferably 100 or more, more preferably 140 or more. If the product of the noble metal component content (% by mass) and the noble metal component dispersity (%) is less than 100, sufficient reforming reaction catalyst active points for converting the fuel oil to hydrogen under temperature conditions with a low reaction rate are obtained. Since it cannot ensure, it is not preferable.

貴金属成分含有量は触媒の比表面積にも依存するが、概して触媒重量に対して金属として1〜20質量%、好ましくは1.5〜5質量%である。貴金属成分含有量が1質量%よりも少ないと触媒活性点として機能できる貴金属成分の総量が減少して低い温度において充分な触媒活性が得られなくなり、また20質量%よりも多いと貴金属成分分散度が低下して貴金属成分が効果的に機能しないので好ましくない。   The content of the noble metal component depends on the specific surface area of the catalyst, but is generally 1 to 20% by mass, preferably 1.5 to 5% by mass as a metal based on the catalyst weight. If the precious metal component content is less than 1% by mass, the total amount of precious metal components that can function as catalytic active sites decreases, and sufficient catalytic activity cannot be obtained at low temperatures. Is not preferable because the precious metal component does not function effectively.

本発明の水素製造用改質触媒に導入された貴金属成分を水素製造に効果的に利用する上で、貴金属成分分散度は70%以下が好ましく、さらに好ましくは40〜70%である。貴金属成分分散度が40%未満では多量の貴金属成分が必要になり触媒の製造コストが著しく増加するので好ましくない。また70%を越えると水素製造での初期の段階で触媒活性が急速に損なわれてしまうので好ましくない。初期の段階で触媒活性が急速に損なわれる理由は現時点では明らかではないが、融点の高い貴金属成分であっても分散度が高すぎると粒子径が小さくなることで担体上での熱的安定性が減少して、貴金属成分の硫黄被毒や粒子の凝集による性能低下が進みやすくなると考えられる。   When the noble metal component introduced into the reforming catalyst for hydrogen production of the present invention is effectively used for hydrogen production, the degree of dispersion of the noble metal component is preferably 70% or less, more preferably 40 to 70%. When the degree of dispersion of the noble metal component is less than 40%, a large amount of noble metal component is required, and the production cost of the catalyst is remarkably increased. On the other hand, if it exceeds 70%, the catalyst activity is rapidly impaired in the initial stage of hydrogen production, which is not preferable. The reason why the catalytic activity is rapidly impaired in the initial stage is not clear at this time, but the thermal stability on the support is reduced by reducing the particle size if the dispersibility is too high even for noble metal components with a high melting point. It is thought that the decrease in the performance due to sulfur poisoning of the noble metal component and aggregation of particles is likely to proceed.

貴金属成分は、ルテニウム、ロジウム、白金の少なくとも1つから選ばれたものが好ましく、特に好ましくはルテニウムである。   The noble metal component is preferably selected from at least one of ruthenium, rhodium and platinum, particularly preferably ruthenium.

貴金属成分を担持させる方法は、公知の含浸法を用いることができる。貴金属成分には貴金属化合物を前駆体として用いることができるが、本発明を満たす貴金属成分含有量及び貴金属成分分散度を得るためには貴金属塩化物を用いることが好ましい。貴金属塩化物が好ましい理由としては必ずしも明らかでないが、還元する際に粒子が細かくなりやすいために分散度が向上するものと考えられる。たとえば貴金属成分としてルテニウムを担持させる方法としては、三塩化ルテニウムなどの化合物を、ルテニウム活性成分の前駆体として用いることができる。特に好ましくは三塩化ルテニウム(無水物又は水和物)を用いる。ロジウムを担持させる方法としては、三塩化ロジウムなどの化合物を、ロジウム活性成分の前駆体として用いることができる。特に好ましくは三塩化ロジウム(無水物又は水和物)を用いる。白金を担持させる方法としては、四塩化白金または二塩化白金などの化合物を、白金活性成分の前駆体として用いることができる。特に好ましくは四塩化白金を用いる。   As a method for supporting the noble metal component, a known impregnation method can be used. Although a noble metal compound can be used as a precursor for the noble metal component, it is preferable to use a noble metal chloride in order to obtain the noble metal component content and the noble metal component dispersion satisfying the present invention. The reason why the noble metal chloride is preferable is not necessarily clear, but it is considered that the degree of dispersion is improved because the particles tend to become finer during the reduction. For example, as a method for supporting ruthenium as a noble metal component, a compound such as ruthenium trichloride can be used as a precursor of a ruthenium active component. Particularly preferably, ruthenium trichloride (anhydride or hydrate) is used. As a method for supporting rhodium, a compound such as rhodium trichloride can be used as a precursor of the rhodium active ingredient. Particularly preferably, rhodium trichloride (anhydride or hydrate) is used. As a method for supporting platinum, a compound such as platinum tetrachloride or platinum dichloride can be used as a precursor of the platinum active ingredient. Particularly preferably, platinum tetrachloride is used.

上記の方法で担持された貴金属成分を100℃以下で液相還元処理を行う。液相還元剤を用いることによって改質反応の使用に際しての触媒の前処理還元、又は反応初期の発熱等の負荷を低減させることができ、また還元処理を液相で所定の温度に加温して行うことにより還元処理による貴金属成分分散度の減少を抑制することで目的の貴金属成分分散度を得ることができる。液相還元処理の方法は、例えば、ギ酸、ギ酸のアルカリ金属塩、ホルマリン、ヒドラジン、水素化ホウ素ナトリウム等の還元剤を用いて1〜20%の水溶液を調製し、65〜100℃、好ましくは65〜80℃の温度に加温した後に触媒を投入して行う。65℃を下回る条件では貴金属成分分散度が減少するばかりでなく、還元処理に時間が掛かることになり効率的でなく、また100℃を越えると該水溶液を使った液相での処理が困難になるので、好ましくない。   The noble metal component supported by the above method is subjected to a liquid phase reduction treatment at 100 ° C. or lower. By using a liquid phase reducing agent, it is possible to reduce the pretreatment reduction of the catalyst when using the reforming reaction, or to reduce the load such as heat generation at the beginning of the reaction, and the reduction treatment is heated to a predetermined temperature in the liquid phase. In this way, the target dispersion degree of the noble metal component can be obtained by suppressing the decrease in the dispersion degree of the noble metal component due to the reduction treatment. The method of the liquid phase reduction treatment is, for example, preparing a 1-20% aqueous solution using a reducing agent such as formic acid, an alkali metal salt of formic acid, formalin, hydrazine, sodium borohydride, and 65-100 ° C., preferably After heating to a temperature of 65 to 80 ° C., the catalyst is added. When the temperature is lower than 65 ° C, not only the dispersibility of the noble metal component is reduced, but also the reduction treatment takes time, which is not efficient. When the temperature exceeds 100 ° C, the treatment in the liquid phase using the aqueous solution becomes difficult. This is not preferable.

希土類金属を用いることによって触媒活性が増加し、かつ炭素析出を抑制することによって低い温度での水素製造における触媒寿命が向上する。希土類金属にはランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、イッテルビウムなどが使用できるが、ランタン、セリウムを用いるのが好ましく、ランタンを用いるのがさらに好ましい。これら希土類金属は、いずれか1種を単独で用いても、あるいは2種以上を組み合わせて用いてもよい。これらの希土類金属は酸化物の他に塩化物、硝酸塩、酢酸塩などの希土類金属化合物を前駆体として使用することができる。   By using a rare earth metal, the catalyst activity is increased, and by suppressing carbon deposition, the catalyst life in hydrogen production at a low temperature is improved. As the rare earth metal, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, ytterbium, and the like can be used, but lanthanum and cerium are preferable, and lanthanum is more preferable. These rare earth metals may be used alone or in combination of two or more. These rare earth metals can use rare earth metal compounds such as chlorides, nitrates and acetates as precursors in addition to oxides.

希土類金属を含有するアルミナ担体は、希土類金属をアルミナ担体に含浸法で導入することで担体の表面に選択的に分布させることができる。希土類金属をアルミナ表面に選択的に分布させることによって、少量の添加量で大きな効果が得られ、かつ希土類金属がアルミナ表面を被覆することで担体の機械的強度や耐熱性が向上する。物理混合法や練り込み法などではアルミナ担体内部にも希土類金属が分布し、その内部に分布する希土類金属が無駄になって有効な添加効果(以下、対添加量効果)が得られず、さらにアルミナ量の相対的低下が大きくなるので原料コストが増加し、担体の機械的強度を低下させ、希土類金属がアルミナと複合酸化物を形成して担体の比表面積を大幅に損なうなどの負の効果が表れやすくなるため好ましくない。   The alumina support containing the rare earth metal can be selectively distributed on the surface of the support by introducing the rare earth metal into the alumina support by an impregnation method. By selectively distributing the rare earth metal on the alumina surface, a large effect can be obtained with a small amount of addition, and the mechanical strength and heat resistance of the carrier are improved by the rare earth metal covering the alumina surface. In the physical mixing method and the kneading method, rare earth metal is distributed inside the alumina support, and the rare earth metal distributed inside the alumina carrier is wasted, so that an effective additive effect (hereinafter referred to as an additive amount effect) cannot be obtained. Negative effects such as increase in raw material cost due to a large relative decrease in the amount of alumina, lowering the mechanical strength of the support, and the rare earth metal forming a complex oxide with alumina and greatly reducing the specific surface area of the support Is not preferred because it tends to appear.

希土類金属をアルミナ担体に含浸法で導入するには、上記希土類金属化合物を含む溶液にアルミナ担体を浸漬させればよい。このとき溶媒としては、水が好ましい。また、含浸させる際は、ポアフィリング法が好ましい。   In order to introduce the rare earth metal into the alumina support by the impregnation method, the alumina support may be immersed in a solution containing the rare earth metal compound. At this time, the solvent is preferably water. Moreover, when impregnating, the pore filling method is preferable.

また、希土類金属をアルミナ担体に含浸法で導入し、担体の表面に分布させる際に、活性金属がアルミナと直接接触できるように、希土類金属をアルミナ表面に被覆することが好ましい。希土類金属の量は、触媒の表面積に対して0.1〜5 μmol/m2であることが好ましい。希土類金属の量が触媒の表面積に対して5 μmol/m2を越えるとアルミナ表面の露出が少なくなり貴金属成分分散度が低下するので好ましくない。また希土類金属の量が0.1 μmol/m2より少ないとその添加効果が低くなるのでいずれも好ましくない。より好ましくは0.5 〜5 μmol/m2である。触媒に含まれる希土類金属の量は、アルミナ担体に含浸する溶液中における希土類金属化合物の濃度を調整することにより前記範囲とすることができる。 In addition, when the rare earth metal is introduced into the alumina support by the impregnation method and distributed on the surface of the support, it is preferable to coat the rare earth metal on the alumina surface so that the active metal can come into direct contact with the alumina. The amount of rare earth metal is preferably 0.1 to 5 μmol / m 2 with respect to the surface area of the catalyst. If the amount of the rare earth metal exceeds 5 μmol / m 2 with respect to the surface area of the catalyst, the exposure of the alumina surface is reduced and the degree of dispersion of the noble metal component is lowered, which is not preferable. Further, if the amount of the rare earth metal is less than 0.1 μmol / m 2, the effect of addition becomes low, and neither is preferable. More preferably, it is 0.5-5 micromol / m < 2 >. The amount of the rare earth metal contained in the catalyst can be adjusted to the above range by adjusting the concentration of the rare earth metal compound in the solution impregnated on the alumina support.

アルミナ担体に含浸法で希土類金属を含有させた後は、貴金属成分を含有させる前に酸素存在下で600〜800℃、好ましくは600〜750℃、より好ましくは600〜650℃で焼成処理して希土類金属を酸化物としてアルミナ担体に固定化する。酸素存在下の焼成は、大気雰囲気での焼成でよい。このとき焼成温度が600℃よりも低いと導入した希土類金属が担体表面で安定化せず水蒸気反応の使用条件下でアルミナ担体が熱履歴による劣化を受けやすくなり、また800℃を超えると導入した希土類金属がアルミナ担体と反応して複合酸化物(アルミネート)を形成しやすく、担体の比表面積を大幅に損なうだけでなく希土類金属が担体骨格内に取り込まれて担体表面に分布する活性金属の貴金属成分に対して効果的に機能しなくなってしまうため好ましくない。   After the rare earth metal is contained in the alumina support by the impregnation method, it is fired at 600 to 800 ° C., preferably 600 to 750 ° C., more preferably 600 to 650 ° C. in the presence of oxygen before the precious metal component is contained. Rare earth metal is fixed to an alumina support as an oxide. Firing in the presence of oxygen may be performed in an air atmosphere. At this time, when the firing temperature is lower than 600 ° C., the introduced rare earth metal is not stabilized on the surface of the support, and the alumina support becomes susceptible to deterioration due to thermal history under the conditions of use of the water vapor reaction. The rare earth metal reacts with the alumina support to form a complex oxide (aluminate), which not only significantly impairs the specific surface area of the support but also the active metal that is incorporated into the support skeleton and distributed on the support surface. This is not preferable because it does not function effectively for the noble metal component.

本発明の水素製造用改質触媒は、アルミナ担体としては特に組成や構造による制約を受けるものではないが、担持される貴金属成分が充分に分散できるように比表面積が80 m2/g以上、好ましくは100 m2/g以上で、細孔容積は0.1〜0.5 ml/g、好ましくは0.2〜0.5 ml/gであるものが良い。例としてはアルミニウムイソプロポキシドなどを前駆体として用いて、細孔制御の有機材料を添加したものを700℃以上で焼成したものなどを用いることができる。比表面積や細孔容積がこれより小さいと担持させる貴金属の分散性が悪化し所定の活性や触媒寿命が得られなくなり、また逆にこれより大きいと充分な担体強度が得られなくなるので好ましくない。 The reforming catalyst for hydrogen production of the present invention is not particularly restricted by the composition and structure as the alumina support, but the specific surface area is 80 m 2 / g or more so that the supported noble metal component can be sufficiently dispersed. Preferably, it is 100 m 2 / g or more and the pore volume is 0.1 to 0.5 ml / g, preferably 0.2 to 0.5 ml / g. As an example, an aluminum isopropoxide or the like used as a precursor and a material added with a pore-controlling organic material and baked at 700 ° C. or higher can be used. If the specific surface area or pore volume is smaller than this, the dispersibility of the noble metal to be supported is deteriorated and a predetermined activity and catalyst life cannot be obtained. On the other hand, if it is larger than this, a sufficient carrier strength cannot be obtained.

アルミナ担体の形状は、例として球状、円柱状、角柱状、打錠状、針状、膜状、ハニカム構造状などが挙げられる。また担体の成型には、例として加圧成型、押出成型、転動造粒成型、プレス成型などの成型方法が利用できる。いずれも本発明を制約するために特に限定されるものではなく、公知の方法を用いることができる。   Examples of the shape of the alumina carrier include a spherical shape, a cylindrical shape, a prismatic shape, a tableting shape, a needle shape, a membrane shape, and a honeycomb structure shape. For molding the carrier, for example, molding methods such as pressure molding, extrusion molding, rolling granulation molding, and press molding can be used. Neither is particularly limited to limit the present invention, and a known method can be used.

改質反応に機能する活性金属である貴金属成分の他に、助触媒成分としてコバルト化合物、ニッケル化合物などを使用することもできる。助触媒成分は希土類金属を酸化物としてアルミナ担体に固定化した後に貴金属成分の担持前、または後に、あるいは貴金属成分と同時に担体に担持することができる。助触媒成分としては特にコバルト化合物が不揮発性なので好ましい。コバルト化合物を貴金属成分と同時に担持することで貴金属成分の分散性を高め、触媒活性が著しく向上するなどの効果を発揮することができる。また貴金属成分に対する楔として働くことで貴金属成分の結晶化を抑制し、改質反応中に進行する貴金属成分分散度の低下を抑制することで触媒劣化を抑制すると考えられる。従ってコバルト化合物と貴金属成分を同時に担持するとこれらの効果がより強調されるので好ましい。コバルト化合物としては硝酸コバルト、炭酸コバルト、酢酸コバルト、水酸化コバルト、塩化コバルトなどの化合物を、コバルト助触媒成分の前駆体として一種または複数種用いられるが、特に好ましくは硝酸コバルトが用いられる。コバルトの量は、貴金属成分に対する原子モル比で0.1〜3.0、好ましくは0.1〜1.0、さらに好ましくは0.2〜0.5である。コバルトの貴金属成分に対する原子モル比が0.1未満であると上述の助触媒効果が充分に現れず、また3以上であると余剰のコバルトが逆に貴金属成分の触媒機能を損なうことになるので好ましくない。   In addition to the noble metal component that is an active metal that functions in the reforming reaction, a cobalt compound, a nickel compound, or the like can also be used as a promoter component. The promoter component can be supported on the support after the rare earth metal is fixed on the alumina support as an oxide, before or after the noble metal component is supported, or simultaneously with the noble metal component. As the promoter component, a cobalt compound is particularly preferable because it is non-volatile. By supporting the cobalt compound simultaneously with the noble metal component, it is possible to enhance the dispersibility of the noble metal component and to exert effects such as significantly improving the catalytic activity. Further, it is considered that crystallization of the noble metal component is suppressed by acting as a wedge for the noble metal component, and catalyst deterioration is suppressed by suppressing a decrease in the degree of dispersion of the noble metal component that proceeds during the reforming reaction. Therefore, it is preferable to simultaneously support the cobalt compound and the noble metal component because these effects are more emphasized. As the cobalt compound, one or more compounds such as cobalt nitrate, cobalt carbonate, cobalt acetate, cobalt hydroxide, and cobalt chloride are used as a precursor of the cobalt promoter component, and cobalt nitrate is particularly preferably used. The amount of cobalt is 0.1 to 3.0, preferably 0.1 to 1.0, and more preferably 0.2 to 0.5 in terms of an atomic molar ratio to the noble metal component. When the atomic molar ratio of cobalt to the noble metal component is less than 0.1, the above-mentioned promoter effect is not sufficiently exhibited, and when it is 3 or more, excess cobalt adversely impairs the catalytic function of the noble metal component. It is not preferable.

貴金属成分を担持した後の乾燥処理及び焼成処理は、その条件については特に規定されないが、例えば、空気中、100℃以上で行う。   The drying process and the baking process after supporting the noble metal component are not particularly defined for the conditions, but are performed, for example, in air at 100 ° C. or higher.

上記の方法で得られた改質触媒は、そのまま改質反応の使用に供することができる。改質反応の事前に改めて還元処理を行うことが好ましいが、改質反応で生じる反応ガス中の水素との接触の結果として還元されるため必ずしも必要とはしない。還元温度を制御することによって触媒性能が向上する場合があり、還元処理を実施する場合は、水素ガス流通下で700℃以下、好ましくは500〜700℃で行う。700℃を越えると水素製造を行う前に貴金属成分分散度が低下して、触媒性能を損なうことになるため好ましくない。   The reforming catalyst obtained by the above method can be used for the reforming reaction as it is. Although it is preferable to perform the reduction treatment again before the reforming reaction, it is not always necessary because it is reduced as a result of contact with hydrogen in the reaction gas generated in the reforming reaction. The catalyst performance may be improved by controlling the reduction temperature. When the reduction treatment is performed, the reduction is performed at 700 ° C. or less, preferably 500 to 700 ° C. under a hydrogen gas flow. If the temperature exceeds 700 ° C., the degree of dispersion of the noble metal component is lowered before hydrogen production and the catalyst performance is impaired.

本発明の水素製造方法は、上述の改質触媒を具備する改質部に上記の水素製造用燃料油を供して水蒸気改質反応を行い、水素を含有する生成物を得る。改質部の触媒層の入口温度は500℃以下、好ましくは400〜500℃、さらに好ましくは450〜500℃で行う。400℃より低い温度で行うと水素製造に十分な水蒸気改質反応速度を得られず、水素製造に多量の改質触媒が必要となるので好ましくない。   In the hydrogen production method of the present invention, the above-described fuel oil for hydrogen production is supplied to the reforming section having the above-described reforming catalyst, and a steam reforming reaction is performed to obtain a product containing hydrogen. The inlet temperature of the catalyst layer in the reforming section is 500 ° C. or lower, preferably 400 to 500 ° C., more preferably 450 to 500 ° C. A temperature lower than 400 ° C. is not preferable because a steam reforming reaction rate sufficient for hydrogen production cannot be obtained, and a large amount of reforming catalyst is required for hydrogen production.

本発明の水素製造方法において水素製造用改質触媒を用いる反応形式としては、固定床式、移動床式、流動床式など特に制約を受けるものではない。また本発明の水素製造用改質触媒を用いる反応器としても特に制約を受けるものではない。   The reaction system using the reforming catalyst for hydrogen production in the hydrogen production method of the present invention is not particularly limited, such as a fixed bed type, a moving bed type, and a fluidized bed type. Further, the reactor using the reforming catalyst for hydrogen production of the present invention is not particularly restricted.

本発明の水素製造用改質触媒、及び該触媒を用いた水素製造方法は、500℃以下の水蒸気改質反応に用いたときに特にその発明の効果を発揮することができるが、500℃を越える温度の水蒸気改質反応および/または部分酸化改質反応による水素製造に用いることもできる。従って本発明の水素製造方法は、水蒸気改質触媒層の入口温度を常に500℃以下に維持する方法に限定されるものではなく、必要に応じてその入口温度を上げることができる。たとえば定常運転時の改質触媒層の入口温度が最終的には500℃を越える場合であっても、改質部の起動時など入口温度が500℃以下の非定常な状態から本発明を適用することによって起動時間を短縮することができる。本発明の水素製造方法における改質触媒層の出口温度は特に制約を受けるものではないが、好ましくは500〜800℃、さらに好ましくは550〜750℃である。   The reforming catalyst for hydrogen production of the present invention and the hydrogen production method using the catalyst can exhibit the effects of the invention particularly when used in a steam reforming reaction of 500 ° C. or lower. It can also be used for hydrogen production by steam reforming reaction and / or partial oxidation reforming reaction at a temperature exceeding. Therefore, the hydrogen production method of the present invention is not limited to the method of always maintaining the inlet temperature of the steam reforming catalyst layer at 500 ° C. or lower, and the inlet temperature can be increased as necessary. For example, even when the inlet temperature of the reforming catalyst layer during steady operation eventually exceeds 500 ° C., the present invention is applied from an unsteady state where the inlet temperature is 500 ° C. or lower, such as when the reforming unit is started. By doing so, the startup time can be shortened. The outlet temperature of the reforming catalyst layer in the hydrogen production method of the present invention is not particularly limited, but is preferably 500 to 800 ° C, more preferably 550 to 750 ° C.

また本発明の水素製造用改質触媒は、単独あるいは他の触媒と併用して使用することもできる。たとえば燃料電池向け水素製造において、燃料油である石油系炭化水素を本発明の水素製造方法を用いて予め低い温度でメタンを含む水素含有ガスに変換する予備改質を行った後、得られた水素含有ガスを引き続き下流の改質部にて高い温度で改質処理を行い、メタンから水素への転化を進めて水素生成量を増加させることもできる。   Moreover, the reforming catalyst for hydrogen production of the present invention can be used alone or in combination with other catalysts. For example, in hydrogen production for fuel cells, it was obtained after pre-reforming for converting petroleum-based hydrocarbons as fuel oil into hydrogen-containing gas containing methane at a low temperature in advance using the hydrogen production method of the present invention. The hydrogen-containing gas can be continuously reformed at a high temperature in the downstream reforming section, and the conversion from methane to hydrogen can be promoted to increase the amount of hydrogen produced.

本発明を適用する燃料油の液空間速度(以下。LHSV)は燃料油の種類にも依存するが、通常0.01〜10 hr-1、好ましくは0.1〜5 hr-1である。LHSVが極端に低いと供給される原料の量に対して必要以上の大きさを有する改質器を使うことになり、あるいは原料を供給するポンプまたはマスフローに必要以上の微少量制御が求められるので好ましくない。またLHSVが極端に高いと改質器内における燃料油と触媒層との接触時間が短くなって反応が進まなくなるので好ましくない。 The liquid space velocity (hereinafter referred to as LHSV) of the fuel oil to which the present invention is applied depends on the kind of the fuel oil, but is usually 0.01 to 10 hr −1 , preferably 0.1 to 5 hr −1 . If the LHSV is extremely low, a reformer having a size larger than necessary with respect to the amount of raw material to be supplied is used, or a minute amount control more than necessary is required for a pump or mass flow for supplying the raw material. It is not preferable. On the other hand, if the LHSV is extremely high, the contact time between the fuel oil and the catalyst layer in the reformer is shortened and the reaction does not proceed.

燃料油中の炭素量に対する水の供給量のモル比率(以下、スチーム/カーボン比)は燃料油の性状や触媒の種類などにも依存するが、通常0.5〜10 mol/mol、好ましくは1〜5 mol/molである。スチーム/カーボン比が極端に低いと水蒸気改質反応に必要なスチームが不足し、またコーク析出が促進され触媒の性能低下が著しく加速されるので好ましくない。またスチーム/カーボン比が極端に高いと余剰スチームの生成・回収に要するコストが大きくなるので好ましくない。燃料油と水との混合は特に方法の制約を受けないが、それぞれを気化器で加熱してガス状化したものを混合器で混合する方法、あるいはどちらか一方を気化器で加熱してガス状化したものをもう一方の液体に送り込んで混合ガスを生成する方法などがある。混合が不十分で原料と水が不均一な状態で改質器に送られると水蒸気改質反応が触媒層で均一に進まず、触媒層の温度分布や水素の生成量が不安定になるので好ましくない。   The molar ratio of the amount of water supplied to the amount of carbon in the fuel oil (hereinafter referred to as steam / carbon ratio) depends on the properties of the fuel oil and the type of catalyst, but is usually 0.5 to 10 mol / mol, preferably 1 to 5 mol / mol. If the steam / carbon ratio is extremely low, the steam required for the steam reforming reaction is insufficient, coke deposition is promoted, and the catalyst performance deterioration is remarkably accelerated. In addition, an extremely high steam / carbon ratio is not preferable because the cost required for the generation and recovery of surplus steam increases. Mixing of fuel oil and water is not particularly limited, but it is possible to mix each gasified gas by heating with a vaporizer, or by mixing either gas with a vaporizer. For example, there is a method of generating a mixed gas by feeding the shaped material into the other liquid. If the raw material and water are sent to the reformer with inadequate mixing and raw material and water, the steam reforming reaction will not proceed uniformly in the catalyst layer, and the temperature distribution in the catalyst layer and the amount of hydrogen generated will become unstable. It is not preferable.

反応圧力は燃料油の種類にも依存するが、通常0〜10 MPa、好ましくは0〜5 MPaである。反応圧力が5 MPaを越えると高価な耐圧材や機器類を使用した設備が必要となるので経済的に好ましくない。   The reaction pressure depends on the type of fuel oil, but is usually 0 to 10 MPa, preferably 0 to 5 MPa. If the reaction pressure exceeds 5 MPa, an installation using expensive pressure-resistant materials and equipment is required, which is not economically preferable.

本発明に使用する燃料油は、石油系炭化水素油を含むものを原料油とし、これを脱硫処理して得られるものであり、硫黄含有量が0.05 質量ppm以下かつジベンゾチオフェン類化合物の含有量が0.02 質量ppm以下、好ましくは硫黄含有量が0.05質量ppm以下かつジベンゾチオフェン類化合物の含有量が0.01 質量ppm以下、さらに好ましくはジベンゾチオフェン類化合物を実質含まないものである。硫黄含有量が0.05質量ppmおよび/またはジベンゾチオフェン類化合物が0.02質量ppmを越えると硫黄による触媒の被毒が進み、炭素析出を促すので好ましくない。   The fuel oil used in the present invention is obtained by using a raw material oil containing petroleum-based hydrocarbon oil and desulfurizing it, and has a sulfur content of 0.05 mass ppm or less and a dibenzothiophene compound. A content of 0.02 mass ppm or less, preferably a sulfur content of 0.05 mass ppm or less and a dibenzothiophene compound content of 0.01 mass ppm or less, more preferably substantially free of dibenzothiophene compounds It is. If the sulfur content exceeds 0.05 mass ppm and / or the dibenzothiophene compound exceeds 0.02 mass ppm, poisoning of the catalyst with sulfur proceeds and carbon deposition is not preferred.

尚、これらの硫黄含有量は紫外蛍光分析法、ジベンゾチオフェン類化合物の含有量はGC−ICP−MSにて測定されたものである。   These sulfur contents were measured by ultraviolet fluorescence analysis, and the contents of dibenzothiophene compounds were measured by GC-ICP-MS.

原料油となる石油系炭化水素油としてはガソリン、ナフサ、灯油、軽油などがあるが、これらの中では取り扱い上灯油が好ましく、さらに好ましくはJISで規定される灯油またはその相当品が好ましい。原料油の脱硫処理の方法は、一般に工業的に利用されている水素化脱硫や吸着分離などの公知の技術を単独または複数用いることができる。たとえば水素化脱硫の一例としては、コバルト、ニッケル、モリブデン、タングステンなどの遷移金属を含む水素化精製触媒を用いて、反応温度200〜400℃、水素/油容積比50〜1000 Nm3/m3、液空間速度0.1〜10 h-1、圧力1〜15MPa-Gなどの反応条件で脱硫処理する方法が挙げられる。 Petroleum hydrocarbon oils used as raw material oils include gasoline, naphtha, kerosene, and light oil. Among these, kerosene is preferable for handling, and kerosene specified by JIS or its equivalent is more preferable. As a method for the desulfurization treatment of the raw material oil, known techniques such as hydrodesulfurization and adsorptive separation that are generally used industrially can be used singly or in plural. For example, as an example of hydrodesulfurization, using a hydrorefining catalyst containing transition metals such as cobalt, nickel, molybdenum, tungsten, etc., a reaction temperature of 200 to 400 ° C., a hydrogen / oil volume ratio of 50 to 1000 Nm 3 / m 3 And a desulfurization process under reaction conditions such as a liquid space velocity of 0.1 to 10 h −1 and a pressure of 1 to 15 MPa-G.

原料油の脱硫処理で得られる燃料油は、蒸留初留点が140℃以上かつ蒸留終点が300℃以下である。好ましくは初留点が140〜180℃で、95容量%留出点が270℃以下で、かつ蒸留終点が290℃以下であり、より好ましくは、蒸留初留点が140〜170℃で、95容量%留出点が230〜270℃で、かつ蒸留終点が240〜290℃、更に好ましくは95%容量留出点が260〜270℃で、かつ蒸留終点が270〜290℃である。蒸留初留点が140℃よりも低いと引火性が高くなり、取り扱いが難しくなるので好ましくない。また蒸留終点が300℃よりも高くなると低い温度での水素への改質が困難になるので好ましくない。95%容量留出点が270℃を越えるとジベンゾチオフェン類化合物の含有量が増え、特にアルキル置換基数の多いアルキルジベンゾチオフェン類化合物の含有量が増えるので好ましくない。   The fuel oil obtained by the desulfurization treatment of the raw material oil has a distillation initial boiling point of 140 ° C. or higher and a distillation end point of 300 ° C. or lower. Preferably, the initial boiling point is 140 to 180 ° C., the 95% by volume distillation point is 270 ° C. or less, and the distillation end point is 290 ° C. or less. More preferably, the distillation initial boiling point is 140 to 170 ° C. The volume% distillation point is 230 to 270 ° C, the distillation end point is 240 to 290 ° C, more preferably the 95% volume distillation point is 260 to 270 ° C, and the distillation end point is 270 to 290 ° C. If the distillation initial boiling point is lower than 140 ° C., the flammability becomes high and the handling becomes difficult. On the other hand, if the distillation end point is higher than 300 ° C., reforming to hydrogen at a low temperature becomes difficult, which is not preferable. If the 95% volume distillation point exceeds 270 ° C., the content of the dibenzothiophene compound increases, and in particular, the content of the alkyldibenzothiophene compound having a large number of alkyl substituents increases.

尚、これらの蒸留性状はJIS K 2254に定める「石油製品−蒸留試験方法」に基づいて測定されたものである。   These distillation properties were measured based on “Petroleum product-distillation test method” defined in JIS K 2254.

また本発明に使用する燃料油は、構成する炭化水素の組成については特に制限されないが、直鎖脂肪族飽和炭化水素の含有量が25質量%未満であることが好ましい。さらに好ましくは直鎖脂肪族飽和炭化水素の含有量が25質量%未満であり、かつ炭素数18以上の直鎖脂肪族飽和炭化水素の含有量が0.5質量%以下である。直鎖脂肪族飽和炭化水素の含有量が25質量%以上では、低い温度での水素製造において直鎖脂肪族飽和炭化水素が未改質留分として残りやすくなるので好ましくない。また炭素数18以上の直鎖脂肪族飽和炭化水素の含有量が0.5質量%を越えると低い温度での水素製造において未改質の炭化水素が生成物中に残りやすくなるので好ましくない。   The fuel oil used in the present invention is not particularly limited with respect to the composition of the constituent hydrocarbon, but the content of the straight-chain aliphatic saturated hydrocarbon is preferably less than 25% by mass. More preferably, the content of the linear aliphatic saturated hydrocarbon is less than 25% by mass and the content of the linear aliphatic saturated hydrocarbon having 18 or more carbon atoms is 0.5% by mass or less. If the content of the linear aliphatic saturated hydrocarbon is 25% by mass or more, the linear aliphatic saturated hydrocarbon tends to remain as an unmodified fraction in hydrogen production at a low temperature. Further, when the content of the straight-chain aliphatic hydrocarbon having 18 or more carbon atoms exceeds 0.5% by mass, unmodified hydrocarbons tend to remain in the product in the production of hydrogen at a low temperature, which is not preferable.

尚、直鎖脂肪族飽和炭化水素の含有量はガスクロマトグラフィーで測定されたものである。   The content of the straight chain aliphatic saturated hydrocarbon is measured by gas chromatography.

本発明に使用する燃料油は、芳香族含有量は20容積%以下であることが好ましく、さらに好ましくは16〜18容積%であり、かつ二環以上の芳香族化合物の含有量が1.0容積%以下である。芳香族含有量が20容積%を越えると改質触媒の劣化が著しく進み、また低い温度での水素への改質が困難になるので好ましくない。また本発明の水素製造用燃料油は、オレフィン化合物を含まないことが好ましい。オレフィン化合物を含まないとは、分析法にて量的に検出されないことを意味する。オレフィンが含まれると改質触媒に炭素が析出しやすくなり水素製造性能が著しく低下するので好ましくない。   The fuel oil used in the present invention preferably has an aromatic content of 20% by volume or less, more preferably 16 to 18% by volume, and a content of aromatic compounds having two or more rings is 1.0. The volume% or less. If the aromatic content exceeds 20% by volume, the reforming catalyst deteriorates remarkably, and reforming to hydrogen at a low temperature becomes difficult. Moreover, it is preferable that the fuel oil for hydrogen production of the present invention does not contain an olefin compound. The absence of an olefin compound means that it is not quantitatively detected by the analytical method. If olefin is contained, carbon is liable to be deposited on the reforming catalyst, and the hydrogen production performance is remarkably lowered.

尚、芳香族含有量、二環以上の芳香族化合物の含有量およびオレフィン化合物の含有量は石油学会規定JPI−5S−49に定める炭化水素タイプ分析に基づいて測定されたものである。   The aromatic content, the content of aromatic compounds having two or more rings, and the content of olefin compounds were measured based on the hydrocarbon type analysis defined in JPI-5S-49 of the Petroleum Institute of Japan.

本発明に使用する燃料油は、単独または他の炭化水素との混合で水素製造の原燃料に使用することができる。   The fuel oil used in the present invention can be used as a raw fuel for hydrogen production alone or in a mixture with other hydrocarbons.

本発明は水蒸気改質反応に係わる水素製造装置での種々な態様で実施することが可能であり、たとえば製油所などの水素プラントや定置型分散電源における燃料電池用水素製造システムなどで実施可能である。   The present invention can be implemented in various modes in a hydrogen production apparatus related to a steam reforming reaction, for example, in a hydrogen plant such as a refinery or a hydrogen production system for a fuel cell in a stationary distributed power source. is there.

以下に実施例を挙げて本発明の効果をさらに詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the effects of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

JIS1号灯油を市販のコバルト−モリブデン系脱硫触媒を用いてLHSV=1.0h-1、370℃、水素/油=500Nm3/m3、圧力5MPaの条件で370℃の水素化脱硫処理を行い、引き続き市販の酸化亜鉛吸着剤を用いてLHSV=1.0h-1、350℃、圧力5MPaの条件で吸着処理を行い、脱硫灯油を得た。これらのJIS1号灯油および脱硫灯油の性状を表1に示す。 JIS No. 1 kerosene was hydrodesulfurized at 370 ° C. under the conditions of LHSV = 1.0 h −1 , 370 ° C., hydrogen / oil = 500 Nm 3 / m 3 , pressure 5 MPa using a commercially available cobalt-molybdenum-based desulfurization catalyst. Subsequently, an adsorption treatment was performed using a commercially available zinc oxide adsorbent under the conditions of LHSV = 1.0 h −1 , 350 ° C., and a pressure of 5 MPa to obtain desulfurized kerosene. Table 1 shows the properties of these JIS No. 1 kerosene and desulfurized kerosene.

尚、これらの硫黄含有量は紫外蛍光分析法、ジベンゾチオフェン類化合物の含有量はGC-ICP-MSで測定されたものである。また蒸留性状はJIS K 2254に定める「石油製品−蒸留試験方法」に基づいて測定されたものである。また直鎖脂肪族飽和炭化水素の含有量はガスクロマトグラフィーで測定されたものである。また芳香族含有量、二環以上の芳香族化合物の含有量およびオレフィン化合物の含有量は石油学会規定JPI−5S−49に定める炭化水素タイプ分析に基づいて測定されたものである。   The sulfur content was measured by ultraviolet fluorescence analysis, and the content of the dibenzothiophene compound was measured by GC-ICP-MS. The distillation properties were measured based on “Petroleum product-distillation test method” defined in JIS K 2254. Further, the content of the straight chain aliphatic saturated hydrocarbon is measured by gas chromatography. The aromatic content, the content of aromatic compounds having two or more rings, and the content of olefin compounds were measured based on the hydrocarbon type analysis defined in JPI-5S-49.

Figure 2009254929
Figure 2009254929

[触媒の調製]
実施例1(触媒A)
2mm径のアルミナ担体(比表面積120m2/g、細孔容積0.36ml/g)415gに、硝酸ランタン六水和物87.7gが溶解した水溶液150mlをポアフィリング法により含浸した後、110℃で16時間乾燥、引き続き酸素存在下650℃で3時間焼成を実施した。得られたランタン含有担体に、三塩化ルテニウム23.3gと硝酸コバルト(II)六水和物10.2gが溶解した水溶液150mlをポアフィリング法で含浸した後、150℃で16時間乾燥した。得られた触媒にヒドラジン炭酸塩水溶液を用いて70℃に加温して液相還元処理を行い、液相から取り出して150℃で10時間乾燥し、触媒Aを得た。
実施例2(触媒B)
実施例1の方法において、硝酸ランタン六水和物を35.3gとした以外は実施例1と同様の調製方法によって調製を行い、触媒Bを得た。
実施例3(触媒C)
実施例1の方法において、三塩化ルテニウムを35.0gとした以外は実施例1と同様の調製方法によって調製を行い、触媒Cを得た。
比較例1(触媒D)
実施例1の方法において、三塩化ルテニウムを11.7gとした以外は実施例1と同様の調製方法によって調製を行い、触媒Dを得た。
比較例2(触媒E)
実施例1の方法において、三塩化ルテニウム23.3gの代わりとして硝酸ルテニウム27.43gを使用した以外は実施例1と同様の調製方法によって調製を行い、触媒Eを得た。
比較例3(触媒F)
2mm径のアルミナ担体(比表面積120m2/g、細孔容積0.36ml/g)415gに、三塩化ルテニウム23.3gと硝酸コバルト(II)六水和物10.2gが溶解した水溶液150mlをポアフィリング法で含浸した後、150℃で16時間乾燥した。得られた触媒にヒドラジン炭酸塩水溶液を用いて40℃に加温して液相還元処理を行い、液相から取り出して150℃で10時間乾燥し、触媒Fを得た。
[Preparation of catalyst]
Example 1 (Catalyst A)
After impregnating 150 ml of an aqueous solution in which 87.7 g of lanthanum nitrate hexahydrate was dissolved in 415 g of a 2 mm diameter alumina support (specific surface area 120 m 2 / g, pore volume 0.36 ml / g) at 110 ° C. For 16 hours, followed by baking at 650 ° C. for 3 hours in the presence of oxygen. The obtained lanthanum-containing support was impregnated with 150 ml of an aqueous solution in which 23.3 g of ruthenium trichloride and 10.2 g of cobalt (II) nitrate hexahydrate were dissolved, and then dried at 150 ° C. for 16 hours. The obtained catalyst was heated to 70 ° C. using an aqueous hydrazine carbonate solution, subjected to liquid phase reduction treatment, taken out from the liquid phase and dried at 150 ° C. for 10 hours to obtain Catalyst A.
Example 2 (Catalyst B)
A catalyst B was obtained in the same manner as in Example 1 except that 35.3 g of lanthanum nitrate hexahydrate was used in the method of Example 1.
Example 3 (Catalyst C)
A catalyst C was obtained in the same manner as in Example 1, except that 35.0 g of ruthenium trichloride was used in the method of Example 1.
Comparative Example 1 (Catalyst D)
In the method of Example 1, the catalyst D was prepared by the same preparation method as in Example 1 except that 11.7 g of ruthenium trichloride was used.
Comparative Example 2 (Catalyst E)
In the method of Example 1, preparation was carried out by the same preparation method as in Example 1 except that 27.43 g of ruthenium nitrate was used instead of 23.3 g of ruthenium trichloride, and Catalyst E was obtained.
Comparative Example 3 (Catalyst F)
150 ml of an aqueous solution in which 23.3 g of ruthenium trichloride and 10.2 g of cobalt nitrate (II) hexahydrate are dissolved in 415 g of a 2 mm diameter alumina carrier (specific surface area 120 m 2 / g, pore volume 0.36 ml / g) After impregnating by the pore filling method, it was dried at 150 ° C. for 16 hours. The obtained catalyst was heated to 40 ° C. using an aqueous hydrazine carbonate solution to perform a liquid phase reduction treatment, taken out from the liquid phase and dried at 150 ° C. for 10 hours to obtain Catalyst F.

前述の調製で得られた触媒A〜Fの物性を表2に示す。尚、これらの触媒の比表面積は窒素吸着法で測定された値である。また貴金属成分含有量および希土類成分含有量はICP−MS質量分析法で、貴金属成分分散度は前述の一酸化炭素を用いたガス吸着分析法(金属分散度測定装置BEL−METAL−3SP(日本BEL社製を使用)でそれぞれ測定された値を用いて式1〜3で算出される。   Table 2 shows the physical properties of the catalysts A to F obtained by the above preparation. The specific surface areas of these catalysts are values measured by a nitrogen adsorption method. Further, the precious metal component content and the rare earth component content are determined by ICP-MS mass spectrometry, and the precious metal component dispersity is measured by the gas adsorption analysis method using the above-mentioned carbon monoxide (metal dispersity measuring device BEL-METAL-3SP (Japan BEL Using the values measured in the above), the values are calculated by equations 1 to 3.

Figure 2009254929
Figure 2009254929

貴金属成分含有量(質量%)=(触媒に含まれる貴金属成分の総量(g)÷触媒の総質量(g))×100 ・・・ (式1) Noble metal component content (% by mass) = (total amount of precious metal component contained in catalyst (g) ÷ total mass of catalyst (g)) × 100 (Equation 1)

貴金属成分分散度(%)=(触媒1g当たりに吸着したCO分子のモル数÷触媒1g当たりに含まれる貴金属成分のモル数)×100 ・・・ (式2) Noble metal component dispersion (%) = (number of moles of CO molecules adsorbed per gram of catalyst / number of moles of noble metal component contained per gram of catalyst) × 100 (Equation 2)

希土類成分含有量(μmol/m2)=触媒に含まれる希土類成分の総モル量(μmol/g)÷比表面積(m2/g) ・・・ (式3)

式2の触媒に吸着したCO分子のモル数は、触媒試料を50ml/分の水素気流下で400℃で30分間、続いて50ml/分のヘリウム気流下で400℃で20分間前処理を行った後、50℃にてヘリウムガス気流下でCOパルスを注入したときのCO吸着量V50を基に、貴金属成分が担体表面に球体として担持されて1個の貴金属原子に1つのCO分子が吸着するとみなして、式4で求めた。
触媒に吸着したCO分子のモル数(mol/g)=V50/W×(273/(273+t))×(P/101.325)/(22.4×103)・・・(式4)
50:測定温度50℃におけるCO吸着量
W:触媒の試料量(g)
P:測定時の圧力(kPa)
t:測定温度(℃)
図1は、本発明の実施例としての水素製造装置の構成の概略を示したものである。この水素製造装置は、原料の脱硫灯油を貯蔵する燃料油タンクT110と、水を貯蔵する水タンクT120と、それぞれの液体を加熱気化する気化器EV110およびEV120と、加熱気化したそれぞれの液体を混合する混合器M130と、水蒸気改質反応で水素を含む改質ガスを生成する改質器R140と、水蒸気改質反応で生成した改質ガスの一部を採取しその組成を分析するための分析計A150と、改質ガスを冷却して気液に分離する気液分離器S160と、気液分離器S160で分離した液体を回収する液回収タンクT170を備える。改質器R140はその内部に改質触媒を収納する。この他にも温度や流量の制御機器や各部の加熱のための加熱器を備える。
Rare earth component content (μmol / m 2 ) = total molar amount of rare earth component contained in catalyst (μmol / g) ÷ specific surface area (m 2 / g) (Formula 3)

The number of moles of CO molecules adsorbed on the catalyst of Formula 2 was determined by pretreating the catalyst sample at 400 ° C. for 30 minutes under a hydrogen flow of 50 ml / min, followed by 20 minutes at 400 ° C. under a helium flow of 50 ml / min. After that, based on the CO adsorption amount V 50 when a CO pulse is injected under a helium gas stream at 50 ° C., a noble metal component is supported as a sphere on the support surface, and one CO molecule per one noble metal atom. Assuming that it was adsorbed, it was determined by Equation 4.
Number of moles of CO molecules adsorbed on the catalyst (mol / g) = V 50 /W×(273/(273+t))×(P/101.325)/(22.4×10 3 ) (Formula 4 )
V 50 : CO adsorption amount at a measurement temperature of 50 ° C. W: Catalyst sample amount (g)
P: Pressure during measurement (kPa)
t: Measurement temperature (° C)
FIG. 1 shows an outline of the configuration of a hydrogen production apparatus as an embodiment of the present invention. This hydrogen production apparatus mixes a fuel oil tank T110 that stores raw desulfurized kerosene, a water tank T120 that stores water, vaporizers EV110 and EV120 that heat and vaporize each liquid, and each liquid that is heated and vaporized. Mixer M130 for generating, reformer R140 for generating reformed gas containing hydrogen by the steam reforming reaction, and analysis for collecting a part of the reformed gas generated by the steam reforming reaction and analyzing its composition A total A150, a gas-liquid separator S160 that cools the reformed gas and separates it into gas-liquid, and a liquid recovery tank T170 that recovers the liquid separated by the gas-liquid separator S160 are provided. The reformer R140 houses the reforming catalyst therein. In addition, a temperature and flow rate control device and a heater for heating each part are provided.

燃料油タンクT110および水タンクT120内の液体はポンプまたはマスフローによってその流量を制御することができ、それぞれの気化器EV110およびEV120へと供給される。原料および水はそれぞれの気化器で加熱気化されて混合器M130内で十分に混合された後、改質触媒を収納する改質器R140へ供される。改質器R140内の水蒸気改質反応で生成した改質ガスの一部は分析計A150に送られ、水蒸気改質反応で生成するガス組成を分析することができる。   The flow rate of the liquid in the fuel oil tank T110 and the water tank T120 can be controlled by a pump or mass flow, and is supplied to the respective vaporizers EV110 and EV120. The raw material and water are heated and vaporized in the respective vaporizers and sufficiently mixed in the mixer M130, and then supplied to the reformer R140 containing the reforming catalyst. A part of the reformed gas generated by the steam reforming reaction in the reformer R140 is sent to the analyzer A150, and the gas composition generated by the steam reforming reaction can be analyzed.

実施例1〜3、比較例1〜3で得られた触媒A〜F 15.0mlを、図1で示される水素製造装置の改質器R140にそれぞれ充填し、原料を供給せずに改質器R140を昇温速度10℃/分で加熱を行い、改質触媒層の入口温度および出口温度がそれぞれ500℃、550℃になるまで昇温を行った。   15.0 ml of the catalysts A to F obtained in Examples 1 to 3 and Comparative Examples 1 to 3 are respectively filled in the reformer R140 of the hydrogen production apparatus shown in FIG. 1 and reformed without supplying raw materials. The vessel R140 was heated at a temperature increase rate of 10 ° C./min, and the temperature was increased until the inlet temperature and the outlet temperature of the reforming catalyst layer were 500 ° C. and 550 ° C., respectively.

表2で示される脱硫灯油を原料として、原料および水の供給をそれぞれ35.6g/h 、109.8g/h(原料のLHSV=3.0h-1、スチーム/カーボン比=2.5mol/mol)として改質触媒層の入口温度および出口温度がそれぞれ500℃、550℃になるように温度制御を行った状態で、大気圧条件で336時間反応を行った。 Using the desulfurized kerosene shown in Table 2 as a raw material, the raw material and water were supplied at 35.6 g / h and 109.8 g / h (LHSV of raw material = 3.0 h −1 , steam / carbon ratio = 2.5 mol / mol, respectively). ), The reaction was carried out for 336 hours under atmospheric pressure conditions with the temperature controlled so that the inlet temperature and outlet temperature of the reforming catalyst layer were 500 ° C. and 550 ° C., respectively.

上述の評価反応中に得られた反応生成物はガスの状態でサンプリングし、ガスクロマトグラフィーで反応生成物の組成を分析した。改質反応における各触媒の触媒活性は、式4で求められるC1転化率を指標に評価した。
The reaction product obtained during the above evaluation reaction was sampled in a gas state, and the composition of the reaction product was analyzed by gas chromatography. The catalytic activity of each catalyst in the reforming reaction was evaluated using the C1 conversion obtained by Formula 4 as an index.

C1転化率(%)=(反応生成物に含まれるC1化合物のモル数÷原料の脱硫灯油に含まれる炭素の総モル数)×100 ・・・ (式4)

評価反応を所定時間行った後は、改質器の加熱を停止すると同時に水および原料の供給を停止する停止操作を行い、水素製造を停止した。水素製造の停止後に改質器の温度が室温まで温度が低下した状態で、水素製造後の触媒をそれぞれの改質器から抜き出して触媒に付着した炭素付着量の分析を行い、また改質触媒層入口の改質器内壁面に炭素質が析出しているか確認した。
C1 conversion (%) = (number of moles of C1 compound contained in reaction product / total number of moles of carbon contained in raw desulfurized kerosene) × 100 (Formula 4)

After performing the evaluation reaction for a predetermined time, the heating of the reformer was stopped, and at the same time, a stop operation for stopping the supply of water and raw materials was performed to stop hydrogen production. After the hydrogen production is stopped, with the reformer temperature lowered to room temperature, the catalyst after hydrogen production is extracted from each reformer and analyzed for the amount of carbon adhering to the catalyst. It was confirmed whether carbonaceous material was deposited on the inner wall of the reformer at the inlet of the bed.

各触媒を用いた評価反応における24時間後と288時間後のC1転化率とその比、評価反応後の触媒に付着した炭素付着量および改質器内壁面への炭素質の析出状況をそれぞれ表3に示す。尚、これらの炭素付着量はICP−MS質量分析法で測定された値である。
Table 1 shows the C1 conversion rates and ratios after 24 hours and 288 hours in the evaluation reaction using each catalyst, the amount of carbon adhering to the catalyst after the evaluation reaction, and the state of carbonaceous deposition on the inner wall of the reformer. 3 shows. These carbon adhesion amounts are values measured by ICP-MS mass spectrometry.

Figure 2009254929
Figure 2009254929

本発明に基づく実施例1〜3で得られた触媒A〜Cは、比較例1〜3で得られた触媒D〜Gを用いた場合よりもC1転化率が高く高活性を示し、かつ時間が経過しても高転化率を維持し、低い温度での水素製造において性能低下が少ない触媒であることがわかる。また本発明に係わる水素製造用改質触媒を用いることによって、水素製造後の触媒に付着する炭素量が減少し、改質器内壁面への炭素析出が抑制されることが示され、500℃での水蒸気改質反応においても炭素析出による改質触媒の性能低下、および改質器への悪影響が抑制されることが分かる。   Catalysts A to C obtained in Examples 1 to 3 based on the present invention have a higher C1 conversion rate and higher activity than the cases where the catalysts D to G obtained in Comparative Examples 1 to 3 are used, and the time. It can be seen that the catalyst maintains a high conversion rate even after elapse of time, and has little performance degradation in hydrogen production at a low temperature. In addition, it was shown that by using the reforming catalyst for hydrogen production according to the present invention, the amount of carbon adhering to the catalyst after hydrogen production is reduced, and carbon deposition on the inner wall surface of the reformer is suppressed. It can be seen that also in the steam reforming reaction, the deterioration of the performance of the reforming catalyst due to carbon deposition and the adverse effect on the reformer are suppressed.

これらの実施例から、本発明に係わる水素製造用改質触媒によって、低い温度での改質反応開始が可能となり、起動に要する時間の短い燃料電池システムの運用、改質器構造の簡易化や材料のコスト低減による経済的な水素製造を実施することが可能となることが分かる。
From these examples, the reforming catalyst for hydrogen production according to the present invention enables the start of the reforming reaction at a low temperature, the operation of the fuel cell system with a short startup time, the simplification of the reformer structure, It turns out that it becomes possible to implement economical hydrogen production by the cost reduction of material.

本発明によって提供された水素製造用改質触媒および該触媒を用いた水素製造方法によって、低い温度での改質反応開始が可能となり、起動に要する時間の短い燃料電池システムの運用が可能となる。また改質触媒の性能低下や炭素析出による改質器の閉塞を抑制し、長期の水素製造が可能となる。また改質温度の低下によって、改質触媒の熱劣化による性能低下を低減し、高温耐久性の高価な材料を用いることなく改質器の耐久性向上、改質器構造の簡易化や材料のコスト低減による経済的な水素製造を実施することが可能となる。
The reforming catalyst for producing hydrogen and the method for producing hydrogen using the catalyst provided by the present invention enable the start of the reforming reaction at a low temperature and the operation of the fuel cell system with a short startup time. . Moreover, the performance degradation of the reforming catalyst and the blockage of the reformer due to carbon deposition are suppressed, and long-term hydrogen production becomes possible. In addition, lowering the reforming temperature reduces the performance degradation due to thermal degradation of the reforming catalyst, improving the durability of the reformer without using high-temperature durable expensive materials, simplifying the reformer structure, It becomes possible to implement economical hydrogen production by cost reduction.

実施例で用いた水素製造装置の構成の概略図である。It is the schematic of the structure of the hydrogen production apparatus used in the Example.

符号の説明Explanation of symbols

T110:燃料油タンク
T120:水タンク
EV110:原料気化器
EV120:水気化器
M130:混合器
R140:改質器
A150:分析計
S160:気液分離器
T170:液回収タンク
T110: Fuel oil tank T120: Water tank EV110: Raw material vaporizer EV120: Water vaporizer M130: Mixer R140: Reformer A150: Analyzer S160: Gas-liquid separator T170: Liquid recovery tank

Claims (6)

アルミナ担体に、ルテニウム、ロジウム、白金の少なくとも1種を含む貴金属成分と希土類金属を含有させてなる水蒸気改質触媒において、触媒に含まれる貴金属成分含有量(質量%)と貴金属成分分散度(%)の積が100以上で、かつ貴金属成分分散度(%)が70%以下であることを特徴とする水素製造用改質触媒。   In a steam reforming catalyst comprising an alumina support containing a noble metal component containing at least one of ruthenium, rhodium and platinum and a rare earth metal, the noble metal component content (% by mass) and the degree of noble metal component dispersion (%) ) And a noble metal component dispersity (%) of 70% or less. 触媒中の希土類金属の含有量が、触媒の表面積に対して0.1〜5 μmol/m2であることを特徴とする、請求項1に記載の水素製造用改質触媒。 The reforming catalyst for hydrogen production according to claim 1, wherein the content of the rare earth metal in the catalyst is 0.1 to 5 µmol / m 2 with respect to the surface area of the catalyst. 貴金属成分がルテニウムであることを特徴とする、請求項1〜2のいずれかに記載の水素製造用改質触媒。   The reforming catalyst for hydrogen production according to claim 1, wherein the noble metal component is ruthenium. 希土類金属がランタンまたはセリウムを含むことを特徴とする、請求項1〜3のいずれかに記載の水素製造用改質触媒。   The reforming catalyst for hydrogen production according to any one of claims 1 to 3, wherein the rare earth metal contains lanthanum or cerium. アルミナ担体に、希土類金属を含浸法で導入し、前記希土類金属を含有させたアルミナ担体を酸素存在下600〜800℃で焼成した後、ルテニウム化合物、ロジウム化合物及び白金化合物から選ばれる少なくとも1種の化合物を担持させ、次いで液相で65〜100℃の温度において還元処理を行うことを特徴とする請求項1〜4のいずれかに記載の水素製造用改質触媒の製造方法。   After introducing a rare earth metal into the alumina support by an impregnation method and calcining the alumina support containing the rare earth metal at 600 to 800 ° C. in the presence of oxygen, at least one kind selected from a ruthenium compound, a rhodium compound and a platinum compound is obtained. The method for producing a reforming catalyst for hydrogen production according to any one of claims 1 to 4, wherein the compound is supported and then reduction treatment is performed in a liquid phase at a temperature of 65 to 100 ° C. 請求項1〜4のいずれかに記載の水素製造用改質触媒を具備する改質部に水素製造用燃料油を供して、改質部の触媒層の入口温度を500℃以下で水蒸気改質反応を開始し、水素を含有する生成物を得ることを特徴とする水素製造方法。   A fuel oil for hydrogen production is provided to the reforming section comprising the reforming catalyst for hydrogen production according to any one of claims 1 to 4, and steam reforming is performed at an inlet temperature of the catalyst layer of the reforming section of 500 ° C or lower. A method for producing hydrogen, characterized by starting a reaction and obtaining a product containing hydrogen.
JP2008104245A 2008-04-14 2008-04-14 Reforming catalyst for manufacturing hydrogen suitable for hydrogen manufacture at low temperature, and hydrogen manufacturing method using the catalyst Pending JP2009254929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008104245A JP2009254929A (en) 2008-04-14 2008-04-14 Reforming catalyst for manufacturing hydrogen suitable for hydrogen manufacture at low temperature, and hydrogen manufacturing method using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104245A JP2009254929A (en) 2008-04-14 2008-04-14 Reforming catalyst for manufacturing hydrogen suitable for hydrogen manufacture at low temperature, and hydrogen manufacturing method using the catalyst

Publications (1)

Publication Number Publication Date
JP2009254929A true JP2009254929A (en) 2009-11-05

Family

ID=41383070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104245A Pending JP2009254929A (en) 2008-04-14 2008-04-14 Reforming catalyst for manufacturing hydrogen suitable for hydrogen manufacture at low temperature, and hydrogen manufacturing method using the catalyst

Country Status (1)

Country Link
JP (1) JP2009254929A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167595A (en) * 2010-02-16 2011-09-01 Jx Nippon Oil & Energy Corp Reforming catalyst for producing hydrogen, method for producing the same, and method for producing hydrogen using the catalyst
JP2012210620A (en) * 2011-03-22 2012-11-01 Jx Nippon Oil & Energy Corp Reforming catalyst for producing hydrogen, hydrogen producing apparatus using the catalyst and fuel cell system
JP2013513485A (en) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド Catalyst production method and system
JP2015074586A (en) * 2013-10-09 2015-04-20 大阪瓦斯株式会社 Operational method of steam reformer, steam reforming reactor, and fuel cell power generator
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
KR101768078B1 (en) * 2014-09-15 2017-08-14 한국과학기술연구원 Catalyst wherein Ru is supported by LaAlO₃and method for preparing the same
US10328416B2 (en) 2014-02-05 2019-06-25 Mitsui Mining & Smelting Co., Ltd. Fuel reforming catalyst
CN111097447A (en) * 2018-10-29 2020-05-05 中国石油天然气股份有限公司 Catalyst for low-temperature catalytic cracking of methane to produce hydrogen, preparation method thereof and low-temperature catalytic cracking method for methane to produce hydrogen
CN114249299A (en) * 2021-11-09 2022-03-29 浦江思欣通科技有限公司 Pretreatment method of methane-rich gas plasma multiple reforming reaction catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147242A (en) * 1984-01-11 1985-08-03 Tokyo Gas Co Ltd Catalyst for steam reforming of hydrocarbon
JPH09173842A (en) * 1995-12-21 1997-07-08 Cosmo Sogo Kenkyusho:Kk High dispersion-type catalyst for vapor modification and manufacture of hydrogen
JPH09262468A (en) * 1996-03-28 1997-10-07 Cosmo Sogo Kenkyusho:Kk Catalyst for producing high calorie gas and its production
JP2000061307A (en) * 1998-08-17 2000-02-29 Cosmo Sogo Kenkyusho:Kk High dispersion type steam reforming catalyst and method for producing hydrogen
JP2004082033A (en) * 2002-08-28 2004-03-18 Nippon Oil Corp Steam reforming catalyst, steam reforming method and fuel battery system
WO2007040097A1 (en) * 2005-09-30 2007-04-12 Japan Energy Corporation Steam reforming catalyst for hydrocarbon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147242A (en) * 1984-01-11 1985-08-03 Tokyo Gas Co Ltd Catalyst for steam reforming of hydrocarbon
JPH09173842A (en) * 1995-12-21 1997-07-08 Cosmo Sogo Kenkyusho:Kk High dispersion-type catalyst for vapor modification and manufacture of hydrogen
JPH09262468A (en) * 1996-03-28 1997-10-07 Cosmo Sogo Kenkyusho:Kk Catalyst for producing high calorie gas and its production
JP2000061307A (en) * 1998-08-17 2000-02-29 Cosmo Sogo Kenkyusho:Kk High dispersion type steam reforming catalyst and method for producing hydrogen
JP2004082033A (en) * 2002-08-28 2004-03-18 Nippon Oil Corp Steam reforming catalyst, steam reforming method and fuel battery system
WO2007040097A1 (en) * 2005-09-30 2007-04-12 Japan Energy Corporation Steam reforming catalyst for hydrocarbon

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
JP2013513485A (en) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド Catalyst production method and system
JP2011167595A (en) * 2010-02-16 2011-09-01 Jx Nippon Oil & Energy Corp Reforming catalyst for producing hydrogen, method for producing the same, and method for producing hydrogen using the catalyst
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
JP2012210620A (en) * 2011-03-22 2012-11-01 Jx Nippon Oil & Energy Corp Reforming catalyst for producing hydrogen, hydrogen producing apparatus using the catalyst and fuel cell system
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
JP2015074586A (en) * 2013-10-09 2015-04-20 大阪瓦斯株式会社 Operational method of steam reformer, steam reforming reactor, and fuel cell power generator
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US10328416B2 (en) 2014-02-05 2019-06-25 Mitsui Mining & Smelting Co., Ltd. Fuel reforming catalyst
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
KR101768078B1 (en) * 2014-09-15 2017-08-14 한국과학기술연구원 Catalyst wherein Ru is supported by LaAlO₃and method for preparing the same
CN111097447A (en) * 2018-10-29 2020-05-05 中国石油天然气股份有限公司 Catalyst for low-temperature catalytic cracking of methane to produce hydrogen, preparation method thereof and low-temperature catalytic cracking method for methane to produce hydrogen
CN114249299A (en) * 2021-11-09 2022-03-29 浦江思欣通科技有限公司 Pretreatment method of methane-rich gas plasma multiple reforming reaction catalyst

Similar Documents

Publication Publication Date Title
JP2009254929A (en) Reforming catalyst for manufacturing hydrogen suitable for hydrogen manufacture at low temperature, and hydrogen manufacturing method using the catalyst
Yancheshmeh et al. A novel synthesis of NiAl2O4 spinel from a Ni-Al mixed-metal alkoxide as a highly efficient catalyst for hydrogen production by glycerol steam reforming
Sánchez-Sánchez et al. Ethanol steam reforming over Ni/MxOy–Al2O3 (M= Ce, La, Zr and Mg) catalysts: influence of support on the hydrogen production
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
Lee et al. Ni–Me/Ce0. 9Gd0. 1O2− x (Me: Rh, Pt and Ru) catalysts for diesel pre-reforming
JP6725994B2 (en) Steam reforming catalyst, steam reforming method using the same, and steam reforming reaction apparatus
WO2006068135A1 (en) Desulfurizing agent for organosulfur compound-containing fuel oil, and process for producing hydrogen for fuel cell
JPWO2009011133A1 (en) Catalyst for cracking hydrocarbons
US20190099744A1 (en) Nickel catalyst for dry and low temperature steam reforming of methane
JP5788348B2 (en) Reforming catalyst for hydrogen production, hydrogen production apparatus and fuel cell system using the catalyst
JP5593106B2 (en) Hydrogen production method, hydrogen production apparatus and fuel cell system
JP4068061B2 (en) Hydrocarbon desulfurization and reforming method
JP5340681B2 (en) Reforming catalyst for hydrogen production suitable for hydrogen production at a low temperature, and hydrogen production method using the catalyst
JP2011088066A (en) Reforming catalyst, reformer, and hydrogen production apparatus
JP2001279256A (en) Desulfurization device for fuel battery and method for operating the same
JP2011083685A (en) Reforming catalyst for use in producing hydrogen, method of producing the same, and method of producing hydrogen using the same
JP5114183B2 (en) Fuel oil for hydrogen production and hydrogen production method using the same
JP5394280B2 (en) Reforming catalyst for hydrogen production, method for producing the same, and method for producing hydrogen using the catalyst
JP6701778B2 (en) Method for producing hydrogen by reforming hydrocarbons, apparatus for producing hydrogen, operating method for fuel cell, and operating apparatus for fuel cell
JP5759922B2 (en) Method for producing hydrogen
JP2010064037A (en) Method of producing reforming catalyst for hydrogen production suitable for producing hydrogen at low temperature
JP5107046B2 (en) Hydrocarbon steam reforming catalyst
JP2005044651A (en) Method of manufacturing hydrogen rich gas
JP5603120B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
JP2008094681A (en) Method for producing hydrogen-containing gas

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105