JP2009252571A - Organic el element - Google Patents

Organic el element Download PDF

Info

Publication number
JP2009252571A
JP2009252571A JP2008100000A JP2008100000A JP2009252571A JP 2009252571 A JP2009252571 A JP 2009252571A JP 2008100000 A JP2008100000 A JP 2008100000A JP 2008100000 A JP2008100000 A JP 2008100000A JP 2009252571 A JP2009252571 A JP 2009252571A
Authority
JP
Japan
Prior art keywords
sealing
organic
base material
laser
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008100000A
Other languages
Japanese (ja)
Inventor
Ryosuke Yasuda
亮介 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP2008100000A priority Critical patent/JP2009252571A/en
Publication of JP2009252571A publication Critical patent/JP2009252571A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element in which the lifetime of the element is prolonged and a current path to the electrode is not impaired by constructing a part of the sealing portion sealing the peripheral fringe portion of a first and a second substrates by laser sealing part, and suppressing invasion of the outside air (steam) into the element. <P>SOLUTION: The organic EL element includes an organic EL element body 1A in which a luminous layer 40 constructed of an organic compound is interposed between a pair of electrodes made of conductive films 14, 24 arranged between opposed flat substrates 12, 22, and the peripheral fringe portion surrounding the element body 1A between the flat substrates 12, 22 is sealed. Since, out of the sealing portion 30, the region overlapping with the current paths 12a, 24a to the electrode is constructed of a sealer sealing portion 30b, the current paths 14a, 24a are not damaged, and the region which is not overlapped with the current paths 12a, 24a is constructed of a laser sealing part 30b superior in airtightness, the quantity of moisture (steam) invading into the element 1 through the sealing portion 30 is reduced and the lifetime of the element 1 is prolonged, and furthermore, if the laser sealing part 30b is made narrow in width, the effective light emission area of the element 1 is expanded. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、有機EL素子に係り、特に、対向する第1の平板状基材と第2の平板状基材との間に、導電膜で構成された一対の電極間に有機化合物で構成された発光層を介在させた有機EL素子本体が配置されて、第1,第2の平板状基材間の有機EL素子本体を取囲む周縁部が封着された有機EL素子に関する。   The present invention relates to an organic EL element, and in particular, is composed of an organic compound between a pair of electrodes composed of a conductive film between a first flat substrate and a second flat substrate facing each other. The present invention relates to an organic EL element in which an organic EL element body with a light emitting layer interposed is disposed and a peripheral portion surrounding the organic EL element body between first and second flat base materials is sealed.

この種の有機EL素子は、携帯電話などのディスプレイや表示装置に広く利用されており、下記特許文献1にも示すように、対向する第1の平板状基材と第2の平板状基材との間に、導電膜で構成された一対の電極間に有機化合物で構成された発光層を介在させた有機EL素子本体が配置されて、第1,第2の平板状基材間の有機EL素子本体を取囲む周縁部がシール剤で封着された構造で、対向電極の少なくともいずれか一方の電極およびこの電極に対応する平板状基材が透明に構成されて、対向電極(導電膜)間に電圧を印加すると、陽極で発生した正孔と陰極で発生した電子が発光層で結合し、有機物が励起(高エネルギー)状態となった後、元の安定状態に戻る際に発光し、この発光が透明導電膜および透明基材を介して出射するようになっている。   This type of organic EL element is widely used in displays and display devices such as mobile phones. As shown in Patent Document 1 below, the first flat substrate and the second flat substrate facing each other. Between the first and second flat base materials, the organic EL element body having a light emitting layer made of an organic compound interposed between a pair of electrodes made of a conductive film. The peripheral portion surrounding the EL element body is sealed with a sealing agent, and at least one of the counter electrodes and the flat substrate corresponding to the electrodes are configured to be transparent, and the counter electrode (conductive film) ) When a voltage is applied between them, the holes generated at the anode and the electrons generated at the cathode are combined in the light-emitting layer, and the organic material is excited (high energy) and then emits light when returning to the original stable state. This light is emitted through the transparent conductive film and the transparent substrate. It has become.

しかし、この種の有機EL素子では、封着部を構成するシール剤を通して外気中の水分(水蒸気)が発光層を設けた素子内部(封着部の内側)に侵入し、ダークスポットと称される非発光領域が発生したり、電極材料が腐蝕するなど、素子の寿命を低下させるという問題があった。   However, in this type of organic EL device, moisture (water vapor) in the outside air enters the inside of the device provided with the light emitting layer (inside the sealing portion) through the sealing agent constituting the sealing portion, and is called a dark spot. There is a problem that the lifetime of the device is reduced, such as generation of a non-light emitting region or corrosion of the electrode material.

そこで、下記特許文献1では、平板状基材間の周縁部を封着するシール剤として、水分吸着作用をもつフィラーを内添した有機材料を用いることで、素子内部(封着部の内側)に到達する水蒸気量を低下させて、前記した問題の解決を図っている。
特開2005−322432号
Therefore, in the following Patent Document 1, the inside of the element (inside the sealing portion) is used by using an organic material containing a filler having a moisture adsorbing action as a sealing agent for sealing the peripheral portion between the flat base materials. The above-mentioned problem is solved by reducing the amount of water vapor that reaches the water level.
JP 2005-322432 A

しかし、シール剤で構成された封着部の巾が狭い場合は勿論であるが、封着部に気泡が混入している等の欠陥がある場合には、欠陥位置における封着部の巾(厚さ)が実質的に狭められて、フィラーの水分吸着作用が局所的(部分的)に低下し、素子内部(封着部の内側)に到達する水蒸気量を低下させる機能が不十分となるという問題がある。   However, if the width of the sealing portion made of the sealing agent is narrow, of course, if there is a defect such as air bubbles in the sealing portion, the width of the sealing portion ( (Thickness) is substantially narrowed, the moisture adsorption action of the filler is locally (partially) lowered, and the function of reducing the amount of water vapor reaching the inside of the element (inside the sealing portion) becomes insufficient. There is a problem.

このため、特許文献1を含めた従来の有機EL素子では、一対の平板状基材間の周縁部を封着するシール剤の装填幅(封着部の幅)をある程度以上とする必要があり、それだけ平板状基材の面積に対する発光層の面積(有機EL素子の有効発光面積)が狭められるという問題があった。   For this reason, in the conventional organic EL element including patent document 1, it is necessary to make the loading width (sealing part width) of the sealing agent for sealing the peripheral part between the pair of flat base materials to a certain level or more. Thus, there is a problem that the area of the light emitting layer (the effective light emitting area of the organic EL element) with respect to the area of the flat substrate is reduced.

このように、シール剤により封着した封着部(以下、シール剤封着部という)では、気密性を確実にとることは難しいことから、発明者は、気密性に優れた第1,第2の基材と同材質の封着基材を用いたレーザ溶着を考えた。即ち、第1,第2の基材間の周縁部にこれらの基材と同材質の封着基材を介装し、透明基材の上方からレーザ光を封着基材に照射し封着基材を溶融させて第1,第2の基材に溶着することで、第1,第2の基材間を封着(以下、封着基材をレーザ溶着した封着部をレーザ封着部という)すれば、レーザ封着部では、外気(水分)の侵入を確実に防止できるので、レーザ封着部の巾を小さくでき、その分、平板状基材の面積に対する発光層の面積(有機EL素子の有効発光面積)を大きくできると考えた。   As described above, since it is difficult to ensure airtightness in a sealing portion sealed with a sealing agent (hereinafter referred to as sealing agent sealing portion), the inventors have first and first excellent airtightness. The laser welding using the sealing base material of the same material as the base material 2 was considered. That is, a sealing base material of the same material as these base materials is interposed at the peripheral portion between the first and second base materials, and sealing is performed by irradiating the sealing base material with laser light from above the transparent base material. The base material is melted and welded to the first and second base materials to seal between the first and second base materials (hereinafter, the sealing portion where the sealing base material is laser welded is laser sealed). In other words, the laser sealing portion can reliably prevent intrusion of outside air (moisture), so that the width of the laser sealing portion can be reduced, and accordingly, the area of the light emitting layer relative to the area of the flat substrate ( It was considered that the effective light emission area of the organic EL element can be increased.

ところが、レーザ封着部からの外気(水蒸気)の侵入を防止する上では有効であるものの、封着基材をレーザ溶着する際に、第1,第2の基材の周縁部に設けられている、導電膜の一部やリード線で構成した電極への通電路がレーザ光の透過(照射)によって損傷し、通電路としての機能が損なわれる(例えば断線)という新たな問題が生じた。   However, although it is effective in preventing the intrusion of outside air (water vapor) from the laser sealing portion, it is provided at the peripheral portions of the first and second base materials when laser welding the sealing base material. In addition, there is a new problem that the current path to the electrode composed of a part of the conductive film or the lead wire is damaged by the transmission (irradiation) of the laser beam and the function as the current path is impaired (for example, disconnection).

そこで、発明者は、第1,第2の基材の周縁部に沿った封着領域のうち、電極への通電路と重なる領域については、従来と同様に、介装したシール剤によって封着するとともに、電極への通電路と重ならない領域については、介装した封着基材をレーザ溶着によって封着すれば、前記した新たな問題が生じないと考えた。   Therefore, the inventor sealed the area overlapping the current path to the electrode among the sealing areas along the peripheral edge of the first and second base materials with the interposed sealing agent as in the conventional case. At the same time, it was considered that the above-described new problem does not occur if the interposed sealing base material is sealed by laser welding in a region that does not overlap with the current path to the electrode.

本発明は、前記従来技術の問題点および前記した発明者の知見に基づいてなされたもので、その目的は、対向する第1,第2の基材の周縁部を封着する封着部の一部をレーザ封着部によって構成して、素子内部への外気(水蒸気)の侵入を抑制することで、素子の寿命が延びるとともに、電極への通電路の機能が損なわれない有機EL素子を提供することにある。   The present invention has been made on the basis of the problems of the prior art and the knowledge of the inventor described above. The purpose of the present invention is to provide a sealing portion that seals the peripheral portions of the opposing first and second substrates. An organic EL element in which a part is constituted by a laser sealing portion and the life of the element is extended by suppressing the intrusion of outside air (water vapor) into the element, and the function of the current path to the electrode is not impaired. It is to provide.

前記目的を達成するために、請求項1に係る有機EL素子においては、対向する第1の平板状基材と第2の平板状基材との間に、導電膜で構成された一対の電極間に有機化合物で構成された発光層を介在させた有機EL素子本体が配置されて、前記第1,第2の平板状基材間の前記発光層を取囲む周縁部が封着された有機EL素子であって、
前記第1,第2の基材間の周縁部に沿った封着領域の一部に、前記電極に導通する通電路を設け、前記封着領域のうち、少なくとも前記通電路と重なる領域を、介装したシール剤によって封着するとともに、前記通電路と重ならない領域を、介装した前記第1,第2の基材と同材質の封着基材をレーザ溶着することによって封着するように構成した。
In order to achieve the above object, in the organic EL device according to claim 1, a pair of electrodes formed of a conductive film between the opposing first flat substrate and second flat substrate. An organic EL element body having a light emitting layer composed of an organic compound interposed therebetween, and a peripheral portion surrounding the light emitting layer between the first and second flat base materials is sealed An EL element,
In a part of the sealing region along the peripheral edge between the first and second base materials, an energization path that conducts to the electrode is provided, and at least an area that overlaps the energization path in the sealing region, It seals with the interposed sealing agent, and seals the region that does not overlap with the energization path by laser welding the same sealing material as the first and second substrates. Configured.

換言すれば、前記第1,第2の基材の周縁部に沿った封着部のうち、少なくとも電極への通電路と重なる領域を、シール剤封着部によって構成するとともに、電極への通電路と重ならない領域を、前記第1,第2の基材と同材質の封着基材をレーザ溶着したレーザ封着部によって構成した。   In other words, among the sealing portions along the peripheral edge portions of the first and second base materials, at least a region overlapping with the current path to the electrode is constituted by the sealing agent sealing portion, and the passage to the electrode is performed. The region that does not overlap with the electric circuit was configured by a laser sealing portion obtained by laser welding a sealing base material made of the same material as the first and second base materials.

なお、対向する電極を構成する導電膜の少なくともいずれか一方およびこの電極に対応する平板状基材は、透明に構成されており、通電路を介して電極(導電膜)間に電圧を印加すると、陽極で発生した正孔と陰極で発生した電子が発光層で結合し、有機物が励起(高エネルギー)状態となった後、元の安定状態に戻る際に発光し、この発光が透明導電膜および透明基材を介して出射する。   Note that at least one of the conductive films constituting the opposing electrodes and the flat substrate corresponding to the electrodes are configured to be transparent, and when a voltage is applied between the electrodes (conductive films) via the current path After the holes generated at the anode and the electrons generated at the cathode are combined in the light emitting layer, the organic substance is excited (high energy) and then emits light when returning to the original stable state. And it radiates | emits through a transparent base material.

また、発光層としては、陽極(側導電膜)に臨む側に正孔輸送・注入層が、陰極(側導電膜)に臨む側に電子輸送・注入層がそれぞれ積層形成された三層構造のものと、陽極(側導電膜)に臨む側に正孔輸送層,注入層が、陰極(側導電膜)に臨む側に電子輸送層,注入層がそれぞれ積層形成された五層構造のものとが知られている。   The light emitting layer has a three-layer structure in which a hole transport / injection layer is formed on the side facing the anode (side conductive film) and an electron transport / injection layer is formed on the side facing the cathode (side conductive film). A five-layer structure in which a hole transport layer and an injection layer are stacked on the side facing the anode (side conductive film), and an electron transport layer and an injection layer are stacked on the side facing the cathode (side conductive film). It has been known.

(作用)シール剤封着部に比べると、レーザ封着部では気体の通過が確実に阻止されるので、ダークスポットの発生や電極材料の腐蝕の原因となる外気(水蒸気)がレーザ封着部を通して素子内部(封着部の内側)に侵入するおそれは全くない。   (Function) Compared with the sealing agent sealing portion, the laser sealing portion reliably prevents the passage of gas, so that the outside air (water vapor) that causes the generation of dark spots and the corrosion of the electrode material is generated by the laser sealing portion. There is no possibility of entering the inside of the element (inside the sealing portion) through.

したがって、第1,第2の基材の周縁部に沿って帯状に延在する封着領域(封着部)全体がシール剤で封着されている従来構造に比べて、封着領域(封着部)の一部の領域をレーザ封着部で構成した請求項1では、それだけ封着部を通して素子内部(封着部の内側)に侵入する水蒸気の量が減少する。特に、基材の周縁部には、リード線や導電膜の一部で構成された電極への通電路が設けられているが、この電極への通電路の基材周縁部に沿った大きさ(寸法)を小さくすれば、第1,第2の基材の周縁部の封着領域のほとんどの領域がレーザ溶着される(素子の周縁部を封着する封着部のほとんどがレーザ封着部で構成される)こととなって、封着部を通して素子内部(封着部の内側)に侵入する水蒸気の量がいっそう少なく、ダークスポットの発生や電極材料の腐蝕が抑制される。   Therefore, compared with the conventional structure in which the entire sealing region (sealing portion) extending in a strip shape along the peripheral edge portions of the first and second substrates is sealed with the sealing agent, the sealing region (sealing) According to the first aspect of the present invention, a part of the region of the attachment portion is constituted by the laser sealing portion, and accordingly, the amount of water vapor entering the element (inside the sealing portion) through the sealing portion is reduced. In particular, an energization path to an electrode composed of a part of a lead wire or a conductive film is provided at the peripheral edge of the base material, but the size along the peripheral edge of the base material of the energization path to this electrode If the (dimension) is made small, most of the sealing regions at the peripheral portions of the first and second substrates are laser-welded (most of the sealing portions that seal the peripheral portions of the elements are laser-sealed). Therefore, the amount of water vapor entering the inside of the element (inside the sealing portion) through the sealing portion is further reduced, and generation of dark spots and corrosion of the electrode material are suppressed.

そして、レーザ封着部では、レーザ溶着幅(レーザ封着部の幅)とは関係なく、水蒸気の素子内部(封着部内側)への侵入が確実に阻止されるので、それだけレーザ溶着幅(レーザ封着部の幅)を狭くすることで、平板状基材の面積に対する発光層の面積(有機EL素子の有効発光面積)を大きくできる。   And, in the laser sealing portion, regardless of the laser welding width (the width of the laser sealing portion), the entry of water vapor into the element (inside the sealing portion) is surely prevented, so that the laser welding width ( By narrowing the width of the laser sealing portion, the area of the light emitting layer relative to the area of the flat substrate (the effective light emitting area of the organic EL element) can be increased.

また、第1,第2の基材の周縁部に沿って帯状に延在する封着領域のうち、レーザ溶着すると電極への通電路を損傷させるおそれのある封着領域(電極への通電路と重なる封着領域)は、シール剤によって封着されているので、電極への通電路の機能が損なわれる(例えば断線)おそれは全くない。   In addition, among the sealing regions extending in a strip shape along the peripheral edges of the first and second base materials, the sealing region (the current path to the electrode) that may damage the current path to the electrode when laser welding is performed. Since the sealing region overlapping with the sealing region is sealed with the sealant, there is no possibility that the function of the current path to the electrode is impaired (for example, disconnection).

請求項2においては、請求項1に記載の有機EL素子において、前記第1,第2の平板状基材の一方に、電極を構成する導電膜および前記発光層を順次積層一体化し、他方には、対向電極を構成する前記導電膜を積層一体化し、前記発光層と前記対向電極が密着するとともに、前記封着領域(封着部)の内側が前記有機EL素子本体の外側に一致(密着)するように構成した。   According to a second aspect of the present invention, in the organic EL device according to the first aspect, the conductive film constituting the electrode and the light emitting layer are sequentially laminated and integrated on one of the first and second flat base materials, The conductive film constituting the counter electrode is laminated and integrated so that the light emitting layer and the counter electrode are in close contact with each other, and the inside of the sealing region (sealing portion) coincides with the outside of the organic EL element body (in close contact) ).

(作用)封着部で囲まれた素子内部に隙間(発光層と対向電極間の隙間、あるいは有機EL素子本体と封着部間の隙間)があると、素子を製造する過程で(第1,第2の基材間の周縁部を封着する際に)素子内部(封着部の内側)に外気が取り込まれ、取り込まれた外気中の水分(水蒸気)によってダークスポットが発生したり、電極材料が腐蝕するなどの問題が発生するおそれがあるが、隙間が発生するおそれのある発光層と対向電極間が密着するとともに、同じく隙間が発生するおそれのある有機EL素子本体と封着部間が密着しているので、素子内部(封着部の内側)には隙間が全くなく、素子を製造する過程で、ダークスポットの発生や電極材料の腐蝕の原因となる外気が素子内部に取り込まれるおそれがない。   (Operation) If there is a gap (gap between the light emitting layer and the counter electrode or a gap between the organic EL element body and the sealing part) inside the element surrounded by the sealing part, the element is manufactured (first , When sealing the peripheral edge between the second base materials) outside air is taken into the element (inside the sealing part), and a dark spot is generated by moisture (water vapor) in the taken outside air, There is a possibility that the electrode material may be corroded, but the light emitting layer that may cause a gap is in close contact with the counter electrode, and the organic EL element body and the sealing portion that may also cause a gap There is no gap inside the element (inside the sealing part) because the gaps are in close contact, and outside air that causes dark spots and corrosion of the electrode material is taken into the element during the process of manufacturing the element. There is no risk of being lost.

請求項3においては、請求項1または2に記載の有機EL素子において、前記封着基材を、前記第1の基材または第2の基材の少なくとも一方との一体成形体で構成するようにした。換言すれば、前記第1の基材または第2の基材の少なくとも一方の一部で前記封着基材を構成するようにした。   According to a third aspect of the present invention, in the organic EL device according to the first or second aspect, the sealing base material is formed as an integral molded body with at least one of the first base material or the second base material. I made it. In other words, the sealing base material is constituted by a part of at least one of the first base material and the second base material.

(作用)第1の基材または第2の基材の少なくとも一方の一部が封着基材を兼ねるので、第1,第2の基材以外に別部材としての封着基材を必要としない。   (Operation) Since at least one part of the first base material or the second base material also serves as the sealing base material, a sealing base material as a separate member is required in addition to the first base material and the second base material. do not do.

また、封着基材が第1,第2の基材と別体に構成されている場合は、封着基材を第1の基材および第2の基材にそれぞれレーザ溶着(2箇所レーザ溶着)する必要があるが、封着基材が第1の基材または第2の基材の少なくともいずれかに一体的に形成されている(第1の基材または第2の基材の少なくともいずれか一方の一部が封着基材として機能する)ため、封着基材を第1の基材または第2の基材のいずれか一方だけにレーザ溶着(1箇所レーザ溶着)すればよい。   Further, when the sealing base material is configured separately from the first and second base materials, the sealing base material is laser welded to the first base material and the second base material (two-point laser). The sealing base material is formed integrally with at least one of the first base material and the second base material (at least of the first base material or the second base material). Since any one part functions as a sealing base material), the sealing base material may be laser-welded to only one of the first base material and the second base material (one-point laser welding). .

請求項4においては、請求項1〜3のいずれかに記載の有機EL素子において、前記封着基材と前記第1,第2の基材との界面にレーザ光吸収材を介在させるか、または前記封着基材中にレーザ光吸収材を分散させるように構成した。   In Claim 4, in the organic EL element in any one of Claims 1-3, a laser beam absorbing material is interposed at the interface between the sealing base material and the first and second base materials, Alternatively, the laser light absorbing material is dispersed in the sealing base material.

(作用)照射されたレーザ光をレーザ光吸収材が吸収し、効率的に封着基材が溶融して第1,第2の基材に溶着されるので、それだけ発光層にレーザ溶着の際の熱の影響が及ばない。   (Operation) The irradiated laser beam is absorbed by the laser light absorbing material, and the sealing base material is efficiently melted and welded to the first and second base materials. The effect of heat is not affected.

請求項1に係る有機EL素子によれば、少なくともレーザ封着部では、水蒸気の侵入が確実に防止されるので、従来構造に比べて、ダークスポットが発生したり、電極材料が腐蝕する等の問題が発生しにくく、それだけ寿命が延びるとともに、レーザ溶着すると電極への通電路としての機能が損なわれるおそれのある封着領域については、シール剤によって封着されているので、電極への通電路としての機能が損なわれることもない。   According to the organic EL element of the first aspect, water vapor is surely prevented from entering at least in the laser sealing portion. Therefore, compared to the conventional structure, dark spots are generated and the electrode material is corroded. The sealing area is sealed with a sealant for the sealing area where problems are unlikely to occur, the life is extended as much, and the function of the current path to the electrode may be impaired by laser welding. The function as is not impaired.

また、レーザ封着部からは、水分(水蒸気)が素子内部に侵入しないので、レーザ封着部の幅を狭くすることで、平板状の基板の面積に対する発光層の面積を拡大(素子における有効発光面積)を拡大できる。   In addition, since moisture (water vapor) does not enter the element from the laser sealing part, the area of the light emitting layer is increased with respect to the area of the flat substrate by reducing the width of the laser sealing part (effective in the element). (Light emitting area) can be enlarged.

請求項2によれば、素子を製造する過程で、ダークスポットの発生や電極材料の腐蝕の原因となる外気が素子内部に取り込まれるおそれがないので、それだけ有機EL素子の寿命が延びる。   According to the second aspect, in the process of manufacturing the element, there is no possibility that outside air that causes the generation of dark spots and the corrosion of the electrode material is taken into the element, so that the lifetime of the organic EL element is extended accordingly.

請求項3によれば、第1の基材または第2の基材とは別部材としての封着基材を必要としないので、有機EL素子の構成が簡潔となる。   According to the third aspect, since the sealing base material as a separate member from the first base material or the second base material is not required, the configuration of the organic EL element is simplified.

また、封着基材を第1の基材または第2の基材のいずれか一方だけにレーザ溶着すればよいので、それだけ溶着工程が簡便になる。   Further, since the sealing base material only needs to be laser-welded to only one of the first base material and the second base material, the welding process is simplified accordingly.

請求項4によれば、短時間で封着基材が溶融して第1,第2の基材に溶着されるので、発光層にレーザ溶着の際の熱の影響が及ばず、効率の保証された有機EL素子を提供できる。   According to the fourth aspect, since the sealing base material is melted and welded to the first and second base materials in a short time, the light emitting layer is not affected by heat at the time of laser welding, and the efficiency is guaranteed. An organic EL device can be provided.

次に、本発明の実施の形態を実施例に基づいて説明する。   Next, embodiments of the present invention will be described based on examples.

図1〜図7は、本発明の第1の実施例である有機EL素子を示し、図1は第1の実施例である有機EL素子の縦断面図、図2は同有機EL素子の縦断面図(図1に示す線II―IIに沿う断面図)、図3は同有機EL素子の縦断面図(図1に示す線III―IIIに沿う断面図)、図4は同有機EL素子の封着部位置における水平断面図(図1に示す線IV―IVに沿う断面図)、図5は同有機EL素子の分解斜視図、図6はおよび図7は基板周縁部を封着する工程を説明する断面図である。   1 to 7 show an organic EL element according to a first embodiment of the present invention, FIG. 1 is a longitudinal sectional view of the organic EL element according to the first embodiment, and FIG. 2 is a longitudinal section of the organic EL element. FIG. 3 is a vertical sectional view of the organic EL element (cross-sectional view along line III-III shown in FIG. 1), and FIG. 4 is the organic EL element. FIG. 5 is an exploded perspective view of the organic EL device, FIG. 6 and FIG. 7 are for sealing the peripheral edge of the substrate. It is sectional drawing explaining a process.

これらの図において、有機EL素子1は、対向する第1の透明ガラス基板12と第2のガラス基板22との間に、導電膜14,24で構成された一対の電極間に有機化合物で構成された発光層40を介在させた有機EL素子本体1Aが配置されて、第1,第2のガラス基板12,22間の有機EL素子本体1Aを取囲む周縁部が封着部30によって封着された構造となっている。   In these drawings, the organic EL element 1 is composed of an organic compound between a pair of electrodes composed of conductive films 14 and 24 between a first transparent glass substrate 12 and a second glass substrate 22 facing each other. The organic EL element body 1A with the light emitting layer 40 interposed is disposed, and the peripheral portion surrounding the organic EL element body 1A between the first and second glass substrates 12 and 22 is sealed by the sealing portion 30. It has a structured.

詳しくは、陽極側の平板状基材10を構成する透明ガラス基板12の下面(図1,3の下側、図5の上側)には、陽極を構成する透明導電膜14が積層形成されるとともに、透明導電膜14の上には、有機化合物で構成した発光層40が積層形成されている。一方、陰極側の平板状基材20を構成する透明ガラス基板22の上面(図1,3の上側、図5の下側)には、陰極を構成する導電性金属薄膜24が積層形成されている。そして、発光層40と導電性金属薄膜24が隙間なく密着するとともに、有機EL素子本体1Aの外側に封着部30が隙間なく密着している。   Specifically, the transparent conductive film 14 constituting the anode is laminated and formed on the lower surface of the transparent glass substrate 12 constituting the flat substrate 10 on the anode side (lower side in FIGS. 1 and 3 and upper side in FIG. 5). In addition, a light emitting layer 40 made of an organic compound is laminated on the transparent conductive film 14. On the other hand, a conductive metal thin film 24 constituting the cathode is laminated on the upper surface (the upper side of FIGS. 1 and 3 and the lower side of FIG. 5) of the transparent glass substrate 22 constituting the flat substrate 20 on the cathode side. Yes. And while the light emitting layer 40 and the electroconductive metal thin film 24 are closely_contact | adhered without gap, the sealing part 30 is closely_contact | adhered to the outer side of 1 A of organic EL element main bodies without gap.

また、有機EL素子1の後端側の側縁部(図1,図5左側)には、電極(陽極)への通電路として機能する導電膜14の端部領域14aと、電極(陰極)への通電路として機能する導電性金属薄膜24の端部領域24aとが露呈しており、この電極(陽極,陰極)への通電路(導電膜14,導電性金属薄膜24の端部領域14a,24a)間に電圧が印加されると、陽極で発生した正孔と陰極で発生した電子が発光層40で結合し、有機物が励起(高エネルギー)状態となった後、元の安定状態に戻る際に発光し、この発光が陽極側の透明導電膜14および透明ガラス基板12を介して出射(図1,2の破線で示す上向き矢印参照)するようになっている。   Further, an end region 14a of the conductive film 14 functioning as a current path to the electrode (anode) and an electrode (cathode) are provided on the side edge (left side of FIGS. 1 and 5) on the rear end side of the organic EL element 1. An end region 24a of the conductive metal thin film 24 functioning as a current path to the electrode is exposed, and a current path (conductive film 14, end region 14a of the conductive metal thin film 24) to this electrode (anode, cathode) is exposed. 24a), when the voltage is applied, the holes generated at the anode and the electrons generated at the cathode are combined in the light emitting layer 40, and the organic substance is in an excited (high energy) state, and then returns to the original stable state. Light is emitted when returning, and the emitted light is emitted through the transparent conductive film 14 on the anode side and the transparent glass substrate 12 (see the upward arrow indicated by the broken lines in FIGS. 1 and 2).

ガラス基板12に積層形成された陽極側の透明導電膜14は、例えば、膜厚150nmのスズ添加酸化インジウム(ITO)で構成され、一方、ガラス基板12に積層形成された陰極側の導電性金属薄膜24は、例えば、膜厚200nmの銀マグネシウム(MgAg)で構成されている。   The anode-side transparent conductive film 14 laminated on the glass substrate 12 is made of, for example, tin-doped indium oxide (ITO) having a film thickness of 150 nm, while the cathode-side conductive metal laminated on the glass substrate 12. The thin film 24 is made of, for example, silver magnesium (MgAg) having a thickness of 200 nm.

透明導電膜14に積層形成された発光層40は、有機物で構成された発光層本体42の陽極側に正孔輸送層43および正孔注入層44が、発光層本体42の陰極側に電子輸送層45および電子注入層46がそれぞれ積層形成された5層で構成されている。発光層本体42は、例えば、膜厚50nmのフェニルアントラセン誘導体で、正孔輸送層43は、例えば、膜厚50nmのトリフェニルアミン錯体で、正孔注入層44は、例えば、膜厚50nmのフタロシアニン系の銅フタロシアンで、電子輸送層45は、例えば、膜厚50nmのオキサジアゾール誘導体で、電子注入層46は、例えば、膜厚50nmのキノリノールアルミニウム(Alq)でそれぞれ構成されている。 The light emitting layer 40 laminated on the transparent conductive film 14 has a hole transport layer 43 and a hole injection layer 44 on the anode side of the light emitting layer body 42 made of an organic material, and an electron transport on the cathode side of the light emitting layer body 42. The layer 45 and the electron injection layer 46 are each composed of five layers stacked. The light emitting layer main body 42 is, for example, a phenylanthracene derivative having a thickness of 50 nm, the hole transport layer 43 is, for example, a triphenylamine complex having a thickness of 50 nm, and the hole injection layer 44 is, for example, a phthalocyanine having a thickness of 50 nm. The electron transport layer 45 is made of, for example, an oxadiazole derivative having a film thickness of 50 nm, and the electron injection layer 46 is made of, for example, quinolinol aluminum (Alq 3 ) having a film thickness of 50 nm.

そして、図5に示すように、有機EL素子本体1Aを構成する発光層40は、ガラス基板12に積層形成された導電膜14上に、正孔注入層44,正孔輸送層43,発光層本体42,電子輸送層45および電子注入層46を順次積層形成することで、陽極側の平板状基材10に一体化されている。一方、有機EL素子本体1Aの一部を構成する陰極側の導電性金属薄膜24は、ガラス基板12に積層形成することで、陰極側の平板状基材20に一体化されている。   And as shown in FIG. 5, the light emitting layer 40 which comprises the organic EL element main body 1A is the hole injection layer 44, the hole transport layer 43, and the light emitting layer on the electrically conductive film 14 laminated and formed in the glass substrate 12. As shown in FIG. The main body 42, the electron transport layer 45, and the electron injection layer 46 are sequentially laminated to be integrated with the flat substrate 10 on the anode side. On the other hand, the cathode-side conductive metal thin film 24 constituting a part of the organic EL element body 1A is laminated on the glass substrate 12 to be integrated with the cathode-side flat substrate 20.

第1,第2のガラス基板12,22は、左右の側縁部12a,12b;22a,22bと前後の側縁部12c,12d;22c,22dの長さがそれぞれ同一の正方形状に形成され、第1のガラス基板12には、左右の側縁部12a,12bおよび前端側の側縁部12cに沿った所定幅d2のコ字状のレーザ溶着代A1(図5における斜線部)を除いて透明導電膜14が矩形状に形成されている。同じく第2のガラス基板22にも、左右の側縁部22a,2bおよび前端側の側縁部22cに沿った所定幅d2のコ字状のレーザ溶着代A2(レーザ溶着代A1と同形状)を除いて導電性金属薄膜24が矩形状に形成されている。   The first and second glass substrates 12 and 22 are formed in a square shape in which the lengths of the left and right side edge portions 12a and 12b; 22a and 22b and the front and rear side edge portions 12c and 12d; The first glass substrate 12 excludes the left and right side edges 12a and 12b and the U-shaped laser welding margin A1 having a predetermined width d2 along the front edge side edge 12c (the hatched portion in FIG. 5). The transparent conductive film 14 is formed in a rectangular shape. Similarly, on the second glass substrate 22, a U-shaped laser welding allowance A2 having the predetermined width d2 along the left and right side edges 22a and 2b and the front end side edge 22c (the same shape as the laser welding allowance A1). Except for, the conductive metal thin film 24 is formed in a rectangular shape.

そして、第1,第2のガラス基板12,22は、有機EL素子本体1Aを挟んで、左右の側縁部12a,12b;22a,22bおよび前後の側縁部12c,12d;22c,22dがそれぞれ一致するように対向配置されるとともに、側縁部12a,12b,12c,12d;22a,22b,22c,22dに沿って帯状に延在する封着部30が有機EL素子本体1Aの周りを隙間なく取り囲む形態となっている。   The first and second glass substrates 12 and 22 have left and right side edges 12a and 12b; 22a and 22b and front and rear side edges 12c and 12d; 22c and 22d with the organic EL element body 1A interposed therebetween. The sealing portions 30 that are arranged to face each other so as to coincide with each other and extend in a band shape along the side edge portions 12a, 12b, 12c, and 12d; 22a, 22b, 22c, and 22d are disposed around the organic EL element body 1A. It is a form that surrounds without a gap.

また、封着部30は、電極(陽極,陰極)への通電路(導電膜14,金属薄膜24の端部領域14a,24a)が設けられている、ガラス基板12,22の後端側の側縁部12d;22d間を封着する紫外線硬化型シール剤32で構成された所定巾d1の直線状のシール剤封着部30aと、電極(陽極,陰極)への通電路(導電膜14,金属薄膜24の端部領域14a,24a)が設けられていない、ガラス基板12,22の前端側から左右にかけての側縁部12a,12c,12b;22a,22c,22b間を封着する、レーザ溶着代A1,A2に対応するガラス溶着部で構成された所定巾d2(<d1)のコ字状のレーザ封着部30bで構成されている。   In addition, the sealing portion 30 is provided on the rear end side of the glass substrates 12 and 22, in which energization paths (conductive film 14, end regions 14 a and 24 a of the metal thin film 24) to the electrodes (anode and cathode) are provided. A linear sealant sealing portion 30a having a predetermined width d1 composed of an ultraviolet curable sealant 32 that seals between the side edge portions 12d and 22d, and a current path (conductive film 14) to the electrodes (anode, cathode). , The end regions 14a, 24a) of the metal thin film 24 are not provided, and the side edges 12a, 12c, 12b; 22a, 22c, 22b from the front end side to the left and right sides of the glass substrates 12, 22 are sealed. It is constituted by a U-shaped laser sealing portion 30b having a predetermined width d2 (<d1) constituted by glass welding portions corresponding to the laser welding allowances A1 and A2.

即ち、シール剤封着部30aは、図6に示すように、有機EL素子本体1Aを挟んで対向するガラス基板12とガラス基板22間の後端側の側縁部12d;22dに沿った巾d1の直線状領域に、ガラス間の接合封止に適した紫外線硬化型シール剤32を装填(介装)し、透明ガラス基板12の上から紫外線L1をシール剤32に照射し硬化させることで、有機EL素子本体1Aの外側に隙間なく密着した形態で、ガラス基板12,22の後端側の側縁部12d;22d間を封着するように構成されている。   That is, as shown in FIG. 6, the sealing agent sealing portion 30a has a width along the side edge portion 12d; 22d on the rear end side between the glass substrate 12 and the glass substrate 22 facing each other with the organic EL element body 1A interposed therebetween. By loading (interposing) an ultraviolet curable sealant 32 suitable for bonding and sealing between glasses in the linear region of d1, the ultraviolet ray L1 is irradiated on the sealant 32 from the transparent glass substrate 12 and cured. The glass substrate 12, 22 is configured so as to be sealed between the side edge portions 12d; 22d on the rear end side in close contact with the outside of the organic EL element body 1A.

一方、レーザ封着部30bは、図7に示すように、有機EL素子本体1Aを挟んで対向するガラス基板12とガラス基板22間の前端側から左右の側縁部12a,12c,12b;22a,22c,22bに沿った巾d2のコ字状領域(レーザ溶着代A1,A2に対応する領域)に、ガラス基板12,22と同材質で所定巾d2(<d1),高さh(600nm)のコ字型の封着ガラス基材34(図7参照)を介装し、透明ガラス基板12の上からレーザ光L2を封着ガラス基材34に照射し溶融させて、封着ガラス基材34をガラス基板12,22に溶着することで、有機EL素子本体1Aの外側に隙間なく密着した形態で、ガラス基板12,22の側縁部12a,12c,12b;22a,22c,22b間を封着するように構成されている。なお、レーザ光L2としては、透明ガラス基板12での透過率が50%以上となるレーザ光が望ましく、例えば、ガリウムヒ素系半導体レーザ、ガリウムヒ素アルミニウム系半導体レーザ、YAGレーザなどが考えられる。   On the other hand, as shown in FIG. 7, the laser sealing portion 30b has left and right side edges 12a, 12c, 12b; 22a from the front end side between the glass substrate 12 and the glass substrate 22 facing each other with the organic EL element body 1A interposed therebetween. , 22c, 22b, a U-shaped region having a width d2 (a region corresponding to the laser welding allowances A1, A2) and a predetermined width d2 (<d1) and a height h (600 nm made of the same material as the glass substrates 12, 22). ) Of the U-shaped sealing glass substrate 34 (see FIG. 7), and the sealing glass substrate 34 is irradiated with the laser light L2 from above the transparent glass substrate 12 and melted to form a sealing glass substrate. By welding the material 34 to the glass substrates 12 and 22, the side edges 12a, 12c and 12b of the glass substrates 12 and 22; Configured to seal That. The laser beam L2 is preferably a laser beam having a transmittance of 50% or more through the transparent glass substrate 12, and for example, a gallium arsenide semiconductor laser, a gallium arsenide aluminum semiconductor laser, a YAG laser, or the like can be considered.

また、レーザ溶着工程(図7参照)において、封着ガラス基材34とガラス基板12,22との界面にカーボンブラック,マジックインキ,プリンタトナー等のレーザ光吸収材35を介在させると、照射されたレーザ光L2をレーザ光吸収材35が吸収し、封着ガラス基材34が瞬時に溶融して第1,第2の基材12,22に溶着される。このため、有機EL素子本体1Aにレーザ溶着の際の熱の影響ができるだけ及ばないようにするためには、例えば、封着ガラス基材34の第1,第2のガラス基板12,22との当接面に、印刷や焼結によってカーボンブラック等からなるレーザ光吸収材層を設けておくことが望ましい。   Further, in the laser welding process (see FIG. 7), irradiation is performed when a laser light absorbing material 35 such as carbon black, magic ink, or printer toner is interposed at the interface between the sealing glass base material 34 and the glass substrates 12 and 22. The laser light absorbing material 35 absorbs the laser light L2, and the sealing glass base material 34 is instantaneously melted and welded to the first and second base materials 12 and 22. For this reason, in order to minimize the influence of heat at the time of laser welding on the organic EL element body 1A, for example, with the first and second glass substrates 12 and 22 of the sealing glass substrate 34, It is desirable to provide a laser light absorber layer made of carbon black or the like on the contact surface by printing or sintering.

また、コ字型の封着ガラス基材34の端部34aは、図4,5に示すように、水平断面円弧形状に形成されて、巾d1のシール剤封着部30aと巾d2(<d1)のレーザ封着部30bとの接合界面30cの面積(封着部30の巾方向における接合界面30cの長さ)が拡大されていることから、シール剤封着部30aとレーザ封着部30bとの接合界面30cを通して素子1の内部(封着部30の内側)に水蒸気が侵入し難い。   Further, as shown in FIGS. 4 and 5, the end 34a of the U-shaped sealing glass substrate 34 is formed in a horizontal arcuate shape, and has a sealing agent sealing portion 30a having a width d1 and a width d2 (< d1) Since the area of the bonding interface 30c with the laser sealing portion 30b (the length of the bonding interface 30c in the width direction of the sealing portion 30) is enlarged, the sealing agent sealing portion 30a and the laser sealing portion Water vapor hardly enters the inside of the element 1 (inside the sealing portion 30) through the bonding interface 30c with 30b.

次に、有機EL素子1の製造方法の一例を説明する。   Next, an example of a method for manufacturing the organic EL element 1 will be described.

透明ガラス基板12に有機EL素子本体1Aの一部(導電膜14および発光層40)を積層一体化した陽極側基材10と、透明ガラス基板22に有機EL素子本体1Aの一部(導電性金属薄膜24)を積層一体化した陰極側基材20を予め用意しておく。そして、発光層40と導電性金属薄膜24が密着するように陽極側基材10(ガラス基板12)と陰極側基材20(ガラス基板22)を対向させた形態で、陽極側基材10(ガラス基板12)と陰極側基材20(ガラス基板22)間の有機EL素子本体1Aを取囲む周縁部を封着一体化するが、この封着工程は、真空雰囲気にしたグローブボックス(図示せず)内で行う。   A part of the organic EL element body 1A (conductive film 14 and light emitting layer 40) laminated on the transparent glass substrate 12 and the anode-side base material 10, and a part of the organic EL element body 1A (conductive) on the transparent glass substrate 22. A cathode-side substrate 20 in which metal thin films 24) are laminated and integrated is prepared in advance. The anode side substrate 10 (glass substrate 12) and the anode side substrate 10 (glass substrate 22) face each other so that the light emitting layer 40 and the conductive metal thin film 24 are in close contact with each other. The peripheral portion surrounding the organic EL element body 1A between the glass substrate 12) and the cathode side base material 20 (glass substrate 22) is sealed and integrated. This sealing step is performed in a glove box (not shown) in a vacuum atmosphere. )).

即ち、封着工程は、まず、図5に示すように、発光層40側が上向きとなるように水平に配置した陽極側基材10(ガラス基板12)のレーザ溶着代A1に封着ガラス基材34を載置する。次いで、陰極側基材20(ガラス基板22)を導電性金属薄膜24側を下向きにして陽極側基材10(ガラス基板12)上に載置する。このとき、陽極側基材10(ガラス基板12)が封着ガラス基材34に担持されるとともに、導電性金属薄膜24と発光層40が当接する形態となる。次いで、ガラス基板12,14間の側縁部12d,22dに沿った巾d1の領域にシール剤32を装填する。これによって、ガラス基板12,22間の周縁部に沿って延在するシール剤32および封着ガラス基材34が有機EL素子本体1Aを取り囲む形態となる。次に、導電性金属薄膜24と発光層40が密着する方向に透明ガラス基板12,22を付勢保持しつつ、透明ガラス基板12の側からレーザ光L2を封着ガラス基材34に照射(図7参照)して、ガラス基板12,22の側縁部12a,12c,12b;22a,22c,22b間をレーザ封着部30bで封着(ガラス溶着)し、さらに、透明ガラス基板12の側から紫外線L1をシール剤32に照射(図6参照)して、ガラス基板12,22の側縁部12c;22c間をシール剤封着部30aで封着することで、有機EL素子1が完成する。なお、封着ガラス基材34へのレーザ光L2の照射と、シール剤32への紫外線L1の照射は、いずれを先に行ってもよいし、同時に行うようにしてもよい。   That is, in the sealing step, first, as shown in FIG. 5, the sealing glass base material is bonded to the laser welding allowance A1 of the anode side base material 10 (glass substrate 12) arranged horizontally so that the light emitting layer 40 side faces upward. 34 is placed. Next, the cathode side substrate 20 (glass substrate 22) is placed on the anode side substrate 10 (glass substrate 12) with the conductive metal thin film 24 side facing downward. At this time, the anode side base material 10 (glass substrate 12) is carried on the sealing glass base material 34, and the conductive metal thin film 24 and the light emitting layer 40 are brought into contact with each other. Next, the sealing agent 32 is loaded in the region of the width d1 along the side edges 12d and 22d between the glass substrates 12 and 14. As a result, the sealing agent 32 and the sealing glass substrate 34 extending along the peripheral edge between the glass substrates 12 and 22 surround the organic EL element body 1A. Next, the sealing glass substrate 34 is irradiated with the laser beam L2 from the transparent glass substrate 12 side while urging and holding the transparent glass substrates 12 and 22 in the direction in which the conductive metal thin film 24 and the light emitting layer 40 are in close contact ( 7), the side edges 12a, 12c, 12b of the glass substrates 12, 22; 22a, 22c, 22b are sealed with a laser sealing portion 30b (glass welding), and the transparent glass substrate 12 The organic EL element 1 is formed by irradiating the sealing agent 32 with ultraviolet rays L1 from the side (see FIG. 6) and sealing between the side edges 12c; 22c of the glass substrates 12 and 22 with the sealing agent sealing portion 30a. Complete. Note that either the irradiation of the laser light L2 onto the sealing glass substrate 34 and the irradiation of the ultraviolet light L1 onto the sealing agent 32 may be performed first or at the same time.

以上説明した第1の実施例の有機EL素子1では、以下のような作用・効果がある。   The organic EL element 1 of the first embodiment described above has the following operations and effects.

第1には、シール剤封着部30aに比べると、気密性に優れた封着基材34をレーザ溶着したレーザ封着部30bでは気体の通過が確実に阻止されるので、ダークスポットの発生や電極材料の腐蝕の原因となる外気(水蒸気)がレーザ封着部30bを通して素子1の内部に侵入するおそれは全くない。したがって、有機EL素子の周縁部全体がシール剤で封着されている従来構造に比べて、封着領域のほぼ3/4の領域がレーザ溶着により封着されている(レーザ封着部30bで構成されている)本実施例では、封着部30を通して素子1の内部(封着部30の内側)に侵入する水蒸気の量が少なく、それだけダークスポットの発生や電極材料の腐蝕が抑制されて、素子1の寿命が保証されている。   First, in comparison with the sealing agent sealing portion 30a, the laser sealing portion 30b obtained by laser welding the sealing base material 34, which is excellent in airtightness, reliably prevents the passage of gas, thereby generating dark spots. In addition, there is no possibility that outside air (water vapor) that causes corrosion of the electrode material enters the element 1 through the laser sealing portion 30b. Therefore, as compared with the conventional structure in which the entire peripheral portion of the organic EL element is sealed with a sealing agent, almost 3/4 of the sealing region is sealed by laser welding (in the laser sealing portion 30b). In this embodiment, the amount of water vapor entering the inside of the element 1 (inside the sealing portion 30) through the sealing portion 30 is small, and the generation of dark spots and the corrosion of the electrode material are suppressed accordingly. The lifetime of the element 1 is guaranteed.

第2には、レーザ封着部30bでは、その巾とは関係なく、水蒸気の素子1内部への侵入が確実に阻止されるので、本実施例では、レーザ封着部30bの幅d2をシール剤封着部30aの巾d1よりも小さくすることで、平板状の基板12,22の面積に対する発光層40の面積(有機EL素子1の有効発光面積)が拡大されている。   Secondly, in the laser sealing portion 30b, the water vapor is surely prevented from entering the element 1 regardless of the width thereof. In this embodiment, the width d2 of the laser sealing portion 30b is sealed. By making the width smaller than the width d1 of the agent sealing portion 30a, the area of the light emitting layer 40 relative to the area of the flat substrates 12 and 22 (effective light emitting area of the organic EL element 1) is expanded.

第3には、第1,第2のガラス基板12,22の周縁部に沿って帯状に延在する封着部30のうち、レーザ溶着すると電極への通電路(導電膜14の端部領域14a,導電性金属薄膜24の端部領域24a)を損傷させるおそれのある側縁部12d,22d間の封着部については、シール剤封着部30aで構成されているので、電極への通電路としての機能が損なわれる(例えば断線)おそれは全くない。   Thirdly, among the sealing portions 30 extending in a strip shape along the peripheral edge portions of the first and second glass substrates 12 and 22, when laser welding is performed, a current path to the electrode (an end region of the conductive film 14) is formed. 14a, the sealing portion between the side edge portions 12d and 22d, which may damage the end region 24a) of the conductive metal thin film 24, is composed of the sealing agent sealing portion 30a. There is no possibility that the function as the electric circuit is impaired (for example, disconnection).

第4には、隙間が発生するおそれのある発光層40と導電性金属薄膜24間が密着するとともに、同じく隙間が発生するおそれのある有機EL素子本体1Aと封着部30(30a,30b)間が密着して、素子1の内部(封着部30の内側)には隙間が全くないことから、素子1を製造する過程で、ダークスポットの発生や電極材料の腐蝕の原因となる外気が素子1の内部(封着部30の内側)に取り込まれるおそれがなく、素子1の寿命がさらにいっそう保証されている。   Fourthly, the light emitting layer 40 and the conductive metal thin film 24 that may cause a gap are in close contact with each other, and the organic EL element body 1A and the sealing portion 30 (30a and 30b) that are likely to cause a gap as well. Since there is no gap inside the element 1 (inside the sealing part 30), outside air that causes generation of dark spots and corrosion of the electrode material is produced in the process of manufacturing the element 1. There is no risk of being taken into the inside of the element 1 (inside the sealing portion 30), and the lifetime of the element 1 is further guaranteed.

図8(a),(b)は、本発明の第2,第3の実施例である有機EL素子の要部断面図である。   FIGS. 8A and 8B are cross-sectional views of the main part of an organic EL element according to the second and third embodiments of the present invention.

前記した第1の実施例では、封着ガラス基材34が第1,第2のガラス基板12,22とは別体に構成されていたが、本発明の第2,第3の実施例のように、封着ガラス基材34B,32Cが第1,第2のガラス基板12,22と一体に構成(一体成形)されていてもよい。   In the first embodiment described above, the sealing glass substrate 34 is configured separately from the first and second glass substrates 12 and 22, but the second and third embodiments of the present invention. Thus, the sealing glass base materials 34B and 32C may be configured integrally (integral molding) with the first and second glass substrates 12 and 22.

即ち、図8(a)は、封着ガラス基材34Bが第2のガラス基板22の一部で構成されており、図8(b)は、封着ガラス基材34C,34Cが第1,第2のガラス基板12,22の一部でそれぞれ構成されている。そして、封着ガラス基材34Bと第1のガラス基板12との間、封着ガラス基材34C,34C間に、それぞれレーザ光吸収材35を介在させた形態でレーザ溶着される。   That is, in FIG. 8A, the sealing glass substrate 34B is configured by a part of the second glass substrate 22, and in FIG. 8B, the sealing glass substrates 34C and 34C are the first and second glass substrates 22, respectively. Each of the second glass substrates 12 and 22 is constituted by a part. Then, laser welding is performed between the sealing glass substrate 34B and the first glass substrate 12 and between the sealing glass substrates 34C and 34C in a form in which the laser light absorbing material 35 is interposed.

この第2,第3の実施例では、第1,第2のガラス基板12,22以外に別部材としての封着ガラス基材を必要としないため、それだけ構成が簡潔である。   In the second and third embodiments, a sealing glass substrate as a separate member is not required in addition to the first and second glass substrates 12 and 22, and thus the configuration is simple.

また、前記第1の実施例では、封着ガラス基材34を第1,第2のガラス基板12,22にそれぞれレーザ溶着(2箇所溶着)する必要があるが、これらの実施例では、1箇所だけレーザ溶着すればよく、それだけ溶着工程が容易となる。   In the first embodiment, the sealing glass substrate 34 needs to be laser-welded (welded in two places) to the first and second glass substrates 12 and 22, respectively. In these embodiments, 1 It is only necessary to perform laser welding for only a portion, and the welding process is facilitated accordingly.

また、前記した第1〜第3の実施例では、封着ガラス基材と第1,第2のガラス基板12,22との間にレーザ光吸収材35を介在させて、レーザ光が照射された封着ガラス基材はレーザ光吸収材35位置において瞬時に溶着されるように構成されていたが、図9(a),(b)に示すように、封着ガラス基材34D,34E内にレーザ光吸収材が分散された構造であってもよい。   In the first to third embodiments described above, the laser beam is irradiated with the laser beam absorber 35 interposed between the sealing glass substrate and the first and second glass substrates 12 and 22. The sealed glass base material was configured to be welded instantaneously at the position of the laser light absorbing material 35, but as shown in FIGS. 9 (a) and 9 (b), the sealed glass base material 34D, 34E Alternatively, a structure in which the laser light absorbing material is dispersed may be used.

即ち、図9(a)に示す第4の実施例では、レーザ光吸収材が分散された封着ガラス基材34Dが、第1,第2のガラス基板12,22とは別部材で構成されている。図9(b)に示す第5の実施例は、レーザ光吸収材が分散された封着ガラス基材34Eが、第2のガラス基板22と一体成形されている(第2のガラス基板22の一部で構成されている)。   That is, in the fourth embodiment shown in FIG. 9A, the sealing glass base material 34D in which the laser light absorbing material is dispersed is constituted by a member different from the first and second glass substrates 12 and 22. ing. In the fifth embodiment shown in FIG. 9B, the sealing glass base material 34E in which the laser light absorbing material is dispersed is formed integrally with the second glass substrate 22 (of the second glass substrate 22). Part of it).

これらの第4,第5の実施例においても、前記した第2,第3の実施例と同様に、第1,第2のガラス基板12,22以外に別部材としての封着ガラス基材を必要としないため、それだけ構成が簡潔である。また、1箇所だけレーザ溶着すればよく、それだけ溶着工程が容易となる。   In these fourth and fifth embodiments, as in the second and third embodiments described above, a sealing glass substrate as a separate member other than the first and second glass substrates 12 and 22 is used. Since it is not necessary, the configuration is concise. Further, it is only necessary to perform laser welding at one place, and the welding process is facilitated accordingly.

なお、前記した種々の実施例では、陽極側基材10を構成する第1の基板12および陰極側基材20を構成する第2の基板22がいずれも透明ガラス板で構成されていたが、ガラス板以外にも、例えば、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)、ポリカーボネート(PC)などの透明合成樹脂板で構成してもよい。   In the various embodiments described above, the first substrate 12 constituting the anode side base material 10 and the second substrate 22 constituting the cathode side base material 20 were both made of a transparent glass plate. In addition to the glass plate, for example, a transparent synthetic resin plate such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or polycarbonate (PC) may be used.

また、陽極側基材10を構成する第1の基板12および陰極側基材20を構成する第2の基板22が透明合成樹脂製基板で構成されている場合は、シール剤32は樹脂を接合封着するに適したシール剤で、封着基材34も、第1の基板および第2の基板と同材質で、樹脂のレーザ溶着に適した封着樹脂基材で構成することが望ましい。   Further, when the first substrate 12 constituting the anode side base material 10 and the second substrate 22 constituting the cathode side base material 20 are constituted by a transparent synthetic resin substrate, the sealing agent 32 bonds the resin. It is desirable that the sealing base material 34 is made of the same material as the first substrate and the second substrate and is made of a sealing resin base material suitable for laser welding of resin.

また、透明導電膜14としては、スズ添加酸化インジウム(ITO)に代えて、フッ素添加酸化インジウム(IZO)や酸化亜鉛(ZnO)や酸化スズ(SnO)や酸化インジウム(In)などの他の透明な酸化物半導体や、これらの複数種を積層したものであってもよい。 Further, as the transparent conductive film 14, instead of tin-added indium oxide (ITO), fluorine-added indium oxide (IZO), zinc oxide (ZnO 2 ), tin oxide (SnO 2 ), indium oxide (In 2 O 3 ). Other transparent oxide semiconductors such as those described above or a laminate of a plurality of these may be used.

また、導電性金属薄膜24としては、銀マグネシウム(MgAg)以外の低仕事関数の金属であるアルカリ土類金属やアルカリ金属であってもよい。特に、導電性金属薄膜24として透明なものを採用した場合は、陽極側の基材10(基板12)および陰極側の基材20(基板22)の双方を発光させることができる。   Further, the conductive metal thin film 24 may be an alkaline earth metal or an alkali metal which is a low work function metal other than silver magnesium (MgAg). In particular, when a transparent conductive metal thin film 24 is employed, both the anode-side base material 10 (substrate 12) and the cathode-side base material 20 (substrate 22) can emit light.

また、陰極側の基板22,導電膜24を透明なものとするとともに、陽極側の基板12,導電膜14を不透明なものにして、陰極側だけを発光させることもできる。   Further, the cathode-side substrate 22 and the conductive film 24 can be made transparent, and the anode-side substrate 12 and the conductive film 14 can be made opaque so that only the cathode side can emit light.

また、発光層40は、正孔注入層44としてポリニアニン,正孔輸送層43としてフルオレン系,発光層本体42としてガリウム錯体,電子輸送層45としてトリアゾール誘導体を用いた構成であってもよい。   The light emitting layer 40 may have a configuration using polynianin as the hole injection layer 44, a fluorene-based material as the hole transport layer 43, a gallium complex as the light emitting layer body 42, and a triazole derivative as the electron transport layer 45.

また、前記した実施例では、発光層40は、正孔注入層44,正孔輸送層43,発光層本体42,電子輸送層45および電子注入層46が積層形成された五層構造として説明したが、正孔輸送注入層と発光層本体と電子輸送注入層が積層形成された三層構造であってもよい。   In the above-described embodiment, the light emitting layer 40 is described as a five-layer structure in which the hole injection layer 44, the hole transport layer 43, the light emitting layer body 42, the electron transport layer 45, and the electron injection layer 46 are stacked. However, it may have a three-layer structure in which a hole transport injection layer, a light emitting layer body, and an electron transport injection layer are stacked.

また、前記した実施例では、電極(陽極)への通電路が透明導電膜14の一部14aによって構成され、電極(陰極)への通電路が導電性金属薄膜24の一部24aによって構成されていたが、電極(陽極,陰極)への通電路を電極(陽極,陰極)にそれぞれ接続されたリード線(図示せず)によって構成するようにしてもよい。   In the above-described embodiment, the energization path to the electrode (anode) is constituted by a part 14 a of the transparent conductive film 14, and the energization path to the electrode (cathode) is constituted by a part 24 a of the conductive metal thin film 24. However, the energization path to the electrodes (anode, cathode) may be constituted by lead wires (not shown) connected to the electrodes (anode, cathode), respectively.

また、前記した実施例では、陰極を構成する導電膜が平板状基材に積層一体化されていたが、陰極を構成する導電膜が平板状基材ではなく、発光層に積層形成一体化された構造であってもよい。   In the above-described embodiment, the conductive film constituting the cathode is laminated and integrated on the flat substrate, but the conductive film constituting the cathode is laminated and integrated on the light emitting layer instead of the flat substrate. The structure may be different.

また、前記した実施例では、携帯電話などのディスプレイや表示装置に用いる有機EL素子について説明したが、自動車用ヘッドランプの灯室内に配置されるエクステンションの例えば前面側所定領域に設ける面発光体として用いるなど、本発明に係る有機EL素子は、自動車用灯具の灯室内に収容する灯具構成部材の所定領域に設ける発光体としても利用できる。   In the above-described embodiment, the organic EL element used in a display such as a mobile phone or a display device has been described. However, as a surface light emitter provided in a predetermined area on the front side of an extension disposed in a lamp chamber of an automobile headlamp, for example. For example, the organic EL element according to the present invention can be used as a light emitter provided in a predetermined region of a lamp component member housed in a lamp chamber of an automotive lamp.

本発明の第1の実施例である有機EL素子の縦断面図である。It is a longitudinal cross-sectional view of the organic EL element which is the 1st Example of this invention. 同有機EL素子の縦断面図(図1に示す線II―IIに沿う断面図)である。It is a longitudinal cross-sectional view (cross-sectional view in alignment with line II-II shown in FIG. 1) of the organic EL element. 同有機EL素子の縦断面図(図1に示す線III―IIIに沿う断面図)である。It is a longitudinal cross-sectional view (cross-sectional view which follows the line III-III shown in FIG. 1) of the organic EL element. 同有機EL素子の封着部位置における水平断面図(図1に示す線IV―IVに沿う断面図)である。It is a horizontal sectional view in the sealing part position of the organic EL element (sectional view taken along line IV-IV shown in FIG. 1). 同有機EL素子の分解斜視図である。It is a disassembled perspective view of the organic EL element. 基板周縁部を封着する工程を説明する断面図である。It is sectional drawing explaining the process of sealing a board | substrate peripheral part. 基板周縁部を封着する工程を説明する断面図である。It is sectional drawing explaining the process of sealing a board | substrate peripheral part. 本発明の第2,第3の実施例である有機EL素子の要部縦断面図で、(a)は封着基材が第2の基板の一部で構成されている第2の実施例を、(b)は封着基材が第1,第2の基板の一部でそれぞれ構成されている第2の実施例を示す図である。It is a principal part longitudinal cross-sectional view of the organic EL element which is the 2nd, 3rd Example of this invention, (a) is 2nd Example by which the sealing base material is comprised by a part of 2nd board | substrate. (B) is a figure which shows the 2nd Example by which the sealing base material is each comprised by a part of 1st, 2nd board | substrate. 本発明の第4,第5の実施例である有機EL素子の要部縦断面図で、(a)は封着基材が第1,第2の基板と別部材で構成されている第4の実施例を、(b)は封着基材が第2の基板の一部で構成されている第5の実施例を示す図である。It is a principal part longitudinal cross-sectional view of the organic EL element which is the 4th, 5th Example of this invention, (a) is the 4th by which the sealing base material is comprised by the 1st, 2nd board | substrate and another member. (B) is a figure which shows the 5th Example by which the sealing base material is comprised by a part of 2nd board | substrate.

符号の説明Explanation of symbols

1 有機EL素子
1A 有機EL素子本体
10 陽極側の平板状基材
12 第1の透明ガラス基板
14 陽極を構成する透明導電膜
14a 陽極への通電路を構成する透明導電膜の端部領域
A1,A2 レーザ溶着代
20 陰極側の平板状基材
22 第2の透明ガラス基板
24 陰極を構成する導電性金属薄膜
24a 陰極への通電路を構成する導電性金属薄膜の端部領域
30 封着部
30a シール剤封着部
30b レーザ封着部
30c シール剤封着部とレーザ封着部との接合界面
32 シール剤
34,34B,34C,34D,34E 封着ガラス基材
35 レーザ光吸収材
L1 紫外線
L2 レーザ光
DESCRIPTION OF SYMBOLS 1 Organic EL element 1A Organic EL element main body 10 Flat substrate 12 on the anode side First transparent glass substrate 14 Transparent conductive film 14a constituting the anode End region A1, of the transparent conductive film constituting the current path to the anode A2 Laser welding allowance 20 Flat substrate 22 on the cathode side Second transparent glass substrate 24 Conductive metal thin film 24a constituting the cathode End region 30 of the conductive metal thin film constituting the current path to the cathode Sealed portion 30a Sealing agent sealing portion 30b Laser sealing portion 30c Bonding interface 32 between sealing agent sealing portion and laser sealing portion Sealing agent 34, 34B, 34C, 34D, 34E Sealing glass substrate 35 Laser light absorbing material L1 Ultraviolet light L2 Laser light

Claims (4)

対向する第1の平板状基材と第2の平板状基材との間に、導電膜で構成された一対の電極間に有機化合物で構成された発光層を介在させた有機EL素子本体が配置されて、前記第1,第2の平板状基材間の前記発光層を取囲む周縁部が封着された有機EL素子であって、
前記第1,第2の基材間の周縁部に沿った封着領域の一部には、前記電極に導通する通電路が設けられ、前記封着領域のうち、少なくとも前記通電路と重なる領域は、介装したシール剤によって封着されるとともに、前記通電路と重ならない領域は、介装した前記第1,第2の基材と同材質の封着基材をレーザ溶着することによって封着されたことを特徴とする有機EL素子。
An organic EL element body in which a light emitting layer composed of an organic compound is interposed between a pair of electrodes composed of a conductive film between a first flat substrate and a second planar substrate facing each other. An organic EL element that is disposed and has a peripheral edge that surrounds the light emitting layer between the first and second flat-plate base materials sealed,
A part of the sealing area along the peripheral edge between the first and second bases is provided with an energization path that conducts to the electrode, and of the sealing area, an area that overlaps at least the energization path Is sealed by the interposed sealing agent, and the region that does not overlap the current path is sealed by laser welding a sealing substrate of the same material as the interposed first and second substrates. An organic EL device characterized by being worn.
前記第1,第2の平板状基材の一方には、電極を構成する前記透明導電膜および前記発光層が順次積層一体化され、他方には、対向電極を構成する前記導電膜が積層一体化され、
前記発光層と前記対向電極が密着するとともに、前記封着領域の内側が前記有機EL素子本体の外側に一致するように構成されたことを特徴とする請求項1に記載の有機EL素子。
The transparent conductive film and the light emitting layer constituting the electrode are sequentially laminated and integrated on one of the first and second flat base materials, and the conductive film constituting the counter electrode is laminated and integrated on the other. And
2. The organic EL element according to claim 1, wherein the light emitting layer and the counter electrode are in close contact with each other, and an inner side of the sealing region coincides with an outer side of the organic EL element body.
前記封着基材は、前記第1の基材または第2の基材の少なくともいずれか一方との一体成形体で構成されたことを特徴とする請求項1または2に記載の有機EL素子。   The organic EL element according to claim 1, wherein the sealing base material is formed of an integrally molded body with at least one of the first base material and the second base material. 前記封着基材と前記第1,第2の基材との界面にレーザ光吸収材が介在されるか、または前記封着基材中にレーザ光吸収材が分散されたことを特徴とする請求項1〜3のいずれかに記載の有機EL素子。   A laser light absorbing material is interposed at an interface between the sealing base material and the first and second base materials, or a laser light absorbing material is dispersed in the sealing base material. The organic EL element in any one of Claims 1-3.
JP2008100000A 2008-04-08 2008-04-08 Organic el element Pending JP2009252571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008100000A JP2009252571A (en) 2008-04-08 2008-04-08 Organic el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008100000A JP2009252571A (en) 2008-04-08 2008-04-08 Organic el element

Publications (1)

Publication Number Publication Date
JP2009252571A true JP2009252571A (en) 2009-10-29

Family

ID=41313085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008100000A Pending JP2009252571A (en) 2008-04-08 2008-04-08 Organic el element

Country Status (1)

Country Link
JP (1) JP2009252571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230069855A1 (en) * 2021-09-03 2023-03-09 Neuralink Corp Glass welding through non-flat surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230069855A1 (en) * 2021-09-03 2023-03-09 Neuralink Corp Glass welding through non-flat surface

Similar Documents

Publication Publication Date Title
US8836213B2 (en) Organic light emitting diode display
EP1814176B1 (en) Organic light-emitting display device and method for fabricating the same
JP4672677B2 (en) Organic electroluminescent display device and manufacturing method thereof
EP1814174B1 (en) Organic light-emitting display device and method for fabricating the same
EP1814177B1 (en) Oganic light-emitting display device and method for fabricating the same
US20130221341A1 (en) Photoelectric conversion device, and process for manufacturing photoelectric conversion device
US8742526B2 (en) Photoelectric conversion device
US8344389B2 (en) Optoelectronic device array
US20050174039A1 (en) Display panel and method for manufacturing display panel
TWI335773B (en) Organic light-emitting display and method of making the same
KR101858182B1 (en) Organic light emitting diode display
US8796920B2 (en) Organic light emitting display and fabricating method of the same
JP2005078906A (en) Organic electroluminescence panel
JP2009016185A (en) Organic el panel
JP2009252571A (en) Organic el element
US10249845B2 (en) Optoelectronic component and method for producing an optoelectronic component
JP6617024B2 (en) Light emitting device
JP2003264064A (en) Luminescence display device, organic el display device and manufacturing method of the same
KR20080023485A (en) Method of encapsulating organic electro-luminescence device and organic electro-luminescence device
JP2015115191A (en) Organic electroluminescent element, manufacturing method thereof and luminaire
JP4936178B2 (en) EL light emitting device and lighting system using the same
KR101794646B1 (en) Organic light emitting display device
JP5330655B2 (en) Organic EL display device
JP2014017208A (en) Organic electroluminescent element
JP2019079731A (en) Light emitting device