JP2009252349A - Electrode plate for nonaqueous electrolyte secondary battery, and manufacturing method of the same - Google Patents

Electrode plate for nonaqueous electrolyte secondary battery, and manufacturing method of the same Download PDF

Info

Publication number
JP2009252349A
JP2009252349A JP2008094670A JP2008094670A JP2009252349A JP 2009252349 A JP2009252349 A JP 2009252349A JP 2008094670 A JP2008094670 A JP 2008094670A JP 2008094670 A JP2008094670 A JP 2008094670A JP 2009252349 A JP2009252349 A JP 2009252349A
Authority
JP
Japan
Prior art keywords
active material
electrode plate
material layer
density
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008094670A
Other languages
Japanese (ja)
Inventor
Shinobu Sunose
忍 須納瀬
Tatsuya Hashimoto
達也 橋本
Masaya Okochi
正也 大河内
Hiroshi Matsuyama
浩 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008094670A priority Critical patent/JP2009252349A/en
Publication of JP2009252349A publication Critical patent/JP2009252349A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrode plate for a nonaqueous electrolyte secondary battery in which a peeling of an active material layer formed on a current collector and an electrode plate breakage while the electrode plate is wound is controlled and an excellent productivity is attained. <P>SOLUTION: In the manufacturing method of an electrode plate for a nonaqueous electrolyte secondary battery, a part of an active material layer on one side of an electrode plate in an outermost circumferential portion of a battery is removed and a thickness of the coated active material layer on the opposite side with a current collector in-between is made larger than that of the coated active material layer of the electrode plate of the other inner circumferential portion, and a mixture filling density of the active material layer in the outermost circumferential portion is made higher than that in the inner circumferential portion to attain an excellent productivity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水電解液二次電池用電極板の製造方法に関するものである。   The present invention relates to a method for producing an electrode plate for a non-aqueous electrolyte secondary battery.

近年、民生用電子機器のポータブル化、コードレス化が急速に進んでいる。現在、これら電子機器の駆動用電源としての役割を、ニッケル−カドミウム電池、ニッケル−水素電池あるいは密閉型小型鉛蓄電池が担っているが、ポータブル化、コードレス化が進展し、定着するに従い、駆動用電源となる二次電池の高エネルギー密度化、小型軽量化の要望が強くなっている。   In recent years, consumer electronic devices have become increasingly portable and cordless. Currently, nickel-cadmium batteries, nickel-hydrogen batteries, or sealed small lead-acid batteries play a role as the power source for driving these electronic devices. There is a strong demand for higher energy density, smaller size, and lighter weight of secondary batteries as power sources.

また、小型のパソコン、通信機器などに代表されるような機器の急速な市場の拡大により高率充放電が可能な非水電解液二次電池も同時に要望されている。   There is also a demand for a non-aqueous electrolyte secondary battery capable of high-rate charging / discharging due to rapid market expansion of devices such as small personal computers and communication devices.

このような非水電解液二次電池に対応を図るため、例えば正極板と負極板をセパレータを間に介在して巻回したスパイラル構造とすることにより、電極面積をできるだけ大きくする工夫がなされ実用化されている。   In order to cope with such a non-aqueous electrolyte secondary battery, for example, by making a spiral structure in which a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween, a device for making the electrode area as large as possible has been made practical. It has become.

例えば前記非水電解液二次電池のスパイラル状に巻いた正極板の最外周および最内周に相当する部分で、かつ正極板と対向しない部分の正極板の集電体表面を露出することにより有効電極面積を大きくして電池性能を向上させている(例えば特許文献1参照)。
特開2000−195556号公報
For example, by exposing the current collector surface of the positive electrode plate in a portion corresponding to the outermost and innermost periphery of the positive electrode plate spirally wound of the non-aqueous electrolyte secondary battery and not facing the positive electrode plate The battery performance is improved by increasing the effective electrode area (see, for example, Patent Document 1).
JP 2000-195556 A

しかしながら、このような非水電解液二次電池を実用化するためには、極板製造工程において塗布、乾燥させた極板を、次工程である圧延工程にて高密度に圧延する必要がある。   However, in order to put such a non-aqueous electrolyte secondary battery into practical use, it is necessary to roll the electrode plate coated and dried in the electrode plate manufacturing process at high density in the next rolling process. .

圧延方法については、ある一定の隙間を電極が通過する定寸圧延方法、または、一定の圧力下を電極が通過する定圧圧延方法がある。しかし、どちらの方法においても、集電体の片面にしか活物質層が形成されていない片面活物質層部分は、集電体の両面に活物質層が形成された両面活物質部分に対し、集電体の片面にしか活物質層が形成されていないため、両面活物質層部分より極板の厚みが小さくなる。   As for the rolling method, there are a sizing rolling method in which an electrode passes through a certain gap, or a constant pressure rolling method in which an electrode passes under a certain pressure. However, in either method, the single-sided active material layer part in which the active material layer is formed only on one side of the current collector is compared with the double-sided active material part in which the active material layer is formed on both sides of the current collector. Since the active material layer is formed only on one side of the current collector, the thickness of the electrode plate is smaller than that of the double-sided active material layer portion.

そのため塗布、乾燥させた極板を所定の密度に圧延する際に、片面活物質層部分にかかる圧力が、両面活物質層部分にかかる圧力より小さくなり、圧延時、片面活物質層部分が十分に圧延されないと言った課題がある。   Therefore, when the coated and dried electrode plate is rolled to a predetermined density, the pressure applied to the single-sided active material layer portion is smaller than the pressure applied to the double-sided active material layer portion, and the single-sided active material layer portion is sufficient during rolling. There is a problem that is not rolled.

さらに、片面活物質層部分は集電体との密着性が十分でないこともあり、その結果、集電体から活物質層が脱落するといった課題もあった。   Furthermore, the single-sided active material layer portion may not have sufficient adhesion to the current collector, and as a result, there is a problem that the active material layer falls off from the current collector.

前記片面活物質層部分の活物質層の脱落を防ぐために、片面活物質層部分について所定の密度にしようとすると、両面活物質層部分に過剰な圧力が付与されることとなり、同時に集電体へも過剰な負荷が付与されることになる。このことにより集電体の強度低下による極板の破断が生じ易く、巻回工程における極板の巻回作業が困難になり、巻回速度を上げることができず生産性が著しく低下する。   In order to prevent the active material layer of the single-sided active material layer from falling off, an excessive pressure is applied to the double-sided active material layer part when the density of the single-sided active material layer part is set to a predetermined density. An excessive load is also applied to the device. As a result, the electrode plate is liable to break due to a decrease in strength of the current collector, making it difficult to wind the electrode plate in the winding process, and the winding speed cannot be increased, resulting in a significant reduction in productivity.

上記課題を解決するため本発明は、正極板と負極板とをセパレータを介してスパイラル状に巻回して構成した電池において、電池最外周部分の極板の片面の活物質層の一部を除去して、集電体を介したその反対側の塗布された活物質層の厚みを、他の内周部分の極板の塗布された活物質層の厚みより大きくすることにより、最外周部分の極板の活物質層の合剤充填密度が、内周部分の活物質層の合剤充填密度よりも高くすることとしたものである。   In order to solve the above problems, the present invention removes a part of the active material layer on one side of the electrode plate at the outermost periphery of the battery in a battery in which a positive electrode plate and a negative electrode plate are wound spirally through a separator. Then, by making the thickness of the applied active material layer on the opposite side through the current collector larger than the thickness of the applied active material layer of the other inner peripheral electrode plate, The mixture filling density of the active material layer of the electrode plate is made higher than the mixture filling density of the active material layer in the inner peripheral portion.

ここで、片面活物質部分の合剤充填密度をM、両面活物質層部分の合剤充填密度をNとしたとき、活物質密度の比が0.7以下であるならば、片面活物質層部分の厚みが両面活物質部分の厚みに対し大きくなり、圧延時に片面活物質部分にかかる圧力が大きくなり片面活物質層部分の破断が生じる。   Here, when the mixture filling density of the single-sided active material portion is M and the mixture filling density of the double-sided active material layer portion is N, if the active material density ratio is 0.7 or less, the single-sided active material layer The thickness of the portion becomes larger than the thickness of the double-sided active material portion, the pressure applied to the single-sided active material portion during rolling increases, and the single-sided active material layer portion breaks.

また、活物質密度の比が1.0以上であれば、片面活物質層部分の厚みに対し両面活物質層部分の厚みが大きくなり、圧延時に片面活物質層部分にかかる圧力が小さくなり片面活物質層部分が十分に圧延されず、片面活物質層部分の剥がれが生じる。   Further, if the ratio of the active material density is 1.0 or more, the thickness of the double-sided active material layer part is increased with respect to the thickness of the single-sided active material layer part, and the pressure applied to the single-sided active material layer part during rolling is reduced. The active material layer portion is not sufficiently rolled, and the single-sided active material layer portion is peeled off.

以上のことから活物質密度の比は、0.7<N/M<1.0であるのが好ましい。   From the above, the active material density ratio is preferably 0.7 <N / M <1.0.

活物質密度を変化させる際、圧延機は定寸でプレスを行うため、圧延機で厚みを間欠的に変化させ、活物質密度を所定の密度にすることは難しい。また定圧プレスにおいても、片面部分を所定の密度にすると両面塗工部の密度が過剰になるため、片面部両面部について同時に所定の密度にすることは難しい。   When changing the active material density, the rolling mill presses at a constant size, so it is difficult to change the active material density to a predetermined density by intermittently changing the thickness with the rolling mill. Also in the constant pressure press, if the density on one side is set to a predetermined density, the density of the double-side coated part becomes excessive, so it is difficult to simultaneously set the density on both sides of the single-sided part.

そのため、活物質塗布時に片面活物質部分の厚みと、両面活物質部分の厚みを変化させ、それを圧延機で定寸プレスを行うことにより、所定の活物質密度比を求める。   Therefore, a predetermined active material density ratio is obtained by changing the thickness of the single-sided active material part and the thickness of the double-sided active material part when applying the active material, and performing a sizing press with a rolling mill.

セパレータを介してスパイラル状に巻回して構成された非水電解液二次電池であって、電池最外周部分の極板の片面の活物質層の一部を除去して、集電体を介したその反対側の合剤充填密度をMとし、他の内周部分の極板の活物質層の合剤充填密度をNとしたとき、合剤充填密度Mの活物質層塗布時の厚みを合剤充填密度Nの活物質層塗布時の厚みより大きくすることにより、極板の片面活物質層の合剤充填密度Mと、極板の両面活物質層の合剤充填密度Nとの比が0.7<N/M<1.0であるとき、片面活物質層部分の厚みが両面活物質層部分の厚みより大きくなり、圧延時片面活物質部分にかかる圧力が大きくなり密着性が向上する。   A non-aqueous electrolyte secondary battery configured by spirally winding through a separator, and removing a part of the active material layer on one side of the electrode plate at the outermost peripheral part of the battery, through a current collector When the mixture filling density on the opposite side is M and the mixture filling density of the active material layer of the other inner peripheral electrode plate is N, the thickness of the mixture filling density M when the active material layer is applied is The ratio of the mixture filling density M of the single-sided active material layer of the electrode plate to the mixture filling density N of the double-sided active material layer of the electrode plate by making the mixture packing density N larger than the thickness when the active material layer is applied. Is 0.7 <N / M <1.0, the thickness of the single-sided active material layer portion is greater than the thickness of the double-sided active material layer portion, and the pressure applied to the single-sided active material portion during rolling is increased, resulting in adhesion. improves.

その結果、活物質層の集電体からの剥がれが抑制され、また、極板巻回時に両面活物質層部分の破断や、片面活物質層部分の集電体からの脱落がなくなり、生産性が飛躍的に向上する。   As a result, the peeling of the active material layer from the current collector is suppressed, and there is no breakage of the double-sided active material layer part and no falling off of the single-sided active material layer part from the current collector when the electrode plate is wound. Will improve dramatically.

以下、本発明を実施するための最良の形態について図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

本発明は、以下の実施例に限定されない。   The present invention is not limited to the following examples.

本発明では、正極板と負極板とがセパレータを介してスパイラル状に巻回して構成した電池において、電池最外周部分の極板の片面の活物質層の一部を除去し、集電体を介したその反対側の塗料塗布後乾燥させた活物質層の合剤充填密度をMとし、他の内周部分の極
板の塗料塗布後乾燥させた活物質層の合剤充填密度Nとしたとき、合剤充填密度Mと合剤充填密度Nとの比が0.7<N/M<1.0とすることにより、塗料塗布後の片面活物質層部分の厚みが塗料塗布後の両面活物質層の厚みより大きくなり、圧延時、片面活物質部分にかかる圧力が大きくなり密着性があがる。電池巻回時の極板の破断や、活物質層の集電体からの脱落がなくなり、生産性を向上させることができる。
In the present invention, in a battery configured by winding a positive electrode plate and a negative electrode plate in a spiral shape via a separator, a part of the active material layer on one side of the electrode plate at the outermost peripheral part of the battery is removed, and the current collector is The mixture filling density of the active material layer dried after application of the coating material on the opposite side is defined as M, and the mixture filling density N of the active material layer dried after coating of the other inner peripheral electrode plate is defined as N. When the ratio of the mixture filling density M to the mixture filling density N is 0.7 <N / M <1.0, the thickness of the single-sided active material layer portion after coating is equal to both sides after coating. The thickness becomes larger than the thickness of the active material layer, and the pressure applied to the single-sided active material portion during rolling increases and adhesion is increased. Productivity can be improved because the electrode plate is not broken when the battery is wound and the active material layer is not detached from the current collector.

活物質密度の比が0.7以下であるならば、片面活物質層部分の厚みが両面活物質部分の厚みに対し大きくなり、圧延時に片面活物質部分にかかる圧力が大きくなり、片面活物質層部分の破断が生じる。   If the ratio of the active material density is 0.7 or less, the thickness of the single-sided active material layer portion becomes larger than the thickness of the double-sided active material portion, and the pressure applied to the single-sided active material portion during rolling becomes large. The layer part breaks.

また、活物質密度の比が1.0以上であれば、片面活物質層部分の厚みに対し両面活物質層部分の厚みが大きくなり、圧延時に片面活物質層部分にかかる圧力が小さくなり、片面活物質層部分が十分に圧延されず、片面活物質層部分の剥がれが生じる
図1は、本発明の正極用電極板の正極活物質形成構造を説明する断面図である。図2は、本発明の形成された正極活物質層を圧延した正極用電極板を説明する断面図である。
Moreover, if the ratio of the active material density is 1.0 or more, the thickness of the double-sided active material layer part is increased relative to the thickness of the single-sided active material layer part, and the pressure applied to the single-sided active material layer part during rolling is reduced, The single-sided active material layer portion is not sufficiently rolled, and the single-sided active material layer portion is peeled. FIG. 1 is a cross-sectional view illustrating the positive electrode active material forming structure of the positive electrode plate of the present invention. FIG. 2 is a cross-sectional view illustrating a positive electrode plate obtained by rolling a positive electrode active material layer formed according to the present invention.

正極は、帯状のアルミニウム箔からなる正極集電体に、正極塗料を塗布装置によって塗布、乾燥させ、正極活物質層を正極集電体の片面に形成した後に、正極集電体の反対面の所定の部分に、同様に正極塗料を塗布し、集電体の両面に正極活物質が存在する部分と、集電体の片面のみに正極活物質が存在する部分と、集電体のみで集電体の両面とも正極活物質が存在しない部分を形成した正極を作製する。   The positive electrode is applied to the positive electrode current collector made of a strip-shaped aluminum foil by applying a positive electrode paint with a coating apparatus and dried to form a positive electrode active material layer on one surface of the positive electrode current collector, and then on the opposite surface of the positive electrode current collector. Similarly, a positive electrode paint is applied to a predetermined portion, and the current collector is collected only by a portion where the positive electrode active material exists on both sides of the current collector, a portion where the positive electrode active material exists only on one side of the current collector, and the current collector alone. A positive electrode in which a portion where the positive electrode active material does not exist is formed on both surfaces of the electric body is prepared.

その後、図1の様に、集電体の片面のみに存在する正極活物質層部分に、正極塗料を塗布装置によって重ね塗りし乾燥させて厚くする。   Thereafter, as shown in FIG. 1, the positive electrode active material layer portion existing only on one side of the current collector is overcoated with a coating apparatus and dried to be thick.

正極活物質層部分の密度を変える方法は、公知のいずれの方法を適用してもよい。正極活物質部分の密度を変える方法を、以下に例示する。   Any known method may be applied to change the density of the positive electrode active material layer portion. A method for changing the density of the positive electrode active material portion is exemplified below.

正極活物質部分を重ね塗りする方法としては、例えば、厚みの均一な電極に、ストライプ塗布や、スクリーン印刷する方法、送液ポンプの押し出し流量を多くする方法などが挙げられる。   Examples of the method for repeatedly applying the positive electrode active material part include stripe coating, screen printing, and a method of increasing the extrusion flow rate of a liquid feed pump on an electrode having a uniform thickness.

図1の様に集電体の片面のみに存在する正極活物質層部分に、正極塗料を塗布装置によって重ね塗りし、乾燥させて厚くした極板を両面から、圧延ローラーによりロールプレスを行う。このとき、図2に示すように、集電体の片面活物質層の厚みが大きくなっているため、重ね塗りしない場合に比べ、片面活物質層にかかる圧力が大きくなり、片面活物質層がより均一に圧延される。   As shown in FIG. 1, the positive electrode active material layer portion present only on one side of the current collector is overcoated with a positive electrode coating material by a coating device, dried and thickened from both sides, and a roll press is performed with a rolling roller. At this time, as shown in FIG. 2, since the thickness of the single-sided active material layer of the current collector is large, the pressure applied to the single-sided active material layer is larger than that in the case where it is not overcoated. Rolled more uniformly.

(実施例1)
帯状のアルミニウム箔からなる正極集電体4に、活物質である日亜化学製のLiCoO2の粉末100重量部に、デンカブラック5重量部を混合し、ポリフッ化ビニリデン(PVDF)等の結着剤バインダーを4重量部入れたものを増粘材として、これを三菱化学製のN−メチル−2−ピロリドンの溶剤を7重量部で希釈して分散混合し、調製した正極塗料を塗布装置を用い、乾燥温度200℃で毎分15mの速度で塗料の塗布を行い、活物質層重量を200g/cm2として、表面に60cm塗布を行った後、10cm塗布をやめる。これを繰り返し行い、集電体上に活物質が存在する部分と、集電体のみの部分が間欠的に存在する極板を製作する。
Example 1
A positive electrode current collector 4 made of a strip-shaped aluminum foil is mixed with 100 parts by weight of powder of LiCoO 2 made by Nichia as an active material, and 5 parts by weight of Denka black, and a binder such as polyvinylidene fluoride (PVDF) is mixed. Using 4 parts by weight of a binder as a thickener, this was diluted with 7 parts by weight of a solvent of N-methyl-2-pyrrolidone manufactured by Mitsubishi Chemical, and dispersed and mixed. Then, coating is applied at a drying temperature of 200 ° C. at a rate of 15 m / min, the active material layer weight is set to 200 g / cm 2 , 60 cm is applied to the surface, and then 10 cm is stopped. This is repeated to produce an electrode plate in which a portion where the active material is present on the current collector and a portion where only the current collector is present are present intermittently.

裏面の塗料塗布は表面と同じく、乾燥温度200℃で、毎分15mの速度で両面塗布部の活物質層重量が400g/cm2になるよう50cm塗布を行った後、20cm塗布を
やめる。片面塗布部1に再度、塗布装置を用い乾燥温度200℃で毎分15mの速度で正極塗料を活物質層重量120g/cm2塗布を行った。
As with the front surface, the coating on the back surface is performed at a drying temperature of 200 ° C. at a rate of 15 m / min. 50 cm so that the weight of the active material layer in the double-side coating portion is 400 g / cm 2 , and then the 20 cm coating is stopped. The active material layer weight of 120 g / cm 2 was applied to the single-side coating unit 1 again using a coating apparatus at a drying temperature of 200 ° C. at a rate of 15 m / min.

得られた塗工済極板について、その後両面塗布部分の活物質層密度が4.0g/cc、片面塗布部分の活物質層密度が5.7g/ccになるようにロールプレス機にて圧延し、所定の寸法に切断して、シート状の正極板を製作した。これを実施例1の極板とした。   The obtained coated electrode plate is then rolled with a roll press so that the active material layer density of the double-side coated portion is 4.0 g / cc and the active material layer density of the single-side coated portion is 5.7 g / cc. And it cut | disconnected to the predetermined dimension and manufactured the sheet-like positive electrode plate. This was used as the electrode plate of Example 1.

(実施例2)
次に、両面塗布部2の活物質密度は同じで片面塗布部1の塗布量を変化させた後、圧延することで、片面塗布部1の活物質密度が5.0g/ccになるように変化させた正極板を作成しこれを実施例2の正極板とした。
(Example 2)
Next, the active material density of the double-side coated portion 2 is the same, and after changing the coating amount of the single-side coated portion 1, rolling is performed so that the active material density of the single-side coated portion 1 becomes 5.0 g / cc. A positive electrode plate was prepared and used as the positive electrode plate of Example 2.

(実施例3)
また、両面塗布部2の活物質密度は同じで片面塗布部1の塗布量を変化させた後、圧延することで、片面塗布部1の活物質密度が4.4g/ccになるように変化させた正極板を作成しこれを実施例3の正極板とした。
(Example 3)
Moreover, the active material density of the double-side coated part 2 is the same, and the active material density of the single-side coated part 1 is changed to 4.4 g / cc by rolling after changing the coating amount of the single-side coated part 1. A positive electrode plate was prepared and used as the positive electrode plate of Example 3.

(実施例4)
さらに、両面塗布部2の活物質密度は同じで片面塗布部1の塗布量を変化させた後、圧延することで、片面塗布部1の活物質密度が4.0g/ccになるように変化させた正極板を作成しこれを実施例4の正極板とした。
Example 4
Furthermore, the active material density of the double-side coated part 2 is the same, and the active material density of the single-side coated part 1 is changed to 4.0 g / cc by rolling after changing the coating amount of the single-side coated part 1. A positive electrode plate was prepared and used as the positive electrode plate of Example 4.

(比較例1)
両面塗布部2の活物質密度は同じで片面塗布部1の塗布量を変化させずに圧延することで、片面塗布部1の活物質密度が2.0g/ccになるように変化させた正極板を作成しこれを比較例1の正極板とした。
(Comparative Example 1)
The active material density of the double-side coated part 2 is the same, and the active material density of the single-side coated part 1 is changed to 2.0 g / cc by rolling without changing the coating amount of the single-side coated part 1 A plate was prepared and used as the positive electrode plate of Comparative Example 1.

(比較例2)
両面塗布部2の活物質密度は同じで片面塗布部1の塗布量を変化させた後、圧延することで、片面塗布部1の活物質密度が6.5g/ccになるように変化させた正極板を作成しこれを比較例2の正極板とした。
(Comparative Example 2)
The active material density of the double-side coated part 2 was the same, and after changing the coating amount of the single-sided coated part 1, the active material density of the single-side coated part 1 was changed to 6.5 g / cc by rolling. A positive electrode plate was prepared and used as the positive electrode plate of Comparative Example 2.

(比較例3)
両面塗布部2の活物質密度は同じで片面塗布部1の塗布量を変化させた後、圧延することで、片面塗布部1の活物質密度が8.0g/ccになるように変化させた正極板を作成しこれを比較例3の正極板とした。
(Comparative Example 3)
The active material density of the double-side coated part 2 was the same, and after changing the coating amount of the single-sided coated part 1, the active material density of the single-side coated part 1 was changed to 8.0 g / cc by rolling. A positive electrode plate was prepared and used as the positive electrode plate of Comparative Example 3.

このようにして得られた実施例1〜4の正極板、比較例1〜2の正極板について、折り曲げ試験を行った。   A bending test was performed on the positive electrode plates of Examples 1 to 4 and the positive electrode plates of Comparative Examples 1 and 2 thus obtained.

折り曲げ試験の方法は以下の通りである。   The method of the bending test is as follows.

試験には幅30mm×長さ100mmの正極板片面塗布部を用いた。正極板片面塗布部の幅方向に沿って、直径2mmの丸棒を配置させた。正極板片面塗布部の長さ方向に100回折り曲げを繰り返した。その後、丸棒に接触させた正極板片面塗布部の幅方向に発生したクラックの長さを目視で観察した。
クラック率を以下の式から算出した。
クラック率[%]=(クラックの入った長さ[mm]÷極板全幅の長さ[mm])×100
比較例3の正極板はロールプレス機での圧延時、片面活物質部に活物質層の破断が生じ
折り曲げ試験を実施することができなかった。
折り曲げ試験結果について表1に示した。
In the test, a positive electrode plate single-sided application portion having a width of 30 mm and a length of 100 mm was used. A round bar having a diameter of 2 mm was disposed along the width direction of the positive electrode plate single-side coated part. The bending was repeated 100 times in the length direction of the single-sided coating portion of the positive electrode plate. Then, the length of the crack which generate | occur | produced in the width direction of the positive electrode plate single-sided application part contacted with the round bar was observed visually.
The crack rate was calculated from the following equation.
Crack rate [%] = (Length with crack [mm] ÷ Length of full width of electrode plate [mm]) × 100
When the positive electrode plate of Comparative Example 3 was rolled with a roll press, the active material layer was broken in the single-sided active material portion, and the bending test could not be performed.
The bending test results are shown in Table 1.

表1の比較例1の結果より、両面塗布部の活物質密度と片面塗布部の活物質密度比を1.0以上にすると、片面塗布部の片面活物質層部分の厚みに対し、両面活物質層部分の厚みが大きくなり、圧延時に片面活物質層部分にかかる圧力が小さくなり、片面活物質層部分が十分に圧延されず、片面活物質層の剥がれが生じる。   From the results of Comparative Example 1 in Table 1, when the active material density ratio of the double-side coated part and the active material density ratio of the single-side coated part is 1.0 or more, the double-sided active material layer thickness is increased with respect to the thickness of the single-sided active material layer part of the single-side coated part. The thickness of the material layer portion is increased, the pressure applied to the single-sided active material layer portion during rolling is reduced, the single-sided active material layer portion is not sufficiently rolled, and the single-sided active material layer is peeled off.

比較例2〜3の結果より、活物質密度比を0.7以下にすると、片面活物質層部分の厚みが両面活物質部分の厚みに対し大きくなり、圧延時に片面活物質部分にかかる圧力が大きくなり、片面活物質層部分のクラック率が増え破断が生じる。   From the results of Comparative Examples 2-3, when the active material density ratio is 0.7 or less, the thickness of the single-sided active material layer portion becomes larger than the thickness of the double-sided active material portion, and the pressure applied to the single-sided active material portion during rolling is increased. The crack rate of the single-sided active material layer portion increases and breakage occurs.

実施例1〜4の結果により、両面塗布部の活物質密度Nと片面塗布部の活物質密度Mの比を、0.7<N/M<1.0にすると、片面塗布部の活物質層の剥がれや破断がなくなる。   According to the results of Examples 1 to 4, when the ratio of the active material density N of the double-side coated portion and the active material density M of the single-side coated portion is 0.7 <N / M <1.0, the active material of the single-side coated portion No peeling or breakage of layers.

本発明に係る非水電解液二次電池用電極板の製造方法は、電池特性、実用性、生産性に優れたポータブル用電源等として有用である。   The method for producing an electrode plate for a non-aqueous electrolyte secondary battery according to the present invention is useful as a portable power source excellent in battery characteristics, practicality, and productivity.

集電体であるアルミニウム箔に正極塗料を塗布した状態を示す模式図Schematic diagram showing a state in which a positive electrode paint is applied to an aluminum foil as a current collector 正極塗料塗布極板を圧延した状態を示す模式図Schematic showing the rolled state of the positive electrode coating electrode plate

符号の説明Explanation of symbols

1 片面塗布部
2 両面塗布部
3 集電体
1 Single-sided application part 2 Double-sided application part 3 Current collector

Claims (3)

電池最外周部分の極板の片面の活物質層の一部を除去して、集電体を介したその反対側の活物質層の合剤充填密度を他の内周部分の極板の活物質層の合剤充填密度より大きくしたことを特徴とする非水電解液二次電池用電極板の製造方法。   Part of the active material layer on one side of the electrode plate at the outermost periphery of the battery is removed, and the mixture packing density of the active material layer on the opposite side via the current collector is changed to the activity of the electrode plate at the other inner periphery. The manufacturing method of the electrode plate for nonaqueous electrolyte secondary batteries characterized by making it larger than the mixture filling density of a substance layer. 電池最外周部分の極板の片面の活物質層の一部を除去して、集電体を介したその反対側の活物質層の合剤充填密度Mとし、他の内周部分の極板の活物質層の合剤充填密度Nとするとき、NとMの比が0.7<N/M<1.0である、請求項1記載の非水電解液二次電池用電極板の製造方法。   A part of the active material layer on one side of the electrode plate at the outermost peripheral part of the battery is removed to obtain a mixture density M of the active material layer on the opposite side through the current collector, and the electrode plate at the other inner peripheral part The electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein the ratio of N to M is 0.7 <N / M <1.0, where N is a mixture packing density N of the active material layer. Production method. リチウム含有複合酸化物を正極活物質とし、炭素質材料を負極活物質とする、請求項1、2のいずれか記載の構成を適用した非水電解液二次電池用電極板の製造方法。   The manufacturing method of the electrode plate for nonaqueous electrolyte secondary batteries to which the structure of any one of Claims 1 and 2 which uses lithium containing complex oxide as a positive electrode active material and uses a carbonaceous material as a negative electrode active material.
JP2008094670A 2008-04-01 2008-04-01 Electrode plate for nonaqueous electrolyte secondary battery, and manufacturing method of the same Pending JP2009252349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094670A JP2009252349A (en) 2008-04-01 2008-04-01 Electrode plate for nonaqueous electrolyte secondary battery, and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094670A JP2009252349A (en) 2008-04-01 2008-04-01 Electrode plate for nonaqueous electrolyte secondary battery, and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2009252349A true JP2009252349A (en) 2009-10-29

Family

ID=41312896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094670A Pending JP2009252349A (en) 2008-04-01 2008-04-01 Electrode plate for nonaqueous electrolyte secondary battery, and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2009252349A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259502A (en) * 2008-04-15 2009-11-05 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
WO2012039091A1 (en) * 2010-09-21 2012-03-29 パナソニック株式会社 Nonaqueous electrolyte secondary battery and method for producing same
JP2014102889A (en) * 2012-11-16 2014-06-05 Sony Corp Battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system
JP2020057458A (en) * 2018-09-28 2020-04-09 三洋電機株式会社 Non-aqueous electrolyte secondary battery
US10854908B2 (en) 2014-05-20 2020-12-01 Samsung Sdi Co., Ltd. Electrode structure and lithium battery including the same
JPWO2021145060A1 (en) * 2020-01-15 2021-07-22

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259502A (en) * 2008-04-15 2009-11-05 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
WO2012039091A1 (en) * 2010-09-21 2012-03-29 パナソニック株式会社 Nonaqueous electrolyte secondary battery and method for producing same
CN102612783A (en) * 2010-09-21 2012-07-25 松下电器产业株式会社 Nonaqueous electrolyte secondary battery and method for producing same
JP2014102889A (en) * 2012-11-16 2014-06-05 Sony Corp Battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system
US10854908B2 (en) 2014-05-20 2020-12-01 Samsung Sdi Co., Ltd. Electrode structure and lithium battery including the same
JP2020057458A (en) * 2018-09-28 2020-04-09 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP7086807B2 (en) 2018-09-28 2022-06-20 三洋電機株式会社 Non-aqueous electrolyte secondary battery
US11374263B2 (en) * 2018-09-28 2022-06-28 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JPWO2021145060A1 (en) * 2020-01-15 2021-07-22
WO2021145060A1 (en) * 2020-01-15 2021-07-22 株式会社村田製作所 Negative electrode for secondary batteries, and secondary battery
CN114982001A (en) * 2020-01-15 2022-08-30 株式会社村田制作所 Negative electrode for secondary battery and secondary battery
JP7331950B2 (en) 2020-01-15 2023-08-23 株式会社村田製作所 Negative electrode for secondary battery and secondary battery

Similar Documents

Publication Publication Date Title
JP6183348B2 (en) Electrode body and method for producing electrode body
WO2023284383A1 (en) Electrochemical device and electronic device
JP2009252349A (en) Electrode plate for nonaqueous electrolyte secondary battery, and manufacturing method of the same
JP6959010B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5017995B2 (en) Method for manufacturing electrode plate for lithium secondary battery, electrode plate for lithium secondary battery and lithium secondary battery using the method
JP2015072753A (en) Lithium ion secondary battery
JP6300619B2 (en) Method and apparatus for manufacturing electrode plate of lithium ion secondary battery
JP2010062136A (en) Nonaqueous electrolyte secondary battery
JP2010061913A (en) Method for manufacturing electrode
CN108365164B (en) Method for manufacturing battery
JP2010170810A (en) Method of manufacturing electrode board for lithium-ion secondary battery
JP5929630B2 (en) Method for producing lithium ion secondary battery
JP2010061819A (en) Nonaqueous secondary battery
JP7409762B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP2008159410A (en) Cathode plate for nonaqueous secondary battery, and nonaqueous secondary battery using this
JP2009158142A (en) Charging method of nonaqueous secondary battery
JP2011165930A (en) Power storage device, and method of manufacturing shared negative electrode of the same
JP3697324B2 (en) Sheet electrode manufacturing method and non-aqueous electrolyte battery
JP2009181832A (en) Manufacturing device of electrode group for nonaqueous secondary battery
JP2011187270A (en) Method of manufacturing electrode for lithium secondary battery, and manufacturing method of lithium secondary battery
JP2011151143A (en) Manufacturing method of electrode for storage device and storage device
JP2003297337A (en) Electrode structure, its manufacturing method, and secondary battery
JP2010278300A (en) Method of manufacturing lithium ion capacitor
JP2009181831A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2008204836A (en) Negative electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it