JP2009250828A - Method for two-dimensional analysis of welding deformation and residual stress - Google Patents

Method for two-dimensional analysis of welding deformation and residual stress Download PDF

Info

Publication number
JP2009250828A
JP2009250828A JP2008100304A JP2008100304A JP2009250828A JP 2009250828 A JP2009250828 A JP 2009250828A JP 2008100304 A JP2008100304 A JP 2008100304A JP 2008100304 A JP2008100304 A JP 2008100304A JP 2009250828 A JP2009250828 A JP 2009250828A
Authority
JP
Japan
Prior art keywords
analysis
dimensional model
welding
residual stress
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008100304A
Other languages
Japanese (ja)
Inventor
Hidekazu Asano
英一 朝野
Ario Nakamura
有夫 中村
Onori Takakura
大典 高倉
Shunji Ryu
俊司 笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RADIOACTIVE WASTE MAN FUNDING
Radioactive Waste Management Funding & Research Center
IHI Corp
Original Assignee
RADIOACTIVE WASTE MAN FUNDING
Radioactive Waste Management Funding & Research Center
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RADIOACTIVE WASTE MAN FUNDING, Radioactive Waste Management Funding & Research Center, IHI Corp filed Critical RADIOACTIVE WASTE MAN FUNDING
Priority to JP2008100304A priority Critical patent/JP2009250828A/en
Publication of JP2009250828A publication Critical patent/JP2009250828A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for two-dimensional analysis of welding deformation and a residual stress which attains sharp reduction of the time for analysis and enables highly accurate analysis of the welding deformation and the residual stress. <P>SOLUTION: The method for analysis of the welding deformation and the residual stress is for analyzing the stress remaining after welding and the deformation, including shrinkage, distortion or the like, arising in welding. Herein a nonsteady heat conduction analysis is performed in consideration of transfer of a heat source S, and a transient temperature in a flat plate 1 being a three-dimensional model is calculated. After a two-dimensional model 1A as one section of the flat plate 1 being the three-dimensional model is prepared, a thermoelasticity-plasticity analysis based on the two-dimensional model 1A is performed, using the transient temperature resulted from the nonsteady heat conduction analysis based on the three-dimensional model. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、溶接後に残留する応力や溶接時に生じる収縮や歪などの変形を解析する際に用いられる溶接変形及び残留応力の解析方法に係わり、特に、一般化平面歪や軸対称モデルなどの2次元化が可能な溶接に用いるのに好適である溶接変形及び残留応力の2次元解析方法に関するものである。   The present invention relates to a method for analyzing welding deformation and residual stress used in analyzing deformations such as stress remaining after welding and shrinkage and strain generated during welding, and in particular, 2 methods such as generalized plane strain and axisymmetric model. The present invention relates to a two-dimensional analysis method for welding deformation and residual stress, which is suitable for use in welding capable of dimensioning.

上記した溶接後に残留する応力や溶接時に生じる変形は、溶接部が局部的に加熱冷却されることにより生じるが、その発生要因としては、溶接金属の凝固時における母材の熱膨張や、溶接部付近の母材に生じる塑性歪や、溶接金属が凝固してから室温に冷却されるまでに生じる塑性歪などが挙げられる。
従来において、これらのような溶接変形及び残留応力を解析する方法としては、例えば、溶接により生じる固有ひずみ分布を溶接条件から推定して弾性解析を行う方法や、3次元モデルによる熱源の移動を考慮した3次元熱伝導解析を行って、この解析結果に基づいて3次元モデルによる熱弾塑性解析を行う方法が知られている。
The stress that remains after welding and the deformation that occurs during welding occur when the welded part is locally heated and cooled. The cause of this is the thermal expansion of the base metal during solidification of the weld metal, Examples thereof include plastic strain generated in a nearby base material and plastic strain generated from when the weld metal solidifies until it is cooled to room temperature.
Conventional methods of analyzing welding deformation and residual stress as described above include, for example, a method in which an inherent strain distribution caused by welding is estimated from welding conditions and an elastic analysis is performed, and a movement of a heat source by a three-dimensional model is considered. There is known a method of performing a three-dimensional heat conduction analysis and performing a thermoelastic-plastic analysis using a three-dimensional model based on the analysis result.

上記した解析方法のうちの固有ひずみによる弾性解析を用いた方法では、溶接によって生じる固有ひずみの大きさや分布領域があらかじめ判らないと解析を行うことができないという欠点があり、一方、3次元モデルによる熱弾塑性解析を用いた方法では、もっとも実際の現象に近いことから、高い解析精度が得られるものの、解析に要する時間が膨大になってしまうという欠点がある。   Among the analysis methods described above, the method using the elastic analysis based on the inherent strain has a drawback that the analysis cannot be performed unless the size and distribution region of the inherent strain generated by welding is known in advance. The method using the thermo-elasto-plastic analysis is closest to the actual phenomenon, so that high analysis accuracy can be obtained, but there is a drawback that the time required for the analysis becomes enormous.

そこで、解析に要する時間の短縮を図るうえで、一般化平面歪や軸対称モデルなどの2次元化が可能な溶接の場合には、すなわち、平板に対するビードオンプレート溶接や管体の突合せ溶接や円孔に対する円板の嵌め込み溶接などの2次元化が可能な溶接の場合には、溶接入熱による過渡温度を2次元モデルによる非定常熱伝導解析(2次元熱伝導解析)によって計算し、この解析結果に基づいて2次元モデルによる熱弾塑性解析を行う方法が広く採用されている(例えば、特許文献1参照)。
特開2004−53366号公報
Therefore, in order to shorten the time required for analysis, in the case of welding that can be two-dimensionalized, such as generalized plane strain or an axially symmetric model, that is, bead-on-plate welding to a flat plate, butt welding of a pipe body, In the case of welding that can be two-dimensional, such as a disk fitting welding to a circular hole, the transient temperature due to welding heat input is calculated by unsteady heat conduction analysis (two-dimensional heat conduction analysis) using a two-dimensional model. A method of performing thermoelastic-plastic analysis using a two-dimensional model based on the analysis result has been widely adopted (see, for example, Patent Document 1).
JP 2004-53366 A

ところが、上記した2次元モデルによる熱弾塑性解析を行う解析方法にあっては、3次元モデルによる熱弾塑性解析を用いた解析方法と比較して、解析に要する時間を大幅に短縮することはできるものの、熱の3次元的な移動を考慮していないので、その分だけ溶接変形及び残留応力の解析精度が劣ってしまうという問題があり、この問題を解決することが従来の課題となっていた。   However, in the analysis method for performing the thermo-elasto-plastic analysis using the above-described two-dimensional model, the time required for the analysis can be significantly shortened compared with the analysis method using the thermo-elasto-plastic analysis using the three-dimensional model. Although it is possible, since the three-dimensional movement of heat is not taken into consideration, there is a problem that the analysis accuracy of welding deformation and residual stress is inferior, and solving this problem has been a conventional problem. It was.

本発明は、上記した従来の課題に着目してなされたもので、解析時間の大幅な短縮を実現したうえで、3次元モデルによる熱弾塑性解析を用いた解析方法と同程度の高い精度で溶接変形及び残留応力の解析を行うことが可能である溶接変形及び残留応力の2次元解析方法を提供することを目的としている。   The present invention has been made by paying attention to the above-described conventional problems. In addition to realizing a significant reduction in analysis time, the present invention has the same high accuracy as an analysis method using a thermoelastic-plastic analysis using a three-dimensional model. It is an object of the present invention to provide a two-dimensional analysis method of welding deformation and residual stress that can analyze welding deformation and residual stress.

本発明に係る溶接変形及び残留応力の2次元解析方法は、溶接後に残留する応力や溶接時に生じる収縮や歪などの変形を解析する溶接変形及び残留応力の解析方法、特に、一般化平面歪や軸対称モデルなどの2次元化が可能な溶接に用いるのに好適な解析方法であって、請求項1として、熱源移動を考慮した非定常熱伝導解析を行って3次元モデルである母材における溶接入熱による過渡温度を計算し、前記3次元モデルである母材の一断面としての2次元モデルを作成した後、前記3次元モデルによる非定常熱伝導解析の結果である過渡温度を用いた前記2次元モデルによる熱弾塑性解析を行う構成としたことを特徴としており、この溶接変形及び残留応力の2次元解析方法の構成を前述した従来の課題を解決するための手段としている。   The two-dimensional analysis method for welding deformation and residual stress according to the present invention is a welding deformation and residual stress analysis method for analyzing deformations such as residual stress after welding and shrinkage and strain generated during welding, in particular, generalized plane strain and An analysis method suitable for use in welding capable of two-dimensionalization, such as an axially symmetric model, according to claim 1, wherein unsteady heat conduction analysis is performed in consideration of heat source movement in a base material that is a three-dimensional model. After calculating the transient temperature due to welding heat input and creating a two-dimensional model as a cross section of the base material, which is the three-dimensional model, the transient temperature, which is the result of unsteady heat conduction analysis using the three-dimensional model, was used. The thermoelastic-plastic analysis is performed by the two-dimensional model, and the configuration of the two-dimensional analysis method for welding deformation and residual stress is used as a means for solving the above-described conventional problems.

また、本発明の請求項2に係る溶接変形及び残留応力の2次元解析方法は、熱源移動を考慮した非定常熱伝導解析によって、3次元モデルである母材の中間部分における過渡温度を計算する構成としている。
さらに、本発明の請求項3に係る溶接変形及び残留応力の2次元解析方法において、前記3次元モデルである母材の中間部分における一断面を前記2次元モデルとした構成としている。
In addition, in the two-dimensional analysis method of welding deformation and residual stress according to claim 2 of the present invention, the transient temperature in the intermediate portion of the base material, which is a three-dimensional model, is calculated by unsteady heat conduction analysis considering heat source movement. It is configured.
Furthermore, in the two-dimensional analysis method of welding deformation and residual stress according to claim 3 of the present invention, one cross section in the intermediate portion of the base material, which is the three-dimensional model, is configured as the two-dimensional model.

本発明に係る溶接変形及び残留応力の2次元解析方法では、母材の一断面としての2次元モデルによる熱弾塑性解析を行う際に、3次元モデルによる非定常熱伝導解析を行って得た任意断面の非定常の温度履歴を温度荷重データとして用いるので、母材内部の3次元的な熱の流れを2次元モデルで考慮し得ることとなり、その結果、解析時間の大幅な短縮が図られるのに加えて、3次元モデルによる熱弾塑性解析を用いた解析方法と同程度にまで、溶接変形及び残留応力の解析精度が向上することとなる。   In the two-dimensional analysis method for welding deformation and residual stress according to the present invention, the thermal elasto-plastic analysis by the two-dimensional model as one section of the base material is performed by performing the unsteady heat conduction analysis by the three-dimensional model. Since an unsteady temperature history of an arbitrary cross section is used as temperature load data, the three-dimensional heat flow inside the base material can be considered in the two-dimensional model, and as a result, the analysis time can be greatly shortened. In addition to the above, the analysis accuracy of welding deformation and residual stress is improved to the same extent as the analysis method using the thermoelastic-plastic analysis by the three-dimensional model.

本発明の請求項1に係る溶接変形及び残留応力の2次元解析方法によれば、上記した構成としているので、解析時間の大幅な短縮を実現したうえで、溶接変形及び残留応力の解析を高精度に行うことが可能であるという非常に優れた効果がもたらされる。
また、本発明の請求項2に係る溶接変形及び残留応力の2次元解析方法によれば、上記した構成としているので、解析精度をより高めつつ解析時間のより一層の短縮を実現することが可能であるという非常に優れた効果がもたらされ、本発明の請求項3に係る溶接変形及び残留応力の2次元解析方法によれば、上記した構成としていることから、解析精度をより一層高めることができるという非常に優れた効果がもたらされる。
According to the two-dimensional analysis method for welding deformation and residual stress according to claim 1 of the present invention, since the above-described configuration is adopted, the analysis time of welding deformation and residual stress can be improved while realizing a significant reduction in analysis time. This provides a very good effect that it can be performed accurately.
Further, according to the two-dimensional analysis method for welding deformation and residual stress according to claim 2 of the present invention, since the above-described configuration is adopted, it is possible to further reduce the analysis time while further improving the analysis accuracy. According to the method for two-dimensional analysis of welding deformation and residual stress according to claim 3 of the present invention, the above-described configuration further enhances the analysis accuracy. This is a very good effect.

以下、本発明を図面に基づいて説明する。
図1〜図3は、本発明の溶接変形及び残留応力の2次元解析方法の一実施形態を示しており、この実施形態において、ビードオンプレート溶接(ビード溶接)に本発明の溶接変形及び残留応力の2次元解析方法を適用した場合を示している。
図1に示すように、長さ寸法(Z方向寸法)500mm,幅寸法(X方向寸法)180mm,厚さ寸法(Y方向寸法)60mmの母材である平板1に対して開先加工を行って、図1(b)の拡大円内にも示すように、上面1aにおける中心線L上に半径Rが約5mmで且つ深さdが約3mmの断面半円形状を成す開先溝1bを形成した後、この開先溝1bに対してアーク溶接によるビード溶接を行った。
Hereinafter, the present invention will be described with reference to the drawings.
1 to 3 show an embodiment of a two-dimensional analysis method for welding deformation and residual stress according to the present invention. In this embodiment, bead-on-plate welding (bead welding) involves welding deformation and residual according to the present invention. The case where the two-dimensional analysis method of stress is applied is shown.
As shown in FIG. 1, groove processing is performed on a flat plate 1 which is a base material having a length dimension (Z-direction dimension) of 500 mm, a width dimension (X-direction dimension) of 180 mm, and a thickness dimension (Y-direction dimension) of 60 mm. As shown in the enlarged circle of FIG. 1B, the groove groove 1b having a semicircular cross section having a radius R of about 5 mm and a depth d of about 3 mm is formed on the center line L on the upper surface 1a. After the formation, bead welding by arc welding was performed on the groove 1b.

次に、この実施形態における溶接変形及び残留応力の2次元解析方法を用いて、上記したビード溶接に対する溶接変形及び残留応力の解析を行う際の要領を説明する。
図2及び図3(a)に示すように、まず、ステップST1において、3次元モデルによる熱源Sの溶接線(中心線L)に沿う長さZ方向の移動を考慮した非定常熱伝導解析を行って、3次元モデルである平板1における過渡温度を計算する。
Next, the point at the time of analyzing the welding deformation and residual stress for the above-described bead welding using the two-dimensional analysis method of welding deformation and residual stress in this embodiment will be described.
As shown in FIGS. 2 and 3A, first, in step ST1, unsteady heat conduction analysis is performed in consideration of the movement in the length Z direction along the weld line (center line L) of the heat source S according to the three-dimensional model. The transient temperature in the flat plate 1 which is a three-dimensional model is calculated.

次いで、ステップST2において、図3(b),(c)に示すように、3次元モデルである平板1の長さZ方向の中間部分における一断面を2次元モデル1Aとして作成する。
なお、この実施形態において、3次元モデルである平板1の長さZ方向の中間部分における一断面は、溶接線Lを境にしてX方向で対称形状を成しているため、上記一断面の片側(図示右側)を2次元モデル1Aとして採用した。
Next, in step ST2, as shown in FIGS. 3B and 3C, a cross section in the intermediate portion in the length Z direction of the flat plate 1 which is a three-dimensional model is created as a two-dimensional model 1A.
In this embodiment, since one cross section in the intermediate portion in the length Z direction of the flat plate 1 that is a three-dimensional model has a symmetrical shape in the X direction with respect to the weld line L, One side (right side in the figure) was adopted as the two-dimensional model 1A.

そして、ステップST3において、上記した3次元モデルによる非定常熱伝導解析の結果である過渡温度を用いた2次元モデル1Aによる熱弾塑性解析を行う。
そこで、この実施形態における溶接変形及び残留応力の2次元解析方法による解析結果を図4に示し、比較のために、上記したビード溶接に対して従来の2次元モデルによる熱弾塑性解析方法を用いて溶接変形及び残留応力の解析を行った際の解析結果を図5に示す。
Then, in step ST3, thermal elastic-plastic analysis is performed by the two-dimensional model 1A using the transient temperature that is the result of the unsteady heat conduction analysis by the above-described three-dimensional model.
Therefore, FIG. 4 shows the result of analysis by the two-dimensional analysis method of welding deformation and residual stress in this embodiment. For comparison, the conventional method of thermoelastic-plastic analysis using a two-dimensional model is used for the above-described bead welding. FIG. 5 shows the analysis results when the welding deformation and residual stress are analyzed.

図5に示す平板1の上面1aにおける応力分布において、従来の2次元モデルによる熱弾塑性解析方法で得た解析結果(従1Z)では、高い解析精度が得られる3次元モデルによる熱弾塑性解析方法を用いて得た解析結果(従2Z)と比べて、溶接線LからX方向に約30mm離れた部位での溶接線Lに沿うZ方向の応力の大きさに明らかな差異が見られる。   In the stress distribution on the upper surface 1a of the flat plate 1 shown in FIG. 5, the analysis result (subordinate 1Z) obtained by the conventional thermo-elasto-plastic analysis method using the two-dimensional model shows the thermo-elasto-plastic analysis using the three-dimensional model that provides high analysis accuracy. Compared with the analysis result (secondary 2Z) obtained by using the method, a clear difference is seen in the magnitude of the stress in the Z direction along the weld line L at a site about 30 mm away from the weld line L in the X direction.

これに対して、図4に示す平板1の上面1aにおける応力分布において、この実施形態における解析方法で得た解析結果(実Z)では、高い解析精度が得られる3次元モデルによる熱弾塑性解析方法を用いて得た解析結果(従2Z)と比べて、溶接線LからX方向に約30mm離れた部位での溶接線Lに沿うZ方向の応力に大きな差異が見られないことから、この実施形態における溶接変形及び残留応力の2次元解析方法では、3次元モデルによる熱弾塑性解析を用いた解析方法と同程度の高い精度で溶接変形及び残留応力の解析を行い得ることが実証できた。   On the other hand, in the stress distribution on the upper surface 1a of the flat plate 1 shown in FIG. 4, in the analysis result (actual Z) obtained by the analysis method in this embodiment, the thermoelastic-plastic analysis by a three-dimensional model that can obtain high analysis accuracy. Compared with the analysis result obtained by using the method (subordinate 2Z), since there is no significant difference in the stress in the Z direction along the weld line L at a site about 30 mm away from the weld line L in the X direction, In the two-dimensional analysis method of welding deformation and residual stress in the embodiment, it was proved that the analysis of welding deformation and residual stress can be performed with the same high accuracy as the analysis method using thermal elastic-plastic analysis by a three-dimensional model. .

また、上記3次元モデルによる熱弾塑性解析を用いた解析方法では、熱源の移動を考慮した非定常熱伝導解析に約30分を費やしていると共に、この非定常熱伝導解析の結果(D)を用いた熱弾塑性解析には約32時間もの時を費やしているのに対して、この実施形態における溶接変形及び残留応力の2次元解析方法では、上記非定常熱伝導解析の結果(D)を用いた熱弾塑性解析を僅か1時間程度で完了し得るので、上記3次元モデルによる熱弾塑性解析を用いた解析方法と比較して、解析時間の大幅な短縮を実現し得ることが実証できた。   Moreover, in the analysis method using the thermoelastic-plastic analysis based on the three-dimensional model, about 30 minutes are spent on the unsteady heat conduction analysis considering the movement of the heat source, and the result of the unsteady heat conduction analysis (D) In contrast, it takes about 32 hours to perform the thermoelastic-plastic analysis using the welding method, whereas in the two-dimensional analysis method of welding deformation and residual stress in this embodiment, the result of the unsteady heat conduction analysis (D) Because it can be completed in just one hour using thermo-elastic-plastic analysis using, it has been demonstrated that the analysis time can be significantly shortened compared to the analysis method using thermo-elastic-plastic analysis based on the above three-dimensional model. did it.

なお、図4では、この実施形態における溶接変形及び残留応力の2次元解析方法で得たX方向の応力解析結果(実X)と高い解析精度が得られる3次元モデルによる熱弾塑性解析方法を用いて得たX方向の応力解析結果(従2X)を参考表示し、図5では、従来の2次元モデルによる熱弾塑性解析方法で得たX方向の応力解析結果(従1X)と高い解析精度が得られる3次元モデルによる熱弾塑性解析方法を用いて得たX方向の応力解析結果(従2X)を参考表示している。   FIG. 4 shows a thermal elastic-plastic analysis method based on a stress analysis result (actual X) in the X direction obtained by the two-dimensional analysis method for welding deformation and residual stress in this embodiment and a three-dimensional model that provides high analysis accuracy. The X-direction stress analysis result (subordinate 2X) obtained by using the reference is displayed as a reference, and in FIG. 5, the X-direction stress analysis result (subordinate 1X) obtained by the conventional thermo-elasto-plastic analysis method based on the two-dimensional model and high analysis The X-direction stress analysis result (secondary 2X) obtained by using the thermo-elasto-plastic analysis method based on a three-dimensional model with high accuracy is displayed for reference.

上記した実施形態に係る溶接変形及び残留応力の2次元解析方法では、図2のステップST1において、非定常熱伝導解析によって、3次元モデルである平板1の全長における過渡温度を計算するようにしているが、これに限定されるものではなく、3次元モデルである平板1の長さZ方向の中間部分における過渡温度を計算するようにしてもよい。
また、上記した実施形態に係る溶接変形及び残留応力の2次元解析方法では、図2のステップST2において、3次元モデルである平板1の長さZ方向の中間部分における一断面を2次元モデル1Aとして作成するようにしているが、これに限定されるものではなく、温度が定常的であるならば、3次元モデルである平板1の長さZ方向の端部よりの部分における一断面を2次元モデル1Aとして作成するようにしてもよい。
In the two-dimensional analysis method for welding deformation and residual stress according to the above-described embodiment, in step ST1 of FIG. 2, the transient temperature over the entire length of the flat plate 1 which is a three-dimensional model is calculated by unsteady heat conduction analysis. However, the present invention is not limited to this, and the transient temperature in the intermediate portion in the length Z direction of the flat plate 1 that is a three-dimensional model may be calculated.
Further, in the two-dimensional analysis method for welding deformation and residual stress according to the above-described embodiment, in step ST2 of FIG. 2, one cross section in the intermediate portion in the length Z direction of the flat plate 1 which is a three-dimensional model is represented by the two-dimensional model 1A. However, the present invention is not limited to this, and if the temperature is constant, one cross section in the portion from the end in the length Z direction of the flat plate 1 which is a three-dimensional model is 2 You may make it produce as the dimension model 1A.

本発明の一実施形態による溶接変形及び残留応力の2次元解析方法を評価するために実施したビードオンプレート溶接を示す平板の平面説明図(a)及び図1(a)のA−A線位置に基づく断面説明図(b)である。Plane explanatory view of a flat plate showing bead-on-plate welding performed for evaluating a two-dimensional analysis method of welding deformation and residual stress according to an embodiment of the present invention (A) and position along line AA in FIG. It is sectional explanatory drawing based on (b). 本発明の一実施形態による溶接変形及び残留応力の2次元解析方法の解析要領を示すフローチャートである。It is a flowchart which shows the analysis point of the two-dimensional analysis method of the welding deformation and residual stress by one Embodiment of this invention. 本発明の一実施形態による溶接変形及び残留応力の2次元解析方法の熱源移動方向と2次元モデル作成要領を示す平板の斜視説明図(a),(b)並びに2次元モデルの拡大説明図(c)である。The perspective explanatory view (a), (b) of the flat plate which shows the heat source moving direction of the two-dimensional analysis method of the welding deformation and the residual stress according to one embodiment of the present invention and how to create the two-dimensional model, and the enlarged explanatory diagram of the two-dimensional model ( c). 本発明の一実施形態による溶接変形及び残留応力の2次元解析方法を用いて得た解析結果を従来の3次元モデルによる熱弾塑性解析方法で得た解析結果と比較して示す平板上面における残留応力分布図である。Residuals on the upper surface of the flat plate shown by comparing the analysis results obtained by the two-dimensional analysis method of welding deformation and residual stress according to the embodiment of the present invention with the analysis results obtained by the thermoelastic-plastic analysis method by the conventional three-dimensional model It is a stress distribution diagram. 従来の2次元モデルによる熱弾塑性解析方法を用いて得た解析結果を従来の3次元モデルによる熱弾塑性解析方法で得た解析結果と比較して示す平板上面における残留応力分布図である。It is a residual-stress distribution figure in the flat plate upper surface which shows the analysis result obtained using the thermoelastic-plastic analysis method by the conventional two-dimensional model compared with the analysis result obtained by the thermoelastic-plastic analysis method by the conventional three-dimensional model.

符号の説明Explanation of symbols

1 平板(母材)
1A 2次元モデル
1a 平板の上面
S 熱源
1 Flat plate (base material)
1A Two-dimensional model 1a Flat plate upper surface S Heat source

Claims (3)

溶接後に残留する応力や溶接時に生じる収縮や歪などの変形を解析する溶接変形及び残留応力の解析方法であって、
熱源移動を考慮した非定常熱伝導解析を行って3次元モデルである母材における溶接入熱による過渡温度を計算し、
前記3次元モデルである母材の一断面としての2次元モデルを作成した後、
前記3次元モデルによる非定常熱伝導解析の結果である過渡温度を用いた前記2次元モデルによる熱弾塑性解析を行う
ことを特徴とする溶接変形及び残留応力の2次元解析方法。
A welding deformation and residual stress analysis method for analyzing deformations such as stress remaining after welding and shrinkage and strain generated during welding,
Transient heat transfer analysis considering heat source movement is performed to calculate the transient temperature due to welding heat input in the base metal, which is a three-dimensional model,
After creating a two-dimensional model as a section of the base material that is the three-dimensional model,
A method for two-dimensional analysis of welding deformation and residual stress, characterized by performing thermoelastic-plastic analysis by the two-dimensional model using a transient temperature that is a result of unsteady heat conduction analysis by the three-dimensional model.
熱源移動を考慮した非定常熱伝導解析によって、3次元モデルである母材の中間部分における過渡温度を計算する請求項1に記載の溶接変形及び残留応力の2次元解析方法。   The method of two-dimensional analysis of welding deformation and residual stress according to claim 1, wherein the transient temperature in the intermediate part of the base material, which is a three-dimensional model, is calculated by unsteady heat conduction analysis considering heat source movement. 前記3次元モデルである母材の中間部分における一断面を前記2次元モデルとした請求項1又は2に記載の溶接変形及び残留応力の2次元解析方法。   The method for two-dimensional analysis of welding deformation and residual stress according to claim 1 or 2, wherein one cross section at an intermediate portion of the base material which is the three-dimensional model is the two-dimensional model.
JP2008100304A 2008-04-08 2008-04-08 Method for two-dimensional analysis of welding deformation and residual stress Pending JP2009250828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008100304A JP2009250828A (en) 2008-04-08 2008-04-08 Method for two-dimensional analysis of welding deformation and residual stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008100304A JP2009250828A (en) 2008-04-08 2008-04-08 Method for two-dimensional analysis of welding deformation and residual stress

Publications (1)

Publication Number Publication Date
JP2009250828A true JP2009250828A (en) 2009-10-29

Family

ID=41311697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008100304A Pending JP2009250828A (en) 2008-04-08 2008-04-08 Method for two-dimensional analysis of welding deformation and residual stress

Country Status (1)

Country Link
JP (1) JP2009250828A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036902A (en) * 2011-08-09 2013-02-21 Toshiba Corp Analyzer, evaluation device, analysis method, and evaluation method
CN110887594A (en) * 2019-12-06 2020-03-17 哈尔滨工业大学 Characterization method of residual stress of ceramic/metal heterogeneous soldered joint
CN114295260A (en) * 2021-12-29 2022-04-08 福建省锅炉压力容器检验研究院 Welding seam residual stress reliability simulation testing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036902A (en) * 2011-08-09 2013-02-21 Toshiba Corp Analyzer, evaluation device, analysis method, and evaluation method
CN110887594A (en) * 2019-12-06 2020-03-17 哈尔滨工业大学 Characterization method of residual stress of ceramic/metal heterogeneous soldered joint
CN110887594B (en) * 2019-12-06 2021-04-02 哈尔滨工业大学 Characterization method of residual stress of ceramic/metal heterogeneous soldered joint
CN114295260A (en) * 2021-12-29 2022-04-08 福建省锅炉压力容器检验研究院 Welding seam residual stress reliability simulation testing device
CN114295260B (en) * 2021-12-29 2024-03-26 福建省锅炉压力容器检验研究院 Weld joint residual stress reliability simulation test device

Similar Documents

Publication Publication Date Title
Manurung et al. Welding distortion analysis of multipass joint combination with different sequences using 3D FEM and experiment
Hosseinzadeh et al. Mapping multiple components of the residual stress tensor in a large P91 steel pipe girth weld using a single contour cut
Guo et al. Trailing heat sink effects on residual stress and distortion of pulsed laser welded Hastelloy C-276 thin sheets
Okano et al. Transient distortion behavior during TIG welding of thin steel plate
US20160346860A1 (en) Welding method
Muransky et al. Mitigating cutting-induced plasticity in the contour method. Part 2: Numerical analysis
CN105486430A (en) Welding numerical simulation assistant experiment residual stress measuring method
Brar et al. FEA of residual stress in cruciform welded joint of hollow sectional tubes
US7703660B2 (en) Method and system for weld bead sequencing to reduce distortion and stress
JP2009250828A (en) Method for two-dimensional analysis of welding deformation and residual stress
Okano et al. Temperature distribution effect on relation between welding heat input and angular distortion
Lidam et al. Angular distortion analysis of the multipass welding process on combined joint types using thermo-elastic–plastic FEM with experimental validation
Song et al. An analytical interpretation of welding linear heat input for 2D residual stress models
JP2010167440A (en) Method of correcting shape of pipe end of uoe metallic pipe
Kim et al. A study on welding residual stress analysis of a small bore nozzle with dissimilar metal welds
JP2009250829A (en) Method for simple three-dimensional analysis of welding deformation and residual stress
JP2005066646A (en) Method for estimating deformation and residual stress in welded structure and apparatus therefor
CN108009329B (en) Method for determining minimum pipeline length of 9% Cr hot-strength steel pipeline welding process evaluation
JP2013122411A (en) Pipe creep life evaluation method
Chen et al. Numerical analysis of the effects of weld parameters on distortions and residual stresses in butt welded steel plates
JP6232382B2 (en) System and method for dynamically identifying the location of a defect found in a component
Prakash et al. Review of high thickness welding analysis using SYSWELD for a fusion grade reactor
Song Analysis and characterization of residual stresses in pipe and vessel welds
JP2009128085A (en) Residual stress analysis method by finite element method
정길김 et al. Development of printed circuit heat exchanger for hydrogen station using diffusion bonding