JP2009253018A - Bonding apparatus and bonding method - Google Patents

Bonding apparatus and bonding method Download PDF

Info

Publication number
JP2009253018A
JP2009253018A JP2008099181A JP2008099181A JP2009253018A JP 2009253018 A JP2009253018 A JP 2009253018A JP 2008099181 A JP2008099181 A JP 2008099181A JP 2008099181 A JP2008099181 A JP 2008099181A JP 2009253018 A JP2009253018 A JP 2009253018A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor die
bonding
electrodes
bumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008099181A
Other languages
Japanese (ja)
Inventor
Toru Maeda
前田  徹
Tetsuro Tanigawa
徹郎 谷川
Akinobu Teramoto
章伸 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Shinkawa Ltd
Original Assignee
Tohoku University NUC
Shinkawa Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Shinkawa Ltd filed Critical Tohoku University NUC
Priority to JP2008099181A priority Critical patent/JP2009253018A/en
Priority to PCT/JP2009/050033 priority patent/WO2009125609A1/en
Publication of JP2009253018A publication Critical patent/JP2009253018A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10122Auxiliary members for bump connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/10135Alignment aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10152Auxiliary members for bump connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/10165Alignment aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1131Manufacturing methods by local deposition of the material of the bump connector in liquid form
    • H01L2224/11312Continuous flow, e.g. using a microsyringe, a pump, a nozzle or extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1131Manufacturing methods by local deposition of the material of the bump connector in liquid form
    • H01L2224/11318Manufacturing methods by local deposition of the material of the bump connector in liquid form by dispensing droplets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13199Material of the matrix
    • H01L2224/13294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/132 - H01L2224/13291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13317Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13324Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13364Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13369Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/165Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1718Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/17181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/742Apparatus for manufacturing bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75251Means for applying energy, e.g. heating means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75264Means for applying energy, e.g. heating means by induction heating, i.e. coils
    • H01L2224/75265Means for applying energy, e.g. heating means by induction heating, i.e. coils in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75264Means for applying energy, e.g. heating means by induction heating, i.e. coils
    • H01L2224/75266Means for applying energy, e.g. heating means by induction heating, i.e. coils in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/756Means for supplying the connector to be connected in the bonding apparatus
    • H01L2224/75611Feeding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7565Means for transporting the components to be connected
    • H01L2224/75651Belt conveyor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75743Suction holding means
    • H01L2224/75744Suction holding means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75743Suction holding means
    • H01L2224/75745Suction holding means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75753Means for optical alignment, e.g. sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/758Means for moving parts
    • H01L2224/75801Lower part of the bonding apparatus, e.g. XY table
    • H01L2224/75804Translational mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/758Means for moving parts
    • H01L2224/75821Upper part of the bonding apparatus, i.e. bonding head
    • H01L2224/75822Rotational mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/759Means for monitoring the connection process
    • H01L2224/75901Means for monitoring the connection process using a computer, e.g. fully- or semi-automatic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/759Means for monitoring the connection process
    • H01L2224/7592Load or pressure adjusting means, e.g. sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81053Bonding environment
    • H01L2224/81054Composition of the atmosphere
    • H01L2224/81055Composition of the atmosphere being oxidating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81053Bonding environment
    • H01L2224/81095Temperature settings
    • H01L2224/81096Transient conditions
    • H01L2224/81097Heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/81138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/8114Guiding structures outside the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/8184Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81986Specific sequence of steps, e.g. repetition of manufacturing steps, time sequence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/85138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0257Nanoparticles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10674Flip chip
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1131Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity

Abstract

<P>PROBLEM TO BE SOLVED: To improve reliability of bonding by a bonding device that bonds electrodes on a semiconductor die and a substrate by using a metal nano-paste. <P>SOLUTION: A semiconductor die 12 having electrodes 12a on which bumps are formed by injecting fine droplets of a metal nano-paste is placed face down on a circuit board 19 having electrodes 19a on which bumps are formed, and the electrodes 12a on the semiconductor die 12 and the electrodes 19a on the circuit board 19 are overlapped on each other with bonding bumps 250 interposed therebetween. After that, the gap between each of the overlapped electrodes 12a, 19a is compressed to a predetermined gap H3 smaller than the gap obtained when the electrodes 12a, 19a are overlapped, thereby applying pressure on the bumps between the respective electrodes 12a, 19a. In addition, the bumps between the respective electrodes 12a, 19a are heated and metal nano-particles of the bumps are pressed and sintered to form joint metals 300, so that the electrodes 12a, 19a are electrically connected to each other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属ナノペーストを用いて電極を接合するボンディング装置及びボンディング方法に関する。   The present invention relates to a bonding apparatus and a bonding method for bonding electrodes using metal nanopaste.

半導体ダイなどの電子部品の電極と回路基板上の回路パターンの電極との接合には、半導体ダイなどの電子部品の電極パッド上にはんだバンプを形成し、形成したはんだバンプを回路基板の電極に向けて下向きに配置し、加熱して接合する方法が用いられている(例えば、特許文献1参照)。しかし、特許文献1に記載された従来技術のように、はんだを用いて電子部品を3次元積層接合しようとすると接合の際の加熱によって先に接合した接合部を溶融させてしまい、接合の信頼性が低下してしまう場合がある。このため、はんだバンプを用いずに各電極を接合する方法として金属の超微粒子を含む金属ペーストを用いる色々な方法が提案されている。   To bond the electrode of an electronic component such as a semiconductor die and the electrode of the circuit pattern on the circuit board, a solder bump is formed on the electrode pad of the electronic component such as a semiconductor die, and the formed solder bump is used as an electrode of the circuit board. A method is used in which it is disposed facing downward and heated and joined (see, for example, Patent Document 1). However, as in the prior art described in Patent Document 1, when the electronic component is to be three-dimensionally laminated and bonded using solder, the bonding portion previously bonded is melted by heating during bonding, and the reliability of the bonding May deteriorate. For this reason, various methods using a metal paste containing ultrafine metal particles have been proposed as a method for joining the electrodes without using solder bumps.

特許文献1には、回路基板の端子電極上に銀の超微粉末を溶剤に分散させて調製した銀微粒子ペーストのボールを形成し、半導体素子の電極を回路基板の端子電極上に形成したボール上にフェースダウン法で接合した後に、銀微粒子ペースト中のトルエン等の溶剤を蒸発させた後、100から250℃の温度で焼成して半導体素子と回路基板とを電気的に接合する方法が提案されている。   In Patent Document 1, a ball of a silver fine particle paste prepared by dispersing ultrafine silver powder in a solvent is formed on a terminal electrode of a circuit board, and a ball in which an electrode of a semiconductor element is formed on the terminal electrode of the circuit board A method is proposed in which a semiconductor element and a circuit board are electrically joined by bonding them by a face-down method, evaporating a solvent such as toluene in a silver fine particle paste, and then baking at a temperature of 100 to 250 ° C. Has been.

特許文献2には、平均直径が100nm以下の金属からなる超微粒子を有機系の溶媒中に分散させてなる金属ナノペーストを用いて半導体素子の金属層と金属基板とを接合する方法が開示されている。この接合方法は、半導体素子の金属層と金属基板と金属ナノペーストに含まれる金属が、金、銀、白金、銅、ニッケル、クロム、鉄、鉛、コバルトのうちのいずれかの金属、またはこれらの金属のうちの少なくとも一種を含む合金、またはこれら金属もしくは合金の混合物からなり、加熱、加圧、あるいはそれらの組合せにより前記溶媒を揮発させることによって、前記超微粒子が凝集することで形成される接合層を介在させて、半導体素子の金属層と金属基板とを接合する方法である。特許文献2には、金属ナノペーストに銀ナノペーストを用いて銅の金属基板上に半導体素子の銀の金属層を接合する場合、半導体素子と金属基板とを数百kPaから数MPa程度の面圧となるように加圧し、300℃程度の加熱を行うことによって、半導体素子の銀の金属層と銅の金属基板の接合を行うことができることが記載されている。   Patent Document 2 discloses a method of joining a metal layer of a semiconductor element and a metal substrate using a metal nanopaste in which ultrafine particles made of a metal having an average diameter of 100 nm or less are dispersed in an organic solvent. ing. In this bonding method, the metal contained in the semiconductor element metal layer, the metal substrate, and the metal nano paste is one of gold, silver, platinum, copper, nickel, chromium, iron, lead, and cobalt, or these It is made of an alloy containing at least one of these metals, or a mixture of these metals or alloys, and is formed by agglomeration of the ultrafine particles by volatilization of the solvent by heating, pressing, or a combination thereof. In this method, a metal layer of a semiconductor element and a metal substrate are bonded with a bonding layer interposed. In Patent Literature 2, when a silver metal layer of a semiconductor element is bonded onto a copper metal substrate using silver nanopaste as the metal nanopaste, the surface of the semiconductor element and the metal substrate is several hundred kPa to several MPa. It is described that a silver metal layer of a semiconductor element and a copper metal substrate can be bonded by applying pressure to a pressure and heating at about 300 ° C.

非特許文献1には、銀ナノ粒子を用いた接合の接合強度と接合温度、加圧力の関係が記載されており、接合温度が低い場合には加圧力の増大とともに接合強度が上昇するが、接合温度が高い場合には加圧力の影響は小さくなるとの記載があり、特に260℃程度の低温で接合する場合には加圧力を大きくすることが接合強度を高めるために有効であり、また、できるだけ低い加圧力で接合するためには接合温度を高くすることが接合強度を高めるために有効であることが記載されている。   Non-Patent Document 1 describes the relationship between the bonding strength and bonding temperature of the bonding using silver nanoparticles, and the bonding strength increases with increasing pressure when the bonding temperature is low, There is a description that the influence of the applied pressure is reduced when the joining temperature is high, and in particular, when joining at a low temperature of about 260 ° C., increasing the applied pressure is effective for increasing the joining strength, It is described that increasing the bonding temperature is effective for increasing the bonding strength in order to bond with a pressure as low as possible.

特開平9−326416号公報Japanese Patent Laid-Open No. 9-326416 特開2006−202938号公報JP 2006-202938 A エレクトロニクス実装学会誌、Vol.7、No.6(2004)、511頁から515頁Journal of Japan Institute of Electronics Packaging, Vol. 7, no. 6 (2004), pages 511 to 515

特許文献1,2及び非特許文献1に記載されているように、金属ナノペーストを用いて半導体素子の電極等を接合する場合には、接合面を加圧すると共に、200から300℃程度の温度に保持することが必要である。加熱は金属ナノペーストに含まれている溶剤や分散剤を揮発させることによって除去し、金属のナノ粒子同士を接触させ、比較的低温での金属溶融による接合を行うために必要なものである。また、加圧は、金属の超微粒子が融合して接合金属を形成する際に、金属の超微粒子の表面をコーティングしている有機物である分散剤の熱分解の際に発生する二酸化炭素化等のガスを外部に押し出すことによって接合金属内部の空洞を減少させるため、接合強度を大きくすることに寄与するものと考えられている。   As described in Patent Literatures 1 and 2 and Non-Patent Literature 1, when joining electrodes and the like of semiconductor elements using metal nanopaste, the joining surface is pressurized and a temperature of about 200 to 300 ° C. It is necessary to hold on. The heating is necessary for removing the solvent and dispersant contained in the metal nanopaste by volatilizing them, bringing the metal nanoparticles into contact with each other, and performing bonding by metal melting at a relatively low temperature. In addition, when the metal ultrafine particles are fused to form a bonded metal, the pressurization is carbon dioxide generated during the thermal decomposition of the dispersant that is an organic material that coats the surface of the metal ultrafine particles. It is thought that this contributes to increasing the bonding strength because the cavity inside the bonding metal is reduced by extruding this gas to the outside.

しかし、金属ナノペーストは液状であり、金属ナノペーストによって形成したバンプは、金属ナノ粒子同士が接触、融合して接合金属を形成するまでは変形しやすく、これに圧力を加えた場合には、バンプが電極の表面に薄く広がってしまう。このため、加圧によって二酸化炭素などの発生ガスを外部に押し出すことができるものの、金属ナノペーストが接合しようとする電極の表面からはみ出してしまい、場合によっては隣接する電極の間に広がって隣接する電極同士を電気的に接続してしまい、製品の不良の原因となることがある。   However, the metal nanopaste is in a liquid state, and the bump formed by the metal nanopaste is easily deformed until the metal nanoparticles are brought into contact with each other and fused to form a bonded metal, and when pressure is applied to this, The bump spreads thinly on the surface of the electrode. For this reason, although the generated gas such as carbon dioxide can be pushed out by pressurization, the metal nanopaste protrudes from the surface of the electrode to be joined, and in some cases spreads between adjacent electrodes and is adjacent. The electrodes are electrically connected to each other, which may cause a product defect.

また、半導体が動作する場合には、半導体の発熱によって半導体ダイと基板との間に熱膨張差が発生し、半導体ダイの電極と基板の電極とを接合している接合金属に熱応力がかかる。接合金属の高さが小さい程、接合金属の横方向の弾性変形量が小さくなるので、横方向への弾性変形によって吸収することのできる熱膨張差が小さくなる。この結果、接合金属の高さが低い程、接合金属に発生する熱応力は大きくなる。このため、半導体動作の際の熱応力を低減するためには、接合金属にある程度の高さがあることが必要となってくる。   In addition, when the semiconductor operates, a difference in thermal expansion occurs between the semiconductor die and the substrate due to heat generation of the semiconductor, and thermal stress is applied to the bonding metal that joins the electrode of the semiconductor die and the electrode of the substrate. . The smaller the height of the bonding metal, the smaller the amount of elastic deformation in the lateral direction of the bonding metal, so the difference in thermal expansion that can be absorbed by the elastic deformation in the lateral direction becomes smaller. As a result, the lower the height of the bonding metal, the greater the thermal stress generated in the bonding metal. For this reason, in order to reduce the thermal stress during semiconductor operation, it is necessary that the bonding metal has a certain height.

しかし、特許文献1,2及び非特許文献1に記載された従来技術によると、加圧によって接合強度を高めた場合には金属ナノペーストのバンプがつぶれ、各電極を接合する接合金属の高さが低くなってしまい、半導体の動作の際の熱応力を吸収することができず、接合金属の損傷による故障の原因となる場合があった。   However, according to the prior art described in Patent Documents 1 and 2 and Non-Patent Document 1, when the bonding strength is increased by pressurization, the bumps of the metal nanopaste are crushed, and the height of the bonding metal for bonding the electrodes As a result, the thermal stress during the operation of the semiconductor cannot be absorbed, which may cause a failure due to damage to the bonding metal.

本発明は、金属ナノペーストを用いて半導体ダイの電極と基板および/または半導体ダイの電極同士を接合するボンディング装置においてボンディングの信頼性の向上を図ることを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to improve bonding reliability in a bonding apparatus for bonding a semiconductor die electrode and a substrate and / or a semiconductor die electrode using metal nanopaste.

本発明のボンディング装置は、半導体ダイの電極と基板の電極との間および/または半導体ダイの電極と他の半導体ダイの電極との間を接合するボンディング装置であって、分散剤によって表面コーティングされた金属ナノ粒子がペースト状のバインダー中に含まれている金属ナノペーストの微液滴を射出して電極上にバンプが形成された半導体ダイを電極上にバンプが形成された基板および/または電極上にバンプが形成された他の半導体ダイの上にフェースダウンし、半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とをバンプを介して重ね合わせる重ね合わせ手段と、重ね合わせた各電極間の隙間を重ね合わせた際の間隔よりも小さい所定の間隔に圧縮することにより各電極間のバンプを加圧すると共に各電極間のバンプを加熱してバンプの金属ナノ粒子を加圧焼結させて各電極間を電気的に接合する加圧焼結手段と、を有することを特徴とする。   The bonding apparatus of the present invention is a bonding apparatus for bonding between an electrode of a semiconductor die and an electrode of a substrate and / or between an electrode of a semiconductor die and an electrode of another semiconductor die, and is surface-coated with a dispersant. A substrate and / or an electrode in which a bump is formed on an electrode by ejecting a fine droplet of the metal nanopaste in which the metal nanoparticle is contained in a paste-like binder Overlaying the semiconductor die and the substrate electrode and / or the semiconductor die electrode and another semiconductor die electrode through the bumps face down on another semiconductor die having bumps formed thereon. The bump between each electrode is pressed by compressing the gap to a predetermined interval smaller than the interval when the means and the gap between each overlapped electrode are overlapped. Characterized by having a a pressure sintering means for electrically joining between the electrodes and the metal nanoparticles of the bumps was pressure-sintered by heating the bumps between the electrodes with.

本発明のボンディング装置において、加圧焼結手段は、対向して配置され、半導体ダイおよび/または基板を保持する保持板と、少なくとも一方の保持板を重ね合わせ方向に向かって進退駆動する保持板駆動部と、各電極の重ね合わせ方向の隙間を検出する隙間検出手段と、保持板駆動部の進退動作を制御する加圧制御部を含み、加圧制御部は、隙間検出手段によって取得した重ね合わせ方向の隙間が所定の間隔となるように保持板を進退させる間隔保持手段を有すること、としても好適であるし、各保持板は、半導体ダイおよび/または基板を介して半導体ダイの電極と基板の電極との間および/または半導体ダイの電極間に挟まれたバンプを加熱するヒータを備えていること、としても好適である。   In the bonding apparatus of the present invention, the pressure-sintering means are arranged to face each other, a holding plate that holds the semiconductor die and / or the substrate, and a holding plate that drives at least one holding plate to advance and retreat in the overlapping direction. Including a drive unit, a gap detection unit that detects a gap in the overlapping direction of each electrode, and a pressure control unit that controls the advancing and retreating operation of the holding plate drive unit. It is also preferable to have interval holding means for advancing and retracting the holding plate so that the gap in the alignment direction becomes a predetermined interval, and each holding plate is connected to the electrode of the semiconductor die via the semiconductor die and / or the substrate. It is also preferable that a heater for heating the bumps sandwiched between the electrodes of the substrate and / or between the electrodes of the semiconductor die is provided.

本発明のボンディング装置において、半導体ダイおよび/または基板の表面に各電極の重ね合わせ方向の隙間を所定の間隔に規定するスペーサを載置するスペーサ載置手段を有すること、としても好適であるし、半導体ダイの少なくとも一つの電極上および/または基板の少なくとも一つの電極上に所定の間隔を規定する突起を形成する突起形成手段を有し、重ね合わせ手段は、突起と電極とが対向するように重ね合わせること、としても好適である。   In the bonding apparatus of the present invention, it is preferable that the bonding apparatus of the present invention has a spacer mounting means for mounting a spacer for defining a gap in the overlapping direction of each electrode at a predetermined interval on the surface of the semiconductor die and / or the substrate. And a protrusion forming means for forming a protrusion defining a predetermined interval on at least one electrode of the semiconductor die and / or on at least one electrode of the substrate, and the overlapping means is arranged so that the protrusion and the electrode face each other. It is also preferable to superimpose them.

本発明のボンディング方法は、半導体ダイの電極と基板の電極との間および/または半導体ダイの電極と他の半導体ダイの電極との間を接合するボンディング方法であって、分散剤によって表面コーティングされた金属ナノ粒子がペースト状のバインダー中に含まれている金属ナノペーストの微液滴を射出して電極上にバンプが形成された半導体ダイを電極上にバンプが形成された基板および/または電極上にバンプが形成された他の半導体ダイの上にフェースダウンし、半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とをバンプを介して重ね合わせる重ね合わせ工程と、重ね合わせた各電極間の隙間を重ね合わせた際の間隔よりも小さい所定の間隔に圧縮することにより各電極間のバンプを加圧すると共に各電極間のバンプを加熱してバンプの金属ナノ粒子を加圧焼結させて各電極間を電気的に接合する加圧焼結工程と、を有することを特徴とする。   The bonding method of the present invention is a bonding method for bonding between an electrode of a semiconductor die and an electrode of a substrate and / or between an electrode of a semiconductor die and an electrode of another semiconductor die, and is surface-coated with a dispersant. A substrate and / or an electrode in which a bump is formed on an electrode by ejecting a fine droplet of the metal nanopaste in which the metal nanoparticle is contained in a paste-like binder Overlaying the semiconductor die and the substrate electrode and / or the semiconductor die electrode and another semiconductor die electrode through the bumps face down on another semiconductor die having bumps formed thereon. The bumps between the electrodes are pressed by compressing the process and the gap between the superimposed electrodes to a predetermined interval smaller than the interval when overlapping. And having a electrically joined to pressure sintering step between the electrodes of the metal nanoparticles of the bumps was pressure-sintered by heating the bumps between the electrodes with.

本発明のボンディング方法において、加圧焼結工程は、各電極の重ね合わせ方向の隙間を検出する隙間検出工程と、隙間検出工程によって取得した重ね合わせ方向の隙間が所定の間隔となるように保持板を進退させる間隔保持工程と、を有することとしても好適であるし、半導体ダイおよび/または基板の表面に各電極の重ね合わせ方向の隙間を所定の間隔に規定するスペーサを載置するスペーサ載置工程を有すること、としても好適であるし、半導体ダイの少なくとも一つの電極上および/または基板の少なくとも一つの電極上に所定の間隔を規定する突起を形成する突起形成工程を有し、重ね合わせ工程は、突起と電極とが対向するように重ね合わせること、としても好適である。   In the bonding method of the present invention, the pressure sintering step is performed so that the gap in the overlapping direction of each electrode is detected, and the gap in the overlapping direction acquired by the gap detecting step is kept at a predetermined interval. A spacer holding step for moving the plate forward and backward, and a spacer mounting for mounting a spacer for defining a gap in the overlapping direction of each electrode at a predetermined interval on the surface of the semiconductor die and / or the substrate. And a step of forming a protrusion for defining a predetermined distance on at least one electrode of the semiconductor die and / or on at least one electrode of the substrate. The aligning step is also suitable as overlapping so that the protrusion and the electrode face each other.

本発明は、金属ナノペーストを用いて半導体ダイの電極と基板および/または半導体ダイの電極同士を接合するボンディング装置においてボンディングの信頼性の向上を図ることができるという効果を奏する。   The present invention has an effect that the reliability of bonding can be improved in a bonding apparatus for bonding a semiconductor die electrode and a substrate and / or a semiconductor die electrode using metal nanopaste.

以下、本発明の好適な実施形態について図面を参照しながら説明する。図1に示すように、本実施形態のボンディング装置10は、フレーム11中に配置されたバンプ形成機構20と、重ね合わせ手段であるフリップチップボンディング機構50と、加圧焼結手段である複数の加圧加熱機構80を備えている。図1においてボンディング装置10の左側になる材料供給側にはウェハ18の供給を行うウェハマガジン13と、回路基板19の供給を行う基板マガジン14と、を備え、図1においてボンディング装置10の右側となる製品搬出側には完成した製品をストックしておく製品マガジン17が設けられている。ウェハマガジン13と、バンプ形成機構20とフリップチップボンディング機構50とは、ウェハ搬送用レール15によって材料であるウェハ18を搬送することができるように接続されており、基板マガジン14とバンプ形成機構20と、フリップチップボンディング機構50と各加圧加熱機構80とは、回路基板19を搬送する基板搬送用レール16によって材料である回路基板19を順次各機構に搬送することができるように接続されている。また、基板搬送用レール16は、加圧加熱機構入口レール93を介して各加圧加熱機構80に接続され、フリップチップボンディング機構50から回路基板19を各加圧加熱機構80に搬送することができるよう構成され、加圧加熱機構出口レール94は各加圧加熱機構80の出口と製品マガジン17とを接続して、半導体ダイ12の接合の終了した回路基板19を各加圧加熱機構80から製品マガジン17に搬送することができるよう構成されている。また、図1に矢印Xで示した、ボンディング装置10の各搬送用レール15,16によってウェハ18又は回路基板19を搬送する方向をX方向、図1に矢印Yで示した各搬送用レール15,16と直交する方向をY方向、図1において紙面に垂直な高さ方向をZ方向として、以下説明する。   Preferred embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the bonding apparatus 10 of the present embodiment includes a bump forming mechanism 20 disposed in a frame 11, a flip chip bonding mechanism 50 that is an overlapping means, and a plurality of pressure sintering means. A pressure heating mechanism 80 is provided. 1 includes a wafer magazine 13 for supplying a wafer 18 and a substrate magazine 14 for supplying a circuit board 19 on the material supply side on the left side of the bonding apparatus 10. A product magazine 17 for stocking completed products is provided on the product delivery side. The wafer magazine 13, the bump forming mechanism 20, and the flip chip bonding mechanism 50 are connected so that the wafer 18 as a material can be transferred by the wafer transfer rail 15, and the substrate magazine 14 and the bump forming mechanism 20 are connected. The flip chip bonding mechanism 50 and each pressure heating mechanism 80 are connected so that the circuit board 19 as a material can be sequentially transferred to each mechanism by the board transfer rail 16 for transferring the circuit board 19. Yes. Further, the substrate transport rail 16 is connected to each pressurizing and heating mechanism 80 via the pressurization and heating mechanism entrance rail 93, and the circuit board 19 can be transported from the flip chip bonding mechanism 50 to each pressurizing and heating mechanism 80. The pressure heating mechanism outlet rail 94 connects the outlet of each pressure heating mechanism 80 and the product magazine 17, and the circuit board 19 after the bonding of the semiconductor die 12 is connected from each pressure heating mechanism 80. It is configured so that it can be conveyed to the product magazine 17. In addition, the direction in which the wafer 18 or the circuit board 19 is transferred by the transfer rails 15 and 16 of the bonding apparatus 10 indicated by the arrow X in FIG. 1 is the X direction, and each transfer rail 15 is indicated by the arrow Y in FIG. , 16 is defined as a Y direction, and a height direction perpendicular to the paper surface in FIG. 1 is defined as a Z direction.

ウェハマガジン13は、ケーシングの中に複数のダイシングされたウェハ18を収納する棚を有し、必要に応じてウェハマガジン13に接続されているウェハ搬送用レール15、あるいは図示しない搬送装置にウェハ18を載せてバンプ形成機構20に払い出すものである。ウェハ18の大きさは8インチのものが多用されている。直径8インチのウェハ18は、半導体ダイ12が約400個程度取り出せる大きさである。また、ウェハ18は、ダイシングされていても各半導体ダイ12が分離せず、ウェハ18を一体に扱えるように、裏面に粘着テープを貼り付けたり、半導体ダイ12間に未切断部を残してダイシングされたりしたものである。   The wafer magazine 13 has a shelf for storing a plurality of diced wafers 18 in a casing, and if necessary, the wafer 18 is connected to a wafer transfer rail 15 connected to the wafer magazine 13 or a transfer device (not shown). Is delivered to the bump forming mechanism 20. A wafer having a size of 8 inches is often used. A wafer 18 having a diameter of 8 inches is sized so that about 400 semiconductor dies 12 can be taken out. In addition, even if the wafer 18 is diced, the semiconductor dies 12 are not separated, and an adhesive tape is attached to the back surface so that the wafer 18 can be handled integrally, or the wafer 18 is diced leaving an uncut portion between them. It has been done.

基板マガジン14は、ケーシングの中に複数の回路基板19を収納する棚を有し、必要に応じて基板マガジン14に接続されている基板搬送用レール16に回路基板19を載せてバンプ形成機構20に払い出すものである。回路基板19はガラスエポキシ等の樹脂基板に銅などの金属によって半導体ダイ12を接続する接続回路が印刷されているものである。   The board magazine 14 has a shelf for storing a plurality of circuit boards 19 in a casing, and the circuit board 19 is placed on a board transport rail 16 connected to the board magazine 14 as necessary, and a bump forming mechanism 20 is provided. To pay out. The circuit board 19 is formed by printing a connection circuit for connecting the semiconductor die 12 with a metal such as copper on a resin substrate such as glass epoxy.

材料となる半導体ダイ12はウェハ18として供給するのではなく、各半導体ダイ12をダイシングによって個々の半導体ダイ12に分離して、各半導体ダイ12をトレイの上に整列させて供給するようにしても良い。この場合、基板マガジン14と同様に複数のトレイを収納する棚を備えるトレイマガジンを備える様にしても良い。また、ウェハマガジン13、基板マガジン14をそれぞれ複数備えるようにして、常に材料の供給が止まらないようにボンディング装置10を構成してもよい。   The semiconductor dies 12 that are the materials are not supplied as wafers 18 but are separated into individual semiconductor dies 12 by dicing, and the semiconductor dies 12 are arranged and supplied on a tray. Also good. In this case, similarly to the substrate magazine 14, a tray magazine including a shelf for storing a plurality of trays may be provided. Alternatively, the bonding apparatus 10 may be configured such that a plurality of wafer magazines 13 and a plurality of substrate magazines 14 are provided so that the supply of material does not always stop.

図2及び図1に示すように、バンプ形成機構20は、ベース21に取り付けられたウェハバンピングステージ22と、基板バンピングステージ23と、金属ナノペーストの微液滴を射出する射出へッド26をXY方向に駆動するXY駆動機構25とを備えている。   As shown in FIGS. 2 and 1, the bump forming mechanism 20 includes a wafer bumping stage 22 attached to a base 21, a substrate bumping stage 23, and an injection head 26 for emitting fine droplets of metal nano paste. And an XY drive mechanism 25 for driving in the XY directions.

図2に示すように、ウェハバンピングステージ22は2本のウェハ搬送用レール15a,15bの間に設けられ、ウェハ18をその上面に真空吸着によって平面状に固定することができる大きさのもので、その上面に図示しない真空吸着孔を備えている。真空吸着孔は図示しない真空装置に接続されている。また、基板バンピングステージ23は2本の基板搬送用レール16a,16bの間に設けられ、回路基板19をその上面に真空吸着によって平面状に固定することができる大きさとなっている。基板バンピングステージ23もウェハバンピングステージ22と同様にその上面に図示しない真空吸着孔を備え、各真空吸着孔は共通の真空装置に接続されている。   As shown in FIG. 2, the wafer bumping stage 22 is provided between the two wafer transfer rails 15a and 15b, and has a size capable of fixing the wafer 18 to the upper surface thereof by vacuum suction. A vacuum suction hole (not shown) is provided on the upper surface. The vacuum suction hole is connected to a vacuum device (not shown). The substrate bumping stage 23 is provided between the two substrate transport rails 16a and 16b, and is sized so that the circuit board 19 can be fixed to the upper surface of the circuit substrate 19 in a planar shape by vacuum suction. Similarly to the wafer bumping stage 22, the substrate bumping stage 23 has a vacuum suction hole (not shown) on its upper surface, and each vacuum suction hole is connected to a common vacuum apparatus.

XY駆動機構25は、射出へッド26と、Y方向フレーム27と、2つの門形フレーム24とを備えている。射出へッド26は、各搬送用レール15,16と直交するY方向に案内するガイドを備えているY方向フレーム27に滑動自在に取り付けられ、射出へッド26又はY方向フレーム27に取り付けられているサーボモータによってY方向の駆動が行われる。Y方向フレーム27の両側は2つの門形フレーム24によってX方向に滑動自在に支持され、門形フレーム24又はY方向フレーム27に設けられたサーボモータによってX方向の駆動が行われる。バンプ形成制御部501は、図示しない撮像装置などの位置検出器からの位置信号によって、XY駆動機構25の各サーボモータを駆動して射出へッド26の位置制御を行う。また、バンプ形成制御部501は、射出ノズルから射出される金属ナノペーストの微液滴の大きさや微液滴の射出間隔を制御する。本実施形態では、駆動源としてサーボモータを用いることで説明したが、各駆動源はサーボモータに限らず、リニアモータ、ステッピングモータ等他の形式の駆動源を用いてもよい。   The XY drive mechanism 25 includes an injection head 26, a Y direction frame 27, and two portal frames 24. The injection head 26 is slidably attached to a Y-direction frame 27 having a guide for guiding in the Y-direction orthogonal to the respective transport rails 15, 16, and attached to the injection head 26 or the Y-direction frame 27. The servo motor is driven in the Y direction. Both sides of the Y direction frame 27 are slidably supported in the X direction by two portal frames 24, and are driven in the X direction by servo motors provided on the portal frame 24 or the Y direction frame 27. The bump formation control unit 501 controls the position of the ejection head 26 by driving each servo motor of the XY drive mechanism 25 by a position signal from a position detector such as an imaging device (not shown). Further, the bump formation control unit 501 controls the size of the metal nano paste droplets ejected from the ejection nozzle and the ejection interval of the droplets. In the present embodiment, the servo motor is used as the drive source. However, each drive source is not limited to the servo motor, and another type of drive source such as a linear motor or a stepping motor may be used.

射出へッド26は貯留している金属ナノペーストを先端の射出ノズル26aから金属ナノペーストの微液滴として射出するもので、例えばピエゾダイヤフラムやピエゾアクチュエータによって微液滴を射出するインクジェットへッド等によって構成される。射出へッド26は微液滴を射出することができればインクジェットへッドに限らず、ディスペンサへッドや、マイクロピペット等によって構成するようにしても好適である。金属ナノペーストの粘度は射出ヘッドの構成によって変更してもよく、例えば、インクジェットへッド等を用いて射出する場合には、粘度を低くして射出しやすいようにしてもよい。   The injection head 26 ejects the stored metal nanopaste from the tip injection nozzle 26a as fine droplets of the metal nanopaste. For example, an inkjet head that ejects fine droplets by a piezo diaphragm or a piezoelectric actuator. Composed of etc. The ejection head 26 is not limited to an inkjet head as long as it can eject fine droplets, and may be configured by a dispenser head, a micropipette, or the like. The viscosity of the metal nano paste may be changed depending on the configuration of the injection head. For example, when the injection is performed using an inkjet head or the like, the viscosity may be lowered to facilitate the injection.

図1に示すように、フリップチップボンディング機構50は、ウェハを保持するウェハホルダ70と、半導体ダイ12のピックアップと反転を行う半導体ダイピックアップ部60と、半導体ダイ12を回路基板19の上にフェースダウンするボンディング部58とを備えている。   As shown in FIG. 1, the flip chip bonding mechanism 50 has a wafer holder 70 for holding a wafer, a semiconductor die pickup unit 60 for picking up and inverting the semiconductor die 12, and the semiconductor die 12 face down on the circuit board 19. And a bonding portion 58 for performing the above-described operation.

図1に示すように、ウェハホルダ70は、ウェハバンピングステージ22から搬送されてきたウェハ18をウェハテーブル71に水平に真空吸着して保持する。図3に示すようにウェハテーブル71の内部には、ウェハ18の中に含まれている多数の半導体ダイ12のうちの1つをZ方向に向かって突き上げて、他の半導体ダイ12と段差をつけるダイ突き上げユニット72が設けられている。また、ウェハテーブル71は下部に設けられた回転駆動機構73と接続シャフト74を介して接続され回転駆動できるよう構成されている。   As shown in FIG. 1, the wafer holder 70 holds the wafer 18 conveyed from the wafer bumping stage 22 by vacuum suction on the wafer table 71 horizontally. As shown in FIG. 3, inside the wafer table 71, one of a large number of semiconductor dies 12 included in the wafer 18 is pushed up in the Z direction to form a step difference from the other semiconductor dies 12. A die push-up unit 72 to be attached is provided. Further, the wafer table 71 is connected to a rotation driving mechanism 73 provided at a lower portion via a connection shaft 74 so as to be rotationally driven.

図1に示すように、半導体ダイピックアップ部60は、ウェハホルダ70に隣接して設けられ、XYテーブル61と、ピックアップへッド62と、ピックアップアーム63と、ピックアップツール64とを備えている。XYテーブル61はその上面にピックアップへッド62をXYの2方向に向かって滑動自在となるように支持し、ピックアップへッド62はXYテーブル61又はピックアップへッド62に取り付けられたサーボモータによってXY面内に駆動される。ピックアップへッド62には先端にピックアップツール64が取り付けられたピックアップアーム63が取り付けられている。ピックアップへッド62には、ピックアップアーム63を回転駆動することによって先端に取り付けられたピックアップツール64をウェハ18の接離方向に駆動するZ方向モータが取り付けられている。   As shown in FIG. 1, the semiconductor die pickup unit 60 is provided adjacent to the wafer holder 70 and includes an XY table 61, a pickup head 62, a pickup arm 63, and a pickup tool 64. The XY table 61 supports a pickup head 62 on its upper surface so as to be slidable in two directions XY. The pickup head 62 is a servo motor attached to the XY table 61 or the pickup head 62. Is driven in the XY plane. A pickup arm 63 having a pickup tool 64 attached to the tip is attached to the pickup head 62. The pickup head 62 is attached with a Z-direction motor that drives a pickup tool 64 attached to the tip of the pickup arm 63 in the contact / separation direction of the wafer 18 by rotationally driving the pickup arm 63.

図3に示すように、ピックアップツール64は、回転軸66の回りに回転する吸着コレット67を備えている。吸着コレット67は吸着面に真空吸着用の吸着孔69を持ち、この吸着孔69を真空にすると共にダイ突き上げユニット72の突き上げ動作によって半導体ダイ12の電極上に形成されたバンプに接触することなく半導体ダイ12を吸着コレット67に真空吸着し、半導体ダイ12を吸着したまま回転軸66の回りに回転させることによって半導体ダイ12を反転させることができるように構成されている。   As shown in FIG. 3, the pick-up tool 64 includes a suction collet 67 that rotates around a rotation shaft 66. The suction collet 67 has a suction hole 69 for vacuum suction on the suction surface. The suction hole 69 is evacuated and does not come into contact with the bump formed on the electrode of the semiconductor die 12 by the push-up operation of the die push-up unit 72. The semiconductor die 12 is configured to be reversed by vacuum-sucking the semiconductor die 12 to the suction collet 67 and rotating the semiconductor die 12 around the rotation axis 66 while the semiconductor die 12 is sucked.

図1に示すように、ボンディング部58は、基板搬送用レール16に隣接して設けられ、XYテーブル51と、ボンディングへッド52と、ボンディングアーム53と、ボンディングツール54とを備えている。XYテーブル51はその上面にボンディングへッド52をXYの2方向に向かって滑動自在となるように支持し、ボンディングへッド52はXYテーブル51又はボンディングへッド52に取り付けられたサーボモータによってXY面内に駆動される。ボンディングへッド52には先端にボンディングツール54が取り付けられたボンディングアーム53が取り付けられている。ボンディングへッド52には、ボンディングアーム53を回転駆動することによって先端に取り付けられたボンディングツール54を回路基板19の接離方向に駆動するZ方向モータが取り付けられている。   As shown in FIG. 1, the bonding unit 58 is provided adjacent to the substrate transport rail 16 and includes an XY table 51, a bonding head 52, a bonding arm 53, and a bonding tool 54. The XY table 51 supports a bonding head 52 on its upper surface so as to be slidable in two directions XY. The bonding head 52 is a servo motor attached to the XY table 51 or the bonding head 52. Is driven in the XY plane. A bonding arm 53 having a bonding tool 54 attached to the tip is attached to the bonding head 52. A Z-direction motor that drives the bonding tool 54 attached to the tip of the bonding head 52 in the contact / separation direction of the circuit board 19 by rotating the bonding arm 53 is attached to the bonding head 52.

また、図3、図1の1点鎖線で示すように、ボンディング部58と半導体ダイピックアップ部60はボンディングツール54とピックアップツール64とを接近させて、吸着コレット67の回転によって反転させた半導体ダイ12を真空吸着用の吸着孔59を備えるボンディングツール54に受け渡すことができるような位置に配置されている。 3 and 1, the bonding portion 58 and the semiconductor die pick-up portion 60 bring the bonding tool 54 and the pick-up tool 64 close to each other and are inverted by the rotation of the suction collet 67. 12 is disposed at a position where it can be transferred to a bonding tool 54 having a suction hole 59 for vacuum suction.

図3、図4に示すように、ボンディングステージ55は、2本の基板搬送用レール16a,16bの間に設けられ、真空吸着によってその上面に回路基板19を平面状に固定することができるように構成されている。   As shown in FIGS. 3 and 4, the bonding stage 55 is provided between the two substrate transport rails 16 a and 16 b so that the circuit board 19 can be fixed to the upper surface thereof by vacuum suction. It is configured.

図4に示すように、ボンディングツール54の接合面側に設けられたフェイス部56の半導体ダイ12の吸着面には真空吸着用の吸着孔59が設けられ、半導体ダイ12を真空吸着によって保持することができるように構成されている。ボンディング部58は図示しない位置検出用の撮像装置によって、回路基板19の位置を検出し、半導体ダイ12を所定の位置に重ね合わせることができるよう構成されている。   As shown in FIG. 4, a suction hole 59 for vacuum suction is provided on the suction surface of the semiconductor die 12 of the face portion 56 provided on the bonding surface side of the bonding tool 54, and the semiconductor die 12 is held by vacuum suction. It is configured to be able to. The bonding unit 58 is configured to detect the position of the circuit board 19 and to superimpose the semiconductor die 12 on a predetermined position by a position detection imaging device (not shown).

図3に示すように、ボンディング部58には、ボンディングツール54のフェイス部56に反転して吸着された半導体ダイ12の接合面の高さ位置を測定する高さセンサ57aと、ボンディングステージ55の上に吸着固定された回路基板19の表面の高さ位置を測定する高さセンサ57bとが取り付けられている。なお、図3では各高さセンサ57a,57bの取り付けフレームの図示は省略してある。また、ボンディング部58には、ボンディングツール54のフェイス部56に反転して吸着された半導体ダイ12とボンディングステージ55に吸着された回路基板19との間に進退する様に取り付けられ、半導体ダイ12の表面の位置合わせマークと回路基板19の表面の位置合わせマークとを撮像する上下2視野カメラ57cが設けられている。上下2視野カメラ57cは、1つの光軸の上に上方向に向かうカメラと下方向に向かうカメラとが取り付けられたもので、各カメラで撮像した位置合わせマークと光軸とのずれから半導体ダイ12と回路基板19との位置ずれを測定するものである。   As shown in FIG. 3, the bonding portion 58 includes a height sensor 57 a that measures the height position of the bonding surface of the semiconductor die 12 that is reversed and attracted to the face portion 56 of the bonding tool 54, and a bonding stage 55. A height sensor 57b that measures the height position of the surface of the circuit board 19 that is suction-fixed to the top is attached. In FIG. 3, the mounting frames for the height sensors 57a and 57b are not shown. The semiconductor die 12 is attached to the bonding portion 58 so as to move back and forth between the semiconductor die 12 inverted and attracted to the face portion 56 of the bonding tool 54 and the circuit board 19 attracted to the bonding stage 55. A vertical two-view camera 57c is provided for imaging the alignment mark on the front surface and the alignment mark on the surface of the circuit board 19. The upper and lower two-field camera 57c is a camera in which an upward camera and a downward camera are mounted on one optical axis, and a semiconductor die is detected from the misalignment between the alignment mark imaged by each camera and the optical axis. 12 and the circuit board 19 are measured for misalignment.

図3に示すように、ボンディング部58のXYテーブル51、ボンディングへッド52、半導体ダイピックアップ部60のXYテーブル61、ピックアップへッド62、ウェハホルダ70のダイ突き上げユニット72、回転駆動機構73はそれぞれボンディング制御部502に接続され、ボンディング制御部502の指令によって駆動されるように構成されている。また、各高さセンサ57a,57b、上下2視野カメラ57cもボンディング制御部502に接続され、ボンディング制御部502は各高さセンサ57a,57bからの高さ測定信号および、上下2視野カメラ57cからの撮像信号を取得することができるように構成されている。ボンディング制御部502は内部にCPUと記憶部とを備えるコンピュータである。   As shown in FIG. 3, the XY table 51 of the bonding unit 58, the bonding head 52, the XY table 61 of the semiconductor die pickup unit 60, the pickup head 62, the die push-up unit 72 of the wafer holder 70, and the rotation drive mechanism 73 are Each is connected to the bonding control unit 502 and is driven by a command from the bonding control unit 502. Further, the height sensors 57a and 57b and the upper and lower two-field camera 57c are also connected to the bonding control unit 502, and the bonding control unit 502 receives the height measurement signal from each height sensor 57a and 57b and the upper and lower two-field camera 57c. The imaging signal can be acquired. The bonding control unit 502 is a computer having a CPU and a storage unit therein.

本実施形態では、半導体ダイピックアップ部60とボンディング部58は、それぞれXYテーブル61,51を備え、この上に配置された、ピックアップへッド62、ボンディングへッド52をXY方向に移動させると共に、各へッド62,52に取り付けられた各アーム63,53の先端に取り付けられたピックアップツール64,ボンディングツール54を上下方向に駆動することができるように構成されることとして説明したが、ピックアップツール64,ボンディングツール54を所定の位置に移動することができれば上記のような構成によらず、例えば複数のリニアガイドを組み合わせて各ツール64,54が所定の位置に移動することができるように構成することとしても良い。また、ウェハホルダ70の回転動作と半導体ダイピックアップ部60のピックアップ動作を協働させることによって、ピックアップへッド62をY方向にのみ移動させるように構成することとしても好適である。   In the present embodiment, the semiconductor die pickup unit 60 and the bonding unit 58 include XY tables 61 and 51, respectively, and the pickup head 62 and the bonding head 52 disposed thereon are moved in the XY direction. In the above description, the pickup tool 64 and the bonding tool 54 attached to the tips of the arms 63 and 53 attached to the heads 62 and 52 are configured to be driven in the vertical direction. If the pickup tool 64 and the bonding tool 54 can be moved to predetermined positions, the tools 64 and 54 can be moved to predetermined positions by combining a plurality of linear guides, for example, without depending on the above-described configuration. It is good also as comprising. Further, it is preferable that the pickup head 62 is moved only in the Y direction by cooperating the rotation operation of the wafer holder 70 and the pickup operation of the semiconductor die pickup unit 60.

本実施形態では、半導体ダイピックアップ部60の吸着コレット67の回転によって反転させた半導体ダイ12をボンディングツール54に直接受け渡すことによって、反転した半導体ダイ12をボンディングツール54に保持させるように構成しているが、このような構成に限らず、一旦ウェハ18からピックアップした半導体ダイ12を図示しない回転ステージに吸着させておき、この回転ステージを反転させてピックアップステージの上面に半導体ダイ12を反転した状態で吸着させて受け渡し、反転した半導体ダイ12をボンディングツール54によって吸着してフェースダウンするように構成しても良い。   In the present embodiment, the semiconductor die 12 inverted by the rotation of the suction collet 67 of the semiconductor die pickup unit 60 is directly transferred to the bonding tool 54 so that the inverted semiconductor die 12 is held by the bonding tool 54. However, the present invention is not limited to this configuration, and the semiconductor die 12 once picked up from the wafer 18 is adsorbed to a rotary stage (not shown), and the semiconductor die 12 is inverted on the upper surface of the pickup stage by inverting the rotary stage. Alternatively, the semiconductor die 12 may be sucked and transferred in a state, and the inverted semiconductor die 12 may be sucked by the bonding tool 54 and faced down.

図5に示すように、加圧加熱機構80は、保温材が内面に取り付けられた保温ケーシング81と、保温ケーシング81の内部に設けられ、回路基板19と半導体ダイ12とを上下から挟み込む上部保持板82aと、下部保持板82bと、上部保持板82aを半導体ダイ12の接合方向に進退駆動するアクチュエータ83と、上部保持板82aと下部保持板82bの内部にそれぞれ取り付けられ、半導体ダイ12または回路基板19を介して接合バンプ250を加熱するヒータ89a,89bとを備えている。アクチュエータ83は均等に回路基板19と半導体ダイ12とを加圧することができるように、駆動軸87とボールジョイント88とを介して上部保持板82aに接続されている。また、下部保持板82bは保温ケーシング81に固定されている。各加圧加熱機構80は各保持板82a,82bの間に回路基板19を搬入する搬入口95と回路基板19を搬出する搬出口96とを備えている。加圧加熱機構80の各搬入口95には、加圧加熱機構入口レール93が接続されており、加圧加熱機構80の各搬出口96には、加圧加熱機構出口レール94が接続されている。また、上部保持板82aには上部保持板82aと下部保持板82bとの間隔を測定する隙間センサ85が取り付けられている。隙間センサ85は、例えば超音波などによって隙間の間隔を検出するようなものでもよいし、光学的に隙間の間隔を測定する光学式であってもよい。   As shown in FIG. 5, the pressurizing and heating mechanism 80 includes a heat retaining casing 81 having a heat retaining material attached to the inner surface thereof, and an upper holding member that is provided inside the heat retaining casing 81 and sandwiches the circuit board 19 and the semiconductor die 12 from above and below. A plate 82a, a lower holding plate 82b, an actuator 83 for driving the upper holding plate 82a back and forth in the bonding direction of the semiconductor die 12, and an upper holding plate 82a and a lower holding plate 82b, respectively. Heaters 89 a and 89 b for heating the bonding bumps 250 through the substrate 19 are provided. The actuator 83 is connected to the upper holding plate 82a via the drive shaft 87 and the ball joint 88 so that the circuit board 19 and the semiconductor die 12 can be evenly pressurized. Further, the lower holding plate 82 b is fixed to the heat insulation casing 81. Each pressurizing and heating mechanism 80 includes a loading / unloading port 95 for loading the circuit board 19 and a loading / unloading port 96 for unloading the circuit board 19 between the holding plates 82a and 82b. A pressure heating mechanism inlet rail 93 is connected to each carry-in port 95 of the pressure heating mechanism 80, and a pressure heating mechanism outlet rail 94 is connected to each carry-out port 96 of the pressure heating mechanism 80. Yes. In addition, a gap sensor 85 for measuring a distance between the upper holding plate 82a and the lower holding plate 82b is attached to the upper holding plate 82a. The gap sensor 85 may be one that detects the gap interval by, for example, ultrasonic waves, or may be an optical type that optically measures the gap interval.

アクチュエータ83は加圧制御部503に接続され、加圧制御部503の指令によって駆動されるよう構成されている。アクチュエータ83は電動式であってもよいし、油圧シリンダなどによって進退駆動するものであってもよい。また、ヒータ89a,89bも加圧制御部503に接続され、上部保持板82a、下部保持板82bに設けられた温度センサ86a,86bによって検出した温度に基づいて温度制御が行われる。ヒータ89は電熱線によって構成されていてもよいしセラミックヒータなどを用いてもよい。上部保持板82a及び下部保持板82bは半導体ダイ12を回路基板19に向けて加圧しながら、半導体ダイ12と回路基板19とを加熱して接合バンプ250の加熱を行うことができるように構成されている。加圧制御部503は内部にCPUと記憶部とを備えるコンピュータである。   The actuator 83 is connected to the pressure control unit 503 and is configured to be driven by a command from the pressure control unit 503. The actuator 83 may be an electric type or may be driven forward and backward by a hydraulic cylinder or the like. The heaters 89a and 89b are also connected to the pressure controller 503, and temperature control is performed based on the temperatures detected by the temperature sensors 86a and 86b provided on the upper holding plate 82a and the lower holding plate 82b. The heater 89 may be constituted by a heating wire, or a ceramic heater or the like may be used. The upper holding plate 82a and the lower holding plate 82b are configured so that the bonding bumps 250 can be heated by heating the semiconductor die 12 and the circuit board 19 while pressing the semiconductor die 12 toward the circuit board 19. ing. The pressurization control unit 503 is a computer having a CPU and a storage unit therein.

次に本実施形態のボンディング装置10の動作について説明する。まず、回路基板19の上に半導体ダイ12を接合する場合について説明する。図6のステップS101に示すように、ウェハマガジン13から払い出されたウェハ18はウェハバンピングステージ22に搬送され、ウェハバンピングステージ22に真空吸着によって固定される。そして、図6のステップS102に示すように、ウェハ18の各半導体ダイ12の電極12aに金属ナノペーストによってバンプが形成される。   Next, operation | movement of the bonding apparatus 10 of this embodiment is demonstrated. First, the case where the semiconductor die 12 is bonded onto the circuit board 19 will be described. As shown in step S101 of FIG. 6, the wafer 18 dispensed from the wafer magazine 13 is transferred to the wafer bumping stage 22 and fixed to the wafer bumping stage 22 by vacuum suction. Then, as shown in step S <b> 102 of FIG. 6, bumps are formed on the electrodes 12 a of each semiconductor die 12 of the wafer 18 with metal nano paste.

図7(a)に示すように、半導体ダイ12の電極12a上へのバンプ200の形成は、金属ナノペーストの微液滴100を射出へッド26の射出ノズル26aから電極12aに向かって射出することによって行う。金属ナノペーストは、導電性金属を微細化した金属ナノ粒子103からなり、その表面に金属ナノ粒子103が分散状態を保持することができる分散剤をコーティングした状態でペースト状のバインダー101の中に分散させたものである。金属ナノ粒子103を構成する微細化した導電性金属としては、金、銀、銅、白金、パラジウム、ニッケル、アルミニウムなどを用いることができる。金属ナノ粒子103の表面にコーティングする分散剤としては、アルキルアミン、アルカンチオール、アルカンジオール、などを用いることができる。またペースト状のバインダー101は、有機バインダーとして機能する熱硬化性樹脂成分を、室温付近では容易に蒸散することのない比較的に高沸点な非極性溶剤あるいは低極性溶剤、例えば、テルピネオール、ミネラルスピリット、キシレン、トルエン、テトラデカン、ドデカン等の分散溶媒の中に含有させたものを用いることができる。   As shown in FIG. 7A, the bump 200 is formed on the electrode 12a of the semiconductor die 12 by injecting fine droplets 100 of the metal nano paste from the injection nozzle 26a of the injection head 26 toward the electrode 12a. By doing. The metal nano paste is composed of metal nanoparticles 103 obtained by refining a conductive metal, and the surface of the metal nano paste 103 is coated with a dispersant capable of maintaining the dispersion state of the metal nanoparticles 103 in the paste binder 101. It is dispersed. Gold, silver, copper, platinum, palladium, nickel, aluminum, or the like can be used as the finely conductive metal constituting the metal nanoparticles 103. Alkylamine, alkanethiol, alkanediol, and the like can be used as a dispersant for coating the surface of the metal nanoparticle 103. The paste-like binder 101 is a non-polar or low-polar solvent having a relatively high boiling point that does not easily evaporate near room temperature, such as terpineol, mineral spirit, and the like. , Xylene, toluene, tetradecane, dodecane, or the like contained in a dispersion solvent can be used.

図7(b)に示すように射出へッド26の射出ノズル26aから最初に電極12aに射出された金属ナノペーストの微液滴100は、電極12aの上に薄い膜状に広がる。次の金属ナノペーストの微液滴100は、電極12aの上に広がった金属ナノペーストの膜の上に付着するので、電極12aの表面に直接付着する最初の微液滴よりもその広がりが少なく、電極12aの表面に若干盛り上がりを形成する。その次の金属ナノペーストの微液滴100は先の2つの微液滴100よりも更に広がりが少なくなり、次第に盛り上がりが大きくなってくる。このように、金属ナノペーストの微液滴100を電極12aの上に順次射出していくと、次第に盛り上がりが大きくなり、何回かの射出によって、図7(b)に示すように、上に行くほど傾斜の大きな上広がりの円錐形のバンプ200が形成される。バンプ200の電極12aからの高さはHである。射出へッド26にはインクジェットに用いられるような射出へッドを用いることによって多数の微液滴100を短時間で射出積層することができる。バンプ200の形成は図2に示すバンプ形成制御部501によって制御される。 As shown in FIG. 7B, the fine droplet 100 of the metal nano paste first ejected from the ejection nozzle 26a of the ejection head 26 to the electrode 12a spreads in a thin film shape on the electrode 12a. The next metal nanopaste microdroplet 100 is deposited on the metal nanopaste film that has spread on the electrode 12a, so that its spread is less than the first microdroplet that adheres directly to the surface of the electrode 12a. A slight bulge is formed on the surface of the electrode 12a. Subsequent metal nanopaste microdroplets 100 are less spread than the previous two microdroplets 100 and gradually rise. As described above, when the metal nanopaste microdroplets 100 are sequentially ejected onto the electrode 12a, the swell gradually increases, and as a result of several ejections, as shown in FIG. A conical bump 200 having an upwardly increasing slope is formed as the distance increases. The height from the electrode 12a of the bump 200 is H 1. By using an injection head such as that used for inkjet in the injection head 26, a large number of microdroplets 100 can be injection laminated in a short time. The formation of the bump 200 is controlled by the bump formation control unit 501 shown in FIG.

図6のステップS103に示すように、ウェハ18の全ての半導体ダイ12の電極12aへのバンプ200の形成が終了したら、ウェハ18をウェハホルダ70に搬送する。ウェハホルダ70に搬送されたウェハ18はウェハテーブル71に真空吸着固定される。   As shown in step S <b> 103 of FIG. 6, when the formation of the bumps 200 on the electrodes 12 a of all the semiconductor dies 12 of the wafer 18 is completed, the wafer 18 is transferred to the wafer holder 70. The wafer 18 transferred to the wafer holder 70 is fixed to the wafer table 71 by vacuum suction.

図6のステップS104及び図3に示すように、ボンディング制御部502は、ダイ突き上げユニット72によって選択された半導体ダイ12を突き上げて上昇させ、ピックアップアーム63の先端の吸着コレット67に上昇させた半導体ダイ12の電極上のバンプ200に接触することなく半導体ダイ12をピックアップさせる。そして、図6のステップS105及び図3の1点鎖線で示すように、ボンディング制御部502は、ピックアップアーム63を上昇させると共に吸着コレット67を180度回転させて、半導体ダイ12を反転させ、ピックアップへッド62をボンディングへッド52側に向かって受け渡し位置まで移動させる。   As shown in step S104 of FIG. 6 and FIG. 3, the bonding control unit 502 pushes up and raises the semiconductor die 12 selected by the die push-up unit 72 and raises it to the suction collet 67 at the tip of the pickup arm 63. The semiconductor die 12 is picked up without contacting the bump 200 on the electrode of the die 12. Then, as shown by step S105 in FIG. 6 and the one-dot chain line in FIG. 3, the bonding control unit 502 raises the pickup arm 63 and rotates the suction collet 67 by 180 degrees to invert the semiconductor die 12 and pick up the pickup. The head 62 is moved to the delivery position toward the bonding head 52 side.

図6のステップS106及び図3の1点鎖線に示すように、ボンディング制御部502は、ボンディングツール54の位置が受け渡し位置に来るまでボンディングへッド52をピックアップへッド62に向かって移動させた後、吸着コレット67の吸着面の真空を開放すると共にボンディングツール54の吸着面を真空吸着できるようにして吸着コレット67からボンディングツール54への半導体ダイ12の受け渡しを行う。   As shown by step S106 in FIG. 6 and the one-dot chain line in FIG. 3, the bonding controller 502 moves the bonding head 52 toward the pickup head 62 until the position of the bonding tool 54 reaches the delivery position. After that, the vacuum on the suction surface of the suction collet 67 is released and the suction surface of the bonding tool 54 can be vacuum-sucked, and the semiconductor die 12 is transferred from the suction collet 67 to the bonding tool 54.

図6のステップS107及び図8(a)に示すように、ボンディング制御部502は、ボンディングツール54に受け渡された半導体ダイ12の重ね合わされる側の面、すなわち、各電極12aにバンプ200が形成されている側の面の高さ位置を高さセンサ57aによって検出し、そのデータをボンディング制御部502の中の記憶部に格納する。   As shown in step S107 of FIG. 6 and FIG. 8A, the bonding control unit 502 has the bump 200 on each electrode 12a, that is, the surface of the semiconductor die 12 that is transferred to the bonding tool 54. The height position of the formed surface is detected by the height sensor 57 a and the data is stored in the storage unit in the bonding control unit 502.

図6のステップS201と図1に示すように、回路基板19は基板マガジン14から払い出され、基板バンピングステージ23に搬送され、基板バンピングステージ23に真空吸着によって固定される。そして、図6のステップS202及び図7(a)、図7(b)に示すように、バンプ形成制御部501は、回路基板19の各電極19aに向かって射出ノズル26aから金属ナノペーストの微液滴100を射出させて、半導体ダイ12の電極12aに形成したのと同様のバンプ200を形成する。回路基板19の全ての電極19aへのバンプ200の形成が終了したら、図6のステップS203に示すように、回路基板19は、ボンディングステージ55に搬送され、ボンディングステージ55の上に真空吸着によって固定される。   As shown in step S201 of FIG. 6 and FIG. 1, the circuit board 19 is discharged from the substrate magazine 14, transferred to the substrate bumping stage 23, and fixed to the substrate bumping stage 23 by vacuum suction. Then, as shown in step S202 of FIG. 6 and FIGS. 7A and 7B, the bump formation control unit 501 applies the fine metal nanopaste from the injection nozzle 26a toward each electrode 19a of the circuit board 19. A droplet 100 is ejected to form a bump 200 similar to that formed on the electrode 12 a of the semiconductor die 12. When the formation of the bumps 200 on all the electrodes 19a of the circuit board 19 is completed, the circuit board 19 is transferred to the bonding stage 55 and fixed on the bonding stage 55 by vacuum suction as shown in step S203 of FIG. Is done.

図6のステップS204及び図8(a)に示すように、ボンディング制御部502は、ボンディングステージ55の上に真空吸着によって固定された回路基板19の表面、すなわち、各電極19aにバンプ200が形成されている側の面の高さ位置を高さセンサ57bによって検出し、そのデータをボンディング制御部502の中の記憶部に格納する。   As shown in step S204 of FIG. 6 and FIG. 8A, the bonding controller 502 forms bumps 200 on the surface of the circuit board 19 fixed on the bonding stage 55 by vacuum suction, that is, on each electrode 19a. The height sensor 57 b detects the height position of the surface on the side that is being used, and the data is stored in the storage unit in the bonding control unit 502.

図6のステップS205に示すように、ボンディング制御部502は、メモリに格納している各高さセンサ57a,57bの取り付け高さと、各センサ57a,57bによって取得した各センサ57aと半導体ダイ12及び回路基板19との距離のデータから、半導体ダイ12の表面と回路基板19の表面との間隔Hを取得する。 As shown in step S205 of FIG. 6, the bonding control unit 502 attaches each height sensor 57a, 57b stored in the memory, each sensor 57a acquired by each sensor 57a, 57b, the semiconductor die 12, and The distance H 0 between the surface of the semiconductor die 12 and the surface of the circuit board 19 is obtained from the data on the distance to the circuit board 19.

そして、図8(b)に示すように、ボンディング制御部502は、ボンディングツール54に真空吸着により保持した半導体ダイ12の電極12a上に形成されたバンプ200の位置を回路基板19の電極19aの上に形成されたバンプ200の位置に合わせるようにボンディングへッド52を移動させる。   Then, as shown in FIG. 8B, the bonding controller 502 determines the position of the bump 200 formed on the electrode 12 a of the semiconductor die 12 held by the bonding tool 54 by vacuum suction on the electrode 19 a of the circuit board 19. The bonding head 52 is moved so as to match the position of the bump 200 formed thereon.

図6のステップS206と図8(b)に示すように、ボンディング制御部502は半導体ダイ12と回路基板19との間に上下2視野カメラ57cを進出させ、半導体ダイ12表面の位置合わせマークと回路基板19表面の位置合わせマークとを撮像する。ボンディング制御部502は撮像した画像から上下2視野カメラ57cの光軸と各位置合わせマークの位置ずれを検出し、そのずれ量分だけボンディングへッド52によってボンディングツール54を移動させ、半導体ダイ12の電極12aの位置と回路基板19の電極19aの相対位置を合わせる。   As shown in step S206 of FIG. 6 and FIG. 8B, the bonding control unit 502 advances the upper and lower two-field camera 57c between the semiconductor die 12 and the circuit board 19, and the alignment mark on the surface of the semiconductor die 12 is displayed. The alignment mark on the surface of the circuit board 19 is imaged. The bonding control unit 502 detects a positional deviation between the optical axis of the upper and lower two-field camera 57c and each alignment mark from the captured image, and moves the bonding tool 54 by the bonding head 52 by the deviation amount, thereby causing the semiconductor die 12 to move. The relative position of the electrode 12a and the electrode 19a of the circuit board 19 are matched.

ボンディング制御部502は、図6のステップS207及び図8(c)及び図9(a)に示すように、ボンディングツール54によって半導体ダイ12の電極が回路基板19の電極19aの直上にあって、各電極12a,19aに形成された高さHの各バンプ200が接触しない程度の高さになるよう、半導体ダイ12を間隔Hよりも小さい量だけフェースダウンさせる。 As shown in step S207 of FIG. 6 and FIGS. 8C and 9A, the bonding control unit 502 causes the bonding tool 54 to bring the electrode of the semiconductor die 12 directly above the electrode 19a of the circuit board 19, each electrode 12a, so that the bumps 200 of the height H 1 which is formed on the 19a becomes high so as not to contact, small amounts only by face-down than the distance H 0 the semiconductor die 12.

図6のステップS208及び図8(d)に示すように、ボンディングツール54は半導体ダイ12を吸着している真空を開放する。すると、半導体ダイ12はその自重でボンディングツール54のフェイス部56から離れ、図6のステップS209及び図9(b)に示すように、半導体ダイ12の電極12aと回路基板19の電極19aとはバンプ200を介して重ね合わされる。重ね合わせられると、各電極12a,19aの上に形成されたバンプ200は一体となって接合バンプ250となる。半導体ダイ12は接合バンプ250によって支持された状態となる。接合バンプ250の高さは重ね合わせ前の各バンプ200の合計高さ2×Hよりも低い高さHとなる。ただし、この高さHは、後に説明する接合金属300の高さHよりも高い高さとなっている。 As shown in step S208 of FIG. 6 and FIG. 8D, the bonding tool 54 releases the vacuum adsorbing the semiconductor die 12. Then, the semiconductor die 12 is separated from the face portion 56 of the bonding tool 54 by its own weight, and the electrode 12a of the semiconductor die 12 and the electrode 19a of the circuit board 19 are separated from each other as shown in Step S209 of FIG. 6 and FIG. 9B. The bumps 200 are overlapped. When superposed, the bumps 200 formed on the electrodes 12a and 19a are integrated into a bonding bump 250. The semiconductor die 12 is supported by the bonding bumps 250. The height of the bonding bump 250 is a height H 2 lower than the total height 2 × H 1 of the respective bumps 200 before overlapping. However, this height H 2 has a height greater than the height H 3 of the bonding metal 300 to be described later.

図6のステップS210に示すように、半導体ダイ12の電極12aが回路基板19の電極19aに重ね合わされると、回路基板19は、図1に示す加圧加熱機構入口レール93によっていずれかの加圧加熱機構80に搬送される。   As shown in step S210 of FIG. 6, when the electrode 12a of the semiconductor die 12 is overlaid on the electrode 19a of the circuit board 19, the circuit board 19 is subjected to any pressure by the pressure heating mechanism inlet rail 93 shown in FIG. It is conveyed to the pressure heating mechanism 80.

図6のステップS211に示すように、回路基板19が加圧加熱機構80の内部に搬送されると、加圧制御部503は、アクチュエータ83を駆動して上部保持板82aを重ね合わせ方向、すなわち、各電極12a,19aの接合方向に進出させる。また、加圧制御部503は、図6のステップS212に示すように、隙間センサ85によって上部保持板82aと下部保持板82bとの間隔を検出し、図6のステップS213に示すように、上部保持板82aと下部保持板82bとの間隔が図10に示す所定の間隔であるHとなると、図6のステップS214に示すように、上部保持板82aの進出を停止する。ここで所定の間隔Hは、図11に示す、半導体ダイ12の電極12aと回路基板19の電極19aとの間に形成する接合金属300の所定の高さHに各電極12a,19a及び半導体ダイ12の厚さと回路基板19の厚さを加えたものである。図11に示す接合金属300の所定の高さHは、10μmから15μmが好ましい。各電極12a,19aの間隔が10μm以下となってしまうと、ボンディングの後の半導体ダイ12と回路基板19との間にアンダーフィル剤を入れることが困難になってしまうこと、及び、高さが15μm以上となると、接合バンプ250をヒータ89a,89bで加熱する際の温度の上昇が遅くなり、金属ナノ粒子がバルクの接合金属300となる前に金属ナノ粒子の活性が無くなってしまい、接合強度の低下が発生する為である。このHは先に説明した接合バンプ250の高さHよりも低くなっているので、上部保持板82aの進出が終了した際に、接合バンプ250はH−Hだけ圧縮され、これによって加圧される。 As shown in step S211 of FIG. 6, when the circuit board 19 is conveyed into the pressurizing and heating mechanism 80, the pressurization control unit 503 drives the actuator 83 to place the upper holding plate 82a in the overlapping direction, that is, Then, the electrodes 12a and 19a are advanced in the joining direction. Further, the pressurization control unit 503 detects the interval between the upper holding plate 82a and the lower holding plate 82b by the gap sensor 85 as shown in step S212 in FIG. 6, and the upper control plate 503 detects the upper portion as shown in step S213 in FIG. If the interval between the holding plate 82a and lower holding plate 82b becomes H 5 which is a predetermined distance as shown in FIG. 10, as shown in step S214 of FIG. 6, to stop the advance of the upper holding plate 82a. Wherein the predetermined intervals H 5 is shown in FIG. 11, the electrodes 12a at a predetermined height H 3 of the bonding metal 300 to be formed between the electrode 19a of the electrode 12a and the circuit board 19 of the semiconductor die 12, 19a and This is the sum of the thickness of the semiconductor die 12 and the thickness of the circuit board 19. Predetermined height H 3 of the bonding metal 300 shown in FIG. 11, 15 [mu] m is preferably from 10 [mu] m. If the distance between the electrodes 12a and 19a is 10 μm or less, it becomes difficult to put an underfill agent between the semiconductor die 12 and the circuit board 19 after bonding, and the height is high. When the thickness is 15 μm or more, the temperature rise when the bonding bump 250 is heated by the heaters 89a and 89b becomes slow, and the activity of the metal nanoparticles is lost before the metal nanoparticles become the bulk bonding metal 300. This is because a decrease in the amount occurs. Since this H 3 is lower than the height H 2 of the bonding bump 250 described above, the bonding bump 250 is compressed by H 2 −H 3 when the advancement of the upper holding plate 82a is completed. Is pressurized.

図6のステップS215に示すように、上部保持板82a、下部保持板82bの間隔が所定の間隔となったら、加圧制御部503は各ヒータ89a,89bをオンとして、接合バンプ250の加熱を開始する。加圧制御部503は上部保持板82aの温度を温度センサ86aによって取得し、下部保持板82bの温度を温度センサ86bによって取得し、接合バンプ250の温度が150℃から250℃となるように、ヒータ89a,89bへの印加電圧を変化させる。   As shown in step S215 of FIG. 6, when the interval between the upper holding plate 82a and the lower holding plate 82b reaches a predetermined interval, the pressurization control unit 503 turns on the heaters 89a and 89b to heat the bonding bumps 250. Start. The pressure control unit 503 acquires the temperature of the upper holding plate 82a by the temperature sensor 86a, acquires the temperature of the lower holding plate 82b by the temperature sensor 86b, and the temperature of the bonding bump 250 is 150 ° C. to 250 ° C. The voltage applied to the heaters 89a and 89b is changed.

図11(a)に示すように、接合バンプ250が加熱されると有機物である分散剤の中に含まれている炭素が周囲の酸素と結合して二酸化炭素が気泡260として発生してくる。発生した二酸化炭素の気泡260は膨張によって各電極12a,19aの間隔を広げようとするが、各電極12a,19aの間隔は、上部保持板82a,下部保持板82bによって高さHに押さえられているので、圧力上昇分は接合バンプ250を圧縮する加圧力として作用する。そして、図11(b)に示すように、内部の圧力上昇によって接合バンプ250は横方向に広がっていく。また、内部に発生した二酸化炭素の気泡260は横長に潰れながら、次第に横方向に移動し、接合バンプ250の側面から外部に排出されていく。 As shown in FIG. 11A, when the bonding bump 250 is heated, carbon contained in the organic dispersant is combined with surrounding oxygen, and carbon dioxide is generated as bubbles 260. Each electrode 12a carbon dioxide bubbles 260 generated by the expansion, although to Grow spacing 19a, the electrodes 12a, 19a spacing of the upper holding plate 82a, is pressed to the height H 3 by the lower holding plate 82b Therefore, the pressure increase acts as a pressing force for compressing the bonding bump 250. Then, as shown in FIG. 11B, the bonding bump 250 spreads in the lateral direction due to the internal pressure increase. Also, the carbon dioxide bubbles 260 generated inside move gradually in the lateral direction while being crushed horizontally, and are discharged to the outside from the side surface of the bonding bump 250.

図6のステップS216からS218に示すように、この加熱を行っている間は、加熱による接合バンプ250内部の圧力上昇によって各電極12a,19aの間隔が所定の間隔Hからずれないように、加圧制御部503は図10に示す隙間センサ85によって常に上部保持板82aと下部保持板82bとの間隔を取得し、アクチュエータ83によってその間隔を所定の間隔Hとなるように調整する。また、図6のステップS219からS220に示すように、加圧制御部503は図10に示す温度センサ86a,86bによって上部保持板82a,下部保持板82bの温度を取得し、接合バンプ250の温度が150℃から250℃となるようにヒータ89a,89bへの通電電力の調整を行う。 As shown in steps S216 S218 in FIG. 6, During this heating, as the electrodes 12a by the pressure increase inside the bonding bumps 250 by heating, the spacing 19a is not deviated from the predetermined distance H 3, pressurization control unit 503 obtains the distance between the always upper holding plate 82a and lower holding plate 82b by a gap sensor 85 shown in FIG. 10, to adjust the distance by the actuator 83 so as to have a predetermined interval H 5. Further, as shown in steps S219 to S220 of FIG. 6, the pressurization control unit 503 acquires the temperatures of the upper holding plate 82a and the lower holding plate 82b by the temperature sensors 86a and 86b shown in FIG. The electric power supplied to the heaters 89a and 89b is adjusted so that the temperature becomes 150 ° C. to 250 ° C.

図6のステップS221に示すように、加圧制御部503は、加圧加熱が例えば60分などの所定の時間だけ行われたと判断した場合には、図6のステップS222に示すようにアクチュエータ83によって上部保持板82aを後退させて、各電極12a,19aの加圧を開放すると共に、ヒータ89a,89bを停止させて加熱を停止する。このように所定の時間だけ加圧、加熱されると、図11(c)に示すように、接合バンプ250の金属ナノ粒子同士が互いに接合し、バルクの接合金属300となり、各電極12a,19aとが電気的に接合される。そして、図6のステップS223に示すように、ボンディングの終了した回路基板19を製品マガジン17に搬送する。   As shown in step S221 of FIG. 6, when the pressurization control unit 503 determines that the pressurization and heating is performed for a predetermined time such as 60 minutes, for example, the actuator 83 as shown in step S222 of FIG. Thus, the upper holding plate 82a is moved backward to release the pressure applied to the electrodes 12a and 19a, and the heaters 89a and 89b are stopped to stop heating. When pressure and heating are performed for a predetermined time in this way, as shown in FIG. 11C, the metal nanoparticles of the bonding bumps 250 are bonded to each other to form a bulk bonding metal 300, and each of the electrodes 12a and 19a. Are electrically joined. Then, as shown in step S <b> 223 of FIG. 6, the bonded circuit board 19 is transported to the product magazine 17.

以上述べた実施形態では、加熱の際に同時に加圧を行うことによって、接合バンプ250の内部に発生する二酸化炭素等のガスを外部に排出することができ、ガスがボイドとして接合金属300の内部に残留することを抑制することができるので、内部に空洞が少なく強度の高い接合金属300によって各電極12a,19aの接合を行うことができるという効果を奏する。また、接合バンプ250を加圧する際に、接合バンプ250の高さを規定することにより金属ナノペーストが半導体ダイ12と回路基板19との間に流れ出して隣接する電極をショートさせてしまい、半導体装置の故障の原因となることを抑制することができ、ボンディングの信頼性を向上させることができるという効果を奏する。更に、接合金属300の高さを10μmから15μmの高さにすることができるので、接合金属300が半導体装置の動作の際の熱応力を吸収することができるという効果を奏する。また、半導体ダイ12と回路基板19との間に隙間を確保することができるので、半導体ダイ12と回路基板19との間にアンダーフィル剤を容易に充填することができるという効果を奏する。   In the embodiment described above, by simultaneously applying pressure during heating, a gas such as carbon dioxide generated inside the bonding bump 250 can be discharged to the outside, and the gas becomes a void inside the bonding metal 300. Therefore, the electrodes 12a and 19a can be bonded to each other with the bonding metal 300 having few cavities and high strength. Further, when the bonding bumps 250 are pressurized, the height of the bonding bumps 250 is regulated so that the metal nanopaste flows between the semiconductor die 12 and the circuit board 19 to short-circuit adjacent electrodes, and the semiconductor device. As a result, it is possible to suppress the cause of the failure, and it is possible to improve the bonding reliability. Furthermore, since the height of the bonding metal 300 can be increased from 10 μm to 15 μm, the bonding metal 300 can absorb the thermal stress during the operation of the semiconductor device. In addition, since a gap can be secured between the semiconductor die 12 and the circuit board 19, there is an effect that an underfill agent can be easily filled between the semiconductor die 12 and the circuit board 19.

また、本実施形態のボンディング装置10は、ボンディングステージ55に吸着された半導体ダイ121の上に半導体ダイ12を反転して接合することができる。この場合の本実施形態のボンディング装置10の動作は、図6から図11を参照して説明した回路基板19の上に半導体ダイ12を反転させて接合する動作と同様である。図7(a)、図7(b)に示すように、半導体ダイ121の電極121aの表面にバンプ200を形成し、半導体ダイ121を図1に示すボンディングステージ55の上の所定の位置に吸着固定する。図8(a)に示すように反転してボンディングツール54に保持された半導体ダイ12の表面の高さとボンディングステージ55に吸着された半導体ダイ121の高さを測定して高さHを求め、反転した半導体ダイ12とボンディングステージ55に吸着された半導体ダイ121の間に上下2視野カメラ57cを進出させて各半導体ダイ12,121表面の画像を撮像する。そして、撮像した画像から各半導体ダイ12,121の位置ずれを測定し、そのずれを補正して各半導体ダイ12,121の各電極12a,121aの相対位置を合わせる。そして、 図8(c)、図8(d)及び図9(a)、図9(b)に示すように、反転した半導体ダイ12をボンディングステージ55に吸着された半導体ダイ121の上にフェースダウンして重ね合わせ、接合バンプ250を形成する。 Further, the bonding apparatus 10 of this embodiment can invert and bond the semiconductor die 12 on the semiconductor die 121 adsorbed by the bonding stage 55. The operation of the bonding apparatus 10 of this embodiment in this case is the same as the operation of reversing and bonding the semiconductor die 12 on the circuit board 19 described with reference to FIGS. As shown in FIGS. 7A and 7B, bumps 200 are formed on the surface of the electrode 121a of the semiconductor die 121, and the semiconductor die 121 is attracted to a predetermined position on the bonding stage 55 shown in FIG. Fix it. As shown in FIG. 8A, the height of the surface of the semiconductor die 12 reversed and held by the bonding tool 54 and the height of the semiconductor die 121 adsorbed on the bonding stage 55 are measured to obtain the height H 0 . Then, an upper and lower two-view camera 57c is advanced between the inverted semiconductor die 12 and the semiconductor die 121 adsorbed on the bonding stage 55, and images of the surfaces of the semiconductor dies 12 and 121 are taken. Then, the positional deviation of each semiconductor die 12, 121 is measured from the captured image, the deviation is corrected, and the relative position of each electrode 12a, 121a of each semiconductor die 12, 121 is adjusted. 8C, FIG. 8D, FIG. 9A, and FIG. 9B, the inverted semiconductor die 12 is faced on the semiconductor die 121 adsorbed to the bonding stage 55. The bonding bumps 250 are formed by stacking them down.

図10、図11に示すように、加圧加熱機構80の上部保持板82a、下部保持板82bとの間に半導体ダイ12と半導体ダイ121を入れ、上部保持板82a、下部保持板82bの間隔が所定の間隔Hとなるようにして加圧焼結し、接合バンプ250の金属ナノ粒子同士を互いに接合させ、バルクの接合金属300として各半導体ダイ12,121の各電極12a,121aとを電気的に接合する。 As shown in FIGS. 10 and 11, the semiconductor die 12 and the semiconductor die 121 are inserted between the upper holding plate 82a and the lower holding plate 82b of the pressurizing and heating mechanism 80, and the distance between the upper holding plate 82a and the lower holding plate 82b. There was pressure sintering as a predetermined distance H 5, the metal nano-particles of the bonding bumps 250 are bonded to each other, each electrode 12a of the semiconductor die 12,121 as the bonding metal 300 of the bulk, and 121a Electrically join.

図12を参照しながら他の実施形態について説明する。先に説明した実施形態と同様の部位には同様の符号を付して説明は省略する。先に説明した実施形態は、回路基板19の上に半導体ダイ12を接合するものであったが、本実施形態は、金属ナノペーストを用いて半導体ダイ12同士を接合して3次元実装を行うものである。   Another embodiment will be described with reference to FIG. Parts similar to those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted. In the embodiment described above, the semiconductor die 12 is bonded onto the circuit board 19, but in the present embodiment, the semiconductor dies 12 are bonded to each other using a metal nano paste to perform three-dimensional mounting. Is.

図12(a)に示すように、各半導体ダイ12は貫通電極12bを有している。先に図7において説明したように、各半導体ダイ12の貫通電極12bの上に金属ナノペーストの微液滴100を射出してバンプ200を形成し、一方の半導体ダイ12を反転させて、ボンディングステージ55に吸着固定されている半導体ダイ12の貫通電極12bの上に形成されているバンプ200の上に載置し、接合バンプ250を介して各貫通電極12bを重ね合わせる。   As shown in FIG. 12A, each semiconductor die 12 has a through electrode 12b. As described above with reference to FIG. 7, the bumps 200 are formed by injecting the fine droplets 100 of the metal nano paste onto the through electrodes 12 b of each semiconductor die 12, and one of the semiconductor dies 12 is inverted and bonded. It is placed on the bump 200 formed on the through electrode 12 b of the semiconductor die 12 that is adsorbed and fixed to the stage 55, and the through electrodes 12 b are overlaid through the bonding bumps 250.

図12(b)に示すように、重ね合わせ終わった半導体ダイ12を加圧加熱機構80の上部保持板82aと下部保持板82bとの間に挟みこんで、各電極12bの重ね合わせ方向の隙間がHになるように規定すると共に150℃から250℃に加熱して、60分程度保持して加圧焼結する。加圧焼結によってバインダーの有機物質が揮発し、分散剤が金属ナノ粒子の表面から脱離して金属ナノ粒子同士が接合して、接合金属300が形成され、各貫通電極12bが接合される。 As shown in FIG. 12B, the stacked semiconductor dies 12 are sandwiched between the upper holding plate 82a and the lower holding plate 82b of the pressure heating mechanism 80, and the gaps in the overlapping direction of the electrodes 12b. There was heated to 250 ° C. from 0.99 ° C. with defined so that H 3, pressure sintering hold about 60 minutes. The organic material of the binder is volatilized by pressure sintering, the dispersant is detached from the surface of the metal nanoparticles, the metal nanoparticles are bonded to each other, the bonded metal 300 is formed, and the respective through electrodes 12b are bonded.

図12(c)に示すように、加圧焼結の終了した半導体ダイ12を再度、バンプ形成機構20に搬送し、加圧焼結により接合金属300の形成された半導体ダイ12の貫通電極12bの上面に射出へッド26から金属ナノペーストの微液滴100を射出してバンプ200を形成する。そして、図8(d)に示すように、この加圧焼結の終了した半導体ダイ12の上面に形成されたバンプ200に、貫通電極12b上にバンプ200の形成された他の半導体ダイ12を反転して重ね合わせる。すると、3枚の半導体ダイ12の下部2枚の半導体ダイ12の間は貫通電極12bが加圧焼結による接合金属300により接合され、上部2枚の半導体ダイ12の間は貫通電極12bが接合バンプ250を介して重ね合わされた状態となる。この状態の3枚の半導体ダイ12を再度加圧加熱機構80に入れて加圧、加熱する。加圧焼結によって形成された接合金属300の溶融温度は通常の金属の溶融温度と同様1000℃前後の高温であるので、加圧焼結の際の150℃から250℃の加熱温度では溶融せず、そのままの状態を保つ。このため、加圧、加熱によって上部の2枚の半導体ダイ12の間の接合バンプ250だけが加圧焼結されて接合金属300となる。このようにして、形成された接合金属300の溶融温度と加圧焼結の際の加熱温度との温度差を利用して、先に金属ナノペーストによって加圧焼結して接合された半導体ダイ12の貫通電極12bの上に重ねて半導体ダイ12を加圧焼結して半導体ダイ12を積層接合していくことができる。   As shown in FIG. 12C, the semiconductor die 12 that has been subjected to the pressure sintering is conveyed again to the bump forming mechanism 20, and the through electrode 12b of the semiconductor die 12 on which the bonding metal 300 is formed by the pressure sintering. Bumps 200 are formed by injecting fine droplets 100 of metal nano paste from the injection head 26 onto the upper surface of the substrate. Then, as shown in FIG. 8D, another semiconductor die 12 in which the bump 200 is formed on the through electrode 12b is applied to the bump 200 formed on the upper surface of the semiconductor die 12 after the pressure sintering. Invert and superimpose. Then, the penetration electrode 12b is joined between the lower two semiconductor dies 12 of the three semiconductor dies 12 by the joining metal 300 by pressure sintering, and the penetration electrode 12b is joined between the upper two semiconductor dies 12. Overlaid via the bumps 250. The three semiconductor dies 12 in this state are again put into the pressure heating mechanism 80 and pressurized and heated. Since the melting temperature of the joining metal 300 formed by pressure sintering is as high as about 1000 ° C., similar to the melting temperature of ordinary metals, it can be melted at a heating temperature of 150 ° C. to 250 ° C. during pressure sintering. Keep it as it is. For this reason, only the bonding bumps 250 between the upper two semiconductor dies 12 are pressure-sintered by pressurization and heating to become the bonding metal 300. In this way, by utilizing the temperature difference between the melting temperature of the formed bonding metal 300 and the heating temperature during pressure sintering, the semiconductor die previously bonded by pressure sintering with the metal nano paste. The semiconductor die 12 can be stacked and bonded by pressing and sintering the semiconductor die 12 over the 12 through electrodes 12b.

本実施形態によれば、先に説明した実施形態の効果に加えて、従来のはんだバンプを介して半導体ダイ12を積層接合する方法において発生していたような、後の接合による加熱によって先に接合したはんだが溶融してしまいショートが起きるという問題がなく、接合品質、信頼性の高い半導体ダイ12の積層接合を行い、3次元実装を行うことができるという効果を奏する。   According to the present embodiment, in addition to the effects of the above-described embodiment, the heating by the subsequent bonding, which has occurred in the conventional method of laminating and bonding the semiconductor die 12 via the solder bumps, is performed earlier. There is no problem that the bonded solder melts and short-circuit occurs, and the semiconductor die 12 having a high bonding quality and high reliability can be laminated and three-dimensional mounting can be achieved.

図13を参照しながら他の実施形態について説明する。この実施形態では、図13(a)に示すように、貫通電極12bを有する複数の半導体ダイ12の各電極12bに金属ナノペーストによってバンプ200を形成した後、反転させて接合バンプ250を介して順次重ね合わせた後、重ね合わせた半導体ダイ12を加圧加熱機構80の上部保持板82aと下部保持板82bとの間に挟みこんで、各電極12bの隙間がHとなるように規制すると共に150℃から250℃に加熱した状態を60分程度保持して複数段の接合バンプ250を一括して加圧焼結する。加圧焼結によってバインダーの有機物質が揮発し、分散剤が金属ナノ粒子の表面から脱離して金属ナノ粒子同士が接合して、接合金属300が形成され、各貫通電極12bは同時に接合、導通される。 Another embodiment will be described with reference to FIG. In this embodiment, as shown in FIG. 13A, after bumps 200 are formed by metal nano paste on each electrode 12b of a plurality of semiconductor dies 12 having through electrodes 12b, the bumps 200 are reversed and bonded via bonding bumps 250. after sequentially superimposed, by sandwiching the semiconductor die 12 superimposed between the upper holding plate 82a and lower holding plate 82b of the pressurizing and heating mechanism 80, gaps between the electrodes 12b to regulate such that the H 3 At the same time, the state heated from 150 ° C. to 250 ° C. is held for about 60 minutes, and the plurality of bonding bumps 250 are pressure sintered together. The organic material of the binder is volatilized by pressure sintering, the dispersing agent is detached from the surface of the metal nanoparticles, the metal nanoparticles are bonded to each other, and a bonded metal 300 is formed. Is done.

本実施形態においては、先に説明した実施形態の効果に加えて、複数段の半導体ダイ12を一括して加圧焼結するので一段ずつ加圧焼結していく方法に比較して各半導体ダイ12の一枚当たりの接合時間を短縮することができ、効率的に半導体ダイ12の3次元実装を行うことができるという効果を奏する。   In the present embodiment, in addition to the effects of the embodiments described above, each semiconductor die 12 is pressure-sintered at a time since a plurality of semiconductor dies 12 are collectively sintered. The bonding time per die 12 can be shortened, and the semiconductor die 12 can be efficiently three-dimensionally mounted.

図14を参照しながら他の実施形態について説明する。先に説明した各実施形態では、加圧、加熱の際の反転した半導体ダイ12の電極12aと回路基板19の電極19aまたはボンディングステージ55に吸着された半導体ダイ121の電極121aとの間隔を規定するために、隙間センサ85の信号をフィードバックしてアクチュエータ83を動作させることとして説明したが、図14に示す実施形態は、回路基板19の表面に高さHのスペーサ400を載置したのち、加圧加熱機構80の上部保持板82aと下部保持板82bとの間に半導体ダイ12と回路基板19とを挟みこみ、その間隔を所定のHに規定するものである。ここでスペーサ400の厚さHは、例えばHを10μmから15μmに規定しようとする場合、Hの10μmから15μmに半導体ダイ12の電極12aの厚さと回路基板19の電極19aの厚さを加えた厚さ又は半導体ダイ12の電極12aの厚さと半導体ダイ121の電極121aの厚さを加えた厚さとすればよい。また、スペーサ400の載置は、例えば真空吸着したスペーサ400を半導体ダイ12,121の上および/または回路基板19の上に載置するスペーサ載置機構を備えることとしてもよい。スペーサ400は半導体ダイ12,121および/または回路基板19の少なくとも一部に載置されていればよいので、例えば、別工程によって回路基板19の表面の一部にスペーサ400を載置しても良い。 Another embodiment will be described with reference to FIG. In each of the embodiments described above, the distance between the inverted electrode 12a of the semiconductor die 12 and the electrode 19a of the circuit board 19 or the electrode 121a of the semiconductor die 121 adsorbed to the bonding stage 55 during pressurization and heating is defined. to, then it is described to operate the actuator 83 by feeding back the signal of the gap sensor 85, the embodiment shown in FIG. 14, placing the spacer 400 of the height H 4 on the surface of the circuit board 19 , nipping the semiconductor die 12 and the circuit board 19 between the upper holding plate 82a and lower holding plate 82b of the pressurizing and heating mechanism 80 is for defining the interval to a predetermined H 3. Here thickness H 4 of the spacer 400, for example when trying to define with H 3 from 10μm to 15 [mu] m, the thickness of the electrodes 19a having a thickness of the circuit board 19 of the electrode 12a of the semiconductor die 12 from 10μm of H 3 to 15 [mu] m Or the thickness of the electrode 12a of the semiconductor die 12 and the thickness of the electrode 121a of the semiconductor die 121 may be added. The spacer 400 may be mounted, for example, by including a spacer mounting mechanism that mounts the vacuum-adsorbed spacer 400 on the semiconductor dies 12 and 121 and / or the circuit board 19. Since the spacer 400 only needs to be placed on at least a part of the semiconductor dies 12, 121 and / or the circuit board 19, for example, even if the spacer 400 is placed on a part of the surface of the circuit board 19 by another process. good.

本実施形態は、先に述べた実施形態と同様の効果を奏すると共に、隙間センサ85による隙間のフィードバック制御が不要となるので、簡便に接合金属300の高さを規定することができるという効果を奏する。   This embodiment has the same effect as the above-described embodiment, and the feedback control of the gap by the gap sensor 85 is not necessary, so that the height of the joining metal 300 can be easily defined. Play.

図15を参照しながら他の実施形態について説明する。先に図14を参照して説明した実施形態のスペーサ400の代わりに、長方形の電極19aの上に高さHの突起である金属バンプ500を設け、電極12aと電極19aまたは電極121aの間隔を所定の間隔のHとなるようにしたものである。金属バンプ500は、回路基板19または、半導体ダイ12,121の複数の各電極19a,12a,121aの少なくとも1つに設けられていればよい。また、本実施形態では、重ね合わせの際に金属バンプ500の突部が他方の電極に対向するように位置合わせを行い、金属バンプ500によって電極12aと電極19aまたは電極121a間の間隔を規定するようにする。 Another embodiment will be described with reference to FIG. Previously in place of the spacer 400 of the embodiment described with reference to FIG. 14, the metal bump 500 is a projection of the height H 3 on a rectangular electrode 19a provided, distance between the electrodes 12a and the electrode 19a or electrode 121a Is set to H 3 at a predetermined interval. The metal bump 500 may be provided on at least one of the circuit board 19 or the plurality of electrodes 19a, 12a, 121a of the semiconductor dies 12, 121. Further, in the present embodiment, the alignment is performed so that the protruding portion of the metal bump 500 faces the other electrode at the time of superposition, and the interval between the electrode 12a and the electrode 19a or the electrode 121a is defined by the metal bump 500. Like that.

本実施形態は、先に図14を参照して説明した実施形態と同様の効果を奏する。   This embodiment has the same effect as the embodiment described above with reference to FIG.

本発明の実施形態におけるボンディング装置を示す平面図である。It is a top view which shows the bonding apparatus in embodiment of this invention. 本発明の実施形態におけるボンディング装置のバンプ形成機構を示す斜視図である。It is a perspective view which shows the bump formation mechanism of the bonding apparatus in embodiment of this invention. 本発明の実施形態におけるボンディング装置のフリップチップボンディング機構を示す図である。It is a figure which shows the flip chip bonding mechanism of the bonding apparatus in embodiment of this invention. 本発明の実施形態におけるボンディング装置のボンディングステージにおけるボンディングツールを示す斜視図である。It is a perspective view which shows the bonding tool in the bonding stage of the bonding apparatus in embodiment of this invention. 本発明の実施形態におけるボンディング装置の加圧加熱機構を示す断面図である。It is sectional drawing which shows the pressurization heating mechanism of the bonding apparatus in embodiment of this invention. 本発明の実施形態におけるボンディング方法によって接合を行う工程を示す工程フローチャートである。It is a process flowchart which shows the process of joining by the bonding method in embodiment of this invention. 本発明の実施形態におけるボンディング方法によって金属ナノペーストのバンプの形成を示す説明図である。It is explanatory drawing which shows formation of the bump of metal nano paste by the bonding method in embodiment of this invention. 本発明の実施形態におけるボンディング方法によって半導体ダイを回路基板および/または半導体ダイの上に重ね合わせる工程を示す説明図である。It is explanatory drawing which shows the process of superimposing a semiconductor die on a circuit board and / or a semiconductor die by the bonding method in embodiment of this invention. 本発明の実施形態におけるボンディング方法によって半導体ダイを回路基板および/または半導体ダイの上に重ね合わせる際の接合バンプの形成を示す説明図である。It is explanatory drawing which shows formation of the joining bump at the time of superimposing a semiconductor die on a circuit board and / or a semiconductor die by the bonding method in embodiment of this invention. 本発明の実施形態におけるボンディング方法によって半導体ダイと回路基板および/または半導体ダイの各電極の間隔を示す説明図である。It is explanatory drawing which shows the space | interval of each electrode of a semiconductor die, a circuit board, and / or a semiconductor die with the bonding method in embodiment of this invention. 本発明の実施形態におけるボンディング方法によって半導体ダイと回路基板および/または半導体ダイの各電極の加圧焼結の状態を示す説明図である。It is explanatory drawing which shows the state of the pressure sintering of each electrode of a semiconductor die, a circuit board, and / or a semiconductor die with the bonding method in embodiment of this invention. 本発明の他の実施形態におけるボンディング方法によって半導体ダイを3次元積層接合する工程を示す説明図である。It is explanatory drawing which shows the process of joining a semiconductor die three-dimensionally by the bonding method in other embodiment of this invention. 本発明の他の実施形態におけるボンディング方法によって半導体ダイを3次元積層接合する工程を示す説明図である。It is explanatory drawing which shows the process of joining a semiconductor die three-dimensionally by the bonding method in other embodiment of this invention. 本発明の他の実施形態におけるボンディング方法によって接合を行う工程を示す説明図である。It is explanatory drawing which shows the process of joining by the bonding method in other embodiment of this invention. 本発明の他の実施形態におけるボンディング方法によって接合を行う工程を示す説明図である。It is explanatory drawing which shows the process of joining by the bonding method in other embodiment of this invention.

符号の説明Explanation of symbols

10 ボンディング装置、11 フレーム、12,121 半導体ダイ、12a,19a,121a 電極、12b 貫通電極、13 ウェハマガジン、14 基板マガジン、15,15a,15b ウェハ搬送用レール、16,16a,16b 基板搬送用レール、17 製品マガジン、18 ウェハ、19 回路基板、20 バンプ形成機構、21 ベース、22 ウェハバンピングステージ、23 基板バンピングステージ、24 門形フレーム、25 XY駆動機構、26 射出ヘッド、26a 射出ノズル、27 Y方向フレーム、50 フリップチップボンディング機構、51,61 XYテーブル、52 ボンディングヘッド、53 ボンディングアーム、54 ボンディングツール、55 ボンディングステージ、56 フェイス部、57a,57b 高さセンサ、57c 上下2視野カメラ、58 ボンディング部、59 吸着孔、60半導体ダイピックアップ部、62 ピックアップヘッド、63 ピックアップアーム、64 ピックアップツール、66 回転軸、67 吸着コレット、69 吸着孔、70 ウェハホルダ、71 ウェハテーブル、72 突き上げユニット、73 回転駆動機構、74 接続シャフト、80 加圧加熱機構、81 保温ケーシング、82a 上部保持板、82b 下部保持板、83 アクチュエータ、85 隙間センサ、86a,86b 温度センサ、87 駆動軸、88 ボールジョイント、89a,89b ヒータ、93 加圧加熱機構入口レール、94 加圧加熱機構出口レール、95 搬入口、96 搬出口、100 微液滴、101 バインダー、103 金属ナノ粒子、200 バンプ、250 接合バンプ、260 気泡、300 接合金属、400 スペーサ、500 金属バンプ、501 バンプ形成制御部、502 ボンディング制御部、503 加圧制御部。   DESCRIPTION OF SYMBOLS 10 Bonding device, 11 Frame, 12, 121 Semiconductor die, 12a, 19a, 121a Electrode, 12b Through electrode, 13 Wafer magazine, 14 Substrate magazine, 15, 15a, 15b Wafer transport rail, 16, 16a, 16b For substrate transport Rail, 17 Product magazine, 18 Wafer, 19 Circuit board, 20 Bump formation mechanism, 21 Base, 22 Wafer bumping stage, 23 Substrate bumping stage, 24 Portal frame, 25 XY drive mechanism, 26 Injection head, 26a Injection nozzle, 27 Y direction frame, 50 flip chip bonding mechanism, 51, 61 XY table, 52 bonding head, 53 bonding arm, 54 bonding tool, 55 bonding stage, 56 face portion, 57a, 7b Height sensor, 57c Up / down two-view camera, 58 Bonding section, 59 Suction hole, 60 Semiconductor die pickup section, 62 Pickup head, 63 Pickup arm, 64 Pickup tool, 66 Rotating shaft, 67 Suction collet, 69 Suction hole, 70 Wafer holder, 71 Wafer table, 72 Push-up unit, 73 Rotation drive mechanism, 74 Connection shaft, 80 Pressure heating mechanism, 81 Thermal insulation casing, 82a Upper holding plate, 82b Lower holding plate, 83 Actuator, 85 Gap sensor, 86a, 86b Temperature Sensor, 87 Drive shaft, 88 Ball joint, 89a, 89b Heater, 93 Pressure heating mechanism inlet rail, 94 Pressure heating mechanism outlet rail, 95 Carrying in, 96 Carrying out, 100 Fine droplet, 101 Binder, 103 Genus nanoparticles 200 bump, 250 bonded bump, 260 bubbles, 300 bonding metal, 400 spacer, 500 a metal bump, 501 bump formation control unit 502 bonding control unit, 503 pressurization control unit.

Claims (9)

半導体ダイの電極と基板の電極との間および/または半導体ダイの電極と他の半導体ダイの電極との間を接合するボンディング装置であって、
分散剤によって表面コーティングされた金属ナノ粒子がペースト状のバインダー中に含まれている金属ナノペーストの微液滴を射出して電極上にバンプが形成された半導体ダイを電極上にバンプが形成された基板および/または電極上にバンプが形成された他の半導体ダイの上にフェースダウンし、半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とをバンプを介して重ね合わせる重ね合わせ手段と、
重ね合わせた各電極間の隙間を重ね合わせた際の間隔よりも小さい所定の間隔に圧縮することにより各電極間のバンプを加圧すると共に各電極間のバンプを加熱してバンプの金属ナノ粒子を加圧焼結させて各電極間を電気的に接合する加圧焼結手段と、
を有することを特徴とするボンディング装置。
A bonding apparatus for bonding between an electrode of a semiconductor die and an electrode of a substrate and / or between an electrode of a semiconductor die and an electrode of another semiconductor die,
Bumps are formed on the electrodes of semiconductor dies, in which bumps are formed on the electrodes by ejecting fine droplets of metal nanopaste containing metal nanoparticles coated with a dispersant in a paste-like binder Face down on another semiconductor die having bumps formed on the substrate and / or electrodes, and bump the semiconductor die electrode and substrate electrode and / or semiconductor die electrode and other semiconductor die electrode An overlapping means for overlapping,
By pressing the bumps between the electrodes by compressing the gaps between the superimposed electrodes to a predetermined interval smaller than the interval when overlapping, the bumps between the electrodes are heated and the metal nanoparticles of the bumps are A pressure sintering means for performing pressure sintering and electrically joining the electrodes;
A bonding apparatus comprising:
請求項1に記載のボンディング装置であって、
加圧焼結手段は、
対向して配置され、半導体ダイおよび/または基板を保持する保持板と、
少なくとも一方の保持板を重ね合わせ方向に向かって進退駆動する保持板駆動部と、
各電極の重ね合わせ方向の隙間を検出する隙間検出手段と、
保持板駆動部の進退動作を制御する加圧制御部を含み、
加圧制御部は、
隙間検出手段によって取得した重ね合わせ方向の隙間が所定の間隔となるように保持板を進退させる間隔保持手段を有すること、
を特徴とするボンディング装置。
The bonding apparatus according to claim 1,
Pressure sintering means
A holding plate disposed opposite to and holding a semiconductor die and / or substrate;
A holding plate driving section that drives at least one holding plate to advance and retreat in the overlapping direction;
A gap detecting means for detecting a gap in the overlapping direction of each electrode;
Including a pressurization control unit for controlling the advancing and retreating operation of the holding plate driving unit
Pressurization control unit
Having interval holding means for advancing and retracting the holding plate so that the gap in the overlapping direction acquired by the gap detecting means is a predetermined interval;
A bonding apparatus characterized by the above.
請求項2に記載のボンディング装置であって、
各保持板は、半導体ダイおよび/または基板を介して半導体ダイの電極と基板の電極との間および/または半導体ダイの電極間に挟まれたバンプを加熱するヒータを備えていること、
を特徴とするボンディング装置。
The bonding apparatus according to claim 2,
Each holding plate includes a heater for heating a bump sandwiched between the semiconductor die electrode and the substrate electrode and / or between the semiconductor die electrodes via the semiconductor die and / or the substrate,
A bonding apparatus characterized by the above.
請求項1に記載のボンディング装置であって、
半導体ダイおよび/または基板の表面に各電極の重ね合わせ方向の隙間を所定の間隔に規定するスペーサを載置するスペーサ載置手段を有すること、
を特徴とするボンディング装置。
The bonding apparatus according to claim 1,
Having a spacer mounting means for mounting a spacer that defines a gap in the overlapping direction of each electrode at a predetermined interval on the surface of the semiconductor die and / or the substrate;
A bonding apparatus characterized by the above.
請求項1に記載のボンディング装置であって、
半導体ダイの少なくとも一つの電極上および/または基板の少なくとも一つの電極上に所定の間隔を規定する突起を形成する突起形成手段を有し、
重ね合わせ手段は、突起と電極とが対向するように重ね合わせること、
を特徴とするボンディング装置。
The bonding apparatus according to claim 1,
A protrusion forming means for forming a protrusion defining a predetermined interval on at least one electrode of the semiconductor die and / or on at least one electrode of the substrate;
The superimposing means superimposes so that the protrusion and the electrode face each other,
A bonding apparatus characterized by the above.
半導体ダイの電極と基板の電極との間および/または半導体ダイの電極と他の半導体ダイの電極との間を接合するボンディング方法であって、
分散剤によって表面コーティングされた金属ナノ粒子がペースト状のバインダー中に含まれている金属ナノペーストの微液滴を射出して電極上にバンプが形成された半導体ダイを電極上にバンプが形成された基板および/または電極上にバンプが形成された他の半導体ダイの上にフェースダウンし、半導体ダイの電極と基板の電極および/または半導体ダイの電極と他の半導体ダイの電極とをバンプを介して重ね合わせる重ね合わせ工程と、
重ね合わせた各電極間の隙間を重ね合わせた際の間隔よりも小さい所定の間隔に圧縮することにより各電極間のバンプを加圧すると共に各電極間のバンプを加熱してバンプの金属ナノ粒子を加圧焼結させて各電極間を電気的に接合する加圧焼結工程と、
を有することを特徴とするボンディング方法。
A bonding method for bonding between an electrode of a semiconductor die and an electrode of a substrate and / or between an electrode of a semiconductor die and an electrode of another semiconductor die,
Bumps are formed on the electrodes of semiconductor dies, in which bumps are formed on the electrodes by ejecting fine droplets of metal nanopaste containing metal nanoparticles coated with a dispersant in a paste-like binder Face down on another semiconductor die having bumps formed on the substrate and / or electrodes, and bump the semiconductor die electrode and substrate electrode and / or semiconductor die electrode and other semiconductor die electrode A superposition process of superimposing via,
By pressing the bumps between the electrodes by compressing the gaps between the superimposed electrodes to a predetermined interval smaller than the interval when overlapping, the bumps between the electrodes are heated and the metal nanoparticles of the bumps are A pressure sintering process in which pressure sintering is performed to electrically join each electrode;
A bonding method characterized by comprising:
請求項6に記載のボンディング方法であって、
加圧焼結工程は、
各電極の重ね合わせ方向の隙間を検出する隙間検出工程と、
隙間検出工程によって取得した重ね合わせ方向の隙間が所定の間隔となるように保持板を進退させる間隔保持工程と、
を有することを特徴とするボンディング方法。
The bonding method according to claim 6, wherein
The pressure sintering process
A gap detection step of detecting a gap in the overlapping direction of each electrode;
An interval holding step of moving the holding plate forward and backward so that the gap in the overlapping direction acquired by the gap detection step is a predetermined interval;
A bonding method characterized by comprising:
請求項6に記載のボンディング方法であって、
半導体ダイおよび/または基板の表面に各電極の重ね合わせ方向の隙間を所定の間隔に規定するスペーサを載置するスペーサ載置工程を有すること、
を特徴とするボンディング方法。
The bonding method according to claim 6, wherein
Having a spacer placing step of placing a spacer that defines a gap in the overlapping direction of each electrode at a predetermined interval on the surface of the semiconductor die and / or the substrate;
A bonding method characterized by the above.
請求項6に記載のボンディング方法であって、
半導体ダイの少なくとも一つの電極上および/または基板の少なくとも一つの電極上に所定の間隔を規定する突起を形成する突起形成工程を有し、
重ね合わせ工程は、突起と電極とが対向するように重ね合わせること、
を特徴とするボンディング方法。
The bonding method according to claim 6, wherein
A protrusion forming step of forming protrusions defining a predetermined interval on at least one electrode of the semiconductor die and / or on at least one electrode of the substrate;
In the superimposing step, superimposing so that the protrusion and the electrode face each other,
A bonding method characterized by the above.
JP2008099181A 2008-04-07 2008-04-07 Bonding apparatus and bonding method Pending JP2009253018A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008099181A JP2009253018A (en) 2008-04-07 2008-04-07 Bonding apparatus and bonding method
PCT/JP2009/050033 WO2009125609A1 (en) 2008-04-07 2009-01-06 Bonding apparatus and bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008099181A JP2009253018A (en) 2008-04-07 2008-04-07 Bonding apparatus and bonding method

Publications (1)

Publication Number Publication Date
JP2009253018A true JP2009253018A (en) 2009-10-29

Family

ID=41161745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008099181A Pending JP2009253018A (en) 2008-04-07 2008-04-07 Bonding apparatus and bonding method

Country Status (2)

Country Link
JP (1) JP2009253018A (en)
WO (1) WO2009125609A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101990A (en) * 2012-11-22 2014-06-05 Iwata Bolt Kk Grounding nut
JP2014200824A (en) * 2013-04-05 2014-10-27 富士電機株式会社 Pressure-jointing method using static fluid pressure, and pressure-jointing device for use in the method
US10177079B2 (en) 2010-03-19 2019-01-08 Furukawa Electric Co., Ltd. Conductive connecting member and manufacturing method of same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445293B2 (en) * 2010-04-07 2014-03-19 新日鐵住金株式会社 Bump formation method
CN102594915B (en) * 2012-03-19 2014-12-03 烽火通信科技股份有限公司 Browser-based media play system and method
TWI685905B (en) * 2017-07-12 2020-02-21 日商新川股份有限公司 Joining device and joining method
US10879102B2 (en) * 2017-08-07 2020-12-29 Boston Process Technologies, Inc Flux-free solder ball mount arrangement
JP7018338B2 (en) * 2018-03-19 2022-02-10 ファスフォードテクノロジ株式会社 Manufacturing method of die bonding equipment and semiconductor equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501632B2 (en) * 2004-10-27 2010-07-14 セイコーエプソン株式会社 Manufacturing method of semiconductor device
WO2007122925A1 (en) * 2006-04-24 2007-11-01 Murata Manufacturing Co., Ltd. Electronic component, electronic component device using same, and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177079B2 (en) 2010-03-19 2019-01-08 Furukawa Electric Co., Ltd. Conductive connecting member and manufacturing method of same
JP2014101990A (en) * 2012-11-22 2014-06-05 Iwata Bolt Kk Grounding nut
JP2014200824A (en) * 2013-04-05 2014-10-27 富士電機株式会社 Pressure-jointing method using static fluid pressure, and pressure-jointing device for use in the method

Also Published As

Publication number Publication date
WO2009125609A1 (en) 2009-10-15

Similar Documents

Publication Publication Date Title
KR100979471B1 (en) Bonding apparatus, and bonding method
JP2008218474A5 (en)
WO2009125609A1 (en) Bonding apparatus and bonding method
JP4454673B2 (en) Metal nano ink, method for producing the same, die bonding method and die bonding apparatus using the metal nano ink
KR100864466B1 (en) Laminating method
US7281322B2 (en) Component mounting method
US20070006453A1 (en) Component mounting apparatus and component mounting method
US10847434B2 (en) Method of manufacturing semiconductor device, and mounting apparatus
US20130181040A1 (en) Semiconductor device manufacturing system and semiconductor device manufacturing method
JP4369528B2 (en) Bonding apparatus and method
JP5608829B1 (en) Component mounting equipment
JP4361591B1 (en) DIE MOUNTING APPARATUS AND DIE MOUNTING METHOD
JP2007208106A (en) Thermocompression device, thermocompression tool attached thereto, and thermocompression method therefor
JP2010140929A (en) Semiconductor device assembling system
JP7103822B2 (en) Mounting device and mounting method
JP5627057B1 (en) Component mounting equipment
TWI460776B (en) Method for applying soldering material on conductive pillar of wafer and apparatus thereof
JP2006128272A (en) Semiconductor device and manufacturing method thereof, and electronic equipment
JP2006128177A (en) Semiconductor device, manufacturing method thereof, and electronic equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090710

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117